1
|
Abstract
This study examined for the first time the in vivo function of the serine incorporator (SERINC) proteins during retrovirus infection. SERINC3 and SERINC5 (SERINC3/5) restrict a number of retroviruses, including human immunodeficiency virus 1 (HIV-1) and murine leukemia virus (MLV), by blocking their entry into cells. Nevertheless, HIV-1 and MLV encode factors, Nef and glycosylated Gag, respectively, that counteract SERINC3/5 in vitro. We recently developed SERINC3 and SERINC5 knockout mice to examine the in vivo function of these genes. We found that SERINC5 restriction is dependent on the absence of glycosylated Gag and the expression of a specific viral envelope glycoprotein. On the other hand, SERINC3 had no antiviral function. Our findings have implications for the development of therapeutics that target SERINC5 during retrovirus infection. The serine incorporator (SERINC) proteins are multipass transmembrane proteins that affect sphingolipid and phosphatidylserine synthesis. Human SERINC5 and SERINC3 were recently shown to possess antiretroviral activity for a number of retroviruses, including human immunodeficiency virus (HIV), murine leukemia virus (MLV), and equine infectious anemia virus (EIAV). In the case of MLV, the glycosylated Gag (glyco-Gag) protein was shown to counteract SERINC5-mediated restriction in in vitro experiments and the viral envelope was found to determine virion sensitivity or resistance to SERINC5. However, nothing is known about the in vivo function of SERINC5. Antiretroviral function of a host factor in vitro is not always associated with antiretroviral function in vivo. Using SERINC5−/− mice that we had generated, we showed that mouse SERINC5 (mSERINC5) restriction of MLV infection in vivo is influenced not only by glyco-Gag but also by the retroviral envelope. Finally, we also examined the in vivo function of the other SERINC gene with known antiretroviral functions, SERINC3. By using SERINC3−/− mice, we found that the murine homologue, mSERINC3, had no antiretroviral role either in vivo or in vitro. To our knowledge, this report provides the first data showing that SERINC5 restricts retrovirus infection in vivo and that restriction of retrovirus infectivity in vivo is dependent on the presence of both glyco-Gag and the viral envelope.
Collapse
|
2
|
Park J, Lee S, Won N, Shin E, Kim SH, Chun MY, Gu J, Jung GY, Lim KI, Jo K. Single-molecule DNA visualization using AT-specific red and non-specific green DNA-binding fluorescent proteins. Analyst 2019; 144:921-927. [PMID: 30310901 DOI: 10.1039/c8an01426d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The recent advances in the single cell genome analysis are generating a considerable amount of novel insights into complex biological systems. However, there are still technical challenges because each cell has a single copy of DNA to be amplified in most single cell genome analytical methods. In this paper, we present a novel approach to directly visualize a genomic map on a large DNA molecule instantly stained with red and green DNA-binding fluorescent proteins without DNA amplification. For this visualization, we constructed a few types of fluorescent protein-fused DNA-binding proteins: H-NS (histone-like nucleoid-structuring protein), DNA-binding domain of BRCA1 (breast cancer 1), high mobility group-1 (HMG), and lysine tryptophan (KW) repeat motif. Because H-NS and HMG preferentially bind A/T-rich regions, we combined A/T specific binder (H-NS-mCherry and HMG-mCherry as red color) and a non-specific complementary DNA binder (BRCA1-eGFP and 2(KW)2-eGFP repeat as green color) to produce a sequence-specific two-color DNA physical map for efficient optical identification of single DNA molecules.
Collapse
Affiliation(s)
- Jihyun Park
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Eksmond U, Jenkins B, Merkenschlager J, Mothes W, Stoye JP, Kassiotis G. Mutation of the Putative Immunosuppressive Domain of the Retroviral Envelope Glycoprotein Compromises Infectivity. J Virol 2017; 91:e01152-17. [PMID: 28814524 PMCID: PMC5640850 DOI: 10.1128/jvi.01152-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/13/2017] [Indexed: 01/30/2023] Open
Abstract
The envelope glycoprotein of diverse endogenous and exogenous retroviruses is considered inherently immunosuppressive. Extensive work mapped the immunosuppressive activity to a highly conserved domain, termed the immunosuppressive domain (ISD), in the transmembrane (TM) subunit of the envelope glycoprotein and identified two naturally polymorphic key residues that afford immunosuppressive activity to distinct envelope glycoproteins. Concurrent mutation of these two key residues (E14R and A20F) in the envelope glycoprotein of the Friend murine leukemia virus (F-MLV) ISD has been reported to abolish its immunosuppressive activity, without affecting its fusogenicity, and to weaken the ability of the virus to replicate specifically in immunocompetent hosts. Here, we show that mutation of these key residues did, in fact, result in a substantial loss of F-MLV infectivity, independently of host immunity, challenging whether associations exist between the two. Notably, a loss of infectivity incurred by the F-MLV mutant with the E14R and A20F double ISD mutation was conditional on expression of the ecotropic envelope receptor murine cationic amino acid transporter-1 (mCAT1) in the virus-producing cell. Indeed, the F-MLV mutant retained infectivity when it was produced by human cells, which naturally lack mCAT1 expression, but not by murine cells. Furthermore, mCAT1 overexpression in human cells impaired the infectivity of both the F-MLV double mutant and the wild-type F-MLV strain, suggesting a finely tuned relationship between the levels of mCAT1 in the producer cell and the infectivity of the virions produced. An adverse effect on this relationship, rather than disruption of the putative ISD, is therefore more likely to explain the loss of F-MLV infectivity incurred by mutations in key ISD residues E14 and A20.IMPORTANCE Retroviruses can interact with their hosts in ways that, although not entirely understood, can greatly influence their pathogenic potential. One such example is a putative immunosuppressive activity, which has been mapped to a conserved domain of the retroviral envelope glycoprotein of several exogenous as well as endogenous retroviruses. In this study, mutations naturally found in some envelope glycoproteins lacking immunosuppressive activity were shown to affect retrovirus infectivity only if the host cell that produced the retrovirus also expressed the cellular entry receptor. These findings shed light on a novel role for this conserved domain in providing the necessary stability to the envelope glycoprotein in order to withstand the interaction with the cellular receptor during virus formation. This function of the domain is critical for further elucidation of the mechanism of immunosuppression mediated by the retroviral envelope glycoprotein.
Collapse
Affiliation(s)
- Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Bryony Jenkins
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | | | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Kaulfuß M, Wensing I, Windmann S, Hrycak CP, Bayer W. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery. Retrovirology 2017; 14:8. [PMID: 28166802 PMCID: PMC5294899 DOI: 10.1186/s12977-017-0336-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
Background In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL85–93-specific CD8+ T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. Results While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL85–93/leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL85–93-specific CD8+ T cells, and in successive immunization protocols the immunization with the GagL85–93/leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL85–93-specific CD8+ T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. Conclusions To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0336-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meike Kaulfuß
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Ina Wensing
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Camilla Patrizia Hrycak
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany.
| |
Collapse
|
5
|
Messer RJ, Lavender KJ, Hasenkrug KJ. Mice of the resistant H-2(b) haplotype mount broad CD4(+) T cell responses against 9 distinct Friend virus epitopes. Virology 2014; 456-457:139-44. [PMID: 24889233 DOI: 10.1016/j.virol.2014.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/16/2022]
Abstract
To date, only a single Friend virus (FV) peptide recognized by CD4(+) T cells in FV-infected mice of the resistant H-2(b) haplotype has been described. To more thoroughly examine the repertoire of CD4(+) T cell responses in H-2(b) mice infected with this retrovirus, 18mer peptides spanning the FV gag, pol, and env coding regions with 11mer overlaps were synthesized. The peptides were then used to stimulate whole splenocytes and purified CD4(+) T cells from FV-infected mice in an IFNγ ELISPOT assay. Nine new CD4(+) T cell epitopes were identified, 3 encoded by gag, 1 by pol, and 5 by env. The high resistance of H-2(b) mice could be related to this very broad CD4(+) T cell response against multiple peptides during FV infection.
Collapse
Affiliation(s)
- Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kerry J Lavender
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
6
|
Codelivery of the chemokine CCL3 by an adenovirus-based vaccine improves protection from retrovirus infection. J Virol 2011; 86:1706-16. [PMID: 22090142 DOI: 10.1128/jvi.06244-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing and presentation of vaccine antigens by professional antigen-presenting cells (APCs) is of great importance for the efficient induction of protective immunity. We analyzed whether the efficacy of an adenovirus-based retroviral vaccine can be enhanced by coadministration of adenovirus-encoded chemokines that attract and stimulate APCs. In the Friend retrovirus (FV) mouse model we coexpressed CCL3, CCL20, CCL21, or CXCL14 from adenoviral vectors, together with FV Gag and Env antigens, and then analyzed immune responses and protection from pathogenic FV infection. Although most tested chemokines did not improve protection against FV challenge, mice that received adenoviral vectors encoding CCL3 together with FV antigens showed significantly better control over viral loads and FV-induced disease than mice immunized with the viral antigens only. Improved protection correlated with enhanced virus-specific CD4+ T cell responses and higher neutralizing antibody titers. To apply these results to an HIV vaccine, mice were immunized with adenoviral vectors encoding the HIV antigens Env and Gag-Pol and coadministered vectors encoding CCL3. Again, this combination vaccine induced higher virus-specific antibody titers and CD4+ T cell responses than did the HIV antigens alone. These results indicate that coexpression of the chemokine CCL3 by adenovirus-based vectors may be a promising tool to improve antiretroviral vaccination strategies.
Collapse
|
7
|
Bayer W, Lietz R, Ontikatze T, Johrden L, Tenbusch M, Nabi G, Schimmer S, Groitl P, Wolf H, Berry CM, Uberla K, Dittmer U, Wildner O. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes. Retrovirology 2011; 8:75. [PMID: 21943056 PMCID: PMC3193818 DOI: 10.1186/1742-4690-8-75] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/26/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Type I interferons (IFNs) exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV) or HIV. RESULTS Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4(+) T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4(+) T cell responses were enhanced by IFNα subtypes. CONCLUSIONS Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4(+) T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.
Collapse
Affiliation(s)
- Wibke Bayer
- Department of Molecular and Medical Virology, Institute of Microbiology and Hygiene, Ruhr-University Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li Y, Lynch WP. Misfolding of CasBrE SU is reversed by interactions with 4070A Env: implications for gammaretroviral neuropathogenesis. Retrovirology 2010; 7:93. [PMID: 21054857 PMCID: PMC2998453 DOI: 10.1186/1742-4690-7-93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/05/2010] [Indexed: 02/07/2023] Open
Abstract
Background CasBrE is a neurovirulent murine leukemia virus (MLV) capable of inducing paralytic disease with associated spongiform neurodegeneration. The neurovirulence of this virus has been genetically mapped to the surface expressed subunit (SU) of the env gene. However, CasBrE SU synthesized in the absence of the transmembrane subunit (TM) does not retain ecotropic receptor binding activity, indicating that folding of the receptor binding domain (RBD) requires this domain. Using a neural stem cell (NSC) based viral trans complementation approach to examine whether misfolded CasBrE SU retained neurovirulence, we observed CasBrE SU interaction with the "non-neurovirulent" amphotropic helper virus, 4070A which restored functional activity of CasBrE SU. Results Herein, we show that infection of NSCs expressing CasBrE SU with 4070A (CasES+4070A-NSCs) resulted in the redistribution of CasBrE SU from a strictly secreted product to include retention on the plasma membrane. Cell surface cross-linking analysis suggested that CasBrE SU membrane localization was due to interactions with 4070A Env. Viral particles produced from CasES+4070A-NSCS contained both CasBrE and 4070A gp70 Env proteins. These particles displayed ecotropic receptor-mediated infection, but were still 100-fold less efficient than CasE+4070A-NSC virus. Infectious center analysis showed CasBrE SU ecotropic transduction efficiencies approaching those of NSCs expressing full length CasBrE Env (CasE; SU+TM). In addition, CasBrE SU-4070A Env interactions resulted in robust ecotropic superinfection interference indicating near native intracellular SU interaction with its receptor, mCAT-1. Conclusions In this report we provided evidence that 4070A Env and CasBrE SU physically interact within NSCs leading to CasBrE SU retention on the plasma membrane, incorporation into viral particles, restoration of mCAT-1 binding, and capacity for initiation of TM-mediated fusion events. Thus, heterotropic Env-SU interactions facilitates CasBrE SU folding events that restore Env activity. These findings are consistent with the idea that one protein conformation acts as a folding scaffold or nucleus for a second protein of similar primary structure, a process reminiscent of prion formation. The implication is that template-based protein folding may represent an inherent feature of neuropathogenic proteins that extends to retroviral Envs.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
9
|
Dittmer U, Werner T, Kraft ARM. Co-immunization of mice with a retroviral DNA vaccine and GITRL-encoding plasmid augments vaccine-induced protection against retrovirus infection. Viral Immunol 2009; 21:459-67. [PMID: 19115935 DOI: 10.1089/vim.2008.0046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After more than 30 years of research a HIV vaccine is still not at hand. DNA vectors expressing viral antigens are very safe vaccines, but so far they have not been efficient enough to induced broad protective immunity against retroviruses. One strategy to enhance the efficiency of DNA vaccines is to augment effector T-cell priming against viral components by manipulating regulatory T-cell functions (Treg). Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a molecule that is constitutively expressed on CD4(+) Treg cells, and antibodies or natural ligands binding this molecule can impair Treg cell suppression. Here we demonstrate using the retroviral Friend virus (FV) mouse model, that co-immunization of FV antigens along with GITR-ligand (GITRL) encoding plasmids protected mice efficiently against a FV challenge. On the other hand, treatment of DNA-vaccinated mice with alpha-GITR antibody did not improve vaccine-induced protection at all. Thus, for an effective priming of immunity against FV, GITRL and viral antigens might have to be expressed within the same local environment. The data suggest that limitations in DNA vaccination can be overcome by co-expressing co-stimulatory molecules that potentially manipulate the function of Treg cells during priming of anti-retroviral immunity.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institut für Virologie des Universitätsklinikums Essen, Universität Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
10
|
Denner J. Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation? Arch Virol 2008; 153:1421-6. [PMID: 18584115 DOI: 10.1007/s00705-008-0141-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/27/2008] [Indexed: 11/26/2022]
Abstract
PERVs are integrated in the genome of all pigs. Some of them infect human cells and represent therefore a potential risk for xenotransplantation using pig cells or organs. Three replication-competent subtypes have been described, PERV-A, PERV-B and PERV-C. Whereas PERV-A and PERV-B are polytropic viruses and infect, among others, human cells, PERV-C is an ecotropic virus, infecting only pig cells. Recombinant PERV-A/C are able to infect human cells, they are characterised by high-titre replication and their proviruses have been found de novo integrated in the genome of somatic pig cells, but not in the germ line. This review compares recombinant PERVs with other recombinant retroviruses in order to evaluate their potential pathogenicity.
Collapse
|
11
|
Voisin V, Rassart E. Complete genome sequences of the two viral variants of the Graffi MuLV: Phylogenetic relationship with other murine leukemia retroviruses. Virology 2007; 361:335-47. [PMID: 17208267 DOI: 10.1016/j.virol.2006.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/03/2006] [Accepted: 10/28/2006] [Indexed: 11/15/2022]
Abstract
A detailed phylogenetic analysis of two variants of the Graffi murine retrovirus, GV-1.2 and GV-1.4, showed that they are closely related to SRS 19-6 and Moloney MuLVs. Two stretches of sequence testify to the divergence between Graffi and SRS 19-6 MuLVs, one corresponding to a recombination event of Graffi MuLV with a xenotropic virus. Moloney MuLV was found more distant, particularly in the GAG region. Our study encompasses every class of MuLVs (ecotropic, amphotropic, xenotropic, polytropic) with some focus on exogenous ecotropic viruses and further adds to previous phylogenetic studies. Graffi, SRS 19-6, Moloney, Friend and Rauscher MuLVs form a cluster that appears to share a common ancestor with the Casitas-amphotropic and -ecotropic MuLVs but are more distant to the Akv-type and xenotropic MuLVs. The analysis also revealed that the ENV region of HEMV, the prototype of the MuLV ancestor, was closely related to the corresponding region of Cas-Br-E.
Collapse
Affiliation(s)
- Véronique Voisin
- Laboratoire de biologie moléculaire, Département des sciences biologiques, Université du Québec à Montréal, Case Postale 8888 Succursale Centre-ville, Montréal, Canada H3C-3P8
| | | |
Collapse
|
12
|
Howard TM, Sheng Z, Wang M, Wu Y, Rasheed S. Molecular and phylogenetic analyses of a new amphotropic murine leukemia virus (MuLV-1313). Virol J 2006; 3:101. [PMID: 17147829 PMCID: PMC1769482 DOI: 10.1186/1743-422x-3-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 12/05/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The amphotropic murine leukemia viruses (MuLV-A's) are naturally occurring, exogenously acquired gammaretroviruses that are indigenous to the Southern California wild mice. These viruses replicate in a wide range of cell types including human cells in vitro and they can cause both hematological and neurological disorders in feral as well as in the inbred laboratory mice. Since MuLV-A's also exhibit discrete interference and neutralization properties, the envelope proteins of these viruses have been extremely useful for studying virus-host cell interactions and as vehicles for transfer of foreign genes into a variety of hosts including human cells. However, the genomic structure of any of the several known MuLV-A's has not been established and the evolutionary relationship of amphotropic retroviruses to the numerous exogenous or endogenous MuLV strains remains elusive. Herein we present a complete genetic structure of a novel amphotropic virus designated MuLV-1313 and demonstrate that this retrovirus together with other MuLV-A's belongs to a distinct molecular, biological and phylogenetic class among the MuLV strains isolated from a large number of the laboratory inbred or feral mice. RESULTS The host range of MuLV-1313 is similar to the previously isolated MuLV-A's except that this virus replicates efficiently in mammalian as well as in chicken cells. Compared to ENV proteins of other MuLV-A's (4070A, 1504A and 10A-1), the gp70 protein of MuLV-1313 exhibits differences in its signal peptides and the proline-rich hinge regions. However, the MuLV-1313 envelope protein is totally unrelated to those present in a broad range of murine retroviruses that have been isolated from various inbred and feral mice globally. Genetic analysis of the entire MuLV-1313 genome by dot plot analyses, which compares each nucleotide of one genome with the corresponding nucleotide of another, revealed that the genome of this virus, with the exception of the env gene, is more closely related to the biologically distinct wild mouse ecotropic retrovirus (Cas-Br-E) isolated from another region of the Southern California, than to any of the 15 MuLV strains whose full-length sequences are present in the GenBank. This finding was corroborated by phylogenetic analyses and hierarchical clustering of the entire genomic sequence of MuLV-1313, which also placed all MULV-A's in a genetically distinct category among the large family of retroviruses isolated from numerous mouse strains globally. Likewise, construction of separate dendrograms for each of the Gag, Pol and Env proteins of MuLV-1313 demonstrated that the amphotropic retroviruses belong to a phylogenetically exclusive group of gammaretroviruses compared to all known MuLV strains. CONCLUSION The molecular, biological and phylogenetic properties of amphotropic retroviruses including MuLV-1313 are distinct compared to a large family of exogenously- or endogenously-transmitted ecotropic, polytropic and xenotropic MuLV strains of the laboratory and feral mice. Further, both the naturally occurring amphotropic and a biologically discrete ecotropic retrovirus of the Southern California wild mice are more closely related to each other on the evolutionary tree than any other mammalian gammaretrovirus indicating a common origin of these viruses. This is the first report of a complete genomic analysis of a unique group of phylogenetically distinct amphotropic virus.
Collapse
MESH Headings
- Animals
- Cell Line
- Chick Embryo
- DNA, Viral/analysis
- Evolution, Molecular
- Gammaretrovirus/classification
- Gammaretrovirus/genetics
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, pol/chemistry
- Gene Products, pol/genetics
- Genome, Viral/genetics
- Leukemia Virus, Murine/classification
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Mice
- Molecular Sequence Data
- Phylogeny
- Rats
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Thomas M Howard
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Zhijuan Sheng
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
- County of Los Angeles Department of Health Services Public Health Programs, HIV-Epidemiology Program 600 S Commonwealth Ave., Suite 805 Los Angeles, CA 90005-4001, USA
| | - Mingwu Wang
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
- Department of Ophthalmology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Yongchun Wu
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Suraiya Rasheed
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| |
Collapse
|
13
|
Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, Klein EA, Malathi K, Magi-Galluzzi C, Tubbs RR, Ganem D, Silverman RH, DeRisi JL. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2006; 2:e25. [PMID: 16609730 PMCID: PMC1434790 DOI: 10.1371/journal.ppat.0020025] [Citation(s) in RCA: 472] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 02/23/2006] [Indexed: 11/26/2022] Open
Abstract
Ribonuclease L (RNase L) is an important effector of the innate antiviral response. Mutations or variants that impair function of RNase L, particularly R462Q, have been proposed as susceptibility factors for prostate cancer. Given the role of this gene in viral defense, we sought to explore the possibility that a viral infection might contribute to prostate cancer in individuals harboring the R462Q variant. A viral detection DNA microarray composed of oligonucleotides corresponding to the most conserved sequences of all known viruses identified the presence of gammaretroviral sequences in cDNA samples from seven of 11 R462Q-homozygous (QQ) cases, and in one of eight heterozygous (RQ) and homozygous wild-type (RR) cases. An expanded survey of 86 tumors by specific RT-PCR detected the virus in eight of 20 QQ cases (40%), compared with only one sample (1.5%) among 66 RQ and RR cases. The full-length viral genome was cloned and sequenced independently from three positive QQ cases. The virus, named XMRV, is closely related to xenotropic murine leukemia viruses (MuLVs), but its sequence is clearly distinct from all known members of this group. Comparison of gag and pol sequences from different tumor isolates suggested infection with the same virus in all cases, yet sequence variation was consistent with the infections being independently acquired. Analysis of prostate tissues from XMRV-positive cases by in situ hybridization and immunohistochemistry showed that XMRV nucleic acid and protein can be detected in about 1% of stromal cells, predominantly fibroblasts and hematopoietic elements in regions adjacent to the carcinoma. These data provide to our knowledge the first demonstration that xenotropic MuLV-related viruses can produce an authentic human infection, and strongly implicate RNase L activity in the prevention or clearance of infection in vivo. These findings also raise questions about the possible relationship between exogenous infection and cancer development in genetically susceptible individuals. Prostate cancer is the most frequent cancer and the second leading cause of cancer deaths in US men over the age of 50. Several genetic factors have been proposed as potential risk factors for the development of prostate cancer, including a viral defense gene called RNASEL. A common genetic variant in this gene, R462Q, was recently implicated in up to 13% of prostate cancer cases. Given the antiviral role of RNASEL, the authors sought to examine if a virus might be present in prostate cancers associated with the R462Q variant. Using a DNA microarray designed to detect all known viral families, the authors identified a novel virus, named XMRV, in a subset of prostate tumor samples. Polymerase chain reaction testing of 86 prostate tumors for the presence of XMRV revealed a strong association between the presence of the virus and being homozygous for the R462Q variant. Cloning and sequencing of the virus showed that XMRV is a close relative of several known xenotropic murine leukemia viruses. This report presents the first documented cases of human infection with a xenotropic retrovirus. Future work will address the potential connection between XMRV infection and the increased prostate cancer risk in patients with the R462Q RNASEL variant.
Collapse
Affiliation(s)
- Anatoly Urisman
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Ross J Molinaro
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Nicole Fischer
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah J Plummer
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Graham Casey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eric A Klein
- Glickman Urological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Krishnamurthy Malathi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Cristina Magi-Galluzzi
- Anatomic and Clinical Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Raymond R Tubbs
- Anatomic and Clinical Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Don Ganem
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail: (JLD); (RHS)
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (JLD); (RHS)
| |
Collapse
|
14
|
Sugahara D, Tsuji-Kawahara S, Miyazawa M. Identification of a protective CD4+ T-cell epitope in p15gag of Friend murine leukemia virus and role of the MA protein targeting the plasma membrane in immunogenicity. J Virol 2004; 78:6322-34. [PMID: 15163726 PMCID: PMC416509 DOI: 10.1128/jvi.78.12.6322-6334.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated an essential role of Gag-specific CD4+ T-cell responses for viral control in individuals infected with human immunodeficiency virus type 1. However, little is known about epitope specificities and functional roles of the Gag-specific helper T-cell responses in terms of vaccine-induced protection against a pathogenic retroviral challenge. We have previously demonstrated that immunization with Friend murine leukemia virus (F-MuLV) Gag proteins protects mice against the fatal Friend retrovirus (FV) infection. We report here the structure of a protective T helper cell (Th) epitope, (I)VTWEAIAVDPPP, identified in the p15 (MA) region of F-MuLV Gag. In mice immunized with the Th epitope-harboring peptide or a vaccinia virus-expressed native full-length MA protein, FV-induced early splenomegaly regressed rapidly. In these mice, FV-infected cells were eliminated within 4 weeks and the production of virus-neutralizing antibodies was induced rapidly after FV challenge, resulting in strong protection against the virus infection. Interestingly, mice immunized with the whole MA mounted strong CD4+ T-cell responses to the identified Th epitope, whereas mice immunized with mutant MA proteins that were not bound to the plasma membrane failed to mount efficient CD4+ T-cell responses, despite the presence of the Th epitope. These mutant MA proteins also failed to induce strong protection against FV challenge. These data indicate the importance of the properly processible MA molecule for CD4+ T-cell priming and for the resultant induction of an effective immune response against retrovirus infections.
Collapse
Affiliation(s)
- Daisuke Sugahara
- Department of Immunology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | |
Collapse
|
15
|
Traister RS, Lynch WP. Reexamination of amphotropic murine leukemia virus neurovirulence: neural stem cell-mediated microglial infection fails to induce acute neurodegeneration. Virology 2002; 293:262-72. [PMID: 11886246 DOI: 10.1006/viro.2001.1299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 4070A amphotropic murine leukemia virus (A-MuLV) has been variably reported to harbor neurovirulence determinants within its env gene. In this report we reexamined this issue by applying two approaches previously demonstrated to amplify murine leukemia virus neurovirulence. The first approach involved introducing the 4070A env gene into the background of Friend virus clone FB29 to enhance peripheral virus replication kinetics and central nervous system entry. The resulting chimeric virus, FrAmE, exhibited widespread vascular infection throughout the central nervous system (CNS); however, parenchymal infection was quite limited. Neither clinical neurological signs nor spongiform neurological changes accompanied FrAmE CNS infection. To overcome this CNS entry limitation, 4070A and FrAmE were delivered directly into the CNS via transplantation of infected C17.2 neural stem cells (NSCs). Significantly, NSC dissemination of either 4070A or FrAmE resulted in widespread, high-level amphotropic virus expression within the CNS parenchyma, including the infection of microglia, the critical target required for inducing neurodegeneration. Despite the extensive CNS infection, no associated clinical neurological signs or acute neuropathological changes were observed. Interestingly, we observed the frequent appearance of circulating polytropic (MCF) virus in the serum of amphotropic virus-infected animals. However, neither peripheral inoculation of an amphotropic/MCF virus mixture nor transplantation of NSCs expressing both amphotropic and MCF viruses induced acute clinical neurological signs or spongiform neuropathology. Thus, the results generated in this study suggest that the 4070A env gene is not inherently neurovirulent. However, the frequent appearance of endogenous MCF viruses suggests the possibility that the interactions of amphotropic viruses with endogenous retroviral elements could contribute to the development of retrovirus-induced neurodegenerative disease.
Collapse
Affiliation(s)
- Russell S Traister
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
16
|
Iwashiro M, Peterson K, Messer RJ, Stromnes IM, Hasenkrug KJ. CD4(+) T cells and gamma interferon in the long-term control of persistent friend retrovirus infection. J Virol 2001; 75:52-60. [PMID: 11119573 PMCID: PMC113897 DOI: 10.1128/jvi.75.1.52-60.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have used the Friend virus model to determine the basic mechanisms by which the immune system can control persistent retroviral infections. Previously we showed that CD4(+) T cells play an essential role in keeping persistent retrovirus in check. The present in vitro experiments with a Friend virus-specific CD4(+) T-cell clone revealed that these cells produce gamma interferon (IFN-gamma), which acts with two distinct mechanisms of antiviral activity. First, IFN-gamma had a direct inhibitory effect on virus production. This inhibitory effect was noncytolytic and, interestingly, was not associated with decreased cell surface expression of viral antigens. The second mechanism of IFN-gamma-mediated antiviral activity was an enhancement of CD4(+) T-cell-mediated cytolytic activity. We also found an in vivo role for IFN-gamma in the control of persistent Friend virus infections. Neutralization of IFN-gamma in persistently infected mice resulted in significantly increased levels of virus in the spleen, and a significant percentage of IFN-gamma-deficient mice were unable to maintain long-term control over Friend virus infections.
Collapse
Affiliation(s)
- M Iwashiro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
17
|
Tanaka A, Saida K, Andoh M, Maeda K, Kai K. At least four non-env factors that reside in the LTR, in the 5'-non-coding region, in gag and in part of pol affect neuropathogenicity of PVC-441 murine leukemia virus (MuLV). Virus Res 2000; 69:17-30. [PMID: 10989182 DOI: 10.1016/s0168-1702(00)00166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PVC-441 murine leukemia virus (MuLV) is neuropathogenic in F344 rats. Recently, an infectious DNA clone was isolated and its nucleotide sequence was determined (J. Virol. 72: 3423-3426. 1998). To identify the viral determinants of neuropathogenicity of the molecularly cloned PVC-441 MuLV, chimeras were constructed between PVC-441 MuLV and F-MuLV clones at appropriate restriction enzyme sites that divide the viral genome approximately in LTR-non-coding, gag-, pol-, and env-gene regions. Results indicated that the LTR-non-coding and the gag-gene regions of PVC-441 MuLV affected independently the neuropathogenicity in combination with the env gene region as evidenced clinically and pathologically. Studies on the distribution of vacuolar degeneration suggested that the pons and cervical spinal cord areas were the primary targets and the large brain was the latest target of PVC-441 MuLV. Further studies with chimeric viruses that were formed in the LTR-non-coding and the gag gene regions revealed that at least four factors affected the neuropathogenicity of PVC-441 MuLV. Two factors were found in the U3, and R-U5-5'-non-coding regions, and at least two factors in the gag gene region that contained the N-terminal part of the pol gene. Among these factors, at least two factors seemed to be 'cis-acting' from each other
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Sequence
- Animals
- Base Sequence
- Chimera/genetics
- DNA, Viral/genetics
- Female
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Genes, Viral
- Genes, env
- Genes, gag
- Genes, pol
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/etiology
- Male
- Mice
- Molecular Sequence Data
- Nervous System Diseases/etiology
- Rats
- Rats, Inbred F344
- Retroviridae Infections/etiology
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences
- Tumor Virus Infections/etiology
- Virulence/genetics
Collapse
Affiliation(s)
- A Tanaka
- Department of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | |
Collapse
|
18
|
Jung YT, Kozak CA. A single amino acid change in the murine leukemia virus capsid gene responsible for the Fv1(nr) phenotype. J Virol 2000; 74:5385-7. [PMID: 10799620 PMCID: PMC110898 DOI: 10.1128/jvi.74.11.5385-5387.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nr allele at the mouse Fv1 restriction locus governs resistance to B-tropic and some N-tropic murine leukemia viruses (MLVs). Sequence analysis and site-specific mutagenesis of N-tropic MLVs identified a single amino acid difference responsible for this restriction that is distinct from the site that governs N or B tropism. Viruses with other substitutions at this site were evaluated for altered replication patterns.
Collapse
Affiliation(s)
- Y T Jung
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | |
Collapse
|
19
|
Poulsen DJ, Favara C, Snyder EY, Portis J, Chesebro B. Increased neurovirulence of polytropic mouse retroviruses delivered by inoculation of brain with infected neural stem cells. Virology 1999; 263:23-9. [PMID: 10544079 DOI: 10.1006/viro.1999.9917] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following intraperitoneal (IP) inoculation of neonatal mice, the polytropic recombinant murine leukemia virus (MuLV), Fr98, induces a severe brain disease characterized by ataxia, seizures and death. In contrast, no apparent clinical neurological disease is seen after IP infection with Fr54, a polytropic MuLV differing from Fr98 in its envelope gene sequences. In the brain both Fr98 and Fr54 infect primarily capillary endothelial cells and microglia. However, the level of microglial infection by Fr98 is twofold higher than by Fr54, which might account for the difference in neurovirulence. In the present study, in order to test directly whether an increase in the number of microglia infected by Fr54 would be sufficient to induce clinical disease, we attempted to increase the level of Fr54 in the brain by changing the route of infection. After intraventricular inoculation with Fr54-infected neural stem cells (clone C17.2), a well-established vehicle for delivery of viruses and genes to the brain, mice became ataxic and died 4 weeks postinfection. In these mice induction of brain disease was correlated with a higher level of viral antigen in the cerebrum and an increase in the number of infected microglial cells in all brain regions examined compared with mice inoculated IP. In contrast, mice inoculated with neural stem cells infected with an ecotropic nonneurovirulent murine leukemia virus, FB29, developed no clinical disease in spite of evidence for widespread infection of microglia in brain. Since the main differences between Fr54 and FB29 are in the SU (gp70) region of the envelope gene, this region is most likely to account for the differences in induction of CNS disease seen in the current experiments.
Collapse
Affiliation(s)
- D J Poulsen
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
20
|
Laassri M, Gul'ko L, Vinokurova S, Kisseljova N, Veiko V, Kisseljov F. Cloning of E6 and E7 genes of human papilloma virus type 18 and transformation potential of E7 gene and its mutants. Virus Genes 1999; 18:139-49. [PMID: 10403700 DOI: 10.1023/a:1008020719309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
E6 and E7 genes of human papilloma virus type 18 have been subcloned from plasmid pC7, carrying an insert of DNA from squamous cell carcinoma of cervix. Both genes in comparison to prototype variant contain one mutation that changes asparagine to leucine. In the case of E6 gene this mutation is mapped in codon 129, in the case of E7 the same change AAC to AAA mapped in codon 92. In addition both genes contain few point mutations that do not change the aminoacid sequences of the protein. Two mutants of E7 gene have been constructed by site directed mutagenesis based on PCR technology-one in codon 10 (change Asp to Asn) and one in codon 24 (change Asp to Gly). The first type of mutation did not influence the transformation potential of the E7 gene in comparison to the parental one with mutation in codon 92. The mutation in codon 24 (region responsible for the interaction with Rb protein) eliminate the transformation potential of the gene. The cells transformed with E7 mutants in codons 10 and 92 were tumorigenic for syngenic rats.
Collapse
Affiliation(s)
- M Laassri
- Institute of Carcinogenesis, Cancer Research Center, Moscow State Research Institute of Genetics and Selection of Microorganisms
| | | | | | | | | | | |
Collapse
|
21
|
Braun S, Jenny C, Thioudellet C, Perraud F, Claudepierre MC, Längle-Rouault F, Ali-Hadji D, Schughart K, Pavirani A. In vitro and in vivo effects of glucocorticoids on gene transfer to skeletal muscle. FEBS Lett 1999; 454:277-82. [PMID: 10431822 DOI: 10.1016/s0014-5793(99)00818-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As a pharmacological approach to potentially improve gene transfer efficiency into skeletal muscle cells, glucocorticoids were shown here to allow efficient transfection of cultured and mouse human myoblasts, human pulmonary A549 cells, but not dog myoblasts, independently of the transfection protocol, the reporter gene and the transcription promoter employed. Transduction with adenovirus was also increased by dexamethasone. Pretreatment of cells 48 h prior to transfection was most effective and was shown to be concentration-dependent. This effect is mediated by binding to the glucocorticoid receptor, but not by glucocorticoid responsive elements present in the vectors. The acute dexamethasone effect could be due to increased plasmid entry into the cells as suggested by Southern blot, whereas the sustained increase of luciferase activity in dexamethasone-treated cultures may be related to intracellular mechanisms following cell entry. In mice in vivo, a similar increase of luciferase activity upon glucocorticoid treatment was found.
Collapse
Affiliation(s)
- S Braun
- Transgène S.A., Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The complete nucleotide sequence of the genome of Solid-type Reticulum cell Sarcoma 19-6 murine leukemia virus (SRS 19-6 MuLV) was determined. This virus was isolated in mainland China from laboratory mice that had been separated from western mice since the 1930s. The genome is 8,256 nucleotides in length and exhibits a genetic organization characteristic of replication competent MuLVs. Phylogenies constructed from reverse transcriptase (RT) domains showed that SRS 19-6 MuLV is closely related to other MuLV-related retroviruses; however, it has clearly diverged from previously isolated MuLVs. Comparative sequence analysis of the env sequences indicated that SRS 19-6 MuLV encodes a surface (SU) glycoprotein that is related to other ecotropic MuLVs in the VR-A and VR-B variable regions. However, SRS 19-6 MuLV env glycoprotein was distinct from all other MuLVs (ecotropic and non-ecotropic) in the proline-rich hypervariable region. No evidence for recombination with endogenous MuLV env sequences in generation of SRS 19-6 MuLV was observed. Comparisons of long terminal repeat (LTR) sequences revealed that the GV 1.4 molecular clone of Graffi MuLV contained 96% sequence identity to SRS 19-6 MuLV's LTR with 99% identity when comparisons were restricted to the U3 regions of the two viruses. The consensus enhancer binding motifs contained in the U3 regions of the two viruses were nearly identical. Nevertheless the two viruses have previously been shown to induce distinct patterns of disease. Comparisons between 196 and Graffi GV1.4 MuLVs may provide insights into the mechanisms of disease specificity induced by MuLVs.
Collapse
Affiliation(s)
- L M Bundy
- Department of Molecular Biology and Biochemistry, University of California at Irvine 92697, USA
| | | |
Collapse
|
23
|
Tomonaga K, Coffin JM. Structures of endogenous nonecotropic murine leukemia virus (MLV) long terminal repeats in wild mice: implication for evolution of MLVs. J Virol 1999; 73:4327-40. [PMID: 10196331 PMCID: PMC104214 DOI: 10.1128/jvi.73.5.4327-4340.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To develop a better understanding of the interaction between retroviruses and their hosts, we have investigated the polymorphism in endogenous murine leukemia proviruses (MLVs). We used genomic libraries of wild mouse DNAs and PCR to analyze genetic variation in the proviruses found in wild mouse species, including Mus musculus (M. m. castaneus, M. m. musculus, M. m. molossinus, and M. m. domesticus), Mus spretus, and Mus spicelegus, as well as some inbred laboratory strains. In this analysis, we detected several unique forms of sequence organization in the U3 regions of the long terminal repeats of these proviruses. The distribution of the proviruses with unique U3 structures demonstrated that xenotropic MLV-related proviruses were present only in M. musculus subspecies, while polytropic MLV-related proviruses were found in both M. musculus and M. spretus. Furthermore, one unique provirus from M. spicelegus was found to be equidistant from ecotropic provirus and nonecotropic provirus by phylogenetic analysis. This provirus, termed HEMV, was thus likely to be related to the common ancestor of these MLVs. Moreover, an ancestral type of polytropic MLV-related provirus was detected in M. spretus species. Despite their "ancestral" phylogenetic position, proviruses of these types are not widespread in mice, implying more-recent spread by infection rather than inheritance. These results imply that recent evolution of these proviruses involved alternating periods of replication as virus and residence in the germ line.
Collapse
Affiliation(s)
- K Tomonaga
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
24
|
Khimani AH, Lim M, Graf TG, Smith TF, Ruprecht RM. Phylogenetic relationship of the complete Rauscher murine leukemia virus genome with other murine leukemia virus genomes. Virology 1997; 238:64-7. [PMID: 9375009 DOI: 10.1006/viro.1997.8814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report the complete nucleotide sequence of the genome of Rauscher murine leukemia virus (R-MuLV), the replication-competent helper virus present in the Rauscher virus complex, and its phylogenetic relationship with other murine leukemia virus genomes. An overall sequence identity of 97.6% was found between R-MuLV and the Friend helper virus (F-MuLV), and the two viruses were closely related on the phylogenetic trees constructed from either gag, pol, or env sequences. Moloney murine leukemia virus (Mo-MuLV) was the next closest relative to R-MuLV and F-MuLV on all trees, followed by Akv and radiation leukemia virus (RadLV). The most distantly related helper virus was Hortulanus murine leukemia virus (Ho-MuLV). Interestingly, Cas-Br-E branched with Mo-MuLV on the gag and pol trees, whereas on the env tree, it revealed the highest degree of relatedness to Ho-MuLV, possibly due to an ancient recombination with an Ho-MuLV ancestor. In summary, a phylogenetic analysis involving various MuLVs has been performed, in which the postulated close relationship between R-MuLV and F-MuLV has been confirmed, consistent with the pathobiology of the two viruses.
Collapse
Affiliation(s)
- A H Khimani
- Laboratory of Viral Pathogenesis, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
25
|
Lavignon M, Richardson J, Evans LH. A small region of the ecotropic murine leukemia virus (MuLV) gag gene profoundly influences the types of polytropic MuLVs generated in mice. J Virol 1997; 71:8923-7. [PMID: 9343260 PMCID: PMC192366 DOI: 10.1128/jvi.71.11.8923-8927.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vast majority of recombinant polytropic murine leukemia viruses (MuLVs) generated in mice after infection by ecotropic MuLVs can be classified into two major antigenic groups based on their reactivities to two monoclonal antibodies (MAbs) termed Hy 7 and 516. These groups very likely correspond to viruses formed by recombination of the ecotropic MuLV with two distinct sets of polytropic env genes present in the genomes of inbred mouse strains. We have found that nearly all polytropic MuLVs identified in mice infected with a substrain of Friend MuLV (F-MuLV57) are reactive with Hy 7, whereas mice infected with Moloney MuLV (Mo-MuLV) generate major populations of both Hy 7- and 516-reactive polytropic MuLVs. We examined polytropic MuLVs generated in NFS/N mice after inoculation with Mo-MuLV-F-MuLV57 chimeras to determine which regions of the viral genome influence this difference between the two ecotropic MuLVs. These studies identified a region of the MuLV genome which encodes the nucleocapsid protein and a portion of the viral protease as the only region that influenced the difference in polytropic-MuLV generation by Mo-MuLV and F-MuLV57.
Collapse
Affiliation(s)
- M Lavignon
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
26
|
Lodge R, Delamarre L, Lalonde JP, Alvarado J, Sanders DA, Dokhélar MC, Cohen EA, Lemay G. Two distinct oncornaviruses harbor an intracytoplasmic tyrosine-based basolateral targeting signal in their viral envelope glycoprotein. J Virol 1997; 71:5696-702. [PMID: 9188652 PMCID: PMC191820 DOI: 10.1128/jvi.71.7.5696-5702.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has been clearly established that the budding of the human immunodeficiency virus (HIV-1), a lentivirus, occurs specifically through the basolateral membrane in polarized epithelial cells. More recently, the signal was assigned to a tyrosine-based motif located in the intracytoplasmic domain of the envelope glycoprotein, as previously observed on various other viral and cellular basolateral proteins. In the present study, expression of human T-cell leukemia virus type 1 (HTLV-1) or Moloney murine leukemia virus envelope glycoproteins was used for trans-complementation of an envelope-negative HIV-1. This demonstrated the potential of oncornaviral retrovirus envelope glycoproteins to confer polarized basolateral budding in epithelial Madin-Darby canine kidney cells (MDCK cells). Site-directed mutagenesis confirmed the importance of a common motif encompassing at least one crucial membrane-proximal intracytoplasmic tyrosine residue. The conservation of a similar basolateral maturation signal in different retroviruses further supports its importance in the biology of this group of viruses.
Collapse
Affiliation(s)
- R Lodge
- Département de Microbiologie et Immunologie, Université de Montréal,Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Masuda M, Masuda M, Hanson CA, Hoffman PM, Ruscetti SK. Analysis of the unique hamster cell tropism of ecotropic murine leukemia virus PVC-211. J Virol 1996; 70:8534-9. [PMID: 8970977 PMCID: PMC190945 DOI: 10.1128/jvi.70.12.8534-8539.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PVC-211 murine leukemia virus (MuLV) is a neuropathogenic variant of Friend MuLV (F-MuLV). Previous studies from our laboratory demonstrated that unlike the parental F-MuLV, PVC-211 MuLV can infect rat brain capillary endothelial cells efficiently and that it has acquired genetic changes responsible for its expanded cellular tropism. To determine if PVC-211 MuLV also has expanded its host range, we tested its infectivity on Chinese hamster ovary-derived CHO-K1 cells, which are generally resistant to ecotropic MuLV. The results indicated that PVC-211 MuLV, but not F-MuLV, was highly infectious for CHO-K1 cells. Studies using glycosylation inhibitors and glycosylation mutants of CHO-K1 cells, as well as interference studies, suggested that PVC-211 MuLV has acquired the ability to interact with the ecotropic MuLV receptor on CHO-K1 cells that has undergone glycosylation-dependent modification. Using chimeric viruses between PVC-211 MuLV and F-MuLV, we were able to localize the viral genetic element crucial for CHO-K1 cell tropism within the env gene of PVC-211 MuLV and show that glycine at position 116 and lysine at position 129 of the envelope glycoprotein SU were important. These viral determinants also appear to confer tropism for other hamster cells resistant to ordinary ecotropic MuLVs. Further studies on the interaction between PVC-211 MuLV and the receptor on hamster cells may provide novel insights into the molecular mechanisms for receptor recognition and binding by viral envelope glycoproteins.
Collapse
Affiliation(s)
- M Masuda
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | |
Collapse
|
28
|
Cosset FL, Takeuchi Y, Battini JL, Weiss RA, Collins MK. High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995; 69:7430-6. [PMID: 7494248 PMCID: PMC189680 DOI: 10.1128/jvi.69.12.7430-7436.1995] [Citation(s) in RCA: 561] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Novel retroviral protein expression constructs were designed to retain minimal retroviral sequences and to express dominant selectable markers by reinitiation of translation after expression of the viral genes. HT1080 cells were selected as producer cells for their ability to release high-titer viruses that are resistant to inactivation by human serum. Two HT1080-based packaging cell lines which produce Moloney murine leukemia virus cores with envelope glycoproteins of either amphotropic murine leukemia virus (FLYA13 line) or cat endogenous virus RD114 (FLYRD18 line) are described. Direct comparison with previous retroviral packaging systems indicated that 100-fold-higher titers of helper-free recombinant viruses were released by the FLYA13 and FLYRD18 lines.
Collapse
Affiliation(s)
- F L Cosset
- Chester Beatty Laboratory, Institute of Cancer Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Kondo T, Uenishi H, Shimizu T, Hirama T, Iwashiro M, Kuribayashi K, Tamamura H, Fujii N, Fujisawa R, Miyazawa M. A single retroviral gag precursor signal peptide recognized by FBL-3 tumor-specific cytotoxic T lymphocytes. J Virol 1995; 69:6735-41. [PMID: 7474084 PMCID: PMC189584 DOI: 10.1128/jvi.69.11.6735-6741.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several dominant T-cell receptors of cytotoxic T-lymphocyte (CTL) clones specific for FBL-3 tumor antigen were clonally amplified in mixed lymphocyte tumor cell cultures derived from an individual immune mouse. Every CTL clone analyzed had a common specificity for a single epitope in the precursor to cell membrane-associated nonstructural gag-encoded protein, Pr75gag, which can be minimally identified by nine amino acid residues, SIVLCCLCL. This epitope is located within the hydrophobic signal sequence motif that mediates translocation of the protein into the endoplasmic reticulum. These novel observations suggest that expression of Pr75gag in FBL-3 tumor cells led to the amplification of CTLs which recognize the signal sequence of the nonstructural gag-encoded glycoprotein precursor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Clone Cells
- Cloning, Molecular
- DNA Primers
- Endoplasmic Reticulum/immunology
- Endoplasmic Reticulum/metabolism
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/immunology
- Gene Products, gag/biosynthesis
- Gene Products, gag/immunology
- Genes, gag
- Leukemia, Erythroblastic, Acute/immunology
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- Polymerase Chain Reaction
- Protein Precursors/immunology
- Protein Sorting Signals/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
- T Kondo
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Czub M, McAtee FJ, Czub S, Lynch WP, Portis JL. Prevention of retrovirus-induced neurological disease by infection with a nonneuropathogenic retrovirus. Virology 1995; 206:372-80. [PMID: 7831792 DOI: 10.1016/s0042-6822(95)80052-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Perinatal infection of susceptible mice with the neurotropic retrovirus CasBrE leads to a noninflammatory spongiform degeneration of the central nervous system with a long incubation period of up to 1 year. Virus replication in infected animals can be suppressed by administration of antiviral antibodies, cytotoxic T cells, or by AZT treatment, which results in partial to complete protection from neurological disease. A highly neuropathogenic chimeric retrovirus, FrCasE, which contains the envelope gene of CasBrE, induces rapid neurodegeneration within only 16 days. Here we report that this fatal disease could be prevented if a nonneuropathogenic Friend murine leukemia virus was administered to mice prior to their infection with FrCasE. This double inoculation led to a substantial reduction of the replication level of FrCasE in spleen and CNS. Only live but not heat-inactivated nonneuropathogenic virus was able to protect from FrCasE-induced neurological disease. The extent of protection was influenced by the viral envelope gene and the kinetics of replication of the nonneuropathogenic virus. These observations in addition to the rapidity of the effect make it likely that competition for replication sites through the mechanism of viral interference is responsible for the protection. Resistance was demonstrable in vivo even when the "protecting" and "challenge" virus belonged to different in vitro interference groups. However, the protection was considerably weaker than that seen between viruses belonging to the same interference group.
Collapse
Affiliation(s)
- M Czub
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | | | | | | | | |
Collapse
|
31
|
Park BH, Matuschke B, Lavi E, Gaulton GN. A point mutation in the env gene of a murine leukemia virus induces syncytium formation and neurologic disease. J Virol 1994; 68:7516-24. [PMID: 7933135 PMCID: PMC237194 DOI: 10.1128/jvi.68.11.7516-7524.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
TR1.3 is a Friend-related murine leukemia virus that has been shown to cause intracerebral hemorrhages and neurologic disease due to infection and subsequent cytopathology of cerebral vessel endothelium. A striking feature of this pathology is the formation of endothelial cell syncytia. The pathogenesis of this disease has now been mapped to a single amino acid substitution of tryptophan to glycine in the variable region of the envelope protein. This same mutation enabled TR1.3 to form syncytia and retard cell proliferation in vitro in the SC-1 mouse embryoblast line but did not affect the pH dependence of viral entry. These results demonstrate that subtle molecular changes in retroviral env genes can induce both syncytium formation and overt clinical disease.
Collapse
Affiliation(s)
- B H Park
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
32
|
Dai HY, Faxvaag A, Troseth GI, Aarset H, Dalen A. Molecular cloning and characterization of an immunosuppressive and weakly oncogenic variant of Friend murine leukemia virus, FIS-2. J Virol 1994; 68:6976-84. [PMID: 7933079 PMCID: PMC237134 DOI: 10.1128/jvi.68.11.6976-6984.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The FIS variant is a weakly leukemogenic, relatively strong immunosuppressive murine retrovirus which was isolated from the T helper cells of adult NMRI mice infected with Friend murine leukemia virus (F-MuLV) complex (FV). Unlike FV, it does not induce acute erythroleukemia but retains the immunosuppressive property of FV and induces suppression of the primary antibody response rapidly and persistently in adult mice. A previous study showed that the FIS variant contains two viral components, a replication-competent virus and a defective virus. In this study, we have biologically purified the FIS variant by end point dilution and we show that the replication-competent virus FIS-2 alone can induce immunosuppression as the parental FIS variant. Most newborn mice infected with FIS-2 developed erythroleukemia, but with an increased latency period compared with that of F-MuLV clone 57. In contrast, FIS-2 induced suppression of the primary antibody response and disease more rapidly than F-MuLV clone 57 in immunocompetent, adult mice. FIS-2 was further molecularly cloned and characterized. Restriction mapping and nucleotide sequence analysis of FIS-2 showed a high degree of homology between FIS-2 and F-MuLV clone 57, suggesting that FIS-2 is a variant of F-MuLV. The striking difference is the deletion of one of the tandem repeats in the FIS-2 long terminal repeat and the single point mutation in the binding sites for core-binding protein and FVa compared with the long terminal repeat of F-MuLV clone 57. Two single point mutations led to the appearance of two extra potential N glycosylation sites in the FIS-2 gag-encoded glycoprotein. Together, the results suggest that FIS-2 represents an interesting murine model to study retrovirus-induced immunosuppression on the basis of its unique combined property of low leukemogenicity and relatively strong and persistent immunosuppressive activity in adult mice.
Collapse
Affiliation(s)
- H Y Dai
- Unigen Center for Molecular Biology, University of Trondheim, Norway
| | | | | | | | | |
Collapse
|
33
|
Portis JL, Spangrude GJ, McAtee FJ. Identification of a sequence in the unique 5' open reading frame of the gene encoding glycosylated Gag which influences the incubation period of neurodegenerative disease induced by a murine retrovirus. J Virol 1994; 68:3879-87. [PMID: 8189525 PMCID: PMC236893 DOI: 10.1128/jvi.68.6.3879-3887.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neonatal inoculation of the wild-mouse ecotropic retrovirus CasBrE (clone 15-1) causes a noninflammatory spongiform neurodegenerative disease with an incubation period of > or = 6 months. Introduction of sequences from Friend murine leukemia virus (clone FB29) into the genome of CasBrE results in a marked shortening of the incubation period. The FB29 sequences which influence the incubation period were previously localized to the 5' leader sequence of the viral genome (M. Czub, F. J. McAtee, and J. L. Portis, J. Virol. 66:3298-3305, 1992). In the current study, we constructed a series of chimeric viruses consisting of the genome of CasBrE containing various segments of the leader sequence from FB29. A 41-nucleotide element (positions 481 through 521) near the 3' end of the leader was found to have a strong influence on the incubation period. This element influenced the kinetics of virus replication and/or spread in nonneuronal tissues, a property which was shown previously to determine the extent of central nervous system infection (M. Czub, F. J. McAtee, and J. L. Portis, J. Virol. 66:3298-3305, 1992). Curiously, this sequence had no demonstrable effect on virus replication in vitro in a fibroblastic cell line from Mus dunni. This segment encodes 14 of the unique 88-amino-acid N terminus of pr75gag, the precursor of a glycosylated form of the gag polyprotein which is expressed at the cell surface. Previous in vitro studies of mutants of Moloney murine leukemia virus lacking expression of glycosylated Gag failed to reveal a function for this protein in virus replication. We mutated the Kozak consensus sequence around the initiation codon for this protein in the chimeric virus CasFrKP, a virus which induces neurologic disease with a short (18- to 23-day) incubation period. M. dunni cells infected with the mutants lacked detectable cell surface Gag, but, compared with CasFrKP, no effect on replication kinetics in vitro was observed. In contrast, there was a marked slowing of the replication kinetics in vivo and a dramatic attenuation of neurovirulence. These studies indicate that glycosylated Gag has an important function in virus replication and/or spread in the mouse and further suggest that the sequence of its N terminus is a critical, though likely indirect, determinant of neurovirulence.
Collapse
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | | | | |
Collapse
|
34
|
Masuda M, Hoffman PM, Ruscetti SK. Viral determinants that control the neuropathogenicity of PVC-211 murine leukemia virus in vivo determine brain capillary endothelial cell tropism of the virus in vitro. J Virol 1993; 67:4580-7. [PMID: 8392599 PMCID: PMC237842 DOI: 10.1128/jvi.67.8.4580-4587.1993] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PVC-211 murine leukemia virus (MuLV) is a neuropathogenic, weakly leukemogenic variant of the nonneuropathogenic, highly leukemogenic Friend MuLV (F-MuLV). Chimeric viruses constructed from PVC-211 MuLV clone 3d and F-MuLV clone 57 indicate that the env gene of PVC-211 MuLV contains the determinant(s) responsible for pathological changes in the central nervous system. However, sequences within the 5' one-third (AatII-EcoRI region) of the PVC-211 MuLV genome, which include the 5' leader sequence, the gag gene, and the 5' quarter of the pol gene, are also needed in conjunction with the env gene determinant(s) to cause clinically evident neurological disease in the majority of virus-infected animals after a short latency. In the presence of the AatII-EcoRI region of the PVC-211 MuLV genome, the PVC-211 MuLV env gene sequences encoding the amino-terminal half of the SU protein, which contains the receptor-binding region of the protein, were sufficient to cause rapidly progressive neurological disease. When PVC-211 MuLV, F-MuLV, and various chimeric viruses were tested for their ability to replicate in cultured brain capillary endothelial cells (BCEC), the primary site of PVC-211 MuLV replication within the central nervous system, there was a direct correlation between the replication efficiency of a virus in BCEC in vitro and its ability to cause neurological disease in vivo. This observation indicates that the sequences in PVC-211 MuLV that render it neuropathogenic affect its replication in BCEC and suggests that rapid and efficient replication of the virus in BCEC is crucial for the pathological changes in the central nervous system that result in development of neurological disease.
Collapse
Affiliation(s)
- M Masuda
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21702-1201
| | | | | |
Collapse
|
35
|
Mukhopadhyaya R, Wolff L. New sites of proviral integration associated with murine promonocytic leukemias and evidence for alternate modes of c-myb activation. J Virol 1992; 66:6035-44. [PMID: 1527851 PMCID: PMC241481 DOI: 10.1128/jvi.66.10.6035-6044.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Murine promonocytic leukemias involving insertional mutagenesis of the c-myb locus can be induced by replication-competent retroviruses. In previously studied promonocytic leukemic cells induced by Moloney murine leukemia virus (called MML), the provirus has been invariably integrated upstream of exons 3 or 4 and the leukemic cells expressed aberrant RNAs with fused virus-myb sequences. Furthermore, Myb expressed by these cells has been shown to be truncated by 47 or 71 amino acids. The present report examines the mechanisms of myb activation in leukemias induced by two other retroviruses, amphotropic virus 4070A and Friend strain FB29 (the leukemias are called AMPH-ML and FB-ML, respectively). This study revealed two additional c-myb proviral insertion sites in these promonocytic leukemias. One FB-ML had a proviral integration in exon 9, and expressed a C-terminally truncated Myb protein of 47 kDa similar to that previously demonstrated to be expressed in the myelomonocytic cell lines NFS60 and VFL-2. However, a sequence of reverse-transcribed and amplified RNA from this leukemia demonstrated that the truncation involved a loss of 248 amino acids compared with a loss of 240 amino acids in the myelomonocytic cell lines. Another leukemia had a provirus integrated in the 5' end of c-myb upstream of exon 2 (in the first intron) and produced a Myb protein that was indistinguishable on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from normal Myb. This latter leukemia (FB-ML R1-4-10) expressed Myb with the smallest N-terminal truncation observed so far in promonocytic leukemias; translation begins at an ATG within c-myb exon 2, leading to loss of only 20 amino acids from the N terminus. Unlike the proteins produced in Moloney murine leukemia virus-induced promonocytic leukemias (MML) that have larger truncations, this protein has an intact DNA binding region and does not contain N-terminal amino acids encoded by gag. However, this protein is similar to all N-terminally truncated Mybs so far studied, in that the truncation resulted in deletion of a casein kinase II phosphorylation site which has been proposed to be involved in regulation of DNA binding.
Collapse
Affiliation(s)
- R Mukhopadhyaya
- Laboratory of Genetics, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
36
|
Miyazawa M, Nishio J, Chesebro B. Protection against Friend retrovirus-induced leukemia by recombinant vaccinia viruses expressing the gag gene. J Virol 1992; 66:4497-507. [PMID: 1534853 PMCID: PMC241259 DOI: 10.1128/jvi.66.7.4497-4507.1992] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
High sequence variability in the envelope gene of human immunodeficiency virus has provoked interest in nonenvelope antigens as potential immunogens against retrovirus infection. However, the role of core protein antigens encoded by the gag gene in protective immunity against retroviruses is unclear. By using recombinant vaccinia viruses expressing the Friend murine leukemia helper virus (F-MuLV) gag gene, we could prime CD4+ T-helper cells and protectively immunize susceptible strains of mice against Friend retrovirus infection. Recovery from leukemic splenomegaly developed more slowly after immunization with vaccinia virus-F-MuLV gag than with vaccinia virus-F-MuLV env; however, genetic nonresponders to the envelope protein could be partially protected with Gag vaccines. Class switching of F-MuLV-neutralizing antibodies from immunoglobulin M to immunoglobulin G after challenge with Friend virus complex was facilitated in mice immunized with the Gag antigen. Sequential deletion of the gag gene revealed that the major protective epitope was located on the N-terminal hydrophobic protein p15.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- DNA, Viral
- Female
- Fluorescent Antibody Technique
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/immunology
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genes, gag
- Leukemia, Experimental/immunology
- Leukemia, Experimental/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Neutralization Tests
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- M Miyazawa
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840
| | | | | |
Collapse
|
37
|
Remington MP, Hoffman PM, Ruscetti SK, Masuda M. Complete nucleotide sequence of a neuropathogenic variant of Friend murine leukemia virus PVC-211. Nucleic Acids Res 1992; 20:3249. [PMID: 1620621 PMCID: PMC312465 DOI: 10.1093/nar/20.12.3249] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M P Remington
- Retrovirus Research Center, Veterans Administration Medical Center, Baltimore, MD 21218
| | | | | | | |
Collapse
|
38
|
Masuda M, Remington MP, Hoffman PM, Ruscetti SK. Molecular characterization of a neuropathogenic and nonerythroleukemogenic variant of Friend murine leukemia virus PVC-211. J Virol 1992; 66:2798-806. [PMID: 1560524 PMCID: PMC241036 DOI: 10.1128/jvi.66.5.2798-2806.1992] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PVC-211 murine leukemia virus (MuLV) is a replication-competent, ecotropic type C retrovirus that was isolated after passage of the Friend virus complex through F344 rats. Unlike viruses in the Friend virus complex, it does not cause erythroleukemia but causes a rapidly progressive hind limb paralysis when injected into newborn rats and mice. We have isolated an infectious DNA clone (clone 3d) of this virus which causes neurological disease in animals as efficiently as parental PVC-211 MuLV. The restriction map of clone 3d is very similar to that of the nonneuropathogenic, erythroleukemogenic Friend murine leukemia virus (F-MuLV), suggesting that PVC-211 MuLV is a variant of F-MuLV and that no major structural alteration was involved in its derivation. Studies with chimeric viruses between PVC-211 MuLV clone 3d and wild-type F-MuLV clone 57 indicate that at least one determinant for neuropathogenicity resides in the 2.1-kb XbaI-ClaI fragment containing the gp70 coding region of PVC-211 MuLV. Compared with nonneuropathogenic ecotropic MuLVs, the env gene of PVC-211 MuLV encodes four unique amino acids in the gp70 protein. Nucleotide sequence analysis also revealed a deletion in the U3 region of the long terminal repeat (LTR) of PVC-211 MuLV clone 3d compared with F-MuLV clone 57. In contrast to the env gene of PVC-211 MuLV, particular sequences within the U3 region of the viral LTR do not appear to be required for neuropathogenicity. However, the changes in the LTR of PVC-211 MuLV may be responsible for the failure of this virus to cause erythroleukemia, because chimeric viruses containing the U3 region of F-MuLV clone 57 were erythroleukemogenic whereas those with the U3 of PVC-211 MuLV clone 3d were not.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Base Sequence
- Cloning, Molecular
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Genes, env/genetics
- Genetic Variation
- Genome, Viral
- Hindlimb/pathology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/pathology
- Mice
- Molecular Sequence Data
- Paralysis/etiology
- Protein Processing, Post-Translational
- Rats
- Repetitive Sequences, Nucleic Acid/genetics
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Tumor Cells, Cultured
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- M Masuda
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21702-1201
| | | | | | | |
Collapse
|
39
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:1173-9. [PMID: 1549508 PMCID: PMC312152 DOI: 10.1093/nar/20.5.1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|