1
|
Chapus F, Giraud G, Huchon P, Rodà M, Grand X, Charre C, Goldsmith C, Roca Suarez AA, Martinez MG, Fresquet J, Diederichs A, Locatelli M, Polvèche H, Scholtès C, Chemin I, Hernandez Vargas H, Rivoire M, Bourgeois CF, Zoulim F, Testoni B. Helicases DDX5 and DDX17 promote heterogeneity in HBV transcription termination in infected human hepatocytes. J Hepatol 2024; 81:609-620. [PMID: 38782119 DOI: 10.1016/j.jhep.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND & AIMS Transcription termination fine-tunes gene expression and contributes to the specification of RNA function in eukaryotic cells. Transcription termination of HBV is subject to the recognition of the canonical polyadenylation signal (cPAS) common to all viral transcripts. However, the regulation of this cPAS and its impact on viral gene expression and replication is currently unknown. METHODS To unravel the regulation of HBV transcript termination, we implemented a 3' RACE (rapid amplification of cDNA ends)-PCR assay coupled to single molecule sequencing both in in vitro-infected hepatocytes and in chronically infected patients. RESULTS The detection of a previously unidentified transcriptional readthrough indicated that the cPAS was not systematically recognized during HBV replication in vitro and in vivo. Gene expression downregulation experiments demonstrated a role for the RNA helicases DDX5 and DDX17 in promoting viral transcriptional readthrough, which was, in turn, associated with HBV RNA destabilization and decreased HBx protein expression. RNA and chromatin immunoprecipitation, together with mutation of the cPAS sequence, suggested a direct role of DDX5 and DDX17 in functionally linking cPAS recognition to transcriptional readthrough, HBV RNA stability and replication. CONCLUSIONS Our findings identify DDX5 and DDX17 as crucial determinants of HBV transcriptional fidelity and as host restriction factors for HBV replication. IMPACT AND IMPLICATIONS HBV covalently closed circular (ccc)DNA degradation or functional inactivation remains the holy grail for the achievement of HBV cure. Transcriptional fidelity is a cornerstone in the regulation of gene expression. Here, we demonstrate that two helicases, DDX5 and DDX17, inhibit recognition of the HBV polyadenylation signal and thereby transcriptional termination, thus decreasing HBV RNA stability and acting as restriction factors for efficient cccDNA transcription and viral replication. The observation that DDX5 and DDX17 are downregulated in patients chronically infected with HBV suggests a role for these helicases in HBV persistence in vivo. These results open new perspectives for researchers aiming at identifying new targets to neutralise cccDNA transcription.
Collapse
Affiliation(s)
- Fleur Chapus
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008 Lyon, France
| | - Guillaume Giraud
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | - Pélagie Huchon
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008 Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | - Mélanie Rodà
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | - Xavier Grand
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | - Caroline Charre
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008 Lyon, France; Department of Virology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | - Maria-Guadalupe Martinez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008 Lyon, France
| | - Judith Fresquet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Audrey Diederichs
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008 Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | - Maëlle Locatelli
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008 Lyon, France
| | - Hélène Polvèche
- CECS/AFM, I-Stem, Corbeil-Essonnes, 91100, France; University Claude Bernard of Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, INSERM U1293, Laboratory of Biology and Modelling of the Cell, 69007, Lyon, France
| | - Caroline Scholtès
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008 Lyon, France; Department of Virology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | - Isabelle Chemin
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | | | - Michel Rivoire
- INSERM U1032, Centre Léon Bérard (CLB), 69008 Lyon, France; The Lyon Hepatology Institute EVEREST, France
| | - Cyril F Bourgeois
- University Claude Bernard of Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, INSERM U1293, Laboratory of Biology and Modelling of the Cell, 69007, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008 Lyon, France; Department of Hepatology, Hospices Civils de Lyon, France; The Lyon Hepatology Institute EVEREST, France.
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; The Lyon Hepatology Institute EVEREST, France.
| |
Collapse
|
2
|
Giraud G, El Achi K, Zoulim F, Testoni B. Co-Transcriptional Regulation of HBV Replication: RNA Quality Also Matters. Viruses 2024; 16:615. [PMID: 38675956 PMCID: PMC11053573 DOI: 10.3390/v16040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis.
Collapse
Affiliation(s)
- Guillaume Giraud
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Khadija El Achi
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
3
|
Mueller H, Lopez A, Tropberger P, Wildum S, Schmaler J, Pedersen L, Han X, Wang Y, Ottosen S, Yang S, Young JAT, Javanbakht H. PAPD5/7 Are Host Factors That Are Required for Hepatitis B Virus RNA Stabilization. Hepatology 2019; 69:1398-1411. [PMID: 30365161 DOI: 10.1002/hep.30329] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
RG7834 is a potent, orally bioavailable small-molecule inhibitor of hepatitis B virus (HBV) gene expression that belongs to the dihydroquinolizinone (DHQ) chemical class and uniquely blocks production of both viral DNA and antigens. In this study, we used DHQ compounds as tools in a compound-based adaptation version of the yeast three-hybrid screen to identify the cognate cellular protein targets, the non-canonical poly(A) RNA polymerase associated domain containing proteins 5 and 7 (PAPD5 and PAPD7). Interaction with RG7834 was mapped to the catalytic domains of the two cellular enzymes. The role of PAPD5 and PAPD7 in HBV replication was confirmed by oligonucleotide-mediated knockdown studies that phenocopied the result seen with RG7834-treated HBV-infected hepatocytes. The greatest effect on HBV gene expression was seen when PAPD5 and PAPD7 mRNAs were simultaneously knocked down, suggesting that the two cellular proteins play a redundant role in maintaining HBV mRNA levels. In addition, as seen previously with RG7834 treatment, PAPD5 and PAPD7 knockdown led to destabilization and degradation of HBV mRNA without impacting production of viral RNA transcripts. Conclusion: We identify PAPD5 and PAPD7 as cellular host factors required for HBV RNA stabilization and as therapeutic targets for the HBV cure.
Collapse
Affiliation(s)
- Henrik Mueller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anaïs Lopez
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Philipp Tropberger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Steffen Wildum
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Josephine Schmaler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Lykke Pedersen
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, Copenhagen, Denmark
| | - Xingchun Han
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Yongguang Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Søren Ottosen
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, Copenhagen, Denmark
| | - Song Yang
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - John A T Young
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Hassan Javanbakht
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
4
|
Abstract
Cellular and viral preRNAs are extensively cotranscriptionally modified. These modifications include the processing of the 3' end. Most preRNAs are polyadenylated, which is required for nuclear export, RNA stability, and efficient translation. Integrated retroviral genomes are flanked by 3' and 5' long terminal repeats (LTRs). Both LTRs are identical on the nucleotide level, but 3' processing has to be limited to the 3'LTR. Otherwise, polyadenylation at the 5'LTR would result in prematurely terminated, noncoding viral RNAs. Retroviruses have developed a variety of different mechanisms to restrict polyadenylation to the 3'LTR, although the overall structure of the LTRs is similar among all retroviruses. In general, these mechanisms can be divided into three main groups: (1) activation of polyadenylation only at the 3' end by encoding the essential polyadenylation signal in the unique 3 region; (2) suppression of polyadenylation at the 5'LTR by downstream elements such as the major splice donor; and (3) the usage of weak polyadenylation sites, which results in some premature polyadenylated noncoding RNAs and in read-through transcripts at the 3'LTR. All these mechanisms exhibit intrinsic problems, and retroviruses have evolved additional regulatory elements to promote polyadenylation at the 3'LTR only. In this review, we describe the molecular regulation of retroviral polyadenylation and highlight the different mechanisms used for polyadenylation control.
Collapse
Affiliation(s)
- Eva-Maria Schrom
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | | | | | | |
Collapse
|
5
|
In vitro epsilon RNA-dependent protein priming activity of human hepatitis B virus polymerase. J Virol 2012; 86:5134-50. [PMID: 22379076 DOI: 10.1128/jvi.07137-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a pregenomic RNA (pgRNA) by using a multifunctional polymerase (HP). A critical function of HP is its specific recognition of a viral RNA signal termed ε (Hε) located on pgRNA, which is required for specific packaging of pgRNA into viral nucleocapsids and initiation of viral reverse transcription. HP initiates reverse transcription by using itself as a protein primer (protein priming) and Hε as the obligatory template. We have purified HP from human cells that retained Hε binding activity in vitro. Furthermore, HP purified as a complex with Hε, but not HP alone, displayed in vitro protein priming activity. While the HP-Hε interaction in vitro and in vivo required the Hε internal bulge, but not its apical loop, and was not significantly affected by the cap-Hε distance, protein priming required both the Hε apical loop and internal bulge, as well as a short distance between the cap and Hε, mirroring the requirements for RNA packaging. These studies have thus established new HBV protein priming and RNA binding assays that should greatly facilitate the dissection of the requirements and molecular mechanisms of HP-Hε interactions, RNA packaging, and protein priming.
Collapse
|
6
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
7
|
Abstract
Regulation of gene expression by RNA processing mechanisms is now understood to be an important level of control in mammalian cells. Regulation at the level of RNA transcription, splicing, polyadenylation, nucleo-cytoplasmic transport, and translation into polypeptides has been well-studied. Alternative RNA processing events, such as alternative splicing, also have been recognized as key contributors to the complexity of mammalian gene expression. Pre-messenger RNAs (pre-mRNAs) may be polyadenylated in several different ways due to more than one polyadenylation signal, allowing a single gene to encode multiple mRNA transcripts. However, alternative polyadenylation has only recently taken the field as a major player in gene regulation. This review summarizes what is currently known about alternative polyadenylation. It covers results from bioinformatics, as well as those from investigations of viral and tissue-specific studies and, importantly, will set the stage for what is yet to come.
Collapse
Affiliation(s)
- Carol S. Lutz
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey−New Jersey Medical School, MSB E671, 185 South Orange Avenue, Newark, New Jersey 07101
| |
Collapse
|
8
|
Higashimoto T, Urbinati F, Perumbeti A, Jiang G, Zarzuela A, Chang LJ, Kohn DB, Malik P. The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Ther 2007; 14:1298-304. [PMID: 17597793 DOI: 10.1038/sj.gt.3302979] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) increases transgene expression from a variety of viral vectors, although the precise mechanism is not known. WPRE is most effective when placed downstream of the transgene, proximal to the polyadenylation signal. We hypothesized that WPRE likely reduces viral mRNA readthrough transcription by improving transcript termination, which in turn would increase viral titers and expression. Using a Cre-lox-mediated plasmid-based assay, we found significant readthrough transcription from gamma-retroviral vector (RV) long terminal repeat (wt RV-LTR) and RV LTR with a self-inactivating deletion (SIN RV-LTR). WPRE, when placed upstream of the RV LTRs, significantly reduced readthrough transcription. Readthrough, present at much lower levels with the SIN HIV-1 LV-LTR, was also reduced with WPRE. When placed in RV vectors, WPRE increased total RV genomic mRNA; and increased viral titers from transiently transfected 293T cells and stable PG13 producer cells by 7- to 15-fold. The mechanism of increased titers and expression was not due to increased nuclear mRNA export, increased rate of viral transcription or a significant increase in viral mRNA half-life. Our results showed that WPRE improved vector genomic transcript termination to increase titers and expression from RVs.
Collapse
Affiliation(s)
- T Higashimoto
- Division of Hematology-Oncology, Department of Pediatrics and Pathology, Keck School of Medicine University of Southern California, Childrens Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Schambach A, Galla M, Maetzig T, Loew R, Baum C. Improving transcriptional termination of self-inactivating gamma-retroviral and lentiviral vectors. Mol Ther 2007; 15:1167-73. [PMID: 17406345 DOI: 10.1038/sj.mt.6300152] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adverse events relating to insertional mutagenesis have reinforced the interest in self-inactivating (SIN) gamma-retroviral and lentiviral vectors without enhancer-promoter sequences in the U3 region of the long terminal repeats. However, SIN vectors suffer from leaky transcriptional termination, increasing the probability of read-through into cellular genes. To improve 3' end processing, we incorporated seven upstream polyadenylation enhancer elements (or upstream sequence elements, USEs) derived from viral or cellular genes into the 3' U3 region of gamma-retroviral and lentiviral SIN vectors. A 100-base-pair sequence representing a recombinant direct repeat of the USE derived from simian virus 40 (2xSV USE) gave the best results, improving both titer and gene expression. In both gamma-retroviral and lentiviral SIN vectors, the 2xSV USE partially substituted for effects provided by the much larger post-transcriptional regulatory element derived from woodchuck hepatitis virus (wPRE). By northern blot and reporter assays, we found that the 2xSV USE greatly improved proper messenger RNA (mRNA) processing at the retroviral termination signal. Importantly, the 2xSV USE was superior to the wPRE in suppressing transcriptional read-through, improving not only vector efficiency but potentially also biosafety.
Collapse
Affiliation(s)
- Axel Schambach
- 1Department of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
10
|
Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005; 19:1315-27. [PMID: 15937220 PMCID: PMC1142555 DOI: 10.1101/gad.1298605] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
At least half of all human pre-mRNAs are subject to alternative 3' processing that may modulate both the coding capacity of the message and the array of post-transcriptional regulatory elements embedded within the 3' UTR. Vertebrate poly(A) site selection appears to rely primarily on the binding of CPSF to an A(A/U)UAAA hexamer upstream of the cleavage site and CstF to a downstream GU-rich element. At least one-quarter of all human poly(A) sites, however, lack the A(A/U)UAAA motif. We report that sequence-specific RNA binding of the human 3' processing factor CFI(m) can function as a primary determinant of poly(A) site recognition in the absence of the A(A/U)UAAA motif. CFI(m) is sufficient to direct sequence-specific, A(A/U)UAAA-independent poly(A) addition in vitro through the recruitment of the CPSF subunit hFip1 and poly(A) polymerase to the RNA substrate. ChIP analysis indicates that CFI(m) is recruited to the transcription unit, along with CPSF and CstF, during the initial stages of transcription, supporting a direct role for CFI(m) in poly(A) site recognition. The recognition of three distinct sequence elements by CFI(m), CPSF, and CstF suggests that vertebrate poly(A) site definition is mechanistically more similar to that of yeast and plants than anticipated.
Collapse
Affiliation(s)
- Krishnan Venkataraman
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, 05405, USA
| | | | | |
Collapse
|
11
|
Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005. [PMID: 15937220 DOI: 10.1101/gad.1298605.least] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
At least half of all human pre-mRNAs are subject to alternative 3' processing that may modulate both the coding capacity of the message and the array of post-transcriptional regulatory elements embedded within the 3' UTR. Vertebrate poly(A) site selection appears to rely primarily on the binding of CPSF to an A(A/U)UAAA hexamer upstream of the cleavage site and CstF to a downstream GU-rich element. At least one-quarter of all human poly(A) sites, however, lack the A(A/U)UAAA motif. We report that sequence-specific RNA binding of the human 3' processing factor CFI(m) can function as a primary determinant of poly(A) site recognition in the absence of the A(A/U)UAAA motif. CFI(m) is sufficient to direct sequence-specific, A(A/U)UAAA-independent poly(A) addition in vitro through the recruitment of the CPSF subunit hFip1 and poly(A) polymerase to the RNA substrate. ChIP analysis indicates that CFI(m) is recruited to the transcription unit, along with CPSF and CstF, during the initial stages of transcription, supporting a direct role for CFI(m) in poly(A) site recognition. The recognition of three distinct sequence elements by CFI(m), CPSF, and CstF suggests that vertebrate poly(A) site definition is mechanistically more similar to that of yeast and plants than anticipated.
Collapse
Affiliation(s)
- Krishnan Venkataraman
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, 05405, USA
| | | | | |
Collapse
|
12
|
Abstract
A biologically important human gene, cyclooxygenase-2 (COX-2), has been proposed to be regulated at many levels. While COX-1 is constitutively expressed in cells, COX-2 is inducible and is upregulated in response to many signals. Since increased transcriptional activity accounts for only part of the upregulation of COX-2, we chose to explore other RNA processing mechanisms in the regulation of this gene. We performed a comprehensive bioinformatics survey, the first of its kind known for human COX-2, which revealed that the human COX-2 gene has alternative polyadenylation (proximal and distal sites) and suggested that use of the alternative polyadenylation signals has tissue specificity. We experimentally established this in HepG2 and HT29 cells. We used an in vivo polyadenylation assay to examine the relative strength of the COX-2 proximal and distal polyadenylation signals, and have shown that the proximal polyadenylation signal is much weaker than the distal one. The efficiency of utilization of many suboptimal mammalian polyadenylation signals is affected by sequence elements located upstream of the AAUAAA, known as upstream efficiency elements (USEs). Here, we used in vivo polyadenylation assays in multiple cell lines to demonstrate that the COX-2 proximal polyadenylation signal contains USEs, mutation of the USEs substantially decreased usage of the proximal signal, and that USE spacing relative to the polyadenylation signal was significant. In addition, mutation of the COX-2 proximal polyadenylation signal to a more optimal sequence enhanced polyadenylation efficiency 3.5-fold. Our data suggest for the first time that alternative polyadenylation of COX-2 is an important post-transcriptional regulatory event.
Collapse
Affiliation(s)
- Tyra Hall-Pogar
- Department of Biochemistry and Molecular Biology, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
- Graduate School of Biomedical Sciences, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
| | - Haibo Zhang
- Department of Biochemistry and Molecular Biology, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
- Bioinformatics Center, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
- Graduate School of Biomedical Sciences, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
- Bioinformatics Center, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
| | - Carol S. Lutz
- Department of Biochemistry and Molecular Biology, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
- Graduate School of Biomedical Sciences, UMDNJ–New Jersey Medical SchoolNewark, NJ 07101, USA
- To whom correspondence should be addressed at Department of Biochemistry and Molecular Biology, UMDNJ–New Jersey Medical School, MSB E671, 185 South Orange Avenue, Newark, NJ 07101, USA. Tel: +1 973 972 0899; Fax: +1 973 972 5594;
| |
Collapse
|
13
|
Chang SF, Chang SH, Li BC, Will H, Netter HJ. Characterization of nonconventional hepatitis B viruses lacking the core promoter. Virology 2004; 330:437-46. [PMID: 15567437 DOI: 10.1016/j.virol.2004.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/31/2004] [Accepted: 10/01/2004] [Indexed: 11/23/2022]
Abstract
The core gene (C-gene) promoter and regulatory sequences play a central role in the hepatitis B virus (HBV) life cycle. They are essential for the synthesis of the pregenomic and precore mRNA. The pregenomic RNA is the template required for replication and also the template for the synthesis of the core protein and polymerase. Here, we report the in vivo existence and functional characterization of HBV variants that lack the C-gene promoter region and the regulatory sequences located therein. HBV promoter fragments were isolated by PCR from sera of chronic carriers and characterized. Truncated promoter elements were identified, and then tested in the context of wild-type genomes in the HuH-7 cell line. The expression of the recombinant HBV genome resulted in the synthesis of surface proteins, and low level of core protein as well as a transcript pattern similar to, but smaller in size to wild-type virus. The recombinant HBV genome with the truncated promoter region produced pregenomic RNA-like transcripts. These transcripts were encapsidated and reverse transcribed when complemented by sufficient core and polymerase protein. These date provide an explanation as to why such deletion mutants of HBV can be produced at all, they highlight the functional potentials of viral sequences activated by mutations and may be of relevance for viral evolution and persistence.
Collapse
Affiliation(s)
- Shau-Feng Chang
- Heinrich-Pette-Institut für experimentelle Virologie und Immunologie an der Universität Hamburg, Hamburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Hovorun DM. Auxiliary elements of mammalian pre-mRNAs polyadenylation signals. ACTA ACUST UNITED AC 2002. [DOI: 10.7124/bc.00062e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - D. M. Hovorun
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
15
|
Natalizio BJ, Muniz LC, Arhin GK, Wilusz J, Lutz CS. Upstream elements present in the 3'-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals. J Biol Chem 2002; 277:42733-40. [PMID: 12200454 DOI: 10.1074/jbc.m208070200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3'-Untranslated regions (UTRs) of genes often contain key regulatory elements involved in gene expression control. A high degree of evolutionary conservation in regions of the 3'-UTR suggests important, conserved elements. In particular, we are interested in those elements involved in regulation of 3' end formation. In addition to canonical sequence elements, auxiliary sequences likely play an important role in determining the polyadenylation efficiency of mammalian pre-mRNAs. We identified highly conserved sequence elements upstream of the AAUAAA in three human collagen genes, COL1A1, COL1A2, and COL2A1, and demonstrate that these upstream sequence elements (USEs) influence polyadenylation efficiency. Mutation of the USEs decreases polyadenylation efficiency both in vitro and in vivo, and inclusion of competitor oligoribonucleotides representing the USEs specifically inhibit polyadenylation. We have also shown that insertion of a USE into a weak polyadenylation signal can enhance 3' end formation. Close inspection of the COL1A2 3'-UTR reveals an unusual feature of two closely spaced, competing polyadenylation signals. Taken together, these data demonstrate that USEs are important auxiliary polyadenylation elements in mammalian genes.
Collapse
Affiliation(s)
- Barbara J Natalizio
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
16
|
Cooke C, Alwine JC. Characterization of specific protein-RNA complexes associated with the coupling of polyadenylation and last-intron removal. Mol Cell Biol 2002; 22:4579-86. [PMID: 12052867 PMCID: PMC133901 DOI: 10.1128/mcb.22.13.4579-4586.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyadenylation and splicing are highly coordinated on substrate RNAs capable of coupled polyadenylation and splicing. Individual elements of both splicing and polyadenylation signals are required for the in vitro coupling of the processing reactions. In order to understand more about the coupling mechanism, we examined specific protein-RNA complexes formed on RNA substrates, which undergo coupled splicing and polyadenylation. We hypothesized that formation of a coupling complex would be adversely affected by mutations of either splicing or polyadenylation elements known to be required for coupling. We defined three specific complexes (A(C)', A(C), and B(C)) that form rapidly on a coupled splicing and polyadenylation substrate, well before the appearance of spliced and/or polyadenylated products. The A(C)' complex is formed by 30 s after mixing, the A(C) complex is formed between 1 and 2 min after mixing, and the B(C) complex is formed by 2 to 3 min after mixing. A(C)' is a precursor of A(C), and the A(C)' and/or A(C) complex is a precursor of B(C). Of the three complexes, B(C) appears to be a true coupling complex in that its formation was consistently diminished by mutations or experimental conditions known to disrupt coupling. The characteristics of the A(C)' complex suggest that it is analogous to the spliceosomal A complex, which forms on splicing-only substrates. Formation of the A(C)' complex is dependent on the polypyrimidine tract. The transition from A(C)' to A(C) appears to require an intact 3'-splice site. Formation of the B(C) complex requires both splicing elements and the polyadenylation signal. A unique polyadenylation-specific complex formed rapidly on substrates containing only the polyadenylation signal. This complex, like the A(C)' complex, formed very transiently on the coupled splicing and polyadenylation substrate; we suggest that these two complexes coordinate, resulting in the B(C) complex. We also suggest a model in which the coupling mechanism may act as a dominant checkpoint in which aberrant definition of one exon overrides the normal processing at surrounding wild-type sites.
Collapse
Affiliation(s)
- Charles Cooke
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | |
Collapse
|
17
|
Hans H, Alwine JC. Functionally significant secondary structure of the simian virus 40 late polyadenylation signal. Mol Cell Biol 2000; 20:2926-32. [PMID: 10733596 PMCID: PMC85533 DOI: 10.1128/mcb.20.8.2926-2932.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of the highly efficient simian virus 40 late polyadenylation signal (LPA signal) is more complex than those of most known mammalian polyadenylation signals. It contains efficiency elements both upstream and downstream of the AAUAAA region, and the downstream region contains three defined elements (two U-rich elements and one G-rich element) instead of the single U- or GU-rich element found in most polyadenylation signals. Since many reports have indicated that the secondary structure in RNA may play a significant role in RNA processing, we have used nuclease structure analysis techniques to determine the secondary structure of the LPA signal. We find that the LPA signal has a functionally significant secondary structure. Much of the region upstream of AAUAAA is sensitive to single-strand-specific nucleases. The region downstream of AAUAAA has both double- and single-stranded characteristics. Both U-rich elements are predominately sensitive to the double-strand-specific nuclease RNase V(1), while the G-rich element is primarily single stranded. The U-rich element closest to AAUAAA contains four distinct RNase V(1)-sensitive regions, which we have designated structural region 1 (SR1), SR2, SR3, and SR4. Linker scanning mutants in the downstream region were analyzed both for structure and for function by in vitro cleavage analyses. These data show that the ability of the downstream region, particularly SR3, to form double-stranded structures correlates with efficient in vitro cleavage. We discuss the possibility that secondary structure downstream of the AAUAAA may be important for the functions of polyadenylation signals in general.
Collapse
Affiliation(s)
- H Hans
- Department of Microbiology, Microbiology and Virology Graduate Program, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | |
Collapse
|
18
|
Chao LC, Jamil A, Kim SJ, Huang L, Martinson HG. Assembly of the cleavage and polyadenylation apparatus requires about 10 seconds in vivo and is faster for strong than for weak poly(A) sites. Mol Cell Biol 1999; 19:5588-600. [PMID: 10409748 PMCID: PMC84411 DOI: 10.1128/mcb.19.8.5588] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have devised a cis-antisense rescue assay of cleavage and polyadenylation to determine how long it takes the simian virus 40 (SV40) early poly(A) signal to commit itself to processing in vivo. An inverted copy of the poly(A) signal placed immediately downstream of the authentic one inhibited processing by means of sense-antisense duplex formation in the RNA. The antisense inhibition was gradually relieved when the inverted signal was moved increasing distances downstream, presumably because cleavage and polyadenylation occur before the polymerase reaches the antisense sequence. Antisense inhibition was unaffected when the inverted signal was moved upstream. Based on the known rate of transcription, we estimate that the cleavage-polyadenylation process takes between 10 and 20 s for the SV40 early poly(A) site to complete in vivo. Relief from inhibition occurred earlier for shorter antisense sequences than for longer ones. This indicates that a brief period of assembly is sufficient for the poly(A) signal to shield itself from a short (50- to 70-nucleotide) antisense sequence but that more assembly time is required for the signal to become immune to the longer ones (approximately 200 nucleotides). The simplest explanation for this target size effect is that the assembly process progressively sequesters more and more of the RNA surrounding the poly(A) signal up to a maximum of about 200 nucleotides, which we infer to be the domain of the mature apparatus. We compared strong and weak poly(A) sites. The SV40 late poly(A) site, one of the strongest, assembles several times faster than the weaker SV40 early or synthetic poly(A) site.
Collapse
Affiliation(s)
- L C Chao
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
19
|
Cooke C, Hans H, Alwine JC. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal. Mol Cell Biol 1999; 19:4971-9. [PMID: 10373547 PMCID: PMC84315 DOI: 10.1128/mcb.19.7.4971] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyadenylation (PA) is the process by which the 3' ends of most mammalian mRNAs are formed. In nature, PA is highly coordinated, or coupled, with splicing. In mammalian systems, the most compelling mechanistic model for coupling arises from data supporting exon definition (2, 34, 37). We have examined the roles of individual functional components of splicing and PA signals in the coupling process by using an in vitro splicing and PA reaction with a synthetic pre-mRNA substrate containing an adenovirus splicing cassette and the simian virus 40 late PA signal. The effects of individually mutating splicing elements and PA elements in this substrate were determined. We found that mutation of the polypyrimidine tract and the 3' splice site significantly reduced PA efficiency and that mutation of the AAUAAA and the downstream elements of the PA signal decreased splicing efficiency, suggesting that these elements are the most significant for the coupling of splicing and PA. Although mutation of the upstream elements (USEs) of the PA signal dramatically decreased PA, splicing was only modestly affected, suggesting that USEs modestly affect coupling. Mutation of the 5' splice site in the presence of a viable polypyrimidine tract and the 3' splice site had no effect on PA, suggesting no effect of this element on coupling. However, our data also suggest that a site for U1 snRNP binding (e.g., a 5' splice site) within the last exon can negatively effect both PA and splicing; hence, a 5' splice site-like sequence in this position appears to be a modulator of coupling. In addition, we show that the RNA-protein complex formed to define an exon may inhibit processing if the definition of an adjacent exon fails. This finding indicates a mechanism for monitoring the appropriate definition of exons and for allowing only pre-mRNAs with successfully defined exons to be processed.
Collapse
Affiliation(s)
- C Cooke
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | |
Collapse
|
20
|
Lou H, Helfman DM, Gagel RF, Berget SM. Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3'-terminal exon. Mol Cell Biol 1999; 19:78-85. [PMID: 9858533 PMCID: PMC83867 DOI: 10.1128/mcb.19.1.78] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1998] [Accepted: 10/14/1998] [Indexed: 11/20/2022] Open
Abstract
Polypyrimidine tract-binding protein (PTB) is an abundant vertebrate hnRNP protein. PTB binding sites have been found within introns both upstream and downstream of alternative exons in a number of genes that are negatively controlled by the binding of PTB. We have previously reported that PTB binds to a pyrimidine tract within an RNA processing enhancer located adjacent to an alternative 3'-terminal exon within the gene coding for calcitonin and calcitonin gene-related peptide. The enhancer consists of a pyrimidine tract and CAG directly abutting on a 5' splice site sequence to form a pseudoexon. Here we show that the binding of PTB to the enhancer pyrimidine tract is functional in that exon inclusion increases when in vivo levels of PTB increase. This is the first example of positive regulation of exon inclusion by PTB. The binding of PTB was antagonistic to the binding of U2AF to the enhancer-located pyrimidine tract. Altering the enhancer pyrimidine tract to a consensus sequence for the binding of U2AF eliminated enhancement of exon inclusion in vivo and exon polyadenylation in vitro. An additional PTB binding site was identified close to the AAUAAA hexanucleotide sequence of the exon 4 poly(A) site. These observations suggest a dual role for PTB in facilitating recognition of exon 4: binding to the enhancer pyrimidine tract to interrupt productive recognition of the enhancer pseudoexon by splicing factors and interacting with the poly(A) site to positively affect polyadenylation.
Collapse
Affiliation(s)
- H Lou
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
21
|
Key SC, Yoshizaki T, Pagano JS. The Epstein-Barr virus (EBV) SM protein enhances pre-mRNA processing of the EBV DNA polymerase transcript. J Virol 1998; 72:8485-92. [PMID: 9765385 PMCID: PMC110257 DOI: 10.1128/jvi.72.11.8485-8492.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) DNA polymerase (pol) mRNA, which contains a noncanonical polyadenylation signal, UAUAAA, is cleaved and polyadenylated inefficiently (S. C. S. Key and J. S. Pagano, Virology 234:147-159, 1997). We postulated that the EBV early proteins SM and M, which appear to act posttranscriptionally and are homologs of herpes simplex virus (HSV) ICP27, might compensate for the inefficient processing of pol pre-mRNA. Here we show that the SM and M proteins interact with each other in vitro. In addition, glutathione S-transferase-SM/M fusion proteins precipitate the heterogeneous ribonucleoprotein (hnRNP) C1 splicing protein. Further, the SM protein is coimmunoprecipitated from SM-expressing cell extracts with an antibody to the hnRNP A1/A2 proteins, which are splicing and nuclear shuttling proteins. Finally, the amount of processed EBV DNA polymerase mRNA was increased three- to fourfold in a HeLa cell line expressing SM; this increase was not due to enhanced transcription. Thus, inefficient processing of EBV pol RNA by cellular cleavage and polyadenylation factors appears to be compensated for and may be regulated by the early EBV protein, SM, perhaps via RNA 3'-end formation.
Collapse
Affiliation(s)
- S C Key
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
22
|
Moreira A, Takagaki Y, Brackenridge S, Wollerton M, Manley JL, Proudfoot NJ. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3' end formation by two distinct mechanisms. Genes Dev 1998; 12:2522-34. [PMID: 9716405 PMCID: PMC317083 DOI: 10.1101/gad.12.16.2522] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1998] [Accepted: 07/01/1998] [Indexed: 11/24/2022]
Abstract
The poly(A) signal of the C2 complement gene is unusual in that it possesses an upstream sequence element (USE) required for full activity in vivo. We describe here in vitro experiments demonstrating that this USE enhances both the cleavage and poly(A) addition reactions. We also show that the C2 USE can be cross-linked efficiently to a 55-kD protein that we identify as the polypyrimidine tract-binding protein (PTB), implicated previously in modulation of pre-mRNA splicing. Mutation of the PTB-binding site significantly reduces the efficiency of the C2 poly(A) site both in vivo and in vitro. Furthermore, addition of PTB to reconstituted processing reactions enhances cleavage at the C2 poly(A) site, indicating that PTB has a direct role in recognition of this signal. The C2 USE, however, also increases the affinity of general polyadenylation factors independently for the C2 poly(A) signal as detected by enhanced binding of cleavage-stimulaton factor (CstF). Strikingly, this leads to a novel CstF-dependant enhancement of the poly(A) synthesis phase of the reaction. These studies both emphasize the interconnection between splicing and polyadenylation and indicate an unexpected flexibility in the organization of mammalian poly(A) sites.
Collapse
Affiliation(s)
- A Moreira
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
23
|
Beckel-Mitchener A, Summers J. A novel transcriptional element in circular DNA monomers of the duck hepatitis B virus. J Virol 1997; 71:7917-22. [PMID: 9311882 PMCID: PMC192149 DOI: 10.1128/jvi.71.10.7917-7922.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the presence of two elements, pet and net, that are required for proper transcription of the duck hepatitis B virus (DHBV). These regions were previously identified by using plasmid clones of the virus in transient expression assays (M. Huang and J. Summers, J. Virol. 68:1564-1572, 1994). In this study, we further analyzed these regions by using in vitro-synthesized circular DHBV DNA monomers to mimic the authentic transcriptional template. We observed that pet was required for pregenome transcription from circular viral monomers, and in the absence of pet-dependent transcription, expression of the viral envelope genes was increased. We found that deletion of net in circularized DNA monomers led to the production of abnormally long transcripts due to a failure to form 3' ends during transcription. In addition, we report the presence of a net-like region in the mammalian hepadnavirus woodchuck hepatitis virus. These results are consistent with a model that net is a region involved in transcription termination and that in DHBV, pet is required for transcription complexes to read through this region during the first pass through net.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular
- Chickens
- Chimera
- Cloning, Molecular
- DNA, Circular/chemistry
- DNA, Circular/metabolism
- Genome, Viral
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/metabolism
- Hepatitis B Virus, Woodchuck/genetics
- Liver Neoplasms
- Oncogene Proteins
- Plasmids
- Proto-Oncogene Proteins c-ets
- RNA, Viral/biosynthesis
- Restriction Mapping
- Templates, Genetic
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Viral Proteins
Collapse
Affiliation(s)
- A Beckel-Mitchener
- Department of Cell Biology, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | |
Collapse
|
24
|
Silver Key SC, Pagano JS. A noncanonical poly(A) signal, UAUAAA, and flanking elements in Epstein-Barr virus DNA polymerase mRNA function in cleavage and polyadenylation assays. Virology 1997; 234:147-59. [PMID: 9234956 DOI: 10.1006/viro.1997.8647] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two forms of the Epstein-Barr virus DNA polymerase (pol) mRNA (3.7 and 5.1 kb) have been detected, neither of which contains a canonical poly(A) signal. The 5.1-kb pol mRNA, which contains a rare poly(A) signal, UAUAAA, studied only in transcripts of Hepadnaviridae and a plant pararetrovirus, was analyzed in cleavage and polyadenylation assays. Incubation of the pol transcript in cell extracts produced relatively low efficiency of cleavage (12 to 14%), which was improved by conversion of the poly(A) signal to AAUAAA. Deletion of the UAUAAA signal abolished cleavage and polyadenylation. An auxiliary element, UUUGUA, 3-8 nt upstream of the poly(A) signal and two downstream core elements, a GU-rich sequence 36-46 nt, and an AUUUGUGU sequence 47-53 nt downstream of the signal (8-19 nt and 20-28 nt downstream of cleavage site) facilitated processing of pol mRNA. Replacement of sequences near the cleavage/poly(A) site affected cleavage accuracy. Binding of the 64-kDa cleavage stimulatory factor to the U-rich as well as the GU-rich elements correlated with cleavage efficiency. Thus the UAUAAA hexanucleotide plus the other cis-acting elements are clearly functional in the native pol mRNA, but are relatively inefficient. Implications of the use of an anomalous poly(A) signal and its elements are discussed.
Collapse
Affiliation(s)
- S C Silver Key
- Department of Microbiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
25
|
Brackenridge S, Ashe HL, Giacca M, Proudfoot NJ. Transcription and polyadenylation in a short human intergenic region. Nucleic Acids Res 1997; 25:2326-36. [PMID: 9171082 PMCID: PMC146771 DOI: 10.1093/nar/25.12.2326] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The poly(A) signal of the human Lamin B2 gene was previously shown to lie 600 bp upstream of the cap site of a gene of unknown function (ppv 1). However, using RNase protection analysis, we show that ppv 1 has two clusters of multiple initiation sites, so that the 5"cap site lies only approximately 280 nt downstream of the Lamin B2 poly(A) signal. We analysed nascent transcription across this unusually short intergenic region using nuclear run-on analysis of both the endogenous locus and of transiently transfected hybrid constructs. Surprisingly, transcription of the Lamin B2 gene does not appear to terminate prior to any of the mapped ppv 1 start sites, although pausing of the elongating polymerase complexes is observed downstream of the Lamin B2 poly(A) signal. We suggest that this pausing may be sufficient to protect the downstream gene from transcriptional interference. Finally, we have also investigated the sequences required for efficient recognition of the Lamin B2 poly(A) signal. We show that sequences upstream of the AAUAAA element are required for full activity, which is an unusual feature of mammalian poly(A) signals.
Collapse
Affiliation(s)
- S Brackenridge
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
26
|
|
27
|
Wahle E, Kühn U. The mechanism of 3' cleavage and polyadenylation of eukaryotic pre-mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:41-71. [PMID: 9175430 DOI: 10.1016/s0079-6603(08)60277-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E Wahle
- Institut für Biochemic, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
28
|
Abstract
Our understanding of how the 3' ends of mRNAs are formed in plants is rudimentary compared to what we know about this process in other eukaryotes. The salient features of plant pre-mRNAs that signal cleavage and polyadenylation remain obscure, and the biochemical mechanism is as yet wholly uncharacterized. Nevertheless, despite the lack of universally conserved cis-acting motifs, a common underlying architecture is emerging from functional analyses of plant poly(A) signals, allowing meaningful comparison with components of poly(A) signals in other eukaryotes. A plant poly(A) signal consists of one or more near-upstream elements (NUE), each directing processing at a poly(A) site a short distance downstream of it, and an extensive far-upstream element (FUE) that enhances processing efficiency at all sites. By analogy with other systems, a model for a plant 3'-end processing complex can be proposed. Plant poly(A) polymerases have been isolated and partially characterised. These, together with hints that some processing factors are conserved in different organisms, opens promising avenues toward initial characterisation of the trans-acting factors involved in 3'-end formation of mRNAs in higher plants.
Collapse
Affiliation(s)
- H M Rothnie
- Friedrich Miescher-Institut, Basel, Switzerland
| |
Collapse
|
29
|
Lutz CS, Murthy KG, Schek N, O'Connor JP, Manley JL, Alwine JC. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev 1996; 10:325-37. [PMID: 8595883 DOI: 10.1101/gad.10.3.325] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that the U1 snRNP-A protein (U1A) interacts with elements in SV40 late polyadenylation signal and that this association increases polyadenylation efficiency. It was postulated that this interaction occurs to facilitate protein-protein association between components of the U1 snRNP and proteins of the polyadenylation complex. We have now used GST fusion protein experiments, coimmunoprecipitations and Far Western blot analyses to demonstrate direct binding between U1A and the 160-kD subunit of cleavage-polyadenylation specificity factor (CPSF). In addition, Western blot analyses of fractions from various stages of CPSF purification indicated that U1A copurified with CPSF to a point but could be separated in the highly purified fractions. These data suggest that U1A protein is not an integral component of CPSF but may be able to interact and affect its activity. In this regard, the addition of purified, recombinant U1A to polyadenylation reactions containing CPSF, poly(A) polymerase, and a precleaved RNA substrate resulted in concentration-dependent increases in both the level of polyadenylation and poly(A) tail length. In agreement with the increase in polyadenylation efficiency caused by U1A, recombinant U1A stabilized the interaction of CPSF with the AAUAAA-containing substrate RNA in electrophoretic mobility shift experiments. These findings suggest that, in addition to its function in splicing, U1A plays a more global role in RNA processing through effects on polyadenylation.
Collapse
Affiliation(s)
- C S Lutz
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104 USA
| | | | | | | | | | | |
Collapse
|
30
|
Rieger A, Nassal M. Specific hepatitis B virus minus-strand DNA synthesis requires only the 5' encapsidation signal and the 3'-proximal direct repeat DR1. J Virol 1996; 70:585-9. [PMID: 8523575 PMCID: PMC189849 DOI: 10.1128/jvi.70.1.585-589.1996] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human hepatitis B virus (HBV) is a small DNA virus that replicates inside the viral nucleocapsid by reverse transcription of an RNA intermediate, the pregenome. The sequences encompassing the encapsidation signal epsilon and the direct repeat DR1 are present in two copies of this terminally redundant transcript. We have recently shown that HBV minus-strand DNA synthesis involves transfer of a short DNA primer copied from 5'-epsilon to 3'-DR1 (DR1*). Using transfection of HBV genomes with lesions in 3'-epsilon, and 5'-DR1 and its preceding sequence, we tested whether these additional elements contribute to the specificity of the transfer reaction. However, while some mutations affected proper plus-strand DNA formation, 5'-epsilon and DR1* were completely sufficient for correct minus-strand DNA production.
Collapse
Affiliation(s)
- A Rieger
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | |
Collapse
|
31
|
Fallows DA, Goff SP. Hepadnaviruses: current models of RNA encapsidation and reverse transcription. Adv Virus Res 1996; 46:165-94. [PMID: 8824700 DOI: 10.1016/s0065-3527(08)60072-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D A Fallows
- Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
32
|
Ashe MP, Griffin P, James W, Proudfoot NJ. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev 1995; 9:3008-25. [PMID: 7498796 DOI: 10.1101/gad.9.23.3008] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In common with all retroviruses, the human immunodeficiency virus type 1 (HIV-1) contains duplicated long terminal repeat (LTR) sequences flanking the proviral genome. These LTRs contain identical poly(A) signals, which are both transcribed into RNA. Therefore, to allow efficient viral expression, a mechanism must exist to either restrict promoter-proximal poly(A) site use or enhance the activity of the promoter-distal poly(A) site. We have examined the use of both poly(A) sites using proviral clones. Mutation of the previously defined upstream activatory sequences of the 3' LTR poly(A) site decreases the efficiency of polyadenylation when placed in competition with an efficient downstream processing signal. However, in the absence of competition, these mutations have no effect on HIV-1 polyadenylation. In addition, the 5' LTR poly(A) site is inactive, whereas a heterologous poly(A) site positioned in its place is utilized efficiently. Furthermore, transcription initiating from the 3' LTR promoter utilizes the 3' LTR poly(A) signal efficiently. Therefore, the main determinant of the differential poly(A) site use appears to be neither proximity to a promoter element in the 5' LTR nor the presence of upstream activating sequences at the 3' LTR. Instead, we show that the major splice donor site that is immediately downstream of the 5' LTR inhibits cleavage and polyadenylation at the promoter-proximal site. The fact that this poly(A) site is active in a proviral clone when the major splice donor site is mutated suggests that the selective use of poly(A) signals in HIV-1 is mediated by a direct inhibition of the HIV-1 poly(A) site by downstream splicing events or factors involved in splicing.
Collapse
Affiliation(s)
- M P Ashe
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
33
|
Batt DB, Carmichael GG. Characterization of the polyomavirus late polyadenylation signal. Mol Cell Biol 1995; 15:4783-90. [PMID: 7651395 PMCID: PMC230722 DOI: 10.1128/mcb.15.9.4783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The polyomavirus late polyadenylation signal is used inefficiently during the late phase of a productive viral infection. Inefficient polyadenylation serves an important purpose for viral propagation, as it allows a splicing event that stabilizes late transcripts (G. R. Adami, C. W. Marlor, N. L. Barrett, and G. G. Carmichale, J. Virol. 63:85-93, 1989; R. P. Hyde-DeRuyscher and G. G. Carmichael, J. Virol. 64:5823-5832, 1990). We have recently shown that late-strand readthrough transcripts serve as natural antisense molecules to downregulate early-strand RNA levels at late times in infection (Z. Liu, D. B. Batt, and G. G. Carmichael, Proc. Natl. Acad. Sci. USA 91:4258-4262, 1994). Thus, poor polyadenylation contributes to the early-late switch by allowing the formation of more stable late RNAs and by forming antisense RNA to early RNAs. The importance of late poly(A) site inefficiency in the viral life cycle has prompted us to map the cis elements of this site. Since the polyomavirus late site proved a poor substrate for in vitro polyadenylation, we used an in vivo assay which allowed us to map the cis sequences required for its function. In this assay, various fragments containing the AAUAAA and different surrounding sequences were placed 1.4 kb upstream of a second, wild-type signal. The second signal served to stabilize transcripts that are not processed at the upstream site, allowing accurate quantitation of relative poly(A) site use by an RNase protection assay. Processing was primary at the upstream site when a large fragment surrounding the poly(A) signal (50 nucleotides [nt] upstream and 90 nt downstream) was tested in this assay, demonstrating that this fragment contains the essential cis elements. Deletion analysis of this fragment revealed that most but not all upstream sequences can be removed with little effect on polyadenylation efficiency, indicating the absence of a strong stimulatory upstream element. Deletion of all but 25 nt downstream of the AAUAAA reduced polyadenylation activity only by half, demonstrating that processing can occur at this site despite the lack of downstream sequences. Thus, the core cis element for polyadenylation is quite small, with most important cis-acting elements lying within 19 nt upstream and 25 nt downstream of the AAUAAA sequence. This core contains the AAUAAA hexanucleotide, an upstream A/U-rich element, and three identical repeats of a 6-nt sequence, UAUUCA. Polyadenylation was eliminated or greatly reduced when either the AAUAAA or the three repeats were mutated.
Collapse
Affiliation(s)
- D B Batt
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
34
|
Wahle E. 3'-end cleavage and polyadenylation of mRNA precursors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:183-94. [PMID: 7711061 DOI: 10.1016/0167-4781(94)00248-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E Wahle
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
35
|
Gilmartin GM, Fleming ES, Oetjen J, Graveley BR. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev 1995; 9:72-83. [PMID: 7828853 DOI: 10.1101/gad.9.1.72] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endonucleolytic cleavage and polyadenylation of a pre-mRNA in mammalian cells requires two cis-acting elements, a highly conserved AAUAAA hexamer and an amorphous U- or GU-rich downstream element, that together constitute the "core" poly(A) site. The terminal redundancy of the HIV-1 pre-mRNA requires that the processing machinery disregard a core poly(A) site at the 5' end of the transcript, and efficiently utilize an identical signal that resides near the 3' end. Efficient processing at the 3' core poly(A) site, both in vivo and in vitro, has been shown to require sequences 76 nucleotides upstream of the AAUAAA hexamer. In this report we demonstrate that this HIV-1 upstream element interacts directly with the 160-kD subunit of CPSF (cleavage polyadenylation specificity factor), the factor responsible for the recognition of the AAUAAA hexamer. The presence of the upstream element in the context of the AAUAAA hexamer directs the stable binding of CPSF to the pre-mRNA and enhances the efficiency of poly(A) addition in reactions reconstituted with purified CPSF and recombinant poly(A) polymerase. Our results indicate that the dependence of HIV-1 3' processing on upstream sequences is a consequence of the suboptimal sequence context of the AAUAAA hexamer. We suggest that poly(A) site definition involves the recognition of multiple heterogeneous sequence elements in the context of the AAUAAA hexamer.
Collapse
Affiliation(s)
- G M Gilmartin
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington 05405
| | | | | | | |
Collapse
|
36
|
|
37
|
Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol Cell Biol 1994. [PMID: 7911973 DOI: 10.1128/mcb.14.7.4682] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus major late transcription unit is a well-characterized transcription unit which relies heavily on alternative pre-mRNA processing to generate distinct populations of mRNA during the early and late stages of viral infection. In the early stage of infection, two major late transcription unit mRNA transcripts are generated through use of the first (L1) of five available poly(A) sites (L1 through L5). This contrasts with the late stage of infection when as many as 45 distinct mRNAs are generated, with each of the five poly(A) sites being used. In previous work characterizing elements involved in alternative poly(A) site use, we showed that the L1 poly(A) site is processed less efficiently than the L3 poly(A) site both in vitro and in vivo. Because of the dramatic difference in processing efficiency and the role processing efficiency plays in production of steady-state levels of mRNA, we have identified the sequence elements that account for the differences in L1 and L3 poly(A) site processing efficiency. We have found that the element most likely to be responsible for poly(A) site strength, the GU/U-rich downstream element, plays a minor role in the different processing efficiencies observed for the L1 and L3 poly(A) sites. The sequence element most responsible for inefficient processing of the L1 poly(A) site includes the L1 AAUAAA consensus sequence and those sequences which immediately surround the consensus hexanucleotide. This region of the L1 poly(A) site contributes to an inability to form a stable processing complex with the downstream GU/U-rich element. In contrast to the L1 element, the L3 poly(A) site has a consensus hexanucleotide and surrounding sequences which can form a stable processing complex in cooperation with the downstream GU/U-rich element. The L3 poly(A) site is also aided by the presence of sequences upstream of the hexanucleotide which facilitate processing efficiency. The sequence UUCUUUUU, present in the L3 upstream region, is shown to enhance processing efficiency as well as stable complex formation (shown by increased binding of the 64-kDa cleavage stimulatory factor subunit) and acts as a binding site for heterogeneous nuclear ribonucleoprotein C proteins.
Collapse
|
38
|
Prescott J, Falck-Pedersen E. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol Cell Biol 1994; 14:4682-93. [PMID: 7911973 PMCID: PMC358841 DOI: 10.1128/mcb.14.7.4682-4693.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The adenovirus major late transcription unit is a well-characterized transcription unit which relies heavily on alternative pre-mRNA processing to generate distinct populations of mRNA during the early and late stages of viral infection. In the early stage of infection, two major late transcription unit mRNA transcripts are generated through use of the first (L1) of five available poly(A) sites (L1 through L5). This contrasts with the late stage of infection when as many as 45 distinct mRNAs are generated, with each of the five poly(A) sites being used. In previous work characterizing elements involved in alternative poly(A) site use, we showed that the L1 poly(A) site is processed less efficiently than the L3 poly(A) site both in vitro and in vivo. Because of the dramatic difference in processing efficiency and the role processing efficiency plays in production of steady-state levels of mRNA, we have identified the sequence elements that account for the differences in L1 and L3 poly(A) site processing efficiency. We have found that the element most likely to be responsible for poly(A) site strength, the GU/U-rich downstream element, plays a minor role in the different processing efficiencies observed for the L1 and L3 poly(A) sites. The sequence element most responsible for inefficient processing of the L1 poly(A) site includes the L1 AAUAAA consensus sequence and those sequences which immediately surround the consensus hexanucleotide. This region of the L1 poly(A) site contributes to an inability to form a stable processing complex with the downstream GU/U-rich element. In contrast to the L1 element, the L3 poly(A) site has a consensus hexanucleotide and surrounding sequences which can form a stable processing complex in cooperation with the downstream GU/U-rich element. The L3 poly(A) site is also aided by the presence of sequences upstream of the hexanucleotide which facilitate processing efficiency. The sequence UUCUUUUU, present in the L3 upstream region, is shown to enhance processing efficiency as well as stable complex formation (shown by increased binding of the 64-kDa cleavage stimulatory factor subunit) and acts as a binding site for heterogeneous nuclear ribonucleoprotein C proteins.
Collapse
Affiliation(s)
- J Prescott
- Department of Microbiology, W. R. Hearst Research Foundation, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
39
|
Rothnie HM, Reid J, Hohn T. The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3'-end formation in plants. EMBO J 1994; 13:2200-10. [PMID: 8187773 PMCID: PMC395075 DOI: 10.1002/j.1460-2075.1994.tb06497.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The requirement for sequence specificity in the AAUAAA motif of the cauliflower mosaic virus (CaMV) polyadenylation signal was examined by saturation mutagenesis. While deletion of AAUAAA almost abolished processing at the CaMV polyadenylation site, none of the 18 possible single base mutations had a dramatic effect on processing efficiency. The effect of replacing all six nucleotides simultaneously varied depending on the sequence used, but some replacements were as detrimental as the deletion mutant. Taken together, these results confirm that AAUAAA is an essential component of the CaMV polyadenylation signal, but indicate that a high degree of sequence variation can be tolerated. A repeated UUUGUA motif was identified as an important upstream accessory element of the CaMV polyadenylation signal. This sequence was able to induce processing at a heterologous polyadenylation site in a sequence-specific and additive manner. The effect of altering the spacing between this upstream element and the AAUAAA was examined; moving these two elements closer together or further apart reduces the processing efficiency. The upstream element does not function to signal processing at the CaMV polyadenylation site if placed downstream of the cleavage site. Analysis of further upstream sequences revealed that almost all of the 200 nt fragment required for maximal processing contributes positively to processing efficiency. Furthermore, isolated far upstream sequences distinct from UUUGUA were also able to induce processing at a heterologous polyadenylation site.
Collapse
Affiliation(s)
- H M Rothnie
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
40
|
Lutz CS, Alwine JC. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev 1994; 8:576-86. [PMID: 7926751 DOI: 10.1101/gad.8.5.576] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An integral component of the splicing machinery, the U1 snRNP, is here implicated in the efficient polyadenylation of SV40 late mRNAs. This occurs as a result of an interaction between U1 snRNP-A protein and the upstream efficiency element (USE) of the polyadenylation signal. UV cross-linking and immunoprecipitation demonstrate that this interaction can occur while U1 snRNP-A protein is simultaneously bound to U1 RNA as part of the snRNP. The target RNA of the first RRM (RRM1) has been shown previously to be the second stem-loop of U1 RNA. We have found that a target for the second RRM (RRM2) is within the AUUUGURA motifs of the USE of the SV40 late polyadenylation signal. RNA substrates containing the wild-type USE efficiently bind to U1 snRNP-A protein, whereas substrates fail to bind when motifs of the USE were replaced by linker sequences. The addition of an oligoribonucleotide containing a USE motif to an in vitro polyadenylation reaction inhibits polyadenylation of a substrate representing the SV40 late polyadenylation signal, whereas a mutant oligoribonucleotide, a nonspecific oligoribonucleotide, and an oligoribonucleotide containing the U1 RNA-binding site had much reduced or no inhibitory effects. In addition, antibodies to bacterially produced, purified U1 snRNP-A protein specifically inhibit in vitro polyadenylation of the SV40 late substrate. These data suggest that the U1 snRNP-A protein performs an important role in polyadenylation through interaction with the USE. Because this interaction can occur when U1 snRNP-A protein is part of the U1 snRNP, our data provide evidence to support a link between the processes of splicing and polyadenylation, as suggested by the exon definition model.
Collapse
Affiliation(s)
- C S Lutz
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6142
| | | |
Collapse
|
41
|
Huang M, Summers J. pet, a small sequence distal to the pregenome cap site, is required for expression of the duck hepatitis B virus pregenome. J Virol 1994; 68:1564-72. [PMID: 8107218 PMCID: PMC236613 DOI: 10.1128/jvi.68.3.1564-1572.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have found that transcription of the pregenome of an avian hepadnavirus, duck hepatitis B virus (DHBV), is dependent on the presence of a small element in the 5' transcribed region of the pregenome-encoding sequence. This element, which we have named pet (positive effector of transcription), exerts its effect in cis in a position and orientation-dependent manner, suggesting that it may function as part of the nascent pregenome transcript. The requirement for pet depends on the presence in the transcription unit of a region of the DHBV genome located upstream of the envelope promoters, which specifically suppresses transcription of templates lacking pet. In the presence of this region, deletion of pet activates transcription from downstream promoters, suggesting that pregenome transcription complexes fail to reach the downstream promoters. In vitro transcription experiments support the model that pet is required for transcription elongation on the DHBV template. We speculate that pet is required to suppress transcription termination during the first passage of pregenome transcription complexes through a viral termination region on the circular viral DNA.
Collapse
Affiliation(s)
- M Huang
- Department of Cell Biology, School of Medicine, University of New Mexico, Albuquerque 87131
| | | |
Collapse
|
42
|
Sittler A, Gallinaro H, Jacob M. Upstream and downstream cis-acting elements for cleavage at the L4 polyadenylation site of adenovirus-2. Nucleic Acids Res 1994; 22:222-31. [PMID: 8121807 PMCID: PMC307775 DOI: 10.1093/nar/22.2.222] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A study of the cis-acting elements involved in the 3' end formation of the RNAs from the major late L4 family of adenovirus-2 was undertaken. Series of 5' or 3' end deletion mutants and mutants harboring either internal deletions or substitutions were prepared and assayed for in vitro cleavage. This first allowed the demonstration of a sequence, located at -6 to -29, relative to AAUAAA, whose deletion or substitution reduces cleavage efficiency at the L4 polyadenylation site two to three fold. This upstream efficiency element 5' AUCUUUGUUGUC/AUCUCUGUGCUG 3' is constituted of a partially repeated 12 nucleotide long, UCG rich sequence. The activities of the 2 sequence elements in cleavage are additive. We also searched for regulatory sequences downstream of the L4 polyadenylation site. We found that the deletion or substitution of a 30 nucleotide long UCG rich sequence, between nucleotides +7 and +35 relative to the cleavage site and harboring a UCCUGU repeat reduces cleavage efficiency at least ten fold. A GUUUUU sequence, starting at +35 had no influence. Thus, the usage of the L4 polyadenylation site requires down-stream sequences different from the canonical GU or U boxes and is regulated by upstream sequence elements.
Collapse
Affiliation(s)
- A Sittler
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire et de Génie Génétique de I'INSERM, Faculté de Médecine, Strasbourg, France
| | | | | |
Collapse
|
43
|
Rothnie HM, Chapdelaine Y, Hohn T. Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 1994; 44:1-67. [PMID: 7817872 DOI: 10.1016/s0065-3527(08)60327-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H M Rothnie
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
44
|
Several distinct types of sequence elements are required for efficient mRNA 3' end formation in a pea rbcS gene. Mol Cell Biol 1992. [PMID: 1448074 DOI: 10.1128/mcb.12.12.5406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have conducted an extensive linker substitution analysis of the polyadenylation signal from a pea rbcS gene. From these studies, we can identify at least two, and perhaps three, distinct classes of cis element involved in mRNA 3' end formation in this gene. One of these, termed the far-upstream element, is located between 60 and 120 nt upstream from its associated polyadenylation sites and appears to be largely composed of a series of UG motifs. A second, termed the near-upstream element, is more proximate to poly(A) sites and may be functionally analogous to the mammalian polyadenylation signal AAUAAA, even though the actual sequences involved may not be AAUAAA. The third possible class is the putative cleavage and polyadenylation site itself. We find that the rbcS-E9 far-upstream element can replace the analogous element in another plant polyadenylation signal, that from cauliflower mosaic virus, and that one near-upstream element can function with either of two poly(A) sites. Thus, these different cis elements are largely interchangeable. Our studies indicate that a cellular plant gene possesses upstream elements distinct from AAUAAA that are involved in mRNA 3' end formation and that plant genes probably have modular, multicomponent polyadenylation signals.
Collapse
|
45
|
Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol 1992. [PMID: 1333042 DOI: 10.1128/mcb.12.12.5386] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polyadenylation signal for the late mRNAs of simian virus 40 is known to have sequence elements located both upstream and downstream of the AAUAAA which affect efficiency of utilization of the signal. The upstream efficiency element has been previously characterized by using deletion mutations and transfection analyses. Those studies suggested that the upstream element lies between 13 and 48 nucleotides upstream of the AAUAAA. We have utilized in vitro cleavage and polyadenylation reactions to further define the upstream element. 32P-labeled substrate RNAs were prepared by in vitro transcription from wild-type templates as well as from mutant templates having deletions and linker substitutions in the upstream region. Analysis of these substrates defined the upstream region as sequences between 13 and 51 nucleotides upstream of the AAUAAA, in good agreement with the in vivo results. Within this region, three core elements with the consensus sequence AUUUGURA were identified and were specifically mutated by linker substitution. These core elements were found to contain the active components of the upstream efficiency element. Using substrates with both single and double linker substitution mutations of core elements, we observed that the core elements function in a distance-dependent manner. In mutants containing only one core element, the effect on efficiency increases as the distance between the element and the AAUAAA decreases. In addition, when core elements are present in multiple copies, the effect is additive. The core element consensus sequence, which bears homology to the Sm protein complex-binding site in human U1 RNA, is also found within the upstream elements of the ground squirrel hepatitis B and cauliflower mosaic virus polyadenylation signals (R. Russnak, Nucleic Acids Res. 19:6449-6456, 1991; H. Sanfacon, P. Brodmann, and T. Hohn, Genes Dev. 5:141-149, 1991), suggesting functional conservation of this element between mammals and plants.
Collapse
|
46
|
Schek N, Cooke C, Alwine JC. Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol 1992; 12:5386-93. [PMID: 1333042 PMCID: PMC360476 DOI: 10.1128/mcb.12.12.5386-5393.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The polyadenylation signal for the late mRNAs of simian virus 40 is known to have sequence elements located both upstream and downstream of the AAUAAA which affect efficiency of utilization of the signal. The upstream efficiency element has been previously characterized by using deletion mutations and transfection analyses. Those studies suggested that the upstream element lies between 13 and 48 nucleotides upstream of the AAUAAA. We have utilized in vitro cleavage and polyadenylation reactions to further define the upstream element. 32P-labeled substrate RNAs were prepared by in vitro transcription from wild-type templates as well as from mutant templates having deletions and linker substitutions in the upstream region. Analysis of these substrates defined the upstream region as sequences between 13 and 51 nucleotides upstream of the AAUAAA, in good agreement with the in vivo results. Within this region, three core elements with the consensus sequence AUUUGURA were identified and were specifically mutated by linker substitution. These core elements were found to contain the active components of the upstream efficiency element. Using substrates with both single and double linker substitution mutations of core elements, we observed that the core elements function in a distance-dependent manner. In mutants containing only one core element, the effect on efficiency increases as the distance between the element and the AAUAAA decreases. In addition, when core elements are present in multiple copies, the effect is additive. The core element consensus sequence, which bears homology to the Sm protein complex-binding site in human U1 RNA, is also found within the upstream elements of the ground squirrel hepatitis B and cauliflower mosaic virus polyadenylation signals (R. Russnak, Nucleic Acids Res. 19:6449-6456, 1991; H. Sanfacon, P. Brodmann, and T. Hohn, Genes Dev. 5:141-149, 1991), suggesting functional conservation of this element between mammals and plants.
Collapse
Affiliation(s)
- N Schek
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6142
| | | | | |
Collapse
|
47
|
Mogen BD, MacDonald MH, Leggewie G, Hunt AG. Several distinct types of sequence elements are required for efficient mRNA 3' end formation in a pea rbcS gene. Mol Cell Biol 1992; 12:5406-14. [PMID: 1448074 PMCID: PMC360478 DOI: 10.1128/mcb.12.12.5406-5414.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have conducted an extensive linker substitution analysis of the polyadenylation signal from a pea rbcS gene. From these studies, we can identify at least two, and perhaps three, distinct classes of cis element involved in mRNA 3' end formation in this gene. One of these, termed the far-upstream element, is located between 60 and 120 nt upstream from its associated polyadenylation sites and appears to be largely composed of a series of UG motifs. A second, termed the near-upstream element, is more proximate to poly(A) sites and may be functionally analogous to the mammalian polyadenylation signal AAUAAA, even though the actual sequences involved may not be AAUAAA. The third possible class is the putative cleavage and polyadenylation site itself. We find that the rbcS-E9 far-upstream element can replace the analogous element in another plant polyadenylation signal, that from cauliflower mosaic virus, and that one near-upstream element can function with either of two poly(A) sites. Thus, these different cis elements are largely interchangeable. Our studies indicate that a cellular plant gene possesses upstream elements distinct from AAUAAA that are involved in mRNA 3' end formation and that plant genes probably have modular, multicomponent polyadenylation signals.
Collapse
Affiliation(s)
- B D Mogen
- Department of Agronomy, University of Kentucky, Lexington 40546-0091
| | | | | | | |
Collapse
|
48
|
Miller JT, Stoltzfus CM. Two distant upstream regions containing cis-acting signals regulating splicing facilitate 3'-end processing of avian sarcoma virus RNA. J Virol 1992; 66:4242-51. [PMID: 1318403 PMCID: PMC241228 DOI: 10.1128/jvi.66.7.4242-4251.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Retroviruses, pararetroviruses, and related retrotransposons generate terminally redundant RNAs by transcription of a template flanked by long terminal repeats in which initiation occurs within the 5' long terminal repeat sequences and 3'-end processing occurs within the 3' long terminal repeat sequences. Processing of avian sarcoma virus RNA is relatively inefficient; approximately 15% of the viral RNA transcripts are read-through products; i.e., they are not processed at the viral poly(A) addition site but at sites in the cellular sequence further downstream. In this report, we show that the efficiency of processing at the viral site is further reduced by deletion of two distant upstream sequences: (i) a 606-nucleotide sequence in the gag gene containing a cis-acting negative regulator of splicing and (ii) a 136-nucleotide sequence spanning the env 3' splice site. The deletion of either or both upstream regions increases the levels of read-through products of both unspliced and spliced viral RNA. In contrast, deletion of the src 3' splice site does not affect the efficiency of processing at the viral poly(A) addition site. The effects on 3'-end processing are not correlated either with distance from the promoter to the poly(A) addition site or with the overall level of viral RNA splicing. Substitution of the avian sarcoma virus poly(A) signal with the simian virus 40 early or late poly(A) signal relieves the requirement for the distant upstream sequences. We propose that cellular factors, which may correspond to splicing factors, bound to the upstream viral sequences may interact with factors bound at the avian sarcoma virus poly(A) signal to stabilize the polyadenylation-cleavage complex and allow for more efficient 3'-end processing.
Collapse
Affiliation(s)
- J T Miller
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
49
|
Chen JS, Nordstrom JL. Bipartite structure of the downstream element of the mouse beta globin (major) poly(A) signal. Nucleic Acids Res 1992; 20:2565-72. [PMID: 1598216 PMCID: PMC312394 DOI: 10.1093/nar/20.10.2565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The downstream region of the mouse beta (major) globin poly(A) signal was mutated and analyzed for function in transfected COS cells. From analysis of unidirectional Bal31 deletions, the 3' boundary of the downstream element was defined as +22 (22 nucleotides downstream from the cleavage site). Analysis of cluster mutations, in which 5 or 6 adjacent bases were replaced with a random CA-containing sequence in a manner that did not alter spacing, confirmed +22 as the 3' boundary of the downstream element. The analysis also revealed two short UG-rich sequences, located from +5 to +10 and from +17 to +22, as major functional components. In contrast, a more refined series of mutations, in which clusters of 3 bases were replaced, failed to cause loss of function. We conclude that the downstream element of the mouse beta globin poly(A) signal is bipartite in structure, and that portions of its sequence are functionally redundant.
Collapse
Affiliation(s)
- J S Chen
- Department of Biological Sciences, Fordham University, Bronx, NY 10458
| | | |
Collapse
|