1
|
Fàbrega C, Aviñó A, Navarro N, Jorge AF, Grijalvo S, Eritja R. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics 2023; 15:320. [PMID: 36839642 PMCID: PMC9959333 DOI: 10.3390/pharmaceutics15020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.
Collapse
Affiliation(s)
- Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Andreia F. Jorge
- Department of Chemistry, Coimbra Chemistry Centre (CQC), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Santiago Grijalvo
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Colloidal and Interfacial Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
2
|
Stagi L, De Forni D, Innocenzi P. Blocking viral infections by Lysine-based polymeric nanostructures. A critical review. Biomater Sci 2022; 10:1904-1919. [DOI: 10.1039/d2bm00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The outbreak of the Covid-19 pandemic due to the SARS-CoV-2 coronavirus has accelerated the search for innovative antivirals with possibly broad-spectrum efficacy. One of the possible strategies is to inhibit...
Collapse
|
3
|
Role of Cell-Penetrating Peptides in Intracellular Delivery of Peptide Nucleic Acids Targeting Hepadnaviral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:162-169. [PMID: 29246295 PMCID: PMC5633256 DOI: 10.1016/j.omtn.2017.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA-targeting hepadnaviral encapsidation signal (ε). This anti-ε PNA exhibited sequence-specific inhibition of DHBV RT in a cell-free system. Investigation of the best in vivo route of delivery of PNA conjugated to (D-Arg)8 (P1) showed that intraperitoneal injection to ducklings was ineffective, whereas intravenously (i.v.) injected fluorescein-P1-PNA reached the hepatocytes. Treatment of virus carriers with i.v.-administered P1-PNA resulted in a decrease in viral DNA compared to untreated controls. Surprisingly, a similar inhibition of viral replication was observed in vivo as well as in vitro in primary hepatocyte cultures for a control 2 nt mismatched PNA conjugated to P1. By contrast, the same PNA coupled to (D-Lys)4 (P2) inhibited DHBV replication in a sequence-specific manner. Interestingly, only P1, but not P2, displayed anti-DHBV activity in the absence of PNA cargo. Hence, we provide new evidence that CPP-PNA conjugates inhibit DHBV replication following low-dose administration. Importantly, our results demonstrate the key role of CPPs used as vehicles in antiviral specificity of CPP-PNA conjugates.
Collapse
|
4
|
Abstract
Antisense oligodeoxynucleotides are a promising new class of antiviral agent. Because they bind in a sequence-specific manner to complementary regions of mRNA, oligos can inhibit gene expression in a sequence-specific manner. The ‘antisense’ approach has been used successfully to block cellular expression and replication of several viruses including Human Immunodeficiency Virus-1 (HIV-1), and Herpes Simplex Virus (HSV). However, the antiviral effect of oligodeoxynucleotides is not limited to sequence-specific inhibition of gene expression. Non sequence-specific effects are frequently observed, presumably as a result of their properties as polyanions. Occasionally (e.g. for HIV-1) these non sequence-specific effects are also therapeutic. The prospects for antisense oligodeoxynucleotide therapy for viral disease are discussed.
Collapse
Affiliation(s)
- J. L. Tonkinson
- Department of Medicine, Columbia University, College of Physicians and Surgeons, 630 W. 168 St., New York, NY 10032, USA
| | - C. A. Stein
- Department of Medicine, Columbia University, College of Physicians and Surgeons, 630 W. 168 St., New York, NY 10032, USA
| |
Collapse
|
5
|
Kwak M, Herrmann A. Nucleic Acid/Organic Polymer Hybrid Materials: Synthesis, Superstructures, and Applications. Angew Chem Int Ed Engl 2010; 49:8574-87. [DOI: 10.1002/anie.200906820] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Kwak M, Herrmann A. Hybridmaterialien aus Nucleinsäuren und organischen Polymeren: Synthese, Überstrukturen und Anwendungen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906820] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Lochmann D, Jauk E, Zimmer A. Drug delivery of oligonucleotides by peptides. Eur J Pharm Biopharm 2005; 58:237-51. [PMID: 15296952 DOI: 10.1016/j.ejpb.2004.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 03/11/2004] [Indexed: 01/18/2023]
Abstract
Oligonucleotides are promising tools for in vitro studies where specific downregulation of proteins is required. In addition, antisense oligonucleotides have been studied in vivo and have entered clinical trials as new chemical entities with various therapeutic targets such as antiviral drugs or for tumour treatments. The formulation of these substances were widely studied in the past. With this review we will focus on peptides used as drug delivery vehicles for oligonucleotides. Different strategies are summarised. Cationically charged peptides from different origins were used e.g. as cellular penetration enhancers or nuclear localisation tool. Examples are given for Poly-L-lysine alone or in combination with receptor specific targeting ligands such as asialoglycoprotein, galactose, growth factors or transferrin. Another large group of peptides are those with membrane translocating properties. Fusogenic peptides rich in lysine or arginine are reviewed. They have been used for DNA complexation and condensation to form transport vehicles. Some of them, additionally, have so called nuclear localisation properties. Here, DNA sequences, which facilitate intracellular trafficking of macromolecules to the nucleus were explored. Summarizing the present literature, peptides are interesting pharmaceutical excipients and it seems to be feasible to combine the specific properties of peptides to improve drug delivery devices for oligonucleotides in the future.
Collapse
Affiliation(s)
- Dirk Lochmann
- Institute for Pharmaceutical Technology, Johann Wolfgang Goethe-University, Frankfurtam Main, Germany
| | | | | |
Collapse
|
8
|
Akhtar S, Juliano RL. Cellular uptake and intracellular fate of antisense oligonucleotides. Trends Cell Biol 2004; 2:139-44. [PMID: 14731968 DOI: 10.1016/0962-8924(92)90100-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antisense oligonucleotides with sequences complementary to a given genetic target can enter cells in sufficient quantities to selectively inhibit gene expression. Thus, they have a potential therapeutic use in preventing undesirable gene expression in diseases such as cancer and AIDS. However, it is remarkable that these molecules, which have high molecular weights and are often charged, gain entry to cells at all. In this article, we review the possible mechanisms by which oligonucleotides enter cells and their subsequent intracellular fates. We also discuss current approaches for improving cellular uptake and delivery of antisense nucleic acids to their intended targets.
Collapse
Affiliation(s)
- S Akhtar
- Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | |
Collapse
|
9
|
Chirila TV, Rakoczy PE, Garrett KL, Lou X, Constable IJ. The use of synthetic polymers for delivery of therapeutic antisense oligodeoxynucleotides. Biomaterials 2002; 23:321-42. [PMID: 11761152 PMCID: PMC7124374 DOI: 10.1016/s0142-9612(01)00125-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Accepted: 03/26/2001] [Indexed: 12/20/2022]
Abstract
Developed over the past two decades, the antisense strategy has become a technology of recognised therapeutic potential, and many of the problems raised earlier in its application have been solved to varying extents. However, the adequate delivery of antisense oligodeoxynucleotides to individual cells remains an important and inordinately difficult challenge. Synthetic polymers appeared on this scene in the middle 1980s, and there is a surprisingly large variety used or proposed so far as agents for delivery of oligodeoxynucleotides. After discussing the principles of antisense strategy, certain aspects of the ingestion of macromolecules by cells, and the present situation of delivery procedures, this article analyses in detail the attempts to use synthetic polymers as carrier matrices and or cell membrane permeabilisation agents for delivery of antisense oligodeoxynucleotides. Structural aspects of various polymers, as well as the results, promises and limitations of their use are critically evaluated.
Collapse
Key Words
- a, adenine
- as, antisense
- c, cytosine
- cd, cyclodextrin
- dna, deoxyribonucleic acid
- evac, poly(ethylene-co-vinyl acetate)
- g, guanine
- hart, hybrid-arrested translation
- help, high-efficiency liquid phase
- hema, 2-hydroxyethyl methacrylate
- hpma, n-(2-hydroxypropyl)methacrylamide
- ipec, interpolyelectrolyte complex
- odn, oligodeoxyribonucleotide, oligodeoxynucleotide
- pamam, polyamidoamines
- pca, polycyanoacrylates
- pdtema, n-[2-(2-pyridyldithio)]ethylmethacrylamide
- pedot, poly(3,4-ethylenedioxythiophene)
- peg, poly(ethylene glycol)
- pei, polyethyleneimine
- peo, poly(ethylene oxide)
- pga, poly(glycolic acid)
- pl, polylysine
- pla, poly(lactic acid)
- pll, poly(l-lysine)
- por, polyornithine
- ps, polyspermine
- rme, receptor-mediated endocytosis
- rna, ribonucleic acid
- mrna, messenger ribonucleic acid
- rnase, ribonuclease
- snaige, synthetic or small nucleic acids interfering with gene expression
- t, thymine
- vp, 1-vinyl-2-pyrrolidinone
- antisense strategy
- antisense oligodeoxynucleotides
- endocytosis
- drug delivery
- charged polymers
- neutral polymers
Collapse
Affiliation(s)
- Traian V Chirila
- Centre for Ophthalmology & Visual Science and Lions Eye Institute, University of Western Australia, Nedlands, Australia.
| | | | | | | | | |
Collapse
|
10
|
Dé E, Chaloin L, Heitz A, Méry J, Molle G, Heitz F. Conformation and ion channel properties of a five-helix Bundle protein. J Pept Sci 2001; 7:41-9. [PMID: 11245204 DOI: 10.1002/psc.293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The primary amphipathic peptide Ac-Met-Gly-Leu-Gly-Leu-Trp-Leu-Leu-Val-Leu10-Ala-Ala-Ala-Leu-Gln-Gly-Ala-Lys-Lys-Lys20-Arg-Lys-Val-NH-CH2-CH2-SH called SPM was able to induce formation of ion channels into planar lipid bilayers with main conductance values of 75 and 950 pS in 1 M KCl. The 75 pS value can be attributed to an aggregate composed of five monomers since the corresponding five-unit bundle (5-SPM) also presented a 70 pS channels under the same conditions. The upper 950 pS level would be generated by a hexameric aggregate. Ion channels induced by both SPM and its pentameric bundle are slightly cation selective but not voltage-dependent. The structural studies showed that the SPM and 5-SPM possess mainly an alpha-helical structure (approximately 40%) and are strongly embedded in the bilayer. This behaviour and the strong hydrophobic interactions occurring between helices in the bundle induce a strong stabilization of 5-SPM in the bilayer and would be responsible for the stepwise current fluctuations observed during the incorporation of 5-SPM into the membrane.
Collapse
Affiliation(s)
- E Dé
- UMR 6522 CNRS, IFRMP 23, Faculté des Sciences, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
11
|
Robbins I, Lebleu B. Vesicular stomatitis virus as model system for studies of antisense oligonucleotide translation arrest. Methods Enzymol 2000; 313:189-203. [PMID: 10595357 DOI: 10.1016/s0076-6879(00)13013-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- I Robbins
- Institut de Génétique Moléculaire de Montpellier, UMR5535, CNRS, France
| | | |
Collapse
|
12
|
Robles J, Beltrán M, Marchán V, Pérez Y, Travesset I, Pedroso E, Grandas A. Towards nucleopeptides containing any trifunctional amino acid. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00815-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zimmer A. Antisense oligonucleotide delivery with polyhexylcyanoacrylate nanoparticles as carriers. Methods 1999; 18:286-95, 322. [PMID: 10454987 DOI: 10.1006/meth.1999.0786] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyalkylcyanoacrylate nanoparticles are effective colloidal drug carriers and were prepared by an emulsion polymerization process. Antisense oligonucleotides were loaded on the particles by adsorption. A cationic polymer, DEAE-dextran, was incorporated into the particle matrix or a cationic hydrophobic detergent (CTAB) was used to form a lipophilic oligonucleotide ion pair. Enzymatic digestion of the oligonucleotides was almost quantitatively inhibited by this nanoparticle complex and cellular uptake by different cell lines was significantly enhanced. In vivo the biodistribution of the oligonucleotide nanoparticle complex resulted in targeting of oligonucleotides to the liver. Improvements in antisense treatments with nanoparticles were demonstrated for tumor therapy as well as for antiviral applications.
Collapse
Affiliation(s)
- A Zimmer
- Biocenter, Institute for Pharmaceutical Technology, University of Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Robbins I, Mitta G, Vichier-Guerre S, Sobol R, Ubysz A, Rayner B, Lebleu B. Selective mRNA degradation by antisense oligonucleotide-2,5A chimeras: involvement of RNase H and RNase L. Biochimie 1998; 80:711-20. [PMID: 9865493 DOI: 10.1016/s0300-9084(99)80024-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antisense oligonucleotides (ON) allow the specific control of gene expression and phosphorothioate derivatives are currently being evaluated for possible clinical applications. Numerous second generation ON analogues with improved pharmacological properties have been described. Most of them, however, do not recruit RNase H, which is known to increase ON potency by eliciting the specific degradation of the target RNA. Silverman, Torrence and colleagues have conjugated 2,5A to natural antisense ON and demonstrated the preferential cleavage of a target RNA in cell-free and intact cell experiments. We have established for the first time that RNase H-incompetent ON, viz. alpha-anomeric ON analogues, can be converted into sequence-specific nucleases upon conjugation to 2,5A. The use of alpha-ON- and beta-ON-2,5A chimeras has allowed us to delineate the part played by RNase H and RNase L in target RNA degradation and translation arrest. Finally, the present studies have revealed limitations which are encountered in the choice of a suitable target for such ON-2,5A chimeras.
Collapse
Affiliation(s)
- I Robbins
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Université de Montpellier II, France
| | | | | | | | | | | | | |
Collapse
|
15
|
The pH dependence of the emitting properties of ruthenium polypyridyl complexes bound to poly-l-lysine. J Inorg Biochem 1996. [DOI: 10.1016/0162-0134(95)00230-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Antisense oligonucleotides as antiviral agents. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1075-8593(96)80102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Jäschke A, Fürste JP, Nordhoff E, Hillenkamp F, Cech D, Erdmann VA. Synthesis and properties of oligodeoxyribonucleotide-polyethylene glycol conjugates. Nucleic Acids Res 1994; 22:4810-7. [PMID: 7984434 PMCID: PMC308535 DOI: 10.1093/nar/22.22.4810] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pools of oligonucleotide conjugates consisting of 10-400 different molecular species were synthesized. The conjugates contained a varying number of ethylene glycol units attached to 3'-terminal, 5'-terminal and internal positions of the oligonucleotides. Conjugate synthesis was performed by phosphoramidite solid phase chemistry using suitably protected polyethylene glycol phosphoramidites and PEG-derivatized solid supports containing polydisperse PEGs of various molecular weight ranges. The pools were analyzed and fractionated by chromatographic and electrophoretic techniques, and the composition of isolated conjugates was revealed by matrix-assisted laser desorption/ionization mass spectrometry. The number and attachment sites of coupled ethylene glycol units greatly influence the hydrophobicity of the conjugates, as well as their electrophoretic mobilities. Conjugation had little effect on the hybridization behavior of oligonucleotide conjugates with unmodified complementary oligonucleotide strands. Melting temperatures were between 67 and 73 degrees C, depending on the size and number of coupled PEG chains, compared to 68 degrees C for the unmodified duplex. Conjugates with PEG coupled to both 3'- and 5'-terminal positions showed a more than 10-fold increase in exonuclease stability.
Collapse
Affiliation(s)
- A Jäschke
- Institut für Organische und Bioorganische Chemie, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Gutiérrez A, Martínez-Salas E, Pintado B, Sobrino F. Specific inhibition of aphthovirus infection by RNAs transcribed from both the 5' and the 3' noncoding regions. J Virol 1994; 68:7426-32. [PMID: 7933126 PMCID: PMC237185 DOI: 10.1128/jvi.68.11.7426-7432.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA molecules containing the 3' terminal region of foot-and-mouth disease virus (FMDV) RNA in both antisense and sense orientations were able to inhibit viral FMDV translation and infective particle formation in BHK-21 cells following comicroinjection or cotransfection with infectious viral RNA. Antisense, but not sense, transcripts from the 5' noncoding region including the proximal element of the internal ribosome entry site and the two functional initiation AUGs were also inhibitory, both in in vitro translation and in vivo in comicroinjected or cotransfected BHK-21 cells. This effect was not observed with nonrelated RNA transcripts from lambda phage. The inhibitions found were permanent, sequence specific, and dose dependent; an inverse correlation between the length of the transcript and the extent of the antiviral effect was seen. In all cases, the extent of inhibition increased when viral RNAs and transcripts were allowed to reanneal before transfection, concomitant with a decrease in the doses required. The antiviral effect was specific for FMDV, since transcripts failed to inhibit infective particle formation by other picornavirus, such as encephalomyocarditis virus. These results indicate that the ability of RNA transcripts to inhibit viral multiplication depends on their efficient hybridization with target regions on the viral genome. Furthermore, cells transfected with the 5'1as transcript, which is complementary to the 5' noncoding region, showed a significant reduction of plaque-forming ability during the course of a natural infection. RNA 5'1as was able to inhibit FMDV RNA translation in vitro, suggesting that the inhibitions observed are mediated by a blockage of the viral translation initiation. Conversely, hybridization of short sequences of both sense and antisense transcripts from the 3' end induces distortion of predicted highly ordered structural motifs, which could be required for the synthesis of negative-stranded viral RNA, and correlates with inhibition of viral propagation.
Collapse
Affiliation(s)
- A Gutiérrez
- Departamento de Producción Animal, CIT-INIA, Carretera de La Coruña, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Roy C. Triple-helix formation interferes with the transcription and hinged DNA structure of the interferon-inducible 6-16 gene promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:493-503. [PMID: 7510230 DOI: 10.1111/j.1432-1033.1994.tb18648.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interferon responsive element (IRE) of the 6-16 gene lies within two 39-bp elements in tandem. A purine-rich oligodeoxynucleotide, oligo(dN), was found to be able to pair with the purine-rich strand of the IRE in an antiparallel orientation which led to triple-helix formation with Mg2+ being necessary for triplex stability. Footprinting analysis confirmed these results. The interaction between the IRE and the oligo(dN) was reversible and had a Kd equal to 20 nM. The two repeats of the 6-16 gene IRE can form a hinged DNA structure through pairing of their purine-rich regions; exonuclease III experiments support this model. The hybrid DNA structure leads to a parallel pairing of the purine strands of the 6-16 gene IRE and this conformation was shown to be destabilized by triplex formation. When co-transfected with a reporter gene whose promoter was under the control of the 6-16 gene IRE, the triple-helix-forming oligo(dN)s inhibit the interferon-induced stimulation of the reporter gene with complete inhibition being obtained with 1 microM oligo(dN) at the time of transfection. When added to the cell culture medium after transfection, the concentrations of oligo(dN) needed to obtain 50% inhibition of the interferon effect on gene transcription must be 50-100 times higher. Besides the existence of a peculiar structure for the 6-16 gene IRE, the possibility of interfering with gene expression by means of oligo(dN)s is demonstrated.
Collapse
Affiliation(s)
- C Roy
- Institut de Génétique Moléculaire, UMR 9942, C. N. R. S., Montpellier, France
| |
Collapse
|
20
|
Abstract
Picornaviruses are among the best understood animal viruses in molecular terms. A number of important human and animal pathogens are members of the Picornaviridae family. The genome organization, the different steps of picornavirus growth and numerous compounds that have been reported as inhibitors of picornavirus functions are reviewed. The picornavirus particles and several agents that interact with them have been solved at atomic resolution, leading to computer-assisted drug design. Picornavirus inhibitors are useful in aiding a better understanding of picornavirus biology. In addition, some of them are promising therapeutic agents. Clinical efficacy of agents that bind to picornavirus particles has already been demonstrated.
Collapse
Key Words
- picornavirus
- poliovirus
- antiviral agents
- drug design
- virus particles
- viral proteases
- 2′-5′a, ppp(a2′p5′a)na
- bfa, brefel a
- bfla1, bafilomycin a1
- dsrna, double-stranded rna
- emc, encephalomyocarditis
- fmdv, foot-and-mouth disease virus
- g413, 2-amino-5-(2-sulfamoylphenyl)-1,3,4-thiadiazole
- hbb, 2-(α-hydroxybenzyl)-benzimidazole
- hiv, human immunodeficiency virus
- hpa-23, ammonium 5-tungsto-2-antimonate
- icam-1, intercellular adhesion molecule-1
- ip3, inositol triphosphate
- m12325, 5-aminosulfonyl-2,4-dichorobenzoate
- 3-mq, 3-methyl quercetin
- ires, internal ribosome entry site
- l protein, leader protein
- rf, replicative form
- ri, rplicative intermediate
- rlp, ribosome landing pad
- sfv, semliki forest virus
- tofa, 5-(tetradecyloxy)-2-furoic acid
- vpg, viral protein bound to the genome
- vsv, vesicular stomatitis virus
Collapse
Affiliation(s)
- L Carrasco
- Centro de Biologia Molecular, Universidad Autonoma, Madrid, Spain
| |
Collapse
|
21
|
Keller TH, Häner R. Synthesis and hybridization properties of oligonucleotides containing 2'-O-modified ribonucleotides. Nucleic Acids Res 1993; 21:4499-505. [PMID: 8233783 PMCID: PMC311181 DOI: 10.1093/nar/21.19.4499] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A versatile, general way is described for the introduction of different functional groups into oligonucleotides by means of a simple linker at the 2'-position of the sugar. Nucleotide building blocks carrying lipophilic, intercalating or tertiary amino groups can be placed deliberately at any desired position of oligonucleotides by standard automated oligonucleotide synthesis. Thermal denaturation studies with these oligonucleotides reveal the following general trends: i) Modification with lipophilic n-octyl groups has little if any effect on duplex stability; a destabilizing (lipophilic) substituent is better tolerated at or near the ends than in the middle of the oligo. ii) An intercalating substituent (2-aminoanthraquinone) substantially increases duplex stability. iii) N,N-Dimethyl amino residues also increase duplex stability though to a smaller extent than intercalating residues. iv) Modifications at the 5'-end have a more pronounced influence on the TM than the corresponding 3'-modifications. v) Oligonucleotides modified in such a way show little or no loss in sequence specificity.
Collapse
|
22
|
Ja¨schke A, P. Fu¨rste J, Cech D, A. Erdmann V. Automated incorporation of polyethylene glycol into synthetic oligonucleotides. Tetrahedron Lett 1993. [DOI: 10.1016/s0040-4039(00)60572-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Prins J, de Vries EG, Mulder NH. Antisense of oligonucleotides and the inhibition of oncogene expression. Clin Oncol (R Coll Radiol) 1993; 5:245-52. [PMID: 8398922 DOI: 10.1016/s0936-6555(05)80238-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inhibition of oncogenes represents a new strategy that might lead to a better understanding of the different steps involved in tumorigenesis and also to the development of new therapeutic approaches. Attempts have been made to interfere with gene expression by in situ generation of mRNA from recombinant vectors (antisense RNA) or by the exogenous introduction of synthetic oligonucleotides (antisense oligonucleotides). Antisense oligonucleotides can inhibit the expression of specific genes by blocking the translation after hybridization with the target mRNAs--the antisense strategy. Antisense oligonucleotides can also be targeted to specific sequences of the DNA double helix. This causes inhibition of transcription--the antigene strategy. Regulatory sequences involved in controlling the transcription of oncogenes are used as targets for this type of 'antigene' oligonucleotide. Both strategies can be applied to control the oncogene expression of tumour cells in tissue culture, as exemplified in this review by myc antisense oligonucleotides. Recently the antisense strategy is moving into the area of clinical trials, aimed at curing chronic myelogenous leukaemia by ex vivo bone marrow purging. However, many difficulties have still to be overcome before the application of antisense oligonucleotides can be evaluated in the treatment of cancer.
Collapse
Affiliation(s)
- J Prins
- Department of Internal Medicine, University Hospital Groningen, The Netherlands
| | | | | |
Collapse
|
24
|
Abstract
Vacuum UV circular dichroism (CD) spectra were measured down to 175 nm for d(C)10, d(G)10, the d(G)10.d(C)10 duplex, and the d(G)10.d(G)10.d(C)10 triplex. A CD difference spectrum was calculated for d(G)10.d(C)10 giving the change in CD induced by forming the duplex from d(G)10 and d(C)10. The d(G)10.d(G)10.d(C)10 CD difference spectrum gave the CD induced by triplex formation from binding of d(G)10 to the d(G)10.d(C)10 duplex. In the near-UV, the d(G)10.d(C)10 and d(G)10.d(G)10.d(C)10 difference spectra resembled the difference spectrum for poly[r(G).r(C)] (Biopolymers 29, 325-333). This similarity may be an indication of similar purine base stacking. The d(G)10.d(G)10.d(C)10 vacuum UV difference spectrum had a negative band at 195 nm and a positive band at 180 nm, making it similar to difference spectra for homopolymer triplexes containing T.A.T and U.A.U triplets (Nucl. Acids Res. 19, 2275-2280). The appearance of these bands in difference spectra should be good indicators of triplex formation. The complementary oligonucleotides c-mycI d(CCCCACCCTCCC) and c-mycII d(GGGAGGGTGGGG) are part of the regulatory sequences of the human c-myc gene. G.G.C rich triplexes formed by binding c-mycII or c-mycIII d(GGGGTGGGTGGG) to the c-mycI.c-mycII duplex had CD difference spectra similar to that of d(G)10.d(G)10.d(C)10 in both the vacuum UV and near UV regions, indicating similar triplet structures.
Collapse
Affiliation(s)
- K H Johnson
- Baylor College of Medicine, Center for Biotechnology, The Woodlands, TX 77381
| | | | | |
Collapse
|
25
|
Meijer DK, Jansen RW, Molema G. Drug targeting systems for antiviral agents: options and limitations. Antiviral Res 1992; 18:215-58. [PMID: 1416906 DOI: 10.1016/0166-3542(92)90058-d] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D K Meijer
- Department of Pharmacology and Therapeutics, University Center for Pharmacy, Groningen, The Netherlands
| | | | | |
Collapse
|
26
|
Ghosh MK, Cohen JS. Oligodeoxynucleotides as antisense inhibitors of gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:79-126. [PMID: 1574591 DOI: 10.1016/s0079-6603(08)60574-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M K Ghosh
- Pharmacology Department, Georgetown University Medical School, Washington, D.C. 20007
| | | |
Collapse
|
27
|
Englisch U, Gauss DH. Chemisch modifizierte Oligonucleotide als Sonden und Agentien. Angew Chem Int Ed Engl 1991. [DOI: 10.1002/ange.19911030604] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Degols G, Leonetti JP, Mechti N, Lebleu B. Antiproliferative effects of antisense oligonucleotides directed to the RNA of c-myc oncogene. Nucleic Acids Res 1991; 19:945-8. [PMID: 1708128 PMCID: PMC333736 DOI: 10.1093/nar/19.4.945] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Several groups have reported the use of antisense oligonucleotides to inhibit c-myc gene expression and study its biological role. However high concentrations of free oligonucleotides were generally needed. To lower their concentration and stabilize the antisense effect against c-myc, oligonucleotides were covalently linked to poly(L-lysine) and administered in ternary complexes formed with heparin (100 micrograms/ml). A sequence specific growth inhibition was observed at concentrations lower than 1 microM, while oligonucleotide-poly(L-lysine) conjugates alone were inefficient. Similar results occurred with other polyanionic compounds. Inhibition of proliferation was correlated to a reduction of c-myc protein and to a transient decrease in c-myc mRNA level. However, implication of RNase H in this process could not be demonstrated.
Collapse
Affiliation(s)
- G Degols
- Laboratoire de Biochimie des Proteines, UA CNRS 1191, Université de Montpellier II, France
| | | | | | | |
Collapse
|
29
|
|
30
|
Shea RG, Marsters JC, Bischofberger N. Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates. Nucleic Acids Res 1990; 18:3777-83. [PMID: 2165251 PMCID: PMC331077 DOI: 10.1093/nar/18.13.3777] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (2) was coupled to the 5' terminus of oligodeoxynucleotides via hydrogen phosphonate solid support DNA synthesis methodology. Duplex DNA oligomers with a single 5'-phospholipid melted at lower temperatures than the corresponding unmodified duplex, but duplexes bearing lipids at each 5' end had higher Tms. In uptake experiments with L929 cells, 8-10 times more lipid-DNA became cell-associated than did unmodified DNA. Unmodified antisense diesters were inactive in a VSV antiviral assay in L929 cells (at up to 200 microM). Attachment of a lipid to the oligomer, however, led to a greater than 90% at 150 microM (greater than 80% at 100 microM) reduction in viral protein synthesis. The antiviral activity depended on the sequence of the oligodeoxynucleotide, but some compounds having little or no base complementarity to the viral target were also effective. Phosphorothioate derivatives reduced viral protein synthesis by 20-30% at 100 microM in the VSV assay. The lipid-DNA compounds were not toxic to the cells at up to 100 microM.
Collapse
Affiliation(s)
- R G Shea
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA 94080
| | | | | |
Collapse
|
31
|
Hélène C, Toulmé JJ. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1049:99-125. [PMID: 1694695 DOI: 10.1016/0167-4781(90)90031-v] [Citation(s) in RCA: 624] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C Hélène
- Muséum National d'Histoire Naturelle, INSERM U201-CNRS UA.481, Paris, France
| | | |
Collapse
|
32
|
Leiter JM, Agrawal S, Palese P, Zamecnik PC. Inhibition of influenza virus replication by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci U S A 1990; 87:3430-4. [PMID: 2333292 PMCID: PMC53914 DOI: 10.1073/pnas.87.9.3430] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oligodeoxynucleotides (ODNs) were synthesized and tested for their antiviral activity against influenza viruses. ODNs corresponded to the polymerase PB1 gene of either influenza A/WSN/33 virus or influenza C/JJ/50 virus. All compounds were 20 nucleotides long, including control ODNs containing mismatches. The phosphodiester ODNs (O-ODNs) failed to inhibit replication of influenza A and influenza C viruses at concentrations up to 80 microM, possibly due to intracellular nuclease digestion of the unmodified oligomers. By contrast, the phosphorothioate derivatives (S-ODNs) were found to inhibit replication of both influenza A and influenza C virus. The antiviral effect of S-ODNs against influenza A virus was found at concentrations as low as 1.25 microM and was present with mismatched oligomers. In the case of influenza C virus, the S-ODN complementary to the 3' end of the viral RNA of the PB1 gene revealed a sequence-specific antiviral activity at a concentration of 20 microM. (At the same concentration, S-ODNs with one or three mismatches showed little or no antiviral activity.) Reduction in plaque number reached six logarithms when this sequence-specific S-ODN was used at a concentration of 80 microM.
Collapse
Affiliation(s)
- J M Leiter
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | |
Collapse
|