1
|
Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y, Kong QP. Longevity-Associated Transcription Factor ATF7 Promotes Healthspan by Suppressing Cellular Senescence and Systematic Inflammation. Aging Dis 2023:AD.2022.1217. [PMID: 37163432 PMCID: PMC10389835 DOI: 10.14336/ad.2022.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/17/2022] [Indexed: 05/12/2023] Open
Abstract
Aging is characterized by persistent low-grade systematic inflammation, which is largely responsible for the occurrence of various age-associated diseases. We and others have previously reported that long-lived people (such as centenarians) can delay the onset of or even escape certain major age-related diseases. Here, by screening blood transcriptome and inflammatory profiles, we found that long-lived individuals had a relatively lower inflammation level (IL6, TNFα), accompanied by up-regulation of activating transcription factor 7 (ATF7). Interestingly, ATF7 expression was gradually reduced during cellular senescence. Loss of ATF7 induced cellular senescence, while overexpression delayed senescence progress and senescence-associated secretory phenotype (SASP) secretion. We showed that the anti-senescence effects of ATF7 were achieved by inhibiting nuclear factor kappa B (NF-κB) signaling and increasing histone H3K9 dimethylation (H3K9me2). In Caenorhabditis elegans, ATF7 overexpression significantly suppressed aging biomarkers and extended lifespan. Our findings suggest that ATF7 is a longevity-promoting factor that lowers cellular senescence and inflammation in long-lived individuals.
Collapse
Affiliation(s)
- Yaqun Huang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xia Ge
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hong Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing-Lin Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Yu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong-Shun Ao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ji Li
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Wang K, Li F, Zhou L, Zhao X, Gao X, Liu C, Li X, Chen X, Zhao Y, Cheng X, Wang R, Li R, Zhang Y, Gao F, Tian J, Wang K. HNEAP Regulates Necroptosis of Cardiomyocytes by Suppressing the m 5 C Methylation of Atf7 mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304329. [PMID: 37870216 PMCID: PMC10700171 DOI: 10.1002/advs.202304329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Indexed: 10/24/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are highly expressed in various cardiovascular diseases. However, their role in cardiomyocyte death caused by ischemia/reperfusion (I/R) injury, especially necroptosis, remains elusive. In this study, a heart necroptosis-associated piRNA (HNEAP) is found that regulates cardiomyocyte necroptosis by targeting DNA methyltransferase 1 (DNMT1)-mediated 5-methylcytosine (m5 C) methylation of the activating transcription factor 7 (Atf7) mRNA transcript. HNEAP expression level is significantly elevated in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes and I/R-injured mouse hearts. Loss of HNEAP inhibited cardiomyocyte necroptosis and ameliorated cardiac function in mice. Mechanistically, HNEAP directly interacts with DNMT1 and attenuates m5 C methylation of the Atf7 mRNA transcript, which increases Atf7 expression level. ATF7 can further downregulate the transcription of Chmp2a, an inhibitor of necroptosis, resulting in the reduction of Chmp2a level and the progression of cardiomyocyte necroptosis. The findings reveal that piRNA-mediated m5 C methylation is involved in the regulation of cardiomyocyte necroptosis. Thus, the HNEAP-DNMT1-ATF7-CHMP2A axis may be a potential target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Fu‐Hai Li
- Department of CardiologyThe Affiliated Hospital of Qingdao UniversityQingdao266021China
| | - Lu‐Yu Zhou
- Department of PharmacyCollege of BiologyHunan UniversityChangshaHunan410082China
| | - Xue‐Mei Zhao
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing100037China
| | - Xiang‐Qian Gao
- Department of PathologyBinzhou Medical University HospitalBinzhou256603China
| | - Cui‐Yun Liu
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xin‐Min Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xin‐Zhe Chen
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Yan Zhao
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xue‐Li Cheng
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Rui‐Quan Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Rui‐Feng Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Yu‐Hui Zhang
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing100037China
| | - Fei Gao
- Department of CardiologyBeijing Anzhen HospitalCapital Medical UniversityBeijing100029China
| | - Jin‐Wei Tian
- Department of CardiologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Kun Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| |
Collapse
|
3
|
Sun M, Jiang W, Li X, Lee S, Heo G, Zhou D, Choi J, Kim K, Lv W, Cui X. ATF7-dependent epigenetic changes induced by high temperature during early porcine embryonic development. Cell Prolif 2022; 56:e13352. [PMID: 36254813 PMCID: PMC9890523 DOI: 10.1111/cpr.13352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Activating transcription factor 7 (ATF7) is a member of the ATF/cAMP response element (CRE) B superfamily. ATF2, ATF7, and CRE-BPa are present in vertebrates. Drosophila and fission yeast have only one homologue: dATF2 and Atf1, respectively. Under normal conditions, ATF7 promotes heterochromatin formation by recruiting histone H3K9 di- and tri-methyltransferases. Once the situation changes, all members are phosphorylated by the stress-activated kinase P38 in response to various stressors. However, the role of ATF7 in early porcine embryonic development remains unclear. RESULTS In this study, we found that ATF7 gradually accumulated in the nucleus and then localized on the pericentric heterochromatin after the late 4-cell stage, while being co-localized with heterochromatin protein 1 (HP1). Knockdown of ATF7 resulted in decreases in the blastocyst rate and blastocyst cell number. ATF7 depletion resulted in downregulation of HP1 and histone 3 lysine 9 dimethylation (H3K9me2) expression. These effects were alleviated when P38 activity was inhibited. High temperatures increased the expression level of pP38, while reducing the quality of porcine embryos, and led to ATF7 phosphorylation. The expression level of H3K9me2 and HP1 was decreased and regulated by P38 activity. CONCLUSION Stress-induced ATF7-dependent epigenetic changes play important roles in early porcine embryonic development.
Collapse
Affiliation(s)
- Ming‐Hong Sun
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| | - Wen‐Jie Jiang
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| | - Xiao‐Han Li
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| | - Song‐Hee Lee
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| | - Geun Heo
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| | - Dongjie Zhou
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| | - Jung‐Seok Choi
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| | - Kwan‐Suk Kim
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| | - Wenfa Lv
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Xiang‐Shun Cui
- Department of Animal ScienceChungbuk National UniversityCheongjuSouth Korea
| |
Collapse
|
4
|
Creb5 establishes the competence for Prg4 expression in articular cartilage. Commun Biol 2021; 4:332. [PMID: 33712729 PMCID: PMC7955038 DOI: 10.1038/s42003-021-01857-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
A hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-β and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-β and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-β. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.
Collapse
|
5
|
Paternal restraint stress affects offspring metabolism via ATF-2 dependent mechanisms in Drosophila melanogaster germ cells. Commun Biol 2020; 3:208. [PMID: 32367035 PMCID: PMC7198565 DOI: 10.1038/s42003-020-0935-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Paternal environmental factors can epigenetically influence gene expressions in offspring. We demonstrate that restraint stress, an experimental model for strong psychological stress, to fathers affects the epigenome, transcriptome, and metabolome of offspring in a MEKK1-dATF2 pathway-dependent manner in Drosophila melanogaster. Genes involved in amino acid metabolism are upregulated by paternal restraint stress, while genes involved in glycolysis and the tricarboxylic acid (TCA) cycle are downregulated. The effects of paternal restraint stress are also confirmed by metabolome analysis. dATF-2 is highly expressed in testicular germ cells, and restraint stress also induces p38 activation in the testes. Restraint stress induces Unpaired 3 (Upd3), a Drosophila homolog of Interleukin 6 (IL-6). Moreover, paternal overexpression of upd3 in somatic cells disrupts heterochromatin in offspring but not in offspring from dATF-2 mutant fathers. These results indicate that paternal restraint stress affects metabolism in offspring via inheritance of dATF-2-dependent epigenetic changes. Ki-Hyeon Seong et al. report that paternal environmental stress affects the metabolism of their offspring in Drosophila melanogaster. They exposed male flies to stress by preventing them from moving for 10 hours at a time and then measured gene expression and metabolite levels in their offspring, who showed increased expression of amino acid and one-carbon metabolism-related genes and downregulation of glycolysis and the TCA cycle.
Collapse
|
6
|
ATF7-Dependent Epigenetic Changes Are Required for the Intergenerational Effect of a Paternal Low-Protein Diet. Mol Cell 2020; 78:445-458.e6. [DOI: 10.1016/j.molcel.2020.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
|
7
|
Liu B, Maekawa T, Yoshida K, Ly NH, Inoue K, Hasegawa A, Chatton B, Ogura A, Ishii S. Telomere shortening by transgenerational transmission of TNF-α-induced TERRA via ATF7. Nucleic Acids Res 2019; 47:283-298. [PMID: 30407559 PMCID: PMC6326783 DOI: 10.1093/nar/gky1149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Various stresses increase disease susceptibility and accelerate aging, and increasing evidence suggests that these effects can be transmitted over generation. Epidemiological studies suggest that stressors experienced by parents affect the longevity of their offspring, possibly by regulating telomere dynamics. Telomeres are elongated by telomerase and shortened by certain stresses as well as telomere repeat-containing RNA (TERRA), a telomere transcript. However, the mechanism underlying the transgenerational effects is poorly understood. Here, we show that TNF-α, which is induced by various psychological stresses, induces the p38-dependent phosphorylation of ATF7, a stress-responsive chromatin regulator, in mouse testicular germ cells. This caused a release of ATF7 from the TERRA gene promoter in the subtelomeric region, which disrupted heterochromatin and induced TERRA. TERRA was transgenerationally transmitted to zygotes via sperm and caused telomere shortening. These results suggest that ATF7 and TERRA play key roles in paternal stress-induced telomere shortening in the offspring.
Collapse
Affiliation(s)
- Binbin Liu
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Toshio Maekawa
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Keisuke Yoshida
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Nhung Hong Ly
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kimiko Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Shunsuke Ishii
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
8
|
Maekawa T, Liu B, Nakai D, Yoshida K, Nakamura KI, Yasukawa M, Koike M, Takubo K, Chatton B, Ishikawa F, Masutomi K, Ishii S. ATF7 mediates TNF-α-induced telomere shortening. Nucleic Acids Res 2019; 46:4487-4504. [PMID: 29490055 PMCID: PMC5961373 DOI: 10.1093/nar/gky155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/20/2018] [Indexed: 12/23/2022] Open
Abstract
Telomeres maintain the integrity of chromosome ends and telomere length is an important marker of aging. The epidemiological studies suggested that many types of stress including psychosocial stress decrease telomere length. However, it remains unknown how various stresses induce telomere shortening. Here, we report that the stress-responsive transcription factor ATF7 mediates TNF-α–induced telomere shortening. ATF7 and telomerase, an enzyme that elongates telomeres, are localized on telomeres via interactions with the Ku complex. In response to TNF-α, which is induced by various stresses including psychological stress, ATF7 was phosphorylated by p38, leading to the release of ATF7 and telomerase from telomeres. Thus, a decrease of ATF7 and telomerase on telomeres in response to stress causes telomere shortening, as observed in ATF7-deficient mice. These findings give credence to the idea that various types of stress might shorten telomere.
Collapse
Affiliation(s)
- Toshio Maekawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Binbin Liu
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Daisuke Nakai
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Keisuke Yoshida
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Ken-Ichi Nakamura
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
9
|
Maekawa T, Liu B, Liu Y, Yoshida K, Muratani M, Chatton B, Ishii S. Stress-induced and ATF7-dependent epigenetic change influences cellular senescence. Genes Cells 2019; 24:627-635. [PMID: 31294895 DOI: 10.1111/gtc.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 11/26/2022]
Abstract
Cellular senescence plays an important role in aging and is induced by cyclin-dependent kinase (Cdk) inhibitors that accumulate following stresses during aging. However, the underlying mechanism remains elusive. Herein, we demonstrate that activating transcription factor 7 (ATF7), the stress-responsive recruiter of histone H3K9 di- and trimethyltransferases, functions in the accumulation of Cdk inhibitors. Atf7-deficient (Atf7-/- ) mice have a shorter lifespan than wild-type (WT) mice. Levels of p16Ink4a Cdk inhibitor mRNA increased with age more rapidly in Atf7-/- mice than in WT animals. ATF7 binds to the p16Ink4a gene promoter and was released with age. Consistently, histone H3K9me2 levels on the p16Ink4a gene promoter were lower in Atf7-/- mice than in WT animals. Similar results were obtained when Atf7-/- and WT mouse embryonic fibroblasts (MEFs) were cultured under 20% oxygen conditions, which induces cellular senescence via oxidative stress. Phosphorylation of ATF7 by p38 was also increased with the passage of MEFs, consistent with previous observations that ATF7 phosphorylation by p38 induces its release from chromatin. These results indicate that stress-induced and ATF7-dependent epigenetic changes on p16Ink4a genes play an important role in cellular senescence.
Collapse
Affiliation(s)
| | - Binbin Liu
- RIKEN Cluster for Pioneering Research, Tsukuba, Japan
| | - Yang Liu
- RIKEN Cluster for Pioneering Research, Tsukuba, Japan
| | | | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bruno Chatton
- UMR7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Shunsuke Ishii
- RIKEN Cluster for Pioneering Research, Tsukuba, Japan.,Department of Functional Genomics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
10
|
Liu Y, Maekawa T, Yoshida K, Muratani M, Chatton B, Ishii S. The Transcription Factor ATF7 Controls Adipocyte Differentiation and Thermogenic Gene Programming. iScience 2019; 13:98-112. [PMID: 30826729 PMCID: PMC6402263 DOI: 10.1016/j.isci.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023] Open
Abstract
Adipocytes function as major players in the regulation of metabolic homeostasis, and factors contributing to adipocyte differentiation and function are promising targets for combatting obesity and associated metabolic disorders. Activating transcription factor 7 (ATF7), a stress-responsive chromatin regulator, is involved in energy metabolism, but the underlying mechanisms remain unknown. Herein, we showed that ATF7 is required for adipocyte differentiation and interacts with histone dimethyltransferase G9a in adipocytes to repress the expression of interferon-stimulated genes, which in turn suppress adipogenesis. Ablation of ATF7 promotes beige fat biogenesis in inguinal white adipose tissue. ATF7 binds to transcriptional regulatory regions of the gene encoding uncoupling protein 1, silencing it by controlling histone H3K9 dimethylation. Our findings demonstrate that ATF7 is a multifunctional adipocyte protein involved in the epigenetic control of development and function in adipose tissues. ATF7 is required for adipocyte differentiation ATF7 represses the expression of interferon-stimulated genes (ISGs) in adipocytes Loss of ATF7 promotes the browning of inguinal white adipose tissue ATF7 associates with C/EBPβ and G9a to silence Ucp1 expression
Collapse
Affiliation(s)
- Yang Liu
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Toshio Maekawa
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Keisuke Yoshida
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413 Illkirch, France
| | - Shunsuke Ishii
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
11
|
Liu Y, Maekawa T, Yoshida K, Kaneda H, Chatton B, Wakana S, Ishii S. The transcription factor ATF7 mediates in vitro fertilization-induced gene expression changes in mouse liver. FEBS Open Bio 2017; 7:1598-1610. [PMID: 28979846 PMCID: PMC5623699 DOI: 10.1002/2211-5463.12304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
Assisted reproductive technologies, including in vitro fertilization (IVF), are now frequently used, and increasing evidence indicates that IVF causes gene expression changes in children and adolescents that increase the risk of metabolic diseases. Although such gene expression changes are thought to be due to IVF‐induced epigenetic changes, the mechanism remains elusive. We tested whether the transcription factor ATF7—which mediates stress‐induced changes in histone H3K9 tri‐ and dimethylation, typical marks of epigenetic silencing—is involved in the IVF‐induced gene expression changes. IVF up‐ and downregulated the expression of 688 and 204 genes, respectively, in the liver of 3‐week‐old wild‐type (WT) mice, whereas 87% and 68% of these were not changed, respectively, by IVF in ATF7‐deficient (Atf7−/−) mice. The genes, which are involved in metabolism, such as pyrimidine and purine metabolism, were upregulated in WT mice, but not in Atf7−/− mice. Of the genes whose expression was upregulated by IVF in WT mice, 37% were also upregulated by a loss of ATF7. These results indicate that ATF7 is a key factor in establishing the memory of IVF effects on metabolic pathways.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Japan.,Department of Molecular Genetics and Ph.D. Program in Human Biology School of Integrative and Global Majors University of Tsukuba Japan
| | - Toshio Maekawa
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Japan
| | - Keisuke Yoshida
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Japan
| | - Hideki Kaneda
- Technology and Development Team for Mouse Phenotype Analysis RIKEN BRC Tsukuba Japan
| | - Bruno Chatton
- Université de Strasbourg UMR7242 Biotechnologie et Signalisation Cellulaire Ecole Supérieure de Biotechnologie de Strasbourg Il lkirch France
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis RIKEN BRC Tsukuba Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Japan.,Department of Molecular Genetics and Ph.D. Program in Human Biology School of Integrative and Global Majors University of Tsukuba Japan
| |
Collapse
|
12
|
Liu Y, Maekawa T, Yoshida K, Furuse T, Kaneda H, Wakana S, Ishii S. ATF7 ablation prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 2016; 478:696-702. [PMID: 27498002 DOI: 10.1016/j.bbrc.2016.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/02/2016] [Indexed: 01/18/2023]
Abstract
The activating transcription factor (ATF)2 family of transcription factors regulates a variety of metabolic processes, including adipogenesis and adaptive thermogenesis. ATF7 is a member of the ATF2 family, and mediates epigenetic changes induced by environmental stresses, such as social isolation and pathogen infection. However, the metabolic role of ATF7 remains unknown. The aim of the present study is to examine the role of ATF7 in metabolism using ATF7-dificeint mice. Atf7(-/-) mice exhibited lower body weight and resisted diet-induced obesity. Serum triglycerides, resistin, and adipose tissue mass were all significantly lower in ATF7-deficient mice. Fasting glucose levels and glucose tolerance were unaltered, but systemic insulin sensitivity was increased, by ablation of ATF7. Indirect calorimetry revealed that oxygen consumption by Atf7(-/-) mice was comparable to that of wild-type littermates on a standard chow diet, but increased energy expenditure was observed in Atf7(-/-) mice on a high-fat diet. Hence, ATF7 ablation may impair the development and function of adipose tissue and result in elevated energy expenditure in response to high-fat-feeding obesity and insulin resistance, indicating that ATF7 is a potential therapeutic target for diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Molecular Genetics and Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshio Maekawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Keisuke Yoshida
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Hideki Kaneda
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Molecular Genetics and Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
13
|
Schaeffer E, Vigneron M, Sibler AP, Oulad-Abdelghani M, Chatton B, Donzeau M. ATF7 is stabilized during mitosis in a CDK1-dependent manner and contributes to cyclin D1 expression. Cell Cycle 2016; 14:2655-66. [PMID: 26101806 DOI: 10.1080/15384101.2015.1064568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The transcription factor ATF7 undergoes multiple post-translational modifications, each of which has distinct effects upon ATF7 function. Here, we show that ATF7 phosphorylation on residue Thr112 exclusively occurs during mitosis, and that ATF7 is excluded from the condensed chromatin. Both processes are CDK1/cyclin B dependent. Using a transduced neutralizing monoclonal antibody directed against the Thr112 epitope in living cells, we could demonstrate that Thr112 phosphorylation protects endogenous ATF7 protein from degradation, while it has no effect on the displacement of ATF7 from the condensed chromatin. The crucial role of Thr112 phosphorylation in stabilizing ATF7 protein during mitosis was confirmed using phospho-mimetic and phospho-deficient mutants. Finally, silencing ATF7 by CRISPR/Cas9 technology leads to a decrease of cyclin D1 protein expression levels. We propose that mitotic stabilized ATF7 protein re-localizes onto chromatin at the end of telophase and contributes to induce the cyclin D1 gene expression.
Collapse
Affiliation(s)
- Etienne Schaeffer
- a Université de Strasbourg; UMR7242 Biotechnologie et Signalisation Cellulaire; Ecole Supérieure de Biotechnologie de Strasbourg ; Illkirch Cedex , France
| | | | | | | | | | | |
Collapse
|
14
|
Liu B, Maekawa T, Chatton B, Ishii S. In utero TNF-α treatment induces telomere shortening in young adult mice in an ATF7-dependent manner. FEBS Open Bio 2016; 6:56-63. [PMID: 27047742 PMCID: PMC4794794 DOI: 10.1002/2211-5463.12006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 11/24/2022] Open
Abstract
Epidemiological studies indicate that exposure to stress during intrauterine life is associated with shorter telomeres in young adulthood, and a correlation between telomere length in early life and lifespan has been suggested. However, empirical studies evaluating these phenomena have not been performed, and the mechanism of stress‐induced telomere shortening remains unknown. Since the level of tumour necrosis factor α (TNF‐α) in peripheral blood cells is increased by various psychological stresses, the effect of TNF‐α administration to pregnant mice on telomere length in adulthood was examined in the present study. In utero TNF‐α treatment‐induced telomere shortening in adult mice. Telomere shortening was observed in certain tissues such as the bone marrow, spleen, and lung, and was detected at specific age ranges during adulthood. Telomere shortening was not observed in mice lacking the stress‐responsive transcription factor ATF7, which contributes to heterochromatin formation in the absence of stress. The present study identified the conditions under which in utero TNF‐α treatment induces telomere shortening in adulthood.
Collapse
Affiliation(s)
- Binbin Liu
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Ibaraki Japan; Graduate School of Comprehensive Human Sciences University of Tsukuba Ibaraki Japan
| | - Toshio Maekawa
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Ibaraki Japan; Graduate School of Comprehensive Human Sciences University of Tsukuba Ibaraki Japan
| | - Bruno Chatton
- UMR7242 Biotechnologie et Signalisation Cellulaire Université de Strasbourg Illkirch France
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Ibaraki Japan; Graduate School of Comprehensive Human Sciences University of Tsukuba Ibaraki Japan
| |
Collapse
|
15
|
Yoshida K, Maekawa T, Zhu Y, Renard-Guillet C, Chatton B, Inoue K, Uchiyama T, Ishibashi KI, Yamada T, Ohno N, Shirahige K, Okada-Hatakeyama M, Ishii S. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol 2015; 16:1034-43. [PMID: 26322480 DOI: 10.1038/ni.3257] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
Immunological memory is thought to be mediated exclusively by lymphocytes. However, enhanced innate immune responses caused by a previous infection increase protection against reinfection, which suggests the presence of innate immunological memory. Here we identified an important role for the stress-response transcription factor ATF7 in innate immunological memory. ATF7 suppressed a group of genes encoding factors involved in innate immunity in macrophages by recruiting the histone H3K9 dimethyltransferase G9a. Treatment with lipopolysaccharide, which mimics bacterial infection, induced phosphorylation of ATF7 via the kinase p38, which led to the release of ATF7 from chromatin and a decrease in repressive histone H3K9me2 marks. A partially disrupted chromatin structure and increased basal expression of target genes were maintained for long periods, which enhanced resistance to pathogens. ATF7 might therefore be important in controlling memory in cells of the innate immune system.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Laboratory of Molecular Genetics, CREST Research Project of the Japan Science and Technology Agency, RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Toshio Maekawa
- Laboratory of Molecular Genetics, CREST Research Project of the Japan Science and Technology Agency, RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Yujuan Zhu
- Laboratory of Molecular Genetics, CREST Research Project of the Japan Science and Technology Agency, RIKEN Tsukuba Institute, Tsukuba, Japan.,Department of Functional Genomics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Claire Renard-Guillet
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Illkirch, France
| | - Kentaro Inoue
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takeru Uchiyama
- Department of Biological Information, Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama, Japan
| | - Ken-ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy &Life Sciences, Tokyo, Japan
| | - Takuji Yamada
- Department of Biological Information, Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy &Life Sciences, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Mariko Okada-Hatakeyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, CREST Research Project of the Japan Science and Technology Agency, RIKEN Tsukuba Institute, Tsukuba, Japan.,Department of Functional Genomics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
16
|
The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm 2014; 2014:950472. [PMID: 25049453 PMCID: PMC4090481 DOI: 10.1155/2014/950472] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/30/2014] [Indexed: 01/06/2023] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA-binding proteins and is widely distributed in tissues including the liver, lung, spleen, and kidney. Like c-Jun and c-Fos, ATF2 responds to stress-related stimuli and may thereby influence cell proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and skeletal remodeling. Recent studies clarify the regulatory role of ATF2 in inflammation and describe potential inhibitors of this protein. In this paper, we summarize the properties and functions of ATF2 and explore potential applications of ATF2 inhibitors as tools for research and for the development of immunosuppressive and anti-inflammatory drugs.
Collapse
|
17
|
Seong KH, Maekawa T, Ishii S. Inheritance and memory of stress-induced epigenome change: roles played by the ATF-2 family of transcription factors. Genes Cells 2012; 17:249-63. [PMID: 22380515 PMCID: PMC3444692 DOI: 10.1111/j.1365-2443.2012.01587.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Data on the inheritance-of-stress effect have been accumulating and some mechanistic insights, such as epigenetic regulation, have also been suggested. In particular, the modern view of Lamarckian inheritance appears to be affected by the finding that stress-induced epigenetic changes can be inherited. This review summarizes the current data on the inheritance of stress effect and possible mechanisms involved in this process. In particular, we focus on the stress-induced epigenetic changes mediated by the ATF-2 family of transcription factors.
Collapse
Affiliation(s)
- Ki-Hyeon Seong
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
18
|
Diring J, Camuzeaux B, Donzeau M, Vigneron M, Rosa-Calatrava M, Kedinger C, Chatton B. A cytoplasmic negative regulator isoform of ATF7 impairs ATF7 and ATF2 phosphorylation and transcriptional activity. PLoS One 2011; 6:e23351. [PMID: 21858082 PMCID: PMC3156760 DOI: 10.1371/journal.pone.0023351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors.
Collapse
Affiliation(s)
- Jessica Diring
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Barbara Camuzeaux
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Mariel Donzeau
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Marc Vigneron
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Claude Kedinger
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
- * E-mail:
| |
Collapse
|
19
|
The role of ATF-2 family transcription factors in adipocyte differentiation: antiobesity effects of p38 inhibitors. Mol Cell Biol 2009; 30:613-25. [PMID: 19948881 DOI: 10.1128/mcb.00685-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ATF-2 is a member of the ATF/CREB family of transcription factors and is activated by stress-activated protein kinases, such as p38. To analyze the physiological role of ATF-2 family transcription factors, we have generated mice with mutations in Atf-2 and Cre-bpa, an Atf-2-related gene. The trans-heterozygotes of both mutants were lean and had reduced white adipose tissue (WAT). ATF-2 and CRE-BPa were required for bone morphogenetic protein 2 (BMP-2)-and p38-dependent induction of peroxisome proliferator-activated receptor gamma2 (PPARgamma2), a key transcription factor mediating adipocyte differentiation. Since stored fat supplies have been recognized as a possible target for antiobesity treatments, we tested whether inhibition of the p38-ATF-2 pathway suppresses adipocyte differentiation and leads to reduced WAT by treating mice with a p38 inhibitor for long periods of time. High-fat diet (HFD)-induced obesity was significantly reduced in mice fed the p38 inhibitor. Furthermore, the p38 inhibitor alleviated HFD-induced insulin resistance. In p38 inhibitor-treated mice, macrophage infiltration into WAT was reduced and the tumor necrosis factor alpha (TNF-alpha) levels were lower than control mice. Thus, p38 inhibitors may provide a novel antiobesity treatment.
Collapse
|
20
|
Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene. EMBO J 2009; 29:196-208. [PMID: 19893493 DOI: 10.1038/emboj.2009.318] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 10/08/2009] [Indexed: 11/08/2022] Open
Abstract
Many symptoms induced by isolation rearing of rodents may be relevant to neuropsychiatric disorders, including depression. However, identities of transcription factors that regulate gene expression in response to chronic social isolation stress remain elusive. The transcription factor ATF-7 is structurally related to ATF-2, which is activated by various stresses, including inflammatory cytokines. Here, we report that Atf-7-deficient mice exhibit abnormal behaviours and increased 5-HT receptor 5B (Htr5b) mRNA levels in the dorsal raphe nuclei. ATF-7 silences the transcription of Htr5B by directly binding to its 5'-regulatory region, and mediates histone H3-K9 trimethylation via interaction with the ESET histone methyltransferase. Isolation-reared wild-type (WT) mice exhibit abnormal behaviours that resemble those of Atf-7-deficient mice. Upon social isolation stress, ATF-7 in the dorsal raphe nucleus is phosphorylated via p38 and is released from the Htr5b promoter, leading to the upregulation of Htr5b. Thus, ATF-7 may have a critical role in gene expression induced by social isolation stress.
Collapse
|
21
|
Camuzeaux B, Diring J, Hamard PJ, Oulad-Abdelghani M, Donzeau M, Vigneron M, Kedinger C, Chatton B. p38beta2-mediated phosphorylation and sumoylation of ATF7 are mutually exclusive. J Mol Biol 2008; 384:980-91. [PMID: 18950637 DOI: 10.1016/j.jmb.2008.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/29/2022]
Abstract
The ubiquitous activating transcription factor (ATF) 7 binds as a homodimer to the cAMP response element/TPA response element motifs present in the promoters of its target genes. ATF7 is homologous to ATF2 and heterodimerizes with Jun or Fos proteins, modulating their DNA-binding specificities. We previously demonstrated that TAF12, a component of the TFIID general transcription factor, mediates ATF7 transcriptional activity through direct interactions between the two proteins. By contrast, ATF7, but not ATF2, is modified in vivo by sumoylation, which restricts its subcellular localization, thereby inhibiting its transcriptional activity. In the present study, we dissect the mechanism of this functional switch. We characterized the multisite phosphorylation of the ATF7 activation domain and identified one of the involved kinase, p38beta2 mitogen-activated protein kinase. In addition, we show that epidermal growth factor treatment results in a two-step modification mechanism of ATF7 activation domain. The Thr53 residue is phosphorylated first by a presently unknown kinase, allowing p38beta2 mitogen-activated protein kinase to modify the Thr51 residue, excluding the sumoylation of ATF7 protein. The resulting activation of transcription is related to an increased association of TAF12 with this phosphorylated form of ATF7. Our data therefore conclusively establish that sumoylation and phosphorylation of ATF7 are two antagonistic posttranslational modifications.
Collapse
Affiliation(s)
- Barbara Camuzeaux
- Université de Strasbourg I, Institut Gilbert Laustriat, CNRS-UMR7175, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Strasbourg Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V. The role of ATF-2 in oncogenesis. Bioessays 2008; 30:314-27. [PMID: 18348191 DOI: 10.1002/bies.20734] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activating Transcription Factor-2 is a sequence-specific DNA-binding protein that belongs to the bZIP family of proteins and plays diverse roles in the mammalian cells. In response to stress stimuli, it activates a variety of gene targets including cyclin A, cyclin D and c-jun, which are involved in oncogenesis in various tissue types. ATF-2 expression has been correlated with maintenance of a cancer cell phenotype. However, other studies demonstrate an antiproliferative or apoptotic role for ATF-2. In this review, we summarize the signaling pathways that activate ATF-2, as well as its downstream targets. We examine the role of ATF-2 in carcinogenesis with respect to other bZIP proteins, using data from studies in human cancer cell lines, human tumours and mouse models, and we propose a potential model for its function in carcinogenesis, as well as a theoretical basis for its utility in anticancer drug design.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- Unit of Biomedical Applications, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | |
Collapse
|
23
|
Hamard PJ, Boyer-Guittaut M, Camuzeaux B, Dujardin D, Hauss C, Oelgeschläger T, Vigneron M, Kedinger C, Chatton B. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity. Nucleic Acids Res 2007; 35:1134-44. [PMID: 17264123 PMCID: PMC1851647 DOI: 10.1093/nar/gkl1168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the past few years, small ubiquitin-like modifier (SUMO) modification has emerged as an important regulator of diverse pathways and activities including protein localization and transcriptional regulation. We identified a consensus sumoylation motif (IKEE), located within the N-terminal activation domain of the ATF7 transcription factor and thus investigated the role of this modification. ATF7 is a ubiquitously expressed transcription factor, homologous to ATF2, that binds to CRE elements within specific promoters. This protein is able to heterodimerize with Jun or Fos proteins and its transcriptional activity is mediated by interaction with TAF12, a subunit of the general transcription factor TFIID. In the present article, we demonstrate that ATF7 is sumoylated in vitro (using RanBP2 as a E3-specific ligase) and in vivo. Moreover, we show that ATF7 sumoylation affects its intranuclear localization by delaying its entry into the nucleus. Furthermore, SUMO conjugation inhibits ATF7 transactivation activity by (i) impairing its association with TAF12 and (ii) blocking its binding-to-specific sequences within target promoters.
Collapse
Affiliation(s)
- Pierre-Jacques Hamard
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Michaël Boyer-Guittaut
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Barbara Camuzeaux
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Denis Dujardin
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Charlotte Hauss
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Thomas Oelgeschläger
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Marc Vigneron
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Claude Kedinger
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Bruno Chatton
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
- *To whom correspondence should be addressed. Tel: +(33) 390 244 787; Fax+(33) 390 244 770;
| |
Collapse
|
24
|
Hay CW, Ferguson LA, Docherty K. ATF-2 stimulates the human insulin promoter through the conserved CRE2 sequence. ACTA ACUST UNITED AC 2007; 1769:79-91. [PMID: 17337306 DOI: 10.1016/j.bbaexp.2007.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 01/04/2023]
Abstract
The insulin promoter contains a number of dissimilar cis-acting regulatory elements that bind a range of tissue specific and ubiquitous transcription factors. Of the regulatory elements within the insulin promoter, the cyclic AMP responsive element (CRE) binds by far the most diverse array of transcription factors. Rodent insulin promoters have a single CRE site, whereas there are four CREs within the human insulin gene, of which CRE2 is the only one conserved between species. The aim of this study was to characterise the human CRE2 site and to investigate the effects of the two principal CRE-associated transcription factors; CREB-1 and ATF-2. Co-transfection of INS-1 pancreatic beta-cells with promoter constructs containing the human insulin gene promoter placed upstream of the firefly luciferase reporter gene and expression plasmids for ATF-2 or CREB-1 showed that ATF-2 stimulated transcriptional activity while CREB-1 elicited an inhibitory effect. Mutagenesis of CRE2 diminished the effect of ATF-2 but not that of CREB-1. ATF-2 was shown to bind to the CRE2 site by electrophoretic mobility shift assay and by chromatin immunoprecipitation, while siRNA mediated knockdown of ATF-2 diminished the stimulatory effects of cAMP related signalling on promoter activity. These results suggest that ATF-2 may be a key regulator of the human insulin promoter possibly stimulating activity in response to extracellular signals.
Collapse
Affiliation(s)
- Colin W Hay
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | |
Collapse
|
25
|
Maekawa T, Shinagawa T, Sano Y, Sakuma T, Nomura S, Nagasaki K, Miki Y, Saito-Ohara F, Inazawa J, Kohno T, Yokota J, Ishii S. Reduced levels of ATF-2 predispose mice to mammary tumors. Mol Cell Biol 2006; 27:1730-44. [PMID: 17189429 PMCID: PMC1820478 DOI: 10.1128/mcb.01579-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription factor ATF-2 is a nuclear target of stress-activated protein kinases, such as p38, which are activated by various extracellular stresses, including UV light. Here, we show that ATF-2 plays a critical role in hypoxia- and high-cell-density-induced apoptosis and the development of mammary tumors. Compared to wild-type cells, Atf-2(-/-) mouse embryonic fibroblasts (MEFs) were more resistant to hypoxia- and anisomycin-induced apoptosis but remained equally susceptible to other stresses, including UV. Atf-2(-/-) and Atf-2(+/-) MEFs could not express a group of genes, such as Gadd45alpha, whose overexpression can induce apoptosis, in response to hypoxia. Atf-2(-/-) MEFs also had a higher saturation density than wild-type cells and expressed lower levels of Maspin, the breast cancer tumor suppressor, which is also known to enhance cellular sensitivity to apoptotic stimuli. Atf-2(-/-) MEFs underwent a lower degree of apoptosis at high cell density than wild-type cells. Atf-2(+/-) mice were highly prone to mammary tumors that expressed reduced levels of Gadd45alpha and Maspin. The ATF-2 mRNA levels in human breast cancers were lower than those in normal breast tissue. Thus, ATF-2 acts as a tumor susceptibility gene of mammary tumors, at least partly, by activating a group of target genes, including Maspin and Gadd45alpha.
Collapse
MESH Headings
- Activating Transcription Factor 2/analysis
- Activating Transcription Factor 2/genetics
- Activating Transcription Factor 2/metabolism
- Animals
- Anisomycin/pharmacology
- Apoptosis/drug effects
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Cycle Proteins/metabolism
- Cell Hypoxia/drug effects
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Genes, Reporter
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- Humans
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Nuclear Proteins/metabolism
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/analysis
- Serpins/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Toshio Maekawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sano Y, Akimaru H, Okamura T, Nagao T, Okada M, Ishii S. Drosophila activating transcription factor-2 is involved in stress response via activation by p38, but not c-Jun NH(2)-terminal kinase. Mol Biol Cell 2005; 16:2934-46. [PMID: 15788564 PMCID: PMC1142437 DOI: 10.1091/mbc.e04-11-1008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Activating transcription factor (ATF)-2 is a member of the ATF/cAMP response element-binding protein family of transcription factors, and its trans-activating capacity is enhanced by stress-activated protein kinases such as c-Jun NH(2)-terminal kinase (JNK) and p38. However, little is known about the in vivo roles played by ATF-2. Here, we identified the Drosophila homologue of ATF-2 (dATF-2) consisting of 381 amino acids. In response to UV irradiation and osmotic stress, Drosophila p38 (dp38), but not JNK, phosphorylates dATF-2 and enhances dATF-2-dependent transcription. Consistent with this, injection of dATF-2 double-stranded RNA (dsRNA) into embryos did not induce the dorsal closure defects that are commonly observed in the Drosophila JNK mutant. Furthermore, expression of the dominant-negative dp38 enhanced the aberrant wing phenotype caused by expression of a dominant-negative dATF-2. Similar genetic interactions between dATF-2 and the dMEKK1-dp38 signaling pathway also were observed in the osmotic stress-induced lethality of embryos. Loss of dATF-2 in Drosophila S2 cells by using dsRNA abrogated the induction of 40% of the osmotic stress-induced genes, including multiple immune response-related genes. This indicates that dATF-2 is a major transcriptional factor in stress-induced transcription. Thus, dATF-2 is critical for the p38-mediated stress response.
Collapse
Affiliation(s)
- Yuji Sano
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Hamard PJ, Dalbies-Tran R, Hauss C, Davidson I, Kedinger C, Chatton B. A functional interaction between ATF7 and TAF12 that is modulated by TAF4. Oncogene 2005; 24:3472-83. [PMID: 15735663 DOI: 10.1038/sj.onc.1208565] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ATF7 proteins, which are members of the cyclic AMP responsive binding protein (CREB)/activating transcription factor (ATF) family of transcription factors, display quite versatile properties: they can interact with the adenovirus E1a oncoprotein, mediating part of its transcriptional activity; they heterodimerize with the Jun, Fos or related transcription factors, likely modulating their DNA-binding specificity; they also recruit to the promoter a stress-induced protein kinase (JNK2). In the present study, we investigate the functional relationships of ATF7 with hsTAF12 (formerly hsTAF(II)20/15), which has originally been identified as a component of the general transcription factor TFIID. We show that overexpression of hsTAF12 potentiates ATF7-induced transcriptional activation through direct interaction with ATF7, suggesting that TAF12 is a functional partner of ATF7. In support of this conclusion, chromatin immunoprecipitation experiments confirm the interaction of ATF7 with TAF12 on an ATF7-responsive promoter, in the absence of any artificial overexpression of both proteins. We also show that the TAF12-dependent transcriptional activation is competitively inhibited by TAF4. Although both TAF12 isoforms (TAF12-1 and -2, formerly TAF(II)20 and TAF(II)15) interact with the ATF7 activation region through their histone-fold domain, only the largest, hsTAF12-1, mediates transcriptional activation through its N-terminal region.
Collapse
Affiliation(s)
- Pierre-Jacques Hamard
- Ecole Supérieure de Biotechnologie de Strasbourg, Université Louis Pasteur, Parc d'innovation, UMR7100 CNRS-ULP, Bd. Sebastien Brant-BP10413, 67412 Strasbourg, Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Zhao C, Qi J, Meng A. Characterization and expression pattern of two zebrafishatf7 genes. Dev Dyn 2005; 233:1157-62. [PMID: 15906372 DOI: 10.1002/dvdy.20438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Members of the ATF/CREB (activating transcription factor/cAMP-responsive element binding protein) transcription factor family play diverse roles in controlling cell proliferation, apoptosis, and oncogenesis, as well as in embryonic development of vertebrates. We identified two zebrafish orthologs of human ATF7 gene: atf7a and atf7b. Whole-mount in situ hybridization shows that zebrafish atf7a is first expressed in the notochord precursors at 80% epiboly stage and then in the developing notochord during segmentation. The expression of atf7a is positively regulated by ntl, flh, and spr2, which are involved in development of the notochord. In contrast, atf7b is maternally expressed and during embryogenesis its mRNA is ubiquitously distributed, showing an expression pattern similar to that of mammalian Atf7.
Collapse
Affiliation(s)
- Chengtian Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
29
|
Hong S, Choi HM, Park MJ, Kim YH, Choi YH, Kim HH, Choi YH, Cheong J. Activation and Interaction of ATF2 with the Coactivator ASC-2 Are Responsive for Granulocytic Differentiation by Retinoic Acid. J Biol Chem 2004; 279:16996-7003. [PMID: 14734562 DOI: 10.1074/jbc.m311752200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminal differentiation of hematopoietic cells follows a precisely orchestrated program of transcriptional regulatory events at the promoters of both lineage-specific and ubiquitous genes. Here we show that the transcription factor ATF2 is associated with the induction of granulocytic differentiation, and the molecular interaction of ATF2 with a tissue-specific coactivator activating signal cointegator-2 (ASC-2) potentiates the differentiation procedure. All-trans retinoic acid (RA) induced the phosphorylation and expression of ATF2 in the early and middle phase of granulocyte differentiation, respectively. The activation of granulocyte-specific gene expression is increased with the concerted action of another basic regionleucine zipper factor, CCAAT/enhancer-binding protein (C/EBPalpha), and ASC-2, which function in a cooperative manner. The interaction between ATF2 and C/EBPalpha in RA-treated cells was enhanced by the ectopic expression of ASC-2. ATF2-mediated transactivation was also increased by co-transfection of ASC-2. This resulted from the direct protein interaction that the N-terminal transactivation domain of ATF2 interacts with the central region of ASC-2. Furthermore, the molecular interaction of ATF2 and ASC-2 was stimulated by RA treatment and inhibited by p38beta kinase inhibitor. Taking these results together, these results suggest that the differentiation-dependent expression and phosphorylation of ATF2 protein physically and functionally interacts with C/EBPalpha and coativator ASC-2 and synergizes to induce target gene transcription during granulocytic differentiation.
Collapse
Affiliation(s)
- SunHwa Hong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bailey J, Phillips RJ, Pollard AJ, Gilmore K, Robson SC, Europe-Finner GN. Characterization and functional analysis of cAMP response element modulator protein and activating transcription factor 2 (ATF2) isoforms in the human myometrium during pregnancy and labor: identification of a novel ATF2 species with potent transactivation properties. J Clin Endocrinol Metab 2002; 87:1717-28. [PMID: 11932306 DOI: 10.1210/jcem.87.4.8360] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is now extensive evidence to indicate that components of the cAMP signaling pathway are up-regulated in the human myometrium during pregnancy so as to potentiate the maintenance of uterine quiescence until term. In many tissue and cell types, increased signaling of the cAMP pathway results in profound changes in gene expression that are catalyzed via stimulation of PKA and activation of cAMP-dependent transcription factors that bind cAMP response elements (CREs) within the promoter regions of affected genes. In the myometrium, these CRE containing genes include beta2-adrenoceptor, cyclo-oxygenase 2, oxytocin receptor, and connexin-43. In preliminary investigations, we reported the differential expression of members of the cAMP bZIP protein family in the myometrium during pregnancy and labor. In this present study, we have now identified and functionally characterized these proteins with respect to myometrial gene expression. We report the identification of a 39,000 mol wt CRE response element modulator protein (CREM)tau2alpha protein having both transactivation and transrepressor properties whose expression is sequentially decreased in the myometrium during gestation and parturition. In contrast, expression of a myometrial 28,000 mol wt CREMalpha protein having only transrepressor actions progressively increased in the myometrium during pregnancy and labor. Similarly, we have isolated two ATF2 proteins of 60,000 and 28,000 mol wts, which represent full-length ATF2 and a novel small isoform of ATF2 that we have termed ATF2-small (ATF2-sm). These proteins are potent transactivators of gene expression and appear to be spatially expressed within the myometrium of the upper and lower uterine regions. The identification and functional characterization of these basic region/leucine zipper proteins in the myometrium may provide further insight into the molecular mechanisms regulating uterine activity during fetal maturation and parturition.
Collapse
Affiliation(s)
- Jarrod Bailey
- Department of Obstetrics and Gynaecology, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
31
|
Kirby H, Rickinson A, Bell A. The activity of the Epstein-Barr virus BamHI W promoter in B cells is dependent on the binding of CREB/ATF factors. J Gen Virol 2000; 81:1057-66. [PMID: 10725433 DOI: 10.1099/0022-1317-81-4-1057] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The programme of Epstein-Barr virus (EBV) gene expression that leads to virus-induced growth transformation of resting B lymphocytes is initiated through activation of the BamHI W promoter, Wp. The factors regulating Wp, and the basis of its preferential activity in B cells, remain poorly understood. Previous work has identified a B cell-specific enhancer region which is critical for Wp function and which contains three binding sites for cellular factors. Here we focus on one of these sites and show, using bandshift assays, that it interacts with three members of the CREB/ATF family of cell transcription factors, CREB1, ATF1 and ATFa. A mutation which abrogates the binding of these factors reduces Wp reporter activity specifically in B cell lines, whereas a mutation which converts the site to a consensus CREB-binding sequence maintains wild-type promoter function. Furthermore Wp activity in B cell, but not in non-B cell, lines could be inhibited by cotransfection of expression plasmids expressing dominant negative forms of CREB1 and ATF1. Increasing the basal activity of CREB/ATF proteins in cells by treatment with protein kinase A or protein kinase C agonists led to small increases in Wp activity in B cell lines, but did not restore promoter activity in non-B cell lines up to B cell levels. We conclude that CREB/ATF factors are important activators of Wp in a B cell environment but require additional B cell-specific factors in order to mediate their effects.
Collapse
Affiliation(s)
- H Kirby
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK
| | | | | |
Collapse
|
32
|
De Graeve F, Bahr A, Chatton B, Kedinger C. A murine ATFa-associated factor with transcriptional repressing activity. Oncogene 2000; 19:1807-19. [PMID: 10777215 DOI: 10.1038/sj.onc.1203492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ATFa proteins, which are members of the CREB/ATF family of transcription factors, have previously been shown to interact with the adenovirus E1a oncoprotein and to mediate its transcriptional activity; they heterodimerize with Jun, Fos or related transcription factors, possibly altering their DNA-binding specificity; they also stably bind JNK2, a stress-induced protein kinase. Here we report the identification and characterization of a novel protein isolated in a yeast two-hybrid screen using the N-terminal half of ATFa as a bait. This 1306-residue protein (mAM, for mouse ATFa-associated Modulator) is rather acidic (pHi 4.5) and contains high proportions of Ser/Thr (21%) and Pro (11%) residues. It colocalizes and interacts with ATFa in mammalian cells, contains a bipartite nuclear localization signal and possesses an ATPase activity. Transfection experiments show that mAM is able to downregulate transcriptional activity, in an ATPase-independent manner. Our results indicate that mAM interacts with several components of the basal transcription machinery (TFIIE and TFIIH), including RNAPII itself. Together, these findings suggest that mAM may be involved in the fine-tuning of ATFa-regulated gene expression, by interfering with the assembly or stability of specific preinitiation transcription complexes.
Collapse
Affiliation(s)
- F De Graeve
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, Communauté Urbaine de Strasbourg, France
| | | | | | | |
Collapse
|
33
|
Maekawa T, Bernier F, Sato M, Nomura S, Singh M, Inoue Y, Tokunaga T, Imai H, Yokoyama M, Reimold A, Glimcher LH, Ishii S. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J Biol Chem 1999; 274:17813-9. [PMID: 10364225 DOI: 10.1074/jbc.274.25.17813] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse null mutants of transcription factor ATF-2 were generated by the gene targeting method. They died shortly after birth and displayed symptoms of severe respiratory distress with lungs filled with meconium. These features are similar to those of a severe type of human meconium aspiration syndrome. The increased expression of the hypoxia inducible genes suggests that hypoxia occurs in the mutant embryos and that it may lead to strong gasping respiration with consequent aspiration of the amniotic fluid containing meconium. A reduced number of cytotrophoblast cells in the mutant placenta was found and may be responsible for an insufficient supply of oxygen prior to birth. Using the cDNA subtraction and microarray-based expression monitoring method, the expression level of the platelet-derived growth factor receptor alpha gene, which plays an important role in the proliferation of trophoblasts, was found to be low in the cytotrophoblasts of the mutant placenta. In addition, ATF-2 can trans-activate the PDGF receptor alpha gene promoter in the co-transfection assay. These results indicate the important role of ATF-2 in the formation of the placenta and the relationship between placental anomalies and neonatal respiratory distress. The ATF-2 null mutants should enhance our understanding of the mechanism of severe neonatal respiratory distress.
Collapse
Affiliation(s)
- T Maekawa
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
De Graeve F, Bahr A, Sabapathy KT, Hauss C, Wagner EF, Kedinger C, Chatton B. Role of the ATFa/JNK2 complex in Jun activation. Oncogene 1999; 18:3491-500. [PMID: 10376527 DOI: 10.1038/sj.onc.1202723] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ATFa proteins, which are members of the CREB/ATF family of transcription factors, display quite versatile properties. We have previously shown that they interact with the adenovirus E1a oncoprotein, mediating part of its transcriptional activity and heterodimerize with the Jun, Fos or related transcription factors, thereby modulating their DNA-binding specificity. In the present study, we report the sequence requirement of the N-terminal activation domain of ATFa and demonstrate the importance of specific threonine residues (Thr51 and Thr53) in addition to that of the metal-binding domain, in transcriptional activation processes. We also show that the N-terminal domain of ATFa which stably binds the Jun N-terminal kinase-2 (JNK2) (Bocco et al., 1996), is not a substrate for this kinase in vivo but, instead, serves as a JNK2-docking site for ATFa-associated partners like JunD, allowing them to be phosphorylated by the bound kinase.
Collapse
Affiliation(s)
- F De Graeve
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM/CNRS/ULP, Illkirch, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Nagadoi A, Nakazawa K, Uda H, Okuno K, Maekawa T, Ishii S, Nishimura Y. Solution structure of the transactivation domain of ATF-2 comprising a zinc finger-like subdomain and a flexible subdomain. J Mol Biol 1999; 287:593-607. [PMID: 10092462 DOI: 10.1006/jmbi.1999.2620] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activating transcription factor-2 (ATF-2) is a transcription factor that binds to cAMP response element (CRE). ATF-2 contains two functional domains, an N-terminal transactivation domain and a C-terminal DNA-binding domain. The DNA-binding domain contains the basic leucine zipper (bZip) motif. Here, the three-dimensional structure of the transactivation domain of ATF-2 has been determined by NMR. The transactivation domain consists of two subdomains: the structure of an N-terminal half (N-subdomain) is well determined, while a C-terminal half (C-subdomain) takes a highly flexible and disordered structure. The architecture of the N-subdomain is very similar to that of the well-known zinc finger motif found in DNA-binding domains, consisting of an antiparallel beta-sheet and an alpha-helix. The zinc atom is tetrahedrally coordinated to two cysteine residues and two histidine residues. Amino acids that form the hydrophobic core in all of the DNA-binding zinc fingers are well conserved in the N-subdomain of the transactivation domain, whereas some amino acids that are responsible for binding to the phosphate backbone of DNA in the DNA-binding zinc fingers are substituted with other amino acids. The flexible C-subdomain, which contains two threonine residues that the stress-activated protein kinases phosphorylate, is likely to undergo a conformational change by specific binding to a target protein.
Collapse
Affiliation(s)
- A Nagadoi
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto Kanazawa-ku, Yokohama, 236-0027, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J Biol Chem 1999; 274:8949-57. [PMID: 10085140 DOI: 10.1074/jbc.274.13.8949] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon transforming growth factor-beta (TGF-beta) binding to its cognate receptor, Smad3 and Smad4 form heterodimers and transduce the TGF-beta signal to the nucleus. In addition to the Smad pathway, another pathway involving a member of the mitogen-activated protein kinase kinase kinase family of kinases, TGF-beta-activated kinase-1 (TAK1), is required for TGF-beta signaling. However, it is unknown how these pathways function together to synergistically amplify TGF-beta signaling. Here we report that the transcription factor ATF-2 (also called CRE-BP1) is bound by a hetero-oligomer of Smad3 and Smad4 upon TGF-beta stimulation. ATF-2 is one member of the ATF/CREB family that binds to the cAMP response element, and its activity is enhanced after phosphorylation by stress-activated protein kinases such as c-Jun N-terminal kinase and p38. The binding between ATF-2 and Smad3/4 is mediated via the MH1 region of the Smad proteins and the basic leucine zipper region of ATF-2. TGF-beta signaling also induces the phosphorylation of ATF-2 via TAK1 and p38. Both of these actions are shown to be responsible for the synergistic stimulation of ATF-2 trans-activating capacity. These results indicate that ATF-2 plays a central role in TGF-beta signaling by acting as a common nuclear target of both Smad and TAK1 pathways.
Collapse
Affiliation(s)
- Y Sano
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U. ATF3 and stress responses. Gene Expr 1999; 7:321-35. [PMID: 10440233 PMCID: PMC6174666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The purpose of this review is to discuss ATF3, a member of the ATF/CREB family of transcription factors, and its roles in stress responses. In the introduction, we briefly describe the ATF/CREB family, which contains more than 10 proteins with the basic region-leucine zipper (bZip) DNA binding domain. We summarize their DNA binding and heterodimer formation with other bZip proteins, and discuss the nomenclature of these proteins. Over the years, identical or homologous cDNA clones have been isolated by different laboratories and given different names. We group these proteins into subgroups according to their amino acid similarity; we also list the alternative names for each member, and clarify some potential confusion in the nomenclature of this family of proteins. We then focus on ATF3 and its potential roles in stress responses. We review the evidence that the mRNA level of ATF3 greatly increases when the cells are exposed to stress signals. In animal experiments, the signals include ischemia, ischemia coupled with reperfusion, wounding, axotomy, toxicity, and seizure; in cultured cells, the signals include serum factors, cytokines, genotoxic agents, cell death-inducing agents, and the adenoviral protein E1A. Despite the overwhelming evidence for its induction by stress signals, not much else is known about ATF3. Preliminary results suggest that the JNK/SAPK pathway is involved in the induction of ATF3 by stress signals; in addition, IL-6 and p53 have been demonstrated to be required for the induction of ATF3 under certain conditions. The consequences of inducing ATF3 during stress responses are not clear. Transient transfection and in vitro transcription assays indicate that ATF3 represses transcription as a homodimer; however, ATF3 can activate transcription when coexpressed with its heterodimeric partners or other proteins. Therefore, it is possible that, when induced during stress responses, ATF3 activates some target genes but represses others, depending on the promoter context and cellular context. Even less is understood about the physiological significance of inducing ATF3. We will discuss our preliminary results and some reports by other investigators in this regard.
Collapse
Affiliation(s)
- T Hai
- Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA.
| | | | | | | | | |
Collapse
|
38
|
Sano Y, Tokitou F, Dai P, Maekawa T, Yamamoto T, Ishii S. CBP alleviates the intramolecular inhibition of ATF-2 function. J Biol Chem 1998; 273:29098-105. [PMID: 9786917 DOI: 10.1074/jbc.273.44.29098] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor ATF-2 (also called CRE-BP1), whose DNA-binding domain consists of a basic amino acid cluster and a leucine zipper (b-ZIP) region, binds to the cAMP response element as a homodimer or as a heterodimer with c-Jun. The amino-terminal region of ATF-2 containing the transcriptional activation domain is phosphorylated by stress-activated kinases, which leads to activation of ATF-2. We report here that CBP, which was originally identified as a co-activator of CREB, directly binds to the b-ZIP region of ATF-2 via a Cys/His-rich region termed C/H2, and potentiates trans-activation by ATF-2. The b-ZIP region of ATF-2 was previously shown to interact with the amino-terminal region intramolecularly and to inhibit trans-activating capacity. The binding of CBP to the b-ZIP region abrogates this intramolecular interaction. The adenovirus 13S E1A protein which binds to the b-ZIP region of ATF-2 also inhibited this intramolecular interaction, suggesting that both CBP and 13S E1A share a similar function as positive regulators of ATF-2. We found that the b-ZIP regions of c-Jun and CREB also interact with the C/H2 domain of CBP, suggesting that CBP acts as a regulator for a group of b-ZIP-containing proteins. These results shed light on a novel aspect of CBP function as a regulator for a group of b-ZIP-containing proteins.
Collapse
Affiliation(s)
- Y Sano
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Foulkes NS, Sassone-Corsi P. Transcription factors coupled to the cAMP-signalling pathway. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1288:F101-21. [PMID: 9011175 DOI: 10.1016/s0304-419x(96)00025-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- N S Foulkes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, C.U.de Strasbourg, France
| | | |
Collapse
|
40
|
Abstract
The human ATFa proteins belong to the ATF/CREB family of transcription factors. We have previously shown that they mediate the transcriptional activation by the largest E1a protein and can heterodimerize with members of the Jun/Fos family. ATFa proteins have also been found tightly associated with JNK2, a stress-activated kinase. We now report on the structure of the ATFa gene, which mapped to chromosome 12 (band 12q13). Sequence analysis revealed that ATFa isoforms are generated by alternative splice donor site usage. A minimal promoter region of approximately 200 base pairs was identified that retained nearly full transcriptional activity. Binding sites for potential transcription factors were delineated within a GC-rich segment by DNase I footprinting. Expression studies revealed that ATFa accumulates in the nuclei of transfected cells, and the nuclear localization signal was defined next to the leucine zipper domain. As revealed by hybridization with mouse ATFa sequences, low levels of ATFa mRNAs were ubiquitously distributed in fetal or adult mice, with enhanced expression in particular tissues, like squamous epithelia and specific brain cell layers. The possible significance of coexpression of ATFa, ATF-2, and Jun at similar sites in the brain is discussed.
Collapse
Affiliation(s)
- J Goetz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, F-67404 Illkirch Cedex Communauté Urbaine de Strasbourg, France.
| | | | | | | |
Collapse
|
41
|
Sunderman FW, Varghese AH, Kroftova OS, Grbac-Ivankovic S, Kotyza J, Datta AK, Davis M, Bal W, Kasprzak KS. Characterization of pNiXa, a serpin of Xenopus laevis oocytes and embryos, and its histidine-rich, Ni(II)-binding domain. Mol Reprod Dev 1996; 44:507-24. [PMID: 8844694 DOI: 10.1002/(sici)1098-2795(199608)44:4<507::aid-mrd11>3.0.co;2-v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A Ni(II)-binding serpin, pNiXa, is abundant in Xenopus oocytes and embryos. Kinetic assays show that purified pNiXa strongly inhibits bovine alpha-chymotrypsin (Ki = 3 mM), weakly inhibits porcine elastase (K1 = 0.5 microM), and does not inhibit bovine trypsin. The reversible, slow-binding inhibition of alpha-chymotrypsin by pNiXa is unaffected by Ni(II). Ovochymase in egg exudates is inhibited by pNiXa, but to a limited extent, even at high pNiXa concentrations. An octadecapeptide that models the His-rich domain (-HRHRHEQQGHHDSAKHGH-) of pNiXa forms six-coordinate, octahedral Ni(II)-complexes when the N-terminus is acetylated, and a square-planar Ni(II)-complex when the N-terminus is unblocked. Spectroscopy reveals two distinct types of octahedral Ni(II)-coordination to the N-acetylated octadecapeptide, involving, respectively, 3-4 and 5-6 imidazole nitrogens; the octadecapeptide undergoes partial, reversible precipitation in pH- and Ni(II)-dependent fashion, suggesting an insoluble, Ni(II)-coupled (Hx)n-dimer. Such (Hx)n-peptide interaction is confirmed by an enzyme-linked biotinavidin assay with N-biotin-KHRHRHE-amide and N-acetyl-KHRHRHE-resin beads, which become coupled after adding Ni(II) or Zn(II). H2O2 oxidation of 2'-deoxyguanosine to mutagenic 8-hydroxy-2'-deoxyguanosine is enhanced by the octahedral Ni(II)-octadecapeptide complex, although the effect is more intense with the square-planar Ni(II)-octadecapeptide complex. Immunoperoxidase staining of whole mounts with pNiXa antibody shows that pNiXa is distributed throughout gastrula-stage embryos and is localized during organogenesis in the brain, eye, spinal cord, myotomes, craniofacial tissues, and other sites of Ni(II)-induced anomalies. Patterns of pNiXa staining are similar in controls and Ni(II)-exposed embryos. Binding of Ni(II) to pNiXa may cause embryotoxicity by enhancing oxidative reactions that produce tissue injury and genotoxicity. Although the natural target proteinases for pNiXa inhibition have not been established, pNiXa may be an important regulator of proteolysis during embryonic development.
Collapse
Affiliation(s)
- F W Sunderman
- Department of Laboratory Medicine, University of Connecticut School of Medicine, Farmington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Kinases belonging to the mitogen-activated protein kinase (MAPK) family are used throughout evolution to control the cellular responses to external signals such as growth factors, nutrient status, stress or inductive signals. Many important substrates for MAPKs are transcription factors, and both the genetic and the biochemical links between MAPKs and transcription factors are becoming increasingly well understood.
Collapse
Affiliation(s)
- R Treisman
- Transcription Laboratory, Imperial Cancer Research Fund, PO Box 123, Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
43
|
Li XY, Green MR. Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain. Genes Dev 1996; 10:517-27. [PMID: 8598283 DOI: 10.1101/gad.10.5.517] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATF-2 is a cellular basic region-leucine zipper (bZIP) transcription factor that can mediate diverse transcriptional responses, including activation by the adenovirus Ela protein. ATF-2 contains an activation domain, required for transcriptional activity, but in the absence of an appropriate inducer, full-length ATF-2 is transcriptionally inactive. Here we have investigated the mechanism underlying this regulated inhibition of ATF-2 transcriptional activity. We show that the region of ATF-2 that suppresses the activation region is the bZIP DNA-binding domain and that maximal inhibition requires both the basic region and leucine zipper subdomains. Inhibition is activation domain specific: The ATF-2 bZIP suppresses the ATF-2 and the related Ela activation domains but not acidic- and glutamine-rich activation domains. In vitro protein interaction assays demonstrate that the ATF-2 activation domain and bZIP specifically bind to one another. Finally, we show that bZIP-mediated inhibition can be modulated in a cell-type-specific manner by another sequence element within ATF-2. On the basis of these and other data, we propose that the ATF-2 bZIP and activation domain are engaged in an inhibitory intramolecular interaction and that inducers of ATF-2 disrupt this interaction to activate transcription.
Collapse
Affiliation(s)
- X Y Li
- Howard Hughes Medical Institute, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
44
|
Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T. ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 1996; 271:1695-701. [PMID: 8576171 DOI: 10.1074/jbc.271.3.1695] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
ATF3 gene, which encodes a member of the activating transcription factor/cAMP responsive element binding protein (ATF/CREB) family of transcription factors, is induced by many physiological stresses. As a step toward understanding the induction mechanisms, we isolated the human ATF3 gene and analyzed its genome organization and 5'-flanking region. We found that the human ATF3 mRNA is derived from four exons distributed over 15 kilobases. Sequence analysis of the 5'-flanking region revealed a consensus TATA box and a number of transcription factor binding sites including the AP-1, ATF/CRE, NF-kappa B, E2F, and Myc/Max binding sites. As another approach to understanding the mechanisms by which the ATF3 gene is induced by stress signals, we studied the regulation of the ATF3 gene in tissue culture cells by anisomycin, an approach that has been used to study the stress responses in tissue culture cells. We showed that anisomycin at a low concentration activates the ATF3 promoter and stabilizes the ATF3 mRNA. Significantly, co-transfection of DNAs expressing ATF2 and c-Jun activates the ATF3 promoter. A possible mechanism implicating the C-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) stress-inducible signaling pathway in the induction of the ATF3 gene is discussed.
Collapse
Affiliation(s)
- G Liang
- Ohio State Biochemistry Program, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
45
|
Rhoades KL, Golub SH, Economou JS. The adenoviral transcription factor, E1A 13S, trans-activates the human tumor necrosis factor-alpha promoter. Virus Res 1996; 40:65-74. [PMID: 8725122 DOI: 10.1016/0168-1702(95)01260-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 1311 bp TNF-alpha promoter region fused to a luciferase reporter vector was used in a transient transfection system to study the regulation of TNF-alpha promoter activity by E1A 13S in the U937 macrophage cell line and the MLA 144 T cell line. Co-transfections of the TNF-alpha promoter with an E1A expression vector resulted in a strong trans-activation of the promoter in both cell lines. Sequential truncation of the promoter mapped the E1A responsive region to sequences contained between -120 bp and the transcription start site. Truncation to -95 bp caused a dramatic 87% reduction of E1A activation in MLA 144 cells and further truncation to -36 bp caused a complete loss of E1A activation. In U937 cells, each truncation lowered E1A responsiveness but activity was never completely abolished. Site-directed mutagenesis of putative cis-acting sequences in the TNF-alpha promoter identified the AP-1 site as important for E1A trans-activation in the U937 cell line; the AP-2 and CRE sites also appeared to contribute to a lesser degree. In contrast, only the CRE mutation caused a reduction in E1A induced activity in the MLA 144 cell line. Co-transfection of the E1A expression vector with expression vectors for the cellular transcription factors AP-1, AP-2 and CREB indicated that none of these transcription factors showed any co-operativity with E1A. Thus, cis-acting sequences which contribute to E1A trans-activation of the TNF-alpha promoter have been delineated.
Collapse
Affiliation(s)
- K L Rhoades
- Department of Microbiology and Immunology, UCLA School of Medicine 90024, USA
| | | | | |
Collapse
|
46
|
Takeda T, Toda T, Kominami K, Kohnosu A, Yanagida M, Jones N. Schizosaccharomyces pombe atf1+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J 1995; 14:6193-208. [PMID: 8557039 PMCID: PMC394744 DOI: 10.1002/j.1460-2075.1995.tb00310.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We describe the identification and characterization of a transcription factor encoded by the atf1+ gene of the fission yeast Schizosaccharomyces pombe. The factor Atf1, contains a bZIP domain at its C-terminus with strong homology to members of the ATF/CREB family of mammalian factors and in vitro binds specifically to ATF/CRE recognition sites. Furthermore the ATF-like binding activity detected in extracts from fission yeast cells is entirely lost upon deletion of the atf1+ gene. Upon growth to saturation, fission yeast cells exit the mitotic cycle and enter a G0-like stationary phase. However, on rich medium, entry of atf1- cells into stationary phase is restricted and they rapidly lose viability; this does not occur on minimal medium unless cAMP levels are raised. Thus stationary phase entry appears to be regulated negatively by cAMP and positively by Atf1. atf1- cells are also sterile and this sterility appears to be due to a combination of two defects: first, upon nitrogen starvation the majority of atf1- cells fail to arrest in the G1 phase of the cell cycle and second, the induction of ste11+ expression is lost. Thus expression of ste11+ represents a second example of an event that is negatively regulated by the cAMP pathway and positively regulated by Atf1. Despite their close association however, these two regulatory pathways function independently and Atf1 activity is not directly modulated by cAMP levels or mutations that alter the activity of components of the cAMP signalling pathway. Thus Atf1 is a transcription factor that plays an important role in the response of cells to adverse environmental conditions, which is to exit the mitotic cell cycle and either sexually differentiate or enter a resting state.
Collapse
Affiliation(s)
- T Takeda
- Laboratory of Gene Regulation, Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | |
Collapse
|
47
|
Lazaroff M, Patankar S, Yoon SO, Chikaraishi DM. The cyclic AMP response element directs tyrosine hydroxylase expression in catecholaminergic central and peripheral nervous system cell lines from transgenic mice. J Biol Chem 1995; 270:21579-89. [PMID: 7665571 DOI: 10.1074/jbc.270.37.21579] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Enhancer elements regulating the neuronal gene, tyrosine hydroxylase (TH), were identified in TH-expressing peripheral nervous system PATH and central nervous system CATH cell lines. Mutational analysis in which rat TH 5'-flanking sequences directed chloramphenicol acetyltransferase (CAT) reporter gene expression demonstrated that mutating the cyclic AMP response element (CRE) at -45 base pair reduced expression by 80-90%. A CRE linked to an enhancerless TH promoter fully supported expression. Cotransfection of a dominant-negative CREB protein reduced expression 50-60%, suggesting that the CRE is bound by CREB or a CREB dimerization partner. Although mutating the AP1/dyad (AD) element at -205 base pair only modestly reduced CAT levels, AD minimal enhancer constructs gave 45-80% of wild type expression when positioned at -91 or -95. However, in its native context at -205, the AD could not support expression. In contrast, a CRE, moved from its normal position at -45 to -206, gave full activity. These results indicate that the CRE is critical for TH transcription in central nervous system CATH and peripheral nervous system PATH cells, whereas the AD is less important and its enhancer activity is context-and/or position-dependent. These results represent the first attempts to map regulatory elements directing TH expression in central nervous system cell lines.
Collapse
Affiliation(s)
- M Lazaroff
- Neuroscience Program, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
48
|
Wheeler DG, Horsford J, Michalak M, White JH, Hendy GN. Calreticulin inhibits vitamin D3 signal transduction. Nucleic Acids Res 1995; 23:3268-74. [PMID: 7667104 PMCID: PMC307187 DOI: 10.1093/nar/23.16.3268] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calreticulin is a calcium binding protein present primarily in the lumen of the endoplasmic reticulum. However, it can also localize to the cytoplasm adjacent to the cell membrane where it binds integrins, and to the nucleus. Recent studies showed that calreticulin inhibits DNA binding and transcriptional activity of glucocorticoid, androgen and retinoic acid receptors. The DNA binding domains of nuclear receptors share a common motif based upon the amino acid sequence KVFFKR which has been implicated in the binding of calreticulin. The vitamin D receptor (VDR) DNA binding domain contains the related motif KgFFrR. Here we show that calreticulin blocks specific DNA binding by the isolated VDR DNA binding domain in DNA mobility shift assays. Importantly, calreticulin blocks specific DNA binding by the full length VDR-RXR heterodimers. By contrast, calreticulin had no effect on specific DNA binding by the transcription factor ATF-a delta which lacks a KVFFKR-like motif in its DNA binding domain. We further showed that overexpression of calreticulin in the rat osteoblast-like cell line (ROS 17/2.8) inhibited the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] responsive transcriptional activation of a vitamin D-sensitive reporter gene, whereas the response to forskolin stimulation of a control promoter-reporter construct containing a cAMP response element (CRE), but no vitamin D response element (VDRE), was not affected by overexpression of calreticulin. Thus, calreticulin inhibits transcriptional activation by the VDR in vivo. Given the ubiquitous expression of calreticulin and the widespread expression of the VDR the studies described here may point to an important new mechanism whereby VDR mediated gene transcription can be modulated.
Collapse
Affiliation(s)
- D G Wheeler
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
49
|
Hamm MK, Schepartz A. Studies on the formation of DNA·protein interfaces: DNA specificity and straightening by CREB. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(95)00266-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Kim J, Struhl K. Determinants of half-site spacing preferences that distinguish AP-1 and ATF/CREB bZIP domains. Nucleic Acids Res 1995; 23:2531-7. [PMID: 7630732 PMCID: PMC307062 DOI: 10.1093/nar/23.13.2531] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The AP-1 and ATF/CREB families of eukaryotic transcription factors are dimeric DNA-binding proteins that contain the bZIP structural motif. The AP-1 and ATF/CREB proteins are structurally related and recognize identical half-sites (TGAC), but they differ in their requirements for half-site spacing. AP-1 proteins such as yeast GCN4 preferentially bind to sequences with overlapping half-sites, whereas ATF/CREB proteins bind exclusively to sequences with adjacent half-sites. Here we investigate the distinctions between AP-1 and ATF/CREB proteins by determining the DNA-binding properties of mutant and hybrid proteins. First, analysis of GCN4-ATF1 hybrid proteins indicates that a short surface spanning the basic and fork regions of the bZIP domain is the major determinant of half-site spacing. Replacement of two GCN4 residues on this surface (Ala244 and Leu247) by their ATF1 counterparts largely converts GCN4 into a protein with ATF/CREB specificity. Secondly, analysis of a Fos derivative containing the GCN4 leucine zipper indicates that Fos represents a novel intermediate between AP-1 and ATF/CREB proteins. Thirdly, we examine the effects of mutations in the invariant arginine residue of GCN4 (Arg243) that contacts the central base pair(s) of the target sites. While most mutations abolish DNA binding, substitution of a histidine residue results in a GCN4 derivative with ATF/CREB binding specificity. These results suggest that the AP-1 and ATF/CREB proteins differ in positioning a short surface that includes the invariant arginine and that AP-1 proteins may represent a subclass (and perhaps evolutionary offshoot) of ATF/CREB proteins that can tolerate overlapping half-sites.
Collapse
Affiliation(s)
- J Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|