1
|
Liu T, Long Q, Li L, Gan H, Hu X, Long H, Yang L, Pang P, Wang S, Deng W. The NRF2-dependent transcriptional axis, XRCC5/hTERT drives tumor progression and 5-Fu insensitivity in hepatocellular carcinoma. Mol Ther Oncolytics 2022; 24:249-261. [PMID: 35071747 PMCID: PMC8762376 DOI: 10.1016/j.omto.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) is highly expressed in many tumors and is essential for tumorigenesis and metastasis in multiple cancers. However, the molecular mechanisms underlying its high expression level in hepatocellular carcinoma (HCC) remain unclear. In this study, we identified X-ray repair cross-complementing 5 (XRCC5), a novel hTERT promoter-binding protein in HCC cells, using biotin-streptavidin-agarose pull-down assay. We found that XRCC5 was highly expressed in HCC cells, in which it transcriptionally upregulated hTERT. Functionally, the transgenic expression of XRCC5 promoted HCC progression and 5-fluorouracil resistance, whereas short hairpin RNA knockdown of XRCC5 had converse effects in vitro and in vivo. Moreover, hTERT overexpression reversed XRCC5 knockdown- or 5-fluorouracil (5-Fu)-mediated HCC inhibition. Mechanistically, nuclear-factor-erythroid-2-related factor 2 (NRF2) interacted with XRCC5, which in turn upregulated hTERT. However, the upregulation was insignificant when NRF2 was reduced, suggesting that the XRCC5-mediated hTERT expression was NRF2 dependent. The HCC patients with high expression levels of XRCC5 and hTERT had shorter overall survival times compared with those with low XRCC5 and hTERT levels in their tumor tissues. Collectively, our study demonstrates the molecular mechanisms of the XRCC5/NRF2/hTERT signaling in HCC metastasis, which will aid in the identification of novel strategies for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Tianze Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Luting Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Hairun Gan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xinyan Hu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Haoyu Long
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Lukun Yang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000 China
| | - Pengfei Pang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Corresponding author Pengfei Pang, MD, Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China.
| | - Siyang Wang
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, China
- Corresponding author Siyang Wang, MD, The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
- Corresponding author Wuguo Deng, PhD, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
2
|
Porter AW, Nguyen DN, Clayton DR, Ruiz WG, Mutchler SM, Ray EC, Marciszyn AL, Nkashama LJ, Subramanya AR, Gingras S, Kleyman TR, Apodaca G, Hendershot LM, Brodsky JL, Buck TM. The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice. JCI Insight 2022; 7:e151869. [PMID: 35104250 PMCID: PMC8983141 DOI: 10.1172/jci.insight.151869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/28/2022] [Indexed: 01/26/2023] Open
Abstract
Molecular chaperones are responsible for maintaining cellular homeostasis, and one such chaperone, GRP170, is an endoplasmic reticulum (ER) resident that oversees both protein biogenesis and quality control. We previously discovered that GRP170 regulates the degradation and assembly of the epithelial sodium channel (ENaC), which reabsorbs sodium in the distal nephron and thereby regulates salt-water homeostasis and blood pressure. To define the role of GRP170 - and, more generally, molecular chaperones in kidney physiology - we developed an inducible, nephron-specific GRP170-KO mouse. Here, we show that GRP170 deficiency causes a dramatic phenotype: profound hypovolemia, hyperaldosteronemia, and dysregulation of ion homeostasis, all of which are associated with the loss of ENaC. Additionally, the GRP170-KO mouse exhibits hallmarks of acute kidney injury (AKI). We further demonstrate that the unfolded protein response (UPR) is activated in the GRP170-deficient mouse. Notably, the UPR is also activated in AKI when originating from various other etiologies, including ischemia, sepsis, glomerulonephritis, nephrotic syndrome, and transplant rejection. Our work establishes the central role of GRP170 in kidney homeostasis and directly links molecular chaperone function to kidney injury.
Collapse
Affiliation(s)
- Aidan W. Porter
- Department of Biological Sciences
- Department of Pediatrics, Nephrology Division
| | | | | | - Wily G. Ruiz
- Department of Medicine, Renal-Electrolyte Division
| | | | - Evan C. Ray
- Department of Medicine, Renal-Electrolyte Division
| | | | | | | | | | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division
- Department of Cell Biology, and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
3
|
Rehman R, Vijayakumar VE, Jaiswal A, Jain V, Mukherjee S, Vellarikkal SK, Dieffenbach PB, Fredenburgh LE, Prakash YS, Ghosh B, Agrawal A, Mabalirajan U. Noncanonical role for Ku70/80 in the prevention of allergic airway inflammation via maintenance of airway epithelial cell organelle homeostasis. Am J Physiol Lung Cell Mol Physiol 2020; 319:L728-L741. [PMID: 32877223 DOI: 10.1152/ajplung.00522.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Airway epithelial homeostasis is under constant threat due to continuous exposure to the external environment, and abnormally robust sensitivity to external stimuli is critical to the development of airway diseases, including asthma. Ku is a key nonhomologous end-joining DNA repair protein with diverse cellular functions such as VDJ recombination and telomere length maintenance. Here, we show a novel function of Ku in alleviating features of allergic airway inflammation via the regulation of mitochondrial and endoplasmic reticulum (ER) stress. We first determined that airway epithelial cells derived from both asthmatic lungs and murine asthma models demonstrate increased expression of 8-hydroxy-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Ku protein expression was dramatically reduced in the bronchial epithelium of patients with asthma as well as in human bronchial epithelial cells exposed to oxidative stress. Knockdown of Ku70 or Ku80 in naïve mice elicited mitochondrial collapse or ER stress, leading to bronchial epithelial cell apoptosis and spontaneous development of asthma-like features, including airway hyperresponsiveness, airway inflammation, and subepithelial fibrosis. These findings demonstrate an essential noncanonical role for Ku proteins in asthma pathogenesis, likely via maintenance of organelle homeostasis. This novel function of Ku proteins may also be important in other disease processes associated with organelle stress.
Collapse
Affiliation(s)
- Rakhshinda Rehman
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Vijay Elakkya Vijayakumar
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Vaibhav Jain
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shravani Mukherjee
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shamsudheen Karuthedath Vellarikkal
- Academy of Scientific and Innovative Research, Ghaziabad, India.,Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Y S Prakash
- Departments of Anesthesiology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Balaram Ghosh
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anurag Agrawal
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
4
|
Knyazhanskaya ES, Shadrina OA, Anisenko AN, Gottikh MB. Role of DNA-dependent protein kinase in the HIV-1 replication cycle. Mol Biol 2016. [DOI: 10.1134/s0026893316040075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Xiao Y, Wang J, Qin Y, Xuan Y, Jia Y, Hu W, Yu W, Dai M, Li Z, Yi C, Zhao S, Li M, Du S, Cheng W, Xiao X, Chen Y, Wu T, Meng S, Yuan Y, Liu Q, Huang W, Guo W, Wang S, Deng W. Ku80 cooperates with CBP to promote COX-2 expression and tumor growth. Oncotarget 2016; 6:8046-61. [PMID: 25797267 PMCID: PMC4480734 DOI: 10.18632/oncotarget.3508] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/04/2015] [Indexed: 01/06/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yao Xiao
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jingshu Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yu Qin
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Xuan
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wenxian Hu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wendan Yu
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Dai
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenglin Li
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Canhui Yi
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Mei Li
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sha Du
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Cheng
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yiming Chen
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Taihua Wu
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Songshu Meng
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuhui Yuan
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| |
Collapse
|
6
|
Park CJ, Seo YS. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. THE PLANT PATHOLOGY JOURNAL 2015; 31:323-33. [PMID: 26676169 PMCID: PMC4677741 DOI: 10.5423/ppj.rw.08.2015.0150] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Biotechnology and PERI, Sejong University, Seoul 143-747,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| |
Collapse
|
7
|
Wang S, Wang Z, Yang YU, Shi MO, Sun Z. Overexpression of Ku80 correlates with aggressive clinicopathological features and adverse prognosis in esophageal squamous cell carcinoma. Oncol Lett 2015; 10:2705-2712. [PMID: 26722230 PMCID: PMC4665695 DOI: 10.3892/ol.2015.3635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 05/22/2015] [Indexed: 01/10/2023] Open
Abstract
Ku80, a subunit of the heterodymeric Ku protein, is clearly implicated in nonhomologous end joining DNA repair, chemoresistance and radioresistance in malignant tumors. In the present study, the clinicopathological significance of Ku80 in esophageal squamous cell carcinoma (ESCC) was investigated. The expression levels of Ku80 were determined by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry in ESCC specimens and normal esophageal mucosa. The mRNA and protein levels of Ku80 were significantly higher in ESCC tissues than in normal esophageal mucosa, and were significantly associated with tumor differentiation, local invasion, lymph node metastasis and tumor-node-metastasis (TNM) stage. However, overexpression of Ku80 mRNA and protein levels were not significantly correlated with age, gender, tumor site or tumor size. Cox proportional hazards regression model demonstrated that tumor local invasion, lymph node metastasis, TNM stage and Ku80 mRNA and protein levels were independent risk factors indicating the overall survival of patients with ESCC. The present study demonstrated that aberrant Ku80 overexpression is observed in ESCC. In addition, high expression levels of Ku80 are associated with adverse clinicopathological features and unfavorable prognosis in ESCC patients.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhou Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Y U Yang
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - M O Shi
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhenguo Sun
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
8
|
Piccione EC, Lieu TJ, Gentile CF, Williams TR, Connolly AJ, Godwin AK, Koong AC, Wong AJ. A novel epidermal growth factor receptor variant lacking multiple domains directly activates transcription and is overexpressed in tumors. Oncogene 2011; 31:2953-67. [PMID: 21986942 DOI: 10.1038/onc.2011.465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The epidermal growth factor receptor (EGFR) is essential to multiple physiological and neoplastic processes via signaling by its tyrosine kinase domain and subsequent activation of transcription factors. EGFR overexpression and alteration, including point mutations and structural variants, contribute to oncogenesis in many tumor types. In this study, we identified an in-frame splice variant of the EGFR called mini-LEEK (mLEEK) that is more broadly expressed than the EGFR and is overexpressed in several cancers. Unlike previously characterized EGFR variants, mLEEK lacks the extracytoplasmic, transmembrane and tyrosine kinase domains. mLEEK localizes in the nucleus and functions as a transcription factor to regulate target genes involved in the cellular response to endoplasmic reticulum (ER) stress, including the master regulator of the unfolded protein response (UPR) pathways, molecular chaperone GRP78/Bip. We demonstrated that mLEEK regulates GRP78 transcription through direct interaction with a cis-regulatory element within the gene promoter. Several UPR pathways were interrogated and mLEEK expression was found to attenuate the induction of all pathways upon ER stress. Conversely, knockdown of mLEEK resulted in caspase-mediated cell death and sensitization to ER stress. These findings indicate that mLEEK levels determine cellular responses to unfavorable conditions that cause ER stress. This information, along with the overexpression of mLEEK in tumors, suggests unique strategies for therapeutic intervention. Furthermore, the identification of mLEEK expands the known mechanisms by which the EGFR gene contributes to oncogenesis and represents the first link between two previously disparate areas in cancer cell biology: EGFR signaling and the UPR.
Collapse
Affiliation(s)
- E C Piccione
- Department of Neurosurgery and Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li R, Yang Y, An Y, Zhou Y, Liu Y, Yu Q, Lu D, Wang H, Jin L, Zhou W, Qian J, Shugart YY. Genetic polymorphisms in DNA double-strand break repair genes XRCC5, XRCC6 and susceptibility to hepatocellular carcinoma. Carcinogenesis 2011; 32:530-6. [PMID: 21304054 DOI: 10.1093/carcin/bgr018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Environmental risk factors cause DNA damages. Imprecise DNA repair leads to chromosome aberrations, genome destabilization and hepatocarcinogenesis. Ku is a key DNA double-strand break repair protein. We hypothesized that the genetic variants in Ku subunits encoding genes, XRCC5/XRCC6, may contribute to hepatocellular carcinoma (HCC) susceptibility. We genotyped 13 common single nucleotide polymorphisms (SNPs) in XRCC5 and XRCC6 and evaluated their associations with HCC risk in 689 pathologically confirmed cases and 690 cancer-free controls from a Chinese population. We found that a significantly reduced risk for HCC was associated with XRCC5 rs16855458 [odds ratio (OR)=0.59; 95% confidence interval (CI)=0.43-0.81; CA+AA versus CC] and a significantly increased risk for HCC was associated with XRCC5 rs9288516 (OR=2.02; 95% CI=1.42-2.86; TA+AA versus TT) even after Bonferroni correction (Pcorrected=0.026 and 0.002, respectively). The effects of rs16855458 (OR=0.57; 95% CI=0.37-0.86, P=0.008) and rs9288516 (OR=1.86; 95% CI=1.19-2.90, P=0.007) were more significant in hepatitis B surface antigen-infected subjects than non-infected subjects. The haplotype-based analysis revealed that in XRCC5, AA in block 1 (OR=0.63; 95% CI=0.48-0.83) and CGGTT in block 2 (OR=0.52; 95% CI=0.39-0.69) were associated with decreased HCC risk (Pcorrected=0.013 and <0.001, respectively). The aforementioned two SNPs exhibited a significant cumulative risk effect (Ptrend<0.001). Additionally, potential interaction among XRCC5 rs9288516 and rs2267437, rs5751131 in XRCC6 was indicated by the multifactor dimensionality reduction analysis. In conclusion, XRCC5 variants may play a role in determining individual's HCC susceptibility, which warranted validation in larger studies.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai 200433 China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cierniewski CS, Papiewska-Pajak I, Malinowski M, Sacewicz-Hofman I, Wiktorska M, Kryczka J, Wysocki T, Niewiarowska J, Bednarek R. Thymosin β4 regulates migration of colon cancer cells by a pathway involving interaction with Ku80. Ann N Y Acad Sci 2010; 1194:60-71. [PMID: 20536451 DOI: 10.1111/j.1749-6632.2010.05480.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Clone F10H2.B3 Anti-Ku80. Hybridoma (Larchmt) 2009. [DOI: 10.1089/hyb.2008.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Mikelsaar AV, Sünter A, Toomik P, Karpson K, Juronen E. New anti-Ku80 monoclonal antibody F10H2.B3 as a useful marker for dividing cells in culture. Hybridoma (Larchmt) 2009; 28:107-11. [PMID: 19249991 DOI: 10.1089/hyb.2008.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report on the development of a mouse monoclonal antibody (named F10H2.B3) using the native cellular fragments of human fetal neural stem cells as immunogens. Molecular analysis has shown that the target antigen of F10H2.B3 is Ku80 (ATP-dependent DNA helicase 2 subunit 2 [EC 3.6.1.-]). We suggest this antibody could be used in certain conditions as a proliferation marker for cells of different origin.
Collapse
|
13
|
Zheng HC, Takahashi H, Li XH, Hara T, Masuda S, Guan YF, Takano Y. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol 2008; 39:1042-9. [PMID: 18482745 DOI: 10.1016/j.humpath.2007.11.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/06/2007] [Accepted: 11/13/2007] [Indexed: 11/25/2022]
Abstract
Glucose-related proteins (GRPs) are ubiquitously expressed in endoplasmic reticulum and able to assist in protein folding and assembly; consequently, they are considered as molecular chaperones. GRP78 and GRP94 expression was induced by glucose starvation and up-regulated in the malignancies. To clarify the roles of both molecules in tumorigenesis and progression of gastric carcinomas, immunohistochemistry was used on tissue microarray containing gastric carcinomas, adenomas, and nonneoplastic mucosa using the antibodies against GRP78 and GRP94, with a comparison of their expression with clinicopathological parameters of carcinomas. Gastric carcinoma cell lines (MKN28, AGS, MKN45, KATO-III, and HGC-27) were studied for both proteins by immunohistochemistry and Western blot. There was more expression of both proteins in gastric carcinoma and adenoma than in nonneoplastic mucosas (P < .05). All gastric carcinoma cell lines showed their expression at different levels. They were positively correlated with tumor size, depth of invasion, lymphatic and venous invasion, lymph node metastasis, and Union Internationale Contre le Cancer staging (P < .05), with positive relationship between both proteins (P < .05). Univariate analysis indicated the postsurgical cumulative survival rate of patients with positive GRP78 or GRP94 expression to be lower than that in those without GRP78 or GRP94 expression (P < .05), but the close link disappeared if stratified according to depth of invasion (P > .05). Multivariate analysis showed that age, depth of invasion, lymphatic invasion, lymph node metastasis, Union Internationale Contre le Cancer staging, and Lauren classification (P < .05), but not GRP78 and GRP94 expression, were independent prognostic factors for carcinomas (P > .05). Up-regulated expression of GRP78 and GRP94 was possibly involved in pathogenesis, growth, invasion, and metastasis of gastric carcinomas. They were considered objective and effective markers for the aggressive behavior and poor prognosis in gastric carcinomas.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang 110003, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bednarek R, Boncela J, Smolarczyk K, Cierniewska-Cieslak A, Wyroba E, Cierniewski CS. Ku80 as a Novel Receptor for Thymosin β4 That Mediates Its Intracellular Activity Different from G-actin Sequestering. J Biol Chem 2008; 283:1534-1544. [DOI: 10.1074/jbc.m707539200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Abstract
Cytoplasmic splicing is one of the major regulatory mechanisms of the unfolded protein response (UPR). The molecular mechanism of cytoplasmic splicing is unique and completely different from that of conventional nuclear splicing. The mammalian substrate of cytoplasmic splicing is XBP1 pre-mRNA, which is converted to spliced mRNA in response to UPR, leading to the production of an active transcription factor [pXBP1(S)] responsible for UPR. Interestingly, XBP1 pre-mRNA is also translated into a functional protein [pXBP1(U)] that negatively regulates the UPR. Thus, mammalian cells can quickly adapt to a change in conditions in the endoplasmic reticulum by switching proteins encoded in the mRNA from a negative regulator to an activator. This elaborate system contributes to various cellular functions, including plasma cell differentiation, viral infections, and carcinogenesis. In this short review, I briefly summarize research on cytoplasmic splicing and focus on current hot topics.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan., PRESTO-SORST, Japan Science and Technology Agency, Kyoto, Japan.
| |
Collapse
|
16
|
Gullo C, Au M, Feng G, Teoh G. The biology of Ku and its potential oncogenic role in cancer. Biochim Biophys Acta Rev Cancer 2006; 1765:223-34. [PMID: 16480833 DOI: 10.1016/j.bbcan.2006.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 11/30/2022]
Abstract
Ku is a heterodimeric protein made up of two subunits, Ku70 and Ku80. It was originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. It is a highly versatile regulatory protein that has been implicated in multiple nuclear processes, e.g., DNA repair, telomere maintenance and apoptosis. Accordingly, Ku is thought to play a crucial role in maintenance of chromosomal integrity and cell survival. Recent reports suggest that there is a positive relationship between Ku and the development of cancer, making Ku an important candidate target for anticancer drug development. Specifically, prior studies suggest that a delicate balance exists in Ku expression, as overexpression of Ku proteins promotes oncogenic phenotypes, including hyperproliferation and resistance to apoptosis; whereas deficient or low expression of Ku leads to genomic instability and tumorigenesis. Such observations through various experimental models indicate that Ku may act as either a tumor suppressor or an oncoprotein. Hence, understanding the link between the various functions of Ku and the development of cancer in different cell systems may help in the development of novel anticancer therapeutic agents that target Ku. These studies may also increase our understanding of how Ku autoantibodies are generated in autoimmune diseases.
Collapse
Affiliation(s)
- Charles Gullo
- Multiple Myeloma Research Laboratory, MMRL, Singapore Health Services, SingHealth, 7 Hospital Drive, Block A #02-05, Singapore 169611, Republic of Singapore
| | | | | | | |
Collapse
|
17
|
Ramsay RG, Ciznadija D, Mantamadiotis T, Anderson R, Pearson R. Expression of stress response protein glucose regulated protein-78 mediated by c-Myb. Int J Biochem Cell Biol 2005; 37:1254-68. [PMID: 15778089 DOI: 10.1016/j.biocel.2004.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 12/10/2004] [Accepted: 12/23/2004] [Indexed: 10/25/2022]
Abstract
Glucose regulated protein-78, GRP78 has been implicated in the protection of tumor cells from cytotoxic damage and apoptosis. When protein profiles of colon cell lines were investigated we found remarkably high GRP78 expression in two cell lines. These cell lines express elevated levels of the transcription factor c-Myb due to genomic amplification of the c-myb locus and we hypothesized that c-Myb regulates GRP78 expression in colon cancer cells. The promoters of human and murine GRP78 and the related family member GRP94 were examined and potential c-Myb binding sites were identified and characterized. DNA binding studies with recombinant c-Myb and nuclear extracts together with ChIP assays on colon cell lines validated these sites. Endogenous GRP78 expression was further induced in these colon cells in response to Thapsigargin treatment, a potent inducer of the unfolded protein response. Transactivation studies with the human GRP78 promoter in colon cell lines showed reporter activity was dependent upon the presence of a conserved c-Myb binding site independent of sequences associated with the unfolded protein response. Finally, over-expression of c-Myb induced the endogenous GRP78 gene. These data suggest that amplification of c-myb in tumor cells may lead to robust GRP78 gene induction, which may in turn assist cells in survival under conditions of oxygen deprivation and nutrient stress.
Collapse
Affiliation(s)
- Robert G Ramsay
- Differentiation and Transcription Laboratory, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne 3002, Australia.
| | | | | | | | | |
Collapse
|
18
|
Yap YL, Lam DCL, Luc G, Zhang XW, Hernandez D, Gras R, Wang E, Chiu SW, Chung LP, Lam WK, Smith DK, Minna JD, Danchin A, Wong MP. Conserved transcription factor binding sites of cancer markers derived from primary lung adenocarcinoma microarrays. Nucleic Acids Res 2005; 33:409-21. [PMID: 15653641 PMCID: PMC546166 DOI: 10.1093/nar/gki188] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gene transcription in a set of 49 human primary lung adenocarcinomas and 9 normal lung tissue samples was examined using Affymetrix GeneChip technology. A total of 3442 genes, called the set MAD, were found to be either up- or down-regulated by at least 2-fold between the two phenotypes. Genes assigned to a particular gene ontology term were found, in many cases, to be significantly unevenly distributed between the genes in and outside MAD. Terms that were overrepresented in MAD included functions directly implicated in the cancer cell metabolism. Based on their functional roles and expression profiles, genes in MAD were grouped into likely co-regulated gene sets. Highly conserved sequences in the 5 kb region upstream of the genes in these sets were identified with the motif discovery tool, MoDEL. Potential oncogenic transcription factors and their corresponding binding sites were identified in these conserved regions using the TRANSFAC 8.3 database. Several of the transcription factors identified in this study have been shown elsewhere to be involved in oncogenic processes. This study searched beyond phenotypic gene expression profiles in cancer cells, in order to identify the more important regulatory transcription factors that caused these aberrations in gene expression.
Collapse
Affiliation(s)
- Yee Leng Yap
- HKU-Pasteur Research Centre Dexter H.C. Man Building, 8 Sassoon Road Pokfulam, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang Q, He Z, Zhang J, Wang Y, Wang T, Tong S, Wang L, Wang S, Chen Y. Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. ACTA ACUST UNITED AC 2005; 29:544-51. [PMID: 16297569 DOI: 10.1016/j.cdp.2005.09.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND To investigate the relationship between the expression of glucose-regulated protein94 (GRP94) and GRP78 at the level of mRNA and protein in vivo and in human lung cancer. METHODS RT-PCR, real-time PCR, immunohistochemistry and/or Western blot were used in 54 cases of lung cancer and corresponding normal lung tissue. RESULTS The expression pattern of GRP94 and GRP78 was similar. There was a significant overexpression of GRP94 and GRP78 at both mRNA and protein levels in cancer tissues as compared to normal tissues. The relative levels of GRP94 and GRP78 mRNA evaluated by RT-PCR in cancer and normal lung tissue were: GRP94: 3.48+/-2.06 versus 2.01+/-1.83; GRP78: 3.64+/-1.87 versus 2.21+/-1.54; by real-time PCR were: GRP94: 2.89+/-0.64 versus 1.12+/-0.54; GRP78: 2.56+/-0.82 versus 0.96+/-0.42. The relative level of GRP94 and GRP78 protein by Western blot in cancer and normal lung tissue were: GRP94: 3.46+/-1.72 versus 1.81+/-0.92; GRP78: 4.84+/-2.55 versus 1.91+/-1.15, indicating an approximate 2-fold and a 3-fold increase in GRP94 and GRP78 protein in cancer tissue as compared with normal tissue. Immunohistochemistry result for GRP94 and GRP78 in cancer and normal tissue was similar, that is: a stronger stain was observed in cancer tissue (main intensity of staining ++ to +++) compared to normal tissue (main intensity of staining + to ++). All the difference for GRP94 and GRP78 between the two tissues were significant (p<0.05). Furthermore, the overexpression of GRP94 and GRP78 in the cancer tissue correlated with grade of differentiation and stage of tumors. There was stronger expression in poorly differentiated tumors than in well-moderately differentiated tumors (p<0.05). There was also stronger expression in stage III than in stages I and II tumors (p<0.05). No statistically significant differences were found among various pathologic types of tumors. Correlation analysis showed that there is a positive correlation between GRP94 and GRP78. CONCLUSION The expression pattern of GRP94 and GRP78 was similar in human lung cancer. They both were related with the differentiation and progression of the cancer. The expression at mRNA and protein level may be valuable in evaluating the grade of differentiation and clinical stage of human lung cancer.
Collapse
Affiliation(s)
- Qi Wang
- Department of Respiratory, the Second Hospital affiliated to Dalian Medical University, Dalian 116023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The role of stress proteins in immunity and their feasibility as vaccine vehicles against infectious disease have been the focus of intensive examination. Endoplasmic reticulum (ER)-resident stress proteins in particular are interesting model proteins as they perform crucial functions in an organelle that responds promptly to cell stress. We describe transcriptional regulation of ER-resident stress proteins, their involvement in the cellular response to infection and discuss their potential as vaccine candidates against infectious diseases.
Collapse
Affiliation(s)
- Ulrike K Rapp
- Max Planck Institute for Infection Biology, Schumannstrasse 21-22, 10117 Berlin, Germany.
| | | |
Collapse
|
21
|
Foti DM, Welihinda A, Kaufman RJ, Lee AS. Conservation and divergence of the yeast and mammalian unfolded protein response. Activation of specific mammalian endoplasmic reticulum stress element of the grp78/BiP promoter by yeast Hac1. J Biol Chem 1999; 274:30402-9. [PMID: 10521417 DOI: 10.1074/jbc.274.43.30402] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Hac1 (yHac1), the transcription factor that binds and activates the unfolded protein response element of endoplasmic reticulum (ER)-chaperone gene promoters, only accumulates in stressed cells after an unconventional splicesosome-free mRNA processing step and escape from translation block. In determining whether the novel regulatory mechanisms for yHac1 are conserved in mammalian cells, we discovered a unique unfolded protein response element-like sequence within the endoplasmic reticulum stress element 163, one of the three ER stress elements recently identified in the rat grp78 promoter. The unspliced form of yHac1 is stably expressed in nonstressed mammalian cells and is as active as the spliced form in stimulating the promoter activities of grp genes. Further, the yHac1 mRNA is not processed in response to ER stress in mammalian cells. We identified a CCAGC motif as the yHac1 binding site, which is contained within a YY1 binding site previously shown to be important for mammalian UPR. Dissection of the yHac1 and the YY1 binding sites uncovered specific contact points for an activator protein predicted to be the mammalian homolog of yHac1, the activity of which can be stimulated by YY1. A model of the conserved and unique features of the yeast and mammalian unfolded protein response transcription machinery is proposed.
Collapse
Affiliation(s)
- D M Foti
- Department of Biochemistry, University of Southern California/Norris Comprehensive Cancer Center, University of Southern California School Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
22
|
Abstract
GRP94 is the ER representative of the HSP90 family of stress-induced proteins. It binds to a limited number of proteins in the secretory pathway, apparently by recognizing advanced folding intermediates or incompletely assembled proteins, GRP94 also binds peptides and can act as a tumor vaccine, delivering the peptides for presentation to T lymphocytes. Here, we review the current data about GRP94 and propose a structural model that integrates the biochemical data and known functions of the protein.
Collapse
Affiliation(s)
- Y Argon
- Department of Pathology, University of Chicago, IL 60637, USA
| | | |
Collapse
|
23
|
de Crom R, van Haperen R, Janssens R, Visser P, Willemsen R, Grosveld F, van der Kamp A. Gp96/GRP94 is a putative high density lipoprotein-binding protein in liver. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:378-92. [PMID: 10101271 DOI: 10.1016/s1388-1981(99)00017-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously shown that three high density lipoproteins (HDL)-binding proteins in liver, of 90, 110 and 180 kDa, are structurally related. In this study, these proteins are identified as gp96/GRP94. This protein is known to occur as a homodimer and has a dual subcellular localization: it is both an endoplasmic reticulum resident protein, where it is supposed to act as a chaperonin, and a plasma membrane protein, whose significance is unknown. In ultrastructural studies the plasma membrane localization of the homodimeric form was verified. The 90-kDa protein was abundantly present at the membranes of the endosomal/lysosomal vesicles as well as at the apical hepatocyte membranes, comprising the bile canaliculi. The monomeric protein is scarcely present at the basolateral membrane of the hepatocytes, but could be demonstrated in coated pits, suggesting involvement in receptor-mediated endocytosis. Labeling of the endoplasmic reticulum was virtually absent. Gp96/GRP94 was transiently expressed in COS-1 cells. However, the expressed protein was exclusively localized in the endoplasmic reticulum. Transfection with constructs in which the C-terminal KDEL sequence had been deleted, resulted in plasma membrane localized expression of protein, but only in an extremely low percentage of cells. In order to evaluate the HDL-binding capacities of this protein, stably transfected cells were generated, using several cell types. It appeared to be difficult to obtain a prolonged high level expression of gp96. In these cases, however, a marked increase of HDL-binding activity compared with the control cells could be observed.
Collapse
Affiliation(s)
- R de Crom
- The Medical Genetics Center, Department of Cell Biology and Genetics, Erasmus University Rotterdam, Dr. Molenwaterplein 50, P.O. Box 1738, 3000 DR, Rotterdam, The
| | | | | | | | | | | | | |
Collapse
|
24
|
Torrance H, Giffin W, Rodda DJ, Pope L, Haché RJ. Sequence-specific binding of Ku autoantigen to single-stranded DNA. J Biol Chem 1998; 273:20810-9. [PMID: 9694826 DOI: 10.1074/jbc.273.33.20810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid-induced transcription of mouse mammary tumor virus is repressed by Ku antigen/DNA-dependent protein kinase (DNA-PK) through a DNA sequence element (NRE1) in the viral long terminal repeat. Nuclear factors binding to the separated single strands of NRE1 have been identified that may also be important for transcriptional regulation through this element. We report the separation of the upper-stranded NRE1 binding activity in Jurkat T cell nuclear extracts into two components. One component was identified as Ku antigen. The DNA sequence preference for Ku binding to single-stranded DNA closely paralleled the sequence requirements of Ku for double-stranded DNA. Recombinant Ku bound the single, upper strand of NRE1 with an affinity that was 3-4-fold lower than its affinity for double-stranded NRE1. Sequence-specific single-stranded Ku binding occurred rapidly (t1/2 on = 2.0 min) and was exceptionally stable, with an off rate of t1/2= 68 min. While Ku70 cross-linked to the upper strand of NRE1 when Ku was bound to double-stranded and single-stranded DNAs, the Ku80 subunit only cross-linked to single-stranded NRE1. Intriguingly, addition of Mg2+ and ATP, the cofactors required for Ku helicase activity, induced the cross-linking of Ku80 to a double-stranded NRE1-containing oligonucleotide, without completely unwinding the two strands.
Collapse
Affiliation(s)
- H Torrance
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
25
|
Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79:129-68. [PMID: 9749880 DOI: 10.1016/s0163-7258(98)00013-8] [Citation(s) in RCA: 743] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 90-kDa molecular chaperone family (which comprises, among other proteins, the 90-kDa heat-shock protein, hsp90 and the 94-kDa glucose-regulated protein, grp94, major molecular chaperones of the cytosol and of the endoplasmic reticulum, respectively) has become an increasingly active subject of research in the past couple of years. These ubiquitous, well-conserved proteins account for 1-2% of all cellular proteins in most cells. However, their precise function is still far from being elucidated. Their involvement in the aetiology of several autoimmune diseases, in various infections, in recognition of malignant cells, and in antigen-presentation already demonstrates the essential role they likely will play in clinical practice of the next decade. The present review summarizes our current knowledge about the cellular functions, expression, and clinical implications of the 90-kDa molecular chaperone family and some approaches for future research.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
26
|
Oh-Ishi M, Omori A, Kwon JY, Agui T, Maeda T, Furudate SI. Detection and identification of proteins related to the hereditary dwarfism of the rdw rat. Endocrinology 1998; 139:1288-99. [PMID: 9492064 DOI: 10.1210/endo.139.3.5815] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteins having relations to hereditary dwarfism of the rdw rat (gene symbol: rdw) were searched for in various tissues of the rat with an improved two-dimensional gel electrophoresis technique followed by immunoblotting and microsequencing. Tissues inspected were cerebral cortex, cerebellum, brain trunk, hypothalamus, pituitary, thyroid gland, liver, testis, spleen, and thymus. Only pituitary and thyroid glands among those tissues showed abnormalities in protein contents. GH and PRL contents in the rdw pituitary were much less than in the normal one, which in the former were 1/15 and less than 1/30 times as much as in the latter, respectively, but the abnormalities in the rdw thyroid were far more serious than in the pituitary. At least 18 protein levels in the rdw thyroid were above, and 17 were below the normal. Those identified among the increased proteins were endoplasmin (GRP94), immunoglobulin heavy chain binding protein (BiP/GRP78), and heat shock protein 70 (hsp70), the contents of which respectively were 40 times, 10 times and more than 50 times as much in the rdw thyroid as in the normal tissue. Because BiP and endoplasmin are known to be ER resident proteins, and because all three belong to a chaperone protein family, accumulation of these proteins in the rdw thyroid suggests that protein folding and secreting disorders underlie the hypothyroidism of the rdw rat.
Collapse
Affiliation(s)
- M Oh-Ishi
- Department of Physics, School of Science, Kitasato University, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Chen KD, Chen LY, Huang HL, Lieu CH, Chang YN, Chang MD, Lai YK. Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells. J Biol Chem 1998; 273:749-55. [PMID: 9422727 DOI: 10.1074/jbc.273.2.749] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously shown that treatment with okadaic acid (OA) followed by heat shock (HS) (termed OA --> HS treatment) leads to rapid transactivation of the 78-kDa glucose-regulated protein gene (grp78) in 9L rat brain tumor cells. A cAMP-responsive element-like (CRE-like, TGACGTGA) promoter sequence and a protein kinase A signaling pathway are involved in this induction, and activation of both CRE binding protein (CREB) and activating transcription factor-2 (ATF-2) is required in the above process. Herein, we report that transactivation of grp78, as well as phosphorylation/activation of ATF-2, can be completely annihilated by SB203580, a highly specific inhibitor of p38 mitogen-activated protein kinase (p38(MAPK)). Activation of p38(MAPK) by OA --> HS is also substantiated by its own phosphorylation as well as the phosphorylation and activation of MAPK activating protein kinase-2 in cells subjected to this treatment. The involvement of p38(MAPK) in the activation of ATF-2, which leads to the transactivation of rat grp78, is confirmed by electrophoretic mobility shift assay using a probe containing the CRE-like sequence as well as by transient transfection assays with a plasmid containing a 710-base pair stretch of the grp78 promoter. Together with our previous studies, these results led us to conclude that phosphorylation/activation of CREB upon OA --> HS treatment is mediated by cAMP-dependent protein kinase, whereas that of ATF-2 is mediated by p38(MAPK). The transcription factors may bind to each other to form heterodimers that in turn transactivate grp78 by binding to the CRE-like element. This suggests that distinct signaling pathways converge on CREB-ATF-2, where each subunit is individually activated by a specific class of protein kinases. This may allow modulation of grp78 transactivation by diverse external stimuli.
Collapse
Affiliation(s)
- K D Chen
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
König B, Seehaus B, Bangsow T, Oberthür A, Henninger J, Weber P, Schepelmann S, Wollny E, Gassen HG. Cloning and characterization of a porcine protein kinase gene and relationship to a class of heat shock proteins. DNA Cell Biol 1997; 16:1365-72. [PMID: 9407008 DOI: 10.1089/dna.1997.16.1365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have determined the genomic sequence of a porcine protein kinase (PPK) gene, including 1,844 bp upstream of the transcription initiation site. The gene spans over 19 kb and consists of 18 exons and 17 introns. The 5' regulatory region contains a characteristic heat shock element in the first intron, a weak heat shock element 1,464 bp upstream of the transcription initiation site, an atypical TATA box, and further consensus sequences typical for eukaryotic promoters such as an SP-1 binding site. Southern blot analysis indicates that PPK exists as a single-copy gene in the porcine haploid genome. The PPK gene is transcribed in all investigated tissues as shown by Northern blotting and reverse transcriptase polymerase chain reaction. Comparison of the protein and cDNA sequences of PPK to other sequences in DNA and protein databases indicates significant homology to a class of heat shock proteins, the glucose-regulated proteins (GRP94). In addition, nucleotide sequences at the 5' terminus of the PPK gene show strong homology to the GRP94 family. Domains highly conserved with human tumor rejection antigen (GP96) or glucose-regulated protein (GRP94) genes are identified within the 5' terminus and the first intron of the PPK gene. These findings suggest that these proteins are either identical or represent a family of closely related proteins.
Collapse
Affiliation(s)
- B König
- Institut für Biochemie, Technische Hochschule Darmstadt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marcus N, Green M. NF-Y, a CCAAT box-binding protein, is one of the trans-acting factors necessary for the response of the murine ERp72 gene to protein traffic. DNA Cell Biol 1997; 16:1123-31. [PMID: 9324314 DOI: 10.1089/dna.1997.16.1123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The accumulation of incompletely assembled immunoglobulin mu heavy chain in transfected COS cells stimulates the cellular response to protein traffic that results in the increased transcription and elevated synthesis of several ER chaperones, including ERP72, a member of the protein disulfide isomerase family of molecular chaperones. The ERp72 promoter contains an 82 bp ER protein traffic response element (ERPTRE) that is sufficient to mediate this response. Previously, it had been shown that the alteration of a putative AP-2 site and a CCAAT and inverted CCAAT site within the ERPTRE significantly decreased the response of ERp72 promoter to mu chain accumulation. We have extended these findings by demonstrating a role for NF-Y and a potentially novel DNA-binding protein in the regulation of transcription from the ERp72 promoter. The fact that NF-Y binding to the ERPTRE is observed in extracts from both control cells and cells in which the response to protein traffic has been activated indicates that the binding of NF-Y, while necessary, is not sufficient to account for the response. Each of the two CCAAT sites in the ERPTRE can bind NF-Y independently, but both sites must be intact for full ERPTRE function. A second protein can bind to the ERPTRE independently of NF-Y and at a site overlapping or close to the 3' end of the reverse CCAAT site. It is possible that interactions between NF-Y, this protein and perhaps other factors are responsible for the regulation of the protein traffic response.
Collapse
Affiliation(s)
- N Marcus
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA
| | | |
Collapse
|
30
|
Chen KD, Hung JJ, Huang HL, Chang MD, Lai YK. Rapid induction of the Grp78 gene by cooperative actions of okadaic acid and heat-shock in 9L rat brain tumor cells--involvement of a cAMP responsive element-like promoter sequence and a protein kinase A signaling pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:120-9. [PMID: 9310369 DOI: 10.1111/j.1432-1033.1997.t01-1-00120.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have demonstrated that treatment with 200 nM okadaic acid (OA) for 1 h followed by a 15-min heat shock (HS) at 45 degrees C (termed OA-->HS treatment) leads to a rapid transactivation of grp78, the gene for the 78-kDa glucose-regulated protein, in 9L rat brain tumor cells. The level of Grp78 mRNA rose 15-fold in 60 min after the combined treatment. Nuclear extracts from cells subjected to OA-->HS treatment, compared to those of treatment with OA or HS alone, exhibited an increased binding activity toward an oligonucleotide probe containing the cAMP-responsive element-like (CRE-like, TGACGTGA) regulatory element in electrophoretic mobility shift assays (EMSA). The binding resulted in the formation of two protein-EMSA probe complexes exhibiting different association and dissociation rates in kinetic studies. The protein factors in the upper band (complex I) and lower band (complex II) were identified as the activating transcription factor-2 (ATF-2) and the CRE binding factor 1 (CREB-1), respectively, by antibody interference assays. In addition, the identity of CREB-1 was confirmed by supershift analysis. The binding activity, as well as the transactivation of the grp78 gene, can be abolished by a 1-h treatment with the cAMP-dependent protein kinase (PKA) inhibitor but not with protein kinase C or Ca2+/calmodulin-dependent protein kinase II inhibitors. Accumulation of steady-state level of ATF-2 was observed and was also modulated by treatment with H-89, a PKA inhibitor. From these results, we conclude that the CRE-like element plays an important role in the rapid transactivation of the grp78 gene and that the PKA signaling pathway is involved. In addition, PKA-mediated transcriptional regulation of grp78 in OA-->HS treatment is through regulation of protein phosphorylation as well as de novo synthesis of ATF-2.
Collapse
Affiliation(s)
- K D Chen
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
31
|
Abstract
Genetic diseases associated with an enzyme deficiency frequently have reduced intracellular levels of the mutant protein, despite apparently normal levels of message and protein synthesis. It has been suggested that the endoplasmic reticulum (ER) can recognise mutant protein as incorrectly folded and invoke 'quality control' processes which cause the retention and degradation of this protein. This process may occur, even for mutations which do not abrogate protein activity, contributing directly to pathophysiology. Genetic diseases associated with defects in ER and Golgi processing proteins have also been reported and generally result in impaired processing of multiple protein products. In this review the role of the ER and Golgi in the pathogenesis of genetic diseases relating to the vacuolar network are discussed.
Collapse
Affiliation(s)
- D A Brooks
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, Australia.
| |
Collapse
|
32
|
Giffin W, Kwast-Welfeld J, Rodda DJ, Préfontaine GG, Traykova-Andonova M, Zhang Y, Weigel NL, Lefebvre YA, Haché RJ. Sequence-specific DNA binding and transcription factor phosphorylation by Ku Autoantigen/DNA-dependent protein kinase. Phosphorylation of Ser-527 of the rat glucocorticoid receptor. J Biol Chem 1997; 272:5647-58. [PMID: 9038175 DOI: 10.1074/jbc.272.9.5647] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NRE1 is a DNA sequence element through which Ku antigen/DNA-dependent protein kinase (DNA-PK) catalytic subunit represses the induction of mouse mammary tumor virus transcription by glucocorticoids. Although Ku is an avid binder of DNA ends and has the ability to translocate along DNA, we report that direct sequence-specific Ku binding occurs with higher affinity (Kd = 0.84 +/- 0.24 nM) than DNA end binding. Comparison of Ku binding to several sequences over which Ku can accumulate revealed two classes of sequence. Sequences with similarity to NRE1 competed efficiently for NRE1 binding. Conversely, sequences lacking similarity to NRE1 competed poorly for Ku and were not recognized in the absence of DNA ends. Phosphorylation of glucocorticoid receptor (GR) fusion proteins by DNA-PK reflected Ku DNA-binding preferences and demonstrated that co-localization of GR with DNA-PK on DNA in cis was critical for efficient phosphorylation. Phosphorylation of the GR fusion protein by DNA-PK mapped to a single site, Ser-527. This site occurs adjacent the GR nuclear localization sequence between the DNA and ligand binding domains of GR, and thus its phosphorylation, if confirmed, has the potential to affect receptor function in vivo.
Collapse
Affiliation(s)
- W Giffin
- Department of Medicine, University of Ottawa, Loeb Medical Research Institute, Ottawa Civic Hospital, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li WW, Hsiung Y, Wong V, Galvin K, Zhou Y, Shi Y, Lee AS. Suppression of grp78 core promoter element-mediated stress induction by the dbpA and dbpB (YB-1) cold shock domain proteins. Mol Cell Biol 1997; 17:61-8. [PMID: 8972186 PMCID: PMC231730 DOI: 10.1128/mcb.17.1.61] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The highly conserved grp78 core promoter element plays an important role in the induction of grp78 under diverse stress signals. Previous studies have established a functional region in the 3' half of the core (stress-inducible change region [SICR]) which exhibits stress-inducible changes in stressed nuclei. The human transcription factor YY1 is shown to bind the SICR and transactivate the core element under stress conditions. Here we report that expression library screening with the core element has identified two new core binding proteins, YB-1 and dbpA. Both proteins belong to the Y-box family of proteins characterized by an evolutionarily conserved DNA binding motif, the cold shock domain (CSD). In contrast to YY1, which binds only double-stranded SICR, the Y-box/CSD proteins much prefer the lower strand of the SICR. The Y-box proteins can repress the inducibility of the grp78 core element mediated by treatment of cells with A23187, thapsigargin, and tunicamycin. In gel shift assays, YY1 binding to the core element is inhibited by either YB-1 or dbpA. A yeast interaction trap screen using LexA-YY1 as a bait and a HeLa cell cDNA-acid patch fusion library identified YB-1 as a YY1-interacting protein. In cotransfection experiments, the Y-box proteins antagonize the YY1-mediated enhancement of transcription directed by the grp78 core in stressed cells. Thus, the CSD proteins may be part of the stress signal transduction mechanism in the mammalian system.
Collapse
Affiliation(s)
- W W Li
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Li WW, Hsiung Y, Zhou Y, Roy B, Lee AS. Induction of the mammalian GRP78/BiP gene by Ca2+ depletion and formation of aberrant proteins: activation of the conserved stress-inducible grp core promoter element by the human nuclear factor YY1. Mol Cell Biol 1997; 17:54-60. [PMID: 8972185 PMCID: PMC231729 DOI: 10.1128/mcb.17.1.54] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, we have identified a constitutive nuclear factor, p70CORE, from HeLa cell nuclear extract which interacts specifically with the stress-inducible change region (SICR) of the grp78 promoter. Here we report that p70CORE is identical to YY1, a member of the GLI zinc finger family, by criteria of biochemical properties including apparent molecular weight, binding site homology, immunoreactivity, and affinity purification. Recombinant YY1 binds the double-stranded SICR with high specificity but has no affinity for its single-stranded form. In cotransfection studies, YY1 specifically enhanced the transcriptional activation of the grp78 promoter under a variety of stress conditions: depletion of the endoplasmic reticulum calcium stores, protein glycosylation block, and formation of aberrant proteins by azetidine treatment. In contrast, YY1 has minimal effect on the stress induction of the hsp70 promoter. YY1 enhancement of the grp78 stress response is dependent on its DNA-binding domain, with little effect on the basal expression of the promoter. The effect of YY1 transactivation may be mediated by the highly conserved grp78 core element. This is the first example of the ubiquitous factor YY1 involved in regulating inducible gene expression and its involvement in mediating stress signals generated from the endoplasmic reticulum to the nucleus.
Collapse
Affiliation(s)
- W W Li
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
35
|
Roy B, Li WW, Lee AS. Calcium-sensitive transcriptional activation of the proximal CCAAT regulatory element of the grp78/BiP promoter by the human nuclear factor CBF/NF-Y. J Biol Chem 1996; 271:28995-9002. [PMID: 8910550 DOI: 10.1074/jbc.271.46.28995] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription of the gene encoding GRP78/BiP, a calcium-binding molecular chaperone localized in the endoplasmic reticulum, is induced in mammalian cells through gradual depletion of the intracellular calcium stores. The multimeric CCAAT binding factor, CBF/NF-Y, binds to the most proximal CCAAT regulatory element (C1) of the grp78 promoter required for both basal level expression and stress response. Using an in vitro transcription system, we show through factor competition and immunodepletion that the grp78 C1-mediated enhancement of transcription requires primarily CBF. Correlating with the previous observation that CBF binding to the 78C1 site is enhanced by EGTA and EDTA, these divalent cation chelators specifically stimulate 78C1-directed transcription. In contrast, increasing amounts of calcium ions are inhibitory. These results provide evidence that CBF is functionally important in transactivating the grp78 C1 transcriptional activity, and suggest a possible mechanism by which grp78 transcription is stimulated by calcium depletion. We further discovered that in addition to binding CBF, both the 78C1 element and the CBF binding site of the alpha2(I) collagen promoter interact weakly with the multifunctional transcription factor YY1. Our studies show that the binding sites for CBF and YY1 are distinct for the two promoter sites, suggesting that YY1 and other interacting factors could exert differential effects on individual promoters bearing the same CBF site.
Collapse
Affiliation(s)
- B Roy
- Department of Biochemistry and Molecular Biology and the Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, California 90033-0800, USA
| | | | | |
Collapse
|
36
|
Dominguez JH, Song B, Liu-Chen S, Qulali M, Howard R, Lee CH, McAteer J. Studies of renal injury. II. Activation of the glucose transporter 1 (GLUT1) gene and glycolysis in LLC-PK1 cells under Ca2+ stress. J Clin Invest 1996; 98:395-404. [PMID: 8755650 PMCID: PMC507443 DOI: 10.1172/jci118805] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Injury to the renal proximal tubule is common and may be followed by either recovery or cell death. The survival of injured cells is supported by a transient change in cellular metabolism that maintains life even when oxygen tension is reduced. This adaptive process involves the activation of the gene encoding the glucose transporter GLUT1, which is essential to maintain the high rates of glucose influx demanded by glycolysis. We hypothesized that after cell injury increases of cell Ca2+ (Ca2+i) initiate the flow of information that culminates with the upregulation of the stress response gene GLUT1. We found that elevations of Ca2+i caused by the calcium ionophore A23187 activated the expression of the GLUT1 gene in LLC-PK1 cells. The stimulatory effect of Ca2+i on GLUT1 gene expression was, at least in part, transcriptional and resulted in higher levels of GLUT1 mRNA, cognate protein, cellular hexose transport activity, glucose consumption, and lactate production. This response was vital to the renal cells, as its interruption severely increased Ca2+-induced cytotoxicity and cell mortality. We propose that increases of Ca2+i initiate stress responses, represented in part by activation of the GLUT1 gene, and that disruption to the flow of information originating from Ca2+-induced stress, or to the coordinated expression of the stress response, prevents cell recovery after injury and may be an important cause of permanent renal cell injury and cell death.
Collapse
Affiliation(s)
- J H Dominguez
- Department of Medicine, Indiana University Medical Center, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A 1996; 93:4948-52. [PMID: 8643509 PMCID: PMC39385 DOI: 10.1073/pnas.93.10.4948] [Citation(s) in RCA: 510] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.
Collapse
Affiliation(s)
- H Hong
- Department of Pathology, University of Southern California, Los Angeles, 90033, USA
| | | | | | | | | |
Collapse
|
38
|
Chen X, Easton D, Oh HJ, Lee-Yoon DS, Liu X, Subjeck J. The 170 kDa glucose regulated stress protein is a large HSP70-, HSP110-like protein of the endoplasmic reticulum. FEBS Lett 1996; 380:68-72. [PMID: 8603749 DOI: 10.1016/0014-5793(96)00011-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The existence of a family of unusually large and highly diverged hsp70-like proteins (the hsp110/SSE family) has recently been described. The 170 kDa glucose regulated stress protein (grp170) is a retained endoplasmic reticulum glycoprotein that may be involved in immunoglobulin folding and/or assembly. We describe here the cloning of the cDNA for grp170 and show that it, like hsp110, is a large and highly diverged hsp70-like polypeptide which shares specific features with hsp70 (the dnaK family) and the hsp110/SSE family, while also differing from both. Grp170 contains an ATP binding domain and binds ATP, it possesses a carboxyl terminal NDEL sequence, and its mRNA is anoxia inducible.
Collapse
Affiliation(s)
- X Chen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ramakrishnan M, Tugizov S, Pereira L, Lee AS. Conformation-defective herpes simplex virus 1 glycoprotein B activates the promoter of the grp94 gene that codes for the 94-kD stress protein in the endoplasmic reticulum. DNA Cell Biol 1995; 14:373-84. [PMID: 7748487 DOI: 10.1089/dna.1995.14.373] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GRP94 is a major glycoprotein in the endoplasmic reticulum with calcium-binding properties. Recently, GRP94 has been shown to bind to unassembled forms of multimeric proteins and peptides. We report here that GRP94 forms a stable association with the mutated form of the herpes simplex type virus 1 (HSV-1) glycoprotein B, but not with the fully processed viral protein. Both the glycosylated and unglycosylated forms of GRP94 are capable of complexing with the mutated, conformation-defective viral glycoprotein. Cotransfection of expression vectors for gB and grp94 promoter fusion genes revealed that the grp94 promoter is strongly activated by the mutant form of gB. Analysis of the grp94 promoter mutants showed that two regions in the promoter, a highly conserved element referred to as grp core and the CCAAT element most proximal to the TATA element (C1), mediate the induction of grp94 by malfolded protein. We further determined that the grp94 core and C1 element bind to common as well distinct nuclear factors from grp78, a commonly coregulated gene. Through UV cross-linking, site competition, and immunocross-reactivity, we identified that the heteromeric CCAAT-binding protein (CBF) is one component of the grp94 C1 complex.
Collapse
Affiliation(s)
- M Ramakrishnan
- Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
40
|
Roy B, Lee AS. Transduction of calcium stress through interaction of the human transcription factor CBF with the proximal CCAAT regulatory element of the grp78/BiP promoter. Mol Cell Biol 1995; 15:2263-74. [PMID: 7891720 PMCID: PMC230454 DOI: 10.1128/mcb.15.4.2263] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mammalian GRP78/BiP is a stress-inducible 78-kDa endoplasmic reticulum (ER) protein with molecular chaperone and calcium-binding properties. The transactivation of grp78 by the calcium ionophore A23187 provides a model system with which to study the signal transduction that allows mammalian cells to sense calcium depletion in intracellular stores and activate transcription of specific genes. Linker-scanning mutation analysis of the grp78 promoter reveals that the single most important regulatory element is C1, which contains a CCAAT motif most proximal to the TATA sequence. The C1 element is crucial for mediating the stimulatory effects by the upstream regulatory elements under normal and stress conditions. In this report, we establish that the heteromeric CCAAT-binding factor CBF is the major component of the C1-binding factor (C1F) in human cells. A GGAGG motif flanking the CCAAT sequence also contributes to high-affinity C1F/CBF binding. We show here that the binding of C1F in vitro is sensitive to the concentration of calcium ions. At high calcium ion concentrations, the C1F-binding activity is lower because of a higher dissociation rate. This binding characteristic correlates with the induction of grp78 transcription in response to the depletion of intracellular calcium stores. The strikingly similar behavior of C1F from nuclear extracts of control and A23187-treated cells further suggests that C1F itself does not undergo any major inherent changes after calium depletion stress. Rather, its binding property could be modulated by the immediate calcium ionic environment in stressed and nonstressed cells. On the basis of the in vitro and in vivo site occupancies of C1F and other stress-inducible changes of upstream regulatory complexes, we present a model to explain how C1F and other upstream factors can synergistically activate grp78 transcription in calcium-depleted cells.
Collapse
Affiliation(s)
- B Roy
- Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90033-0800
| | | |
Collapse
|
41
|
Brostrom MA, Prostko CR, Gmitter D, Brostrom CO. Independent signaling of grp78 gene transcription and phosphorylation of eukaryotic initiator factor 2 alpha by the stressed endoplasmic reticulum. J Biol Chem 1995; 270:4127-32. [PMID: 7876163 DOI: 10.1074/jbc.270.8.4127] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Perturbation of endoplasmic reticular (ER) function signals increased expression of the gene encoding the ER resident chaperone Grp78/BiP and rapid suppression of translational initiation accompanied by phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF-2). eIF-2 alpha phosphorylation and grp78 mRNA induction were measured in GH3 pituitary cells subjected to varied degrees of ER stress to ascertain whether activation of an eIF-2 alpha kinase is involved in both events. grp78 mRNA was induced at low concentrations of ionomycin and dithiothreitol that did not provoke eIF-2 alpha phosphorylation or inhibition of amino acid incorporation. Mobilization of the bulk of cell-associated Ca2+ and the induction of grp78 mRNA occurred at comparable low concentrations of ionomycin, whereas phosphorylation of eIF-2 alpha and inhibition of protein synthesis required higher ionophore concentrations. Pretreatment for 1 h with cycloheximide suppressed grp78 mRNA induction and eIF-2 alpha phosphorylation in response to either stressor. Prolonged (17 h) cycloheximide blockade increased eIF-2 alpha phosphorylation without inducing grp78 mRNA. Upon release from the blockade, grp78 mRNA was induced and eIF-2 alpha was dephosphorylated. Translational tolerance to ionomycin or dithiothreitol, accompanied by dephosphorylation of eIF-2 alpha, was observed whenever grp78 mRNA was induced. Induction of grp78 mRNA preceded significant eIF-2 alpha phosphorylation during treatment with brefeldin A. It is concluded that signaling of grp78 gene transcription can occur independently of eIF-2 alpha phosphorylation or translational repression and that greater degrees of ER stress are required for eIF-2 alpha phosphorylation than for grp78 mRNA induction.
Collapse
Affiliation(s)
- M A Brostrom
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | | | | | | |
Collapse
|
42
|
Cao X, Zhou Y, Lee AS. Requirement of tyrosine- and serine/threonine kinases in the transcriptional activation of the mammalian grp78/BiP promoter by thapsigargin. J Biol Chem 1995; 270:494-502. [PMID: 7814417 DOI: 10.1074/jbc.270.1.494] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Depletion of endoplasmic reticulum (ER) Ca2+ store by thapsigargin (Tg) in mammalian cells induces a set of ER protein genes known as the glucose-regulated proteins. Recently, IRE1p, a transmembrane protein postulated to have a serine/threonine kinase activity, has been identified as required for the induction of ER resident proteins genes in Saccharomyces cerevisiae. To investigate whether IRE1p can stimulate mammalian grp transcription, a stable Chinese hamster ovary cell line containing amplified copies of IRE1p has been created. The IRE1p expressing transfectants exhibited a modest (2-fold) enhancement of both the basal and Tg induced level of grp78 and grp94, two coordinately regulated grp genes. Using okadaic acid as a specific inhibitor for the endogenous serine/threonine protein phosphatase activities, a mild (2-fold) stimulative effect was observed for Tg induction of grp78 transcription. The okadaic acid potentiating effect requires a 50-base pair region in the vicinity of the grp78 TATA element. In contrast, the transcriptional activation of grp78 by Tg is almost totally eliminated by genistein, a tyrosine kinase inhibitor. The grp core, the C3 and C1 elements which are major Tg response elements of the rat grp78 promoter, are also major targets of the inhibitive effects of genistein.
Collapse
Affiliation(s)
- X Cao
- Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90033-0800
| | | | | |
Collapse
|
43
|
Milhon J, Kohli K, Stallcup MR. Genetic analysis of the N-terminal end of the glucocorticoid receptor hormone binding domain. J Steroid Biochem Mol Biol 1994; 51:11-9. [PMID: 7947345 DOI: 10.1016/0960-0760(94)90110-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four site-directed missense mutations were constructed at the N-terminal end of the mouse glucocorticoid receptor (GR) hormone binding domain. This small subdomain is highly conserved among the steroid hormone receptors and is within a larger subregion believed to be important for hormone binding, transcriptional activation, and hsp90 binding. The ability of mutant and wild type GR to activate a reporter gene in response to various concentrations of dexamethasone was examined in transiently transfected COS-7 cells. Mutant GR species V544G (valine-544 changes to glycine) and V549G activated the reporter gene to approximately the same extent as wild type GR, but required approx. 7 and 23 times greater hormone concentrations, respectively. In contrast, double mutant LL541/2GG (leucines changed to glycines) could not activate transcription even at 10 microM dexamethasone or deacylcortivazol, while E543A (glutamic acid to alanine) was functionally indistinguishable from wild type GR. GR mutants LL541/2GG and V549G had reduced abilities to bind covalently to affinity label dexamethasone 21-mesylate. The partially and fully functional mutant GR species had no deficiency in transcriptional transactivation activity in the presence of saturating concentrations of agonist.
Collapse
Affiliation(s)
- J Milhon
- Department of Pathology, University of Southern California Health Sciences Center, Los Angeles 90033
| | | | | |
Collapse
|
44
|
Ono M, Tucker PW, Capra JD. Production and characterization of recombinant human Ku antigen. Nucleic Acids Res 1994; 22:3918-24. [PMID: 7937112 PMCID: PMC308389 DOI: 10.1093/nar/22.19.3918] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ku is an ubiquitous nuclear heterodimeric protein consisting of p70 and p86 subunits that binds double-stranded DNA termini and associates with chromosomes in vivo. It was originally described as an autoantigen in patients with certain autoimmune diseases. The individual subunits of Ku have been difficult to isolate from human cells without denaturation and attempts to produce functional recombinant Ku have been largely unsuccessful. Here, we utilize two recombinant baculoviral vectors that carry p70 or p86 cDNA and express the Ku subunits individually as well as assemble them into the complete Ku heterodimer. In an electrophoretic mobility shift assay, recombinant Ku binds to linear double-stranded DNA but not to supercoiled, nicked circular, nor linear single-stranded DNA. Neither subunit binds DNA by itself indicating that heterodimerization is essential for function. We also describe a simple purification method for the isolation of highly purified recombinant Ku using a hexahistidine tag. The baculovirus expression system provides a stable and efficient source of not only the p70 and p86 subunits but also the functional Ku heterodimer.
Collapse
Affiliation(s)
- M Ono
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | |
Collapse
|
45
|
Manning FC, Blankenship LJ, Wise JP, Xu J, Bridgewater LC, Patierno SR. Induction of internucleosomal DNA fragmentation by carcinogenic chromate: relationship to DNA damage, genotoxicity, and inhibition of macromolecular synthesis. ENVIRONMENTAL HEALTH PERSPECTIVES 1994; 102 Suppl 3:159-167. [PMID: 7843091 PMCID: PMC1567430 DOI: 10.1289/ehp.94102s3159] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hexavalent chromium (Cr) compounds are respiratory carcinogens in humans and animals. Treatment of Chinese hamster ovary cells with 150 and 300 microM sodium chromate (Na2CrO4) for 2 hr decreased colony-forming efficiency by 46 and 92%, respectively. These treatments induced dose-dependent internucleosomal fragmentation of cellular DNA beyond 24 hr after chromate treatment. This fragmentation pattern is characteristic of apoptosis as a mechanism of cell death. These treatments also induced an immediate inhibition of macromolecular synthesis and delayed progression of cells through S-phase of the cell cycle. Cell growth (as evidenced by DNA synthesis) was inhibited for at least 4 days and transcription remained suppressed for at least 32 hr. Many of the cells that did progress to metaphase exhibited chromosome damage. Chromate caused the dose-dependent formation of DNA single-strand breaks and DNA-protein cross-links, but these were repaired 8 and 24 hr after removal of the treatment, respectively. In contrast, Cr-DNA adducts (up to 1/100 base-pairs) were extremely resistant to repair and were still detectable even 5 days after treatment. Compared with other regions of the genome, DNA-protein cross-links and Cr adducts were preferentially associated with the nuclear matrix DNA of treated cells, which was 4.5-fold enriched in actively transcribed genes. Chromium adducts, formed on DNA in vitro at a similar level to that detected in nuclear matrix DNA, arrested the progression of a DNA polymerase in a sequence-specific manner, possibly through the formation of DNA-DNA cross-links.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F C Manning
- Department of Pharmacology, George Washington University Medical Center, Washington DC
| | | | | | | | | | | |
Collapse
|
46
|
Stress induction of the mammalian GRP78/BiP protein gene: in vivo genomic footprinting and identification of p70CORE from human nuclear extract as a DNA-binding component specific to the stress regulatory element. Mol Cell Biol 1994. [PMID: 8035828 DOI: 10.1128/mcb.14.8.5533] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GRP78, also known as BiP, is one of the better-characterized molecular chaperones. It has been implicated in protein folding and also calcium sequestration in the endoplasmic reticulum. When the cells are subjected to endoplasmic reticulum stress, in particular the depletion of stored calcium and/or the accumulation of abnormal proteins, the rate of transcription of grp78 is enhanced. Previous studies have shown that the core region of the rat grp78 promoter (-170 to -135), which is 95% conserved with the human grp78 core (-133 to -98), is one of the key regulatory elements. Using ligation-mediated PCR, we have found that there are specific changes in factor occupancy after stress induction and the major changes occur within a cluster of bases located in the 3' half of the grp core, whereas other regulatory elements are constitutively occupied. This inducible binding to the 3' half of the human grp78 core region is observed under diverse stress signals, suggesting a common mechanism for the grp stress response. Nonetheless, the lack of constitutive in vivo protection at this region is not due to the absence of a binding factor in nuclear extracts. Using in vitro gel mobility shift assays, we detected a constitutive binding activity which exhibits specificity and affinity to the stress-inducible region. Through sodium dodecyl sulfate-polyacrylamide gel electrophoresis size fractionation and renaturation analysis, the activity is found in polypeptides with molecular sizes of 65 to 75 kDa. After a three-step purification scheme including core affinity column chromatography, we purified p70CORE, which is about 70 kDa in its monomeric form. The purified p70CORE is sufficient to form a complex specific to the stress-inducible region.
Collapse
|
47
|
Li WW, Sistonen L, Morimoto RI, Lee AS. Stress induction of the mammalian GRP78/BiP protein gene: in vivo genomic footprinting and identification of p70CORE from human nuclear extract as a DNA-binding component specific to the stress regulatory element. Mol Cell Biol 1994; 14:5533-46. [PMID: 8035828 PMCID: PMC359073 DOI: 10.1128/mcb.14.8.5533-5546.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GRP78, also known as BiP, is one of the better-characterized molecular chaperones. It has been implicated in protein folding and also calcium sequestration in the endoplasmic reticulum. When the cells are subjected to endoplasmic reticulum stress, in particular the depletion of stored calcium and/or the accumulation of abnormal proteins, the rate of transcription of grp78 is enhanced. Previous studies have shown that the core region of the rat grp78 promoter (-170 to -135), which is 95% conserved with the human grp78 core (-133 to -98), is one of the key regulatory elements. Using ligation-mediated PCR, we have found that there are specific changes in factor occupancy after stress induction and the major changes occur within a cluster of bases located in the 3' half of the grp core, whereas other regulatory elements are constitutively occupied. This inducible binding to the 3' half of the human grp78 core region is observed under diverse stress signals, suggesting a common mechanism for the grp stress response. Nonetheless, the lack of constitutive in vivo protection at this region is not due to the absence of a binding factor in nuclear extracts. Using in vitro gel mobility shift assays, we detected a constitutive binding activity which exhibits specificity and affinity to the stress-inducible region. Through sodium dodecyl sulfate-polyacrylamide gel electrophoresis size fractionation and renaturation analysis, the activity is found in polypeptides with molecular sizes of 65 to 75 kDa. After a three-step purification scheme including core affinity column chromatography, we purified p70CORE, which is about 70 kDa in its monomeric form. The purified p70CORE is sufficient to form a complex specific to the stress-inducible region.
Collapse
Affiliation(s)
- W W Li
- Department of Biochemistry, University of Southern California School of Medicine, Los Angeles 90033
| | | | | | | |
Collapse
|
48
|
Chen D, Stallcup M. The hormone-binding role of 2 cysteines near the C terminus of the mouse glucocorticoid receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37138-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Koong AC, Chen EY, Lee AS, Brown JM, Giaccia AJ. Increased cytotoxicity of chronic hypoxic cells by molecular inhibition of GRP78 induction. Int J Radiat Oncol Biol Phys 1994; 28:661-6. [PMID: 8113109 DOI: 10.1016/0360-3016(94)90191-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE To develop a molecular strategy of increasing cytotoxicity of chronically hypoxic cells by inhibiting Glucose Regulated Protein 78 kDal (GRP78) induction. METHODS AND MATERIALS A mutant nonGRP78 inducing cell line (78WO) was developed from its parent (DG44) by overexpressing antisense GRP78 mRNA. Following exposure to varying durations of hypoxia, Northern and Western blot analysis were used to characterize the amount of GRP78 expression both at the RNA and protein level. Hypoxia was achieved by placing cells in specially designed hypoxic chambers which were subjected to successive rounds of evacuation and flushing with 95% CO2/N2 to reduce the oxygen in the environment to 0.02% oxygen. After treatment with hypoxia, cells were assayed for colony forming ability. RESULTS GRP78 mRNA and protein induction following exposure to hypoxia was 3-4 fold lower in the 78WO cell line than in the parental DG44 cell line. Furthermore, it was observed that there was no difference in the cytotoxicity of 78WO and DG44 cells after 10 h of hypoxia. However, after 15 h of hypoxia, the survival of 78WO cells decreased by 1 log and after 20 h of hypoxia, the survival of 78WO decreased by another log. CONCLUSION These results show that stress protein induction is important for cellular survival to chronic hypoxia and that inhibition of GRP78 induction may represent a novel therapeutic strategy by selectively sensitizing chronically hypoxic cells within solid tumors.
Collapse
Affiliation(s)
- A C Koong
- Department of Radiation Oncology, Stanford University School of Medicine, CA 94305-5468
| | | | | | | | | |
Collapse
|
50
|
Chao CC, Lin-Chao S. A direct-repeat sequence of the human BiP gene is required for A23187-mediated inducibility and an inducible nuclear factor binding. Nucleic Acids Res 1992; 20:6481-5. [PMID: 1480470 PMCID: PMC334561 DOI: 10.1093/nar/20.24.6481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have recently isolated a functional promoter encoding the human polypeptide-binding protein (BiP) gene from Burkitt's lymphoma cells by polymerase chain reaction (The EMBL Data Library accession number X59969, 1991). This promoter DNA segment (termed BiP670) was fused to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene and expressed in NIH3T3 cells. BiP670 retains basal and Ca2+ ionophore A23187-inducible activities. Using 5' deletion assay, we found three basal expression elements (BEE) in the BiP670. Removal of the distal BBE (BBE3), which is contained in a segment spanning -368/-170, caused a 50% loss of the basal activity; removal together with the middle BBE (BBE2), which is contained in a segment spanning -170/-107, resulted in a further 30% loss of the activity. Further removal of the proximal BBE (BBE1), which spans -107/-39, abolished greater than 95% of the basal expression. In addition, an A23187-inducible element (AIE) appeared to be associated with the BBE1. At least a six-fold inducibility remained as long as the BiP promoter retained the sequences -107/-39. Using an in vitro gel mobility shift assay, an A23187-inducible nuclear factor (AINF) was detected from NIH3T3 cells. DNA binding competition experiments indicate that the -107/-39 segment contains a sequence motif which interacts with this cellular factor. Further analysis showed that the two direct repeats, ranging -108/-73 and -72/-40, are the target for AINF binding. A 3-4 fold increase of the AINF binding to both repeated sequences was detected from induced cells. Similar results were also demonstrated in HeLa cells, suggesting that transcriptional control of BiP gene expression in mammalian cells is conserved. These findings also imply that the identified nuclear factor may be important in mediating transcriptional activation of the BiP gene.
Collapse
Affiliation(s)
- C C Chao
- Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan, China
| | | |
Collapse
|