1
|
Auman HJ, Fernandes IH, Berríos-Otero CA, Colombo S, Yelon D. Zebrafish smarcc1a mutants reveal requirements for BAF chromatin remodeling complexes in distinguishing the atrioventricular canal from the cardiac chambers. Dev Dyn 2024; 253:157-172. [PMID: 37083132 PMCID: PMC10589389 DOI: 10.1002/dvdy.595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/13/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Essential patterning processes transform the heart tube into a compartmentalized organ with distinct chambers separated by an atrioventricular canal (AVC). This transition involves the refinement of expression of genes that are first found broadly throughout the heart tube and then become restricted to the AVC. Despite the importance of cardiac patterning, we do not fully understand the mechanisms that limit gene expression to the AVC. RESULTS We show that the zebrafish gene smarcc1a, encoding a BAF chromatin remodeling complex subunit homologous to mammalian BAF155, is critical for cardiac patterning. In smarcc1a mutants, myocardial differentiation and heart tube assembly appear to proceed normally. Subsequently, the smarcc1a mutant heart fails to exhibit refinement of gene expression patterns to the AVC, and the persistence of broad gene expression is accompanied by failure of chamber expansion. In addition to their cardiac defects, smarcc1a mutants lack pectoral fins, indicating similarity to tbx5a mutants. However, comparison of smarcc1a and tbx5a mutants suggests that perturbation of tbx5a function is not sufficient to cause the smarcc1a mutant phenotype. CONCLUSIONS Our data indicate an important role for Smarcc1a-containing chromatin remodeling complexes in regulating the changes in gene expression and morphology that distinguish the AVC from the cardiac chambers.
Collapse
Affiliation(s)
- Heidi J. Auman
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Ivy H. Fernandes
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Sophie Colombo
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Deborah Yelon
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Rahayu AF, Hayashi A, Yoshimura Y, Nakagawa R, Arita K, Nakayama JI. Cooperative DNA-binding activities of Chp2 are critical for its function in heterochromatin assembly. J Biochem 2023; 174:371-382. [PMID: 37400983 DOI: 10.1093/jb/mvad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Heterochromatin protein 1 (HP1) is an evolutionarily conserved protein that plays a critical role in heterochromatin assembly. HP1 proteins share a basic structure consisting of an N-terminal chromodomain (CD) and a C-terminal chromoshadow domain (CSD) linked by a disordered hinge region. The CD recognizes histone H3 lysine 9 methylation, a hallmark of heterochromatin, while the CSD forms a dimer to recruit other chromosomal proteins. HP1 proteins have been shown to bind DNA or RNA primarily through the hinge region. However, how DNA or RNA binding contributes to their function remains elusive. Here, we focus on Chp2, one of the two HP1 proteins in fission yeast, and investigate how Chp2's DNA-binding ability contributes to its function. Similar to other HP1 proteins, the Chp2 hinge exhibits clear DNA-binding activity. Interestingly, the Chp2 CSD also shows robust DNA-binding activity. Mutational analysis revealed that basic residues in the Chp2 hinge and at the N-terminus of the CSD are essential for DNA binding, and the combined amino acid substitutions of these residues alter Chp2 stability, impair Chp2 heterochromatin localization and lead to a silencing defect. These results demonstrate that the cooperative DNA-binding activities of Chp2 play an important role in heterochromatin assembly in fission yeast.
Collapse
Affiliation(s)
- Anisa Fitri Rahayu
- Division of Chromatin Regulation, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Aki Hayashi
- Division of Chromatin Regulation, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Yuriko Yoshimura
- Division of Chromatin Regulation, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kyohei Arita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Kanagawa 230-0045, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
3
|
Guidotti N, Eördögh Á, Mivelaz M, Rivera-Fuentes P, Fierz B. Multivalent Peptide Ligands To Probe the Chromocenter Microenvironment in Living Cells. ACS Chem Biol 2022; 18:1066-1075. [PMID: 35447032 DOI: 10.1021/acschembio.2c00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin is spatially organized into functional states that are defined by both the presence of specific histone post-translational modifications (PTMs) and a defined set of chromatin-associated "reader" proteins. Different models for the underlying mechanism of such compartmentalization have been proposed, including liquid-liquid phase separation (LLPS) of chromatin-associated proteins to drive spatial organization. Heterochromatin, characterized by lysine 9 methylation on histone H3 (H3K9me3) and the presence of heterochromatin protein 1 (HP1) as a multivalent reader, represents a prime example of a spatially defined chromatin state. Heterochromatin foci exhibit features of protein condensates driven by LLPS; however, the exact nature of the physicochemical environment within heterochromatin in different cell types is not completely understood. Here we present tools to interrogate the environment of chromatin subcompartments in the form of modular, cell-permeable, multivalent, and fluorescent peptide probes. These probes can be tuned to target specific chromatin states by providing binding sites to reader proteins and can thereby integrate into the PTM-reader interaction network. Here we generate probes specific to HP1, directing them to heterochromatin at chromocenters in mouse fibroblasts. Moreover, we use a polarity-sensing photoactivatable probe that photoconverts to a fluorescent state in phase-separated protein droplets and thereby reports on the local microenvironment. Equipped with this dye, our probes indeed turn fluorescent in murine chromocenters. Image analysis and single-molecule tracking experiments reveal that the compartments are less dense and more dynamic than HP1 condensates obtained in vitro. Our results thus demonstrate that the local organization of heterochromatin in chromocenters is internally more complex than an HP1 condensate.
Collapse
Affiliation(s)
- Nora Guidotti
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ádám Eördögh
- EPFL, SB ISIC LOCBP, Station 6, CH-1015 Lausanne, Switzerland
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Maxime Mivelaz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| | | | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Jeon YH, Kim GW, Kim SY, Yi SA, Yoo J, Kim JY, Lee SW, Kwon SH. Heterochromatin Protein 1: A Multiplayer in Cancer Progression. Cancers (Basel) 2022; 14:cancers14030763. [PMID: 35159030 PMCID: PMC8833910 DOI: 10.3390/cancers14030763] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of epigenetic mechanisms as well as genomic mutations contribute to the initiation and progression of cancer. In addition to histone code writers, including histone lysine methyltransferase (KMT), and histone code erasers, including histone lysine demethylase (KDM), histone code reader proteins such as HP1 are associated with abnormal chromatin regulation in human diseases. Heterochromatin protein 1 (HP1) recognizes histone H3 lysine 9 methylation and broadly affects chromatin biology, such as heterochromatin formation and maintenance, transcriptional regulation, DNA repair, chromatin remodeling, and chromosomal segregation. Molecular functions of HP1 proteins have been extensively studied, although their exact roles in diseases require further study. Here, we comprehensively review the studies that have revealed the altered expression of HP1 and its functions in tumorigenesis. In particular, the distinctive effects of each HP1 subtype, namely HP1α, HP1β, and HP1γ, have been thoroughly explored in various cancer types. We also highlight how HP1 can serve as a potential biomarker for cancer prognosis and therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - So Yeon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Ji Yoon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
- Correspondence: ; Tel.: +82-32-749-4513
| |
Collapse
|
5
|
Staneva DP, Bresson S, Auchynnikava T, Spanos C, Rappsilber J, Jeyaprakash AA, Tollervey D, Matthews KR, Allshire RC. The SPARC complex defines RNAPII promoters in Trypanosoma brucei. eLife 2022; 11:83135. [PMID: 36169304 PMCID: PMC9566855 DOI: 10.7554/elife.83135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here, we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.
Collapse
Affiliation(s)
- Desislava P Staneva
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom,Institute of Immunology and Infection Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Stefan Bresson
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Christos Spanos
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom,Institute of Biotechnology, Technische UniversitätBerlinGermany
| | | | - David Tollervey
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom
| | - Keith R Matthews
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Staneva DP, Carloni R, Auchynnikava T, Tong P, Rappsilber J, Jeyaprakash AA, Matthews KR, Allshire RC. A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Res 2021; 31:2138-2154. [PMID: 34407985 PMCID: PMC8559703 DOI: 10.1101/gr.275368.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by "writer" and "eraser" enzymes, respectively. Nucleosomal PTMs are recognized by a variety of "reader" proteins that alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 65 predicted readers, writers, and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 60 of them in the parasite's bloodstream form. ChIP-seq shows that 15 candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins show a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identify distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcription start regions. The systematic approach used provides details of the composition and organization of the chromatin regulatory machinery in T. brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.
Collapse
Affiliation(s)
- Desislava P Staneva
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Roberta Carloni
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | | | - Juri Rappsilber
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Biotechnology, Technische Universität, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Keith R Matthews
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
7
|
Casale AM, Cappucci U, Piacentini L. Unravelling HP1 functions: post-transcriptional regulation of stem cell fate. Chromosoma 2021; 130:103-111. [PMID: 34128099 PMCID: PMC8426308 DOI: 10.1007/s00412-021-00760-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein first identified in Drosophila as a major component of constitutive heterochromatin, required for stable epigenetic gene silencing in many species including humans. Over the years, several studies have highlighted additional roles of HP1 in different cellular processes including telomere maintenance, DNA replication and repair, chromosome segregation and, surprisingly, positive regulation of gene expression. In this review, we briefly summarize past research and recent results supporting the unexpected and emerging role of HP1 in activating gene expression. In particular, we discuss the role of HP1 in post-transcriptional regulation of mRNA processing because it has proved decisive in the control of germline stem cells homeostasis in Drosophila and has certainly added a new dimension to our understanding on HP1 targeting and functions in epigenetic regulation of stem cell behaviour.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| | - Ugo Cappucci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Lucia Piacentini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Strom AR, Biggs RJ, Banigan EJ, Wang X, Chiu K, Herman C, Collado J, Yue F, Ritland Politz JC, Tait LJ, Scalzo D, Telling A, Groudine M, Brangwynne CP, Marko JF, Stephens AD. HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics. eLife 2021; 10:e63972. [PMID: 34106828 PMCID: PMC8233041 DOI: 10.7554/elife.63972] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Chromatin, which consists of DNA and associated proteins, contains genetic information and is a mechanical component of the nucleus. Heterochromatic histone methylation controls nucleus and chromosome stiffness, but the contribution of heterochromatin protein HP1α (CBX5) is unknown. We used a novel HP1α auxin-inducible degron human cell line to rapidly degrade HP1α. Degradation did not alter transcription, local chromatin compaction, or histone methylation, but did decrease chromatin stiffness. Single-nucleus micromanipulation reveals that HP1α is essential to chromatin-based mechanics and maintains nuclear morphology, separate from histone methylation. Further experiments with dimerization-deficient HP1αI165E indicate that chromatin crosslinking via HP1α dimerization is critical, while polymer simulations demonstrate the importance of chromatin-chromatin crosslinkers in mechanics. In mitotic chromosomes, HP1α similarly bolsters stiffness while aiding in mitotic alignment and faithful segregation. HP1α is therefore a critical chromatin-crosslinking protein that provides mechanical strength to chromosomes and the nucleus throughout the cell cycle and supports cellular functions.
Collapse
Affiliation(s)
- Amy R Strom
- Howard Hughes Medical Institute, Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Ronald J Biggs
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Katherine Chiu
- Biology Department, University of Massachusetts AmherstAmherstUnited States
| | - Cameron Herman
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Jimena Collado
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | | | - Leah J Tait
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - David Scalzo
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Agnes Telling
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Mark Groudine
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Clifford P Brangwynne
- Howard Hughes Medical Institute, Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Department of Physics and Astronomy, Northwestern UniversityEvanstonUnited States
| | - Andrew D Stephens
- Biology Department, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
9
|
Carlier F, Li M, Maroc L, Debuchy R, Souaid C, Noordermeer D, Grognet P, Malagnac F. Loss of EZH2-like or SU(VAR)3-9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina. Epigenetics Chromatin 2021; 14:22. [PMID: 33962663 PMCID: PMC8105982 DOI: 10.1186/s13072-021-00395-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Selective gene silencing is key to development. It is generally accepted that H3K27me3-enriched heterochromatin maintains transcriptional repression established during early development and regulates cell fate. Conversely, H3K9me3-enriched heterochromatin prevents differentiation but constitutes protection against transposable elements. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models, to question the biological relevance and functional interplay of these two distinct heterochromatin conformations. RESULTS We established genome-wide patterns of H3K27me3 and H3K9me3 modifications, and found these marks mutually exclusive within gene-rich regions but not within repeats. We generated the corresponding histone methyltransferase null mutants and showed an interdependence of H3K9me3 and H3K27me3 marks. Indeed, removal of the PaKmt6 EZH2-like enzyme resulted not only in loss of H3K27me3 but also in significant H3K9me3 reduction. Similarly, removal of PaKmt1 SU(VAR)3-9-like enzyme caused loss of H3K9me3 and substantial decrease of H3K27me3. Removal of the H3K9me binding protein PaHP1 provided further support to the notion that each type of heterochromatin requires the presence of the other. We also established that P. anserina developmental programs require H3K27me3-mediated silencing, since loss of the PaKmt6 EZH2-like enzyme caused severe defects in most aspects of the life cycle including growth, differentiation processes and sexual reproduction, whereas loss of the PaKmt1 SU(VAR)3-9-like enzyme resulted only in marginal defects, similar to loss of PaHP1. CONCLUSIONS Our findings support a conserved function of the PRC2 complex in fungal development. However, we uncovered an intriguing evolutionary fluidity in the repressive histone deposition machinery, which challenges canonical definitions of constitutive and facultative heterochromatin.
Collapse
Affiliation(s)
- F Carlier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris, France
| | - M Li
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - L Maroc
- Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Saclay-CNRS-AgroParisTech, Batiment 400, UFR Des Sciences, 91405, Orsay CEDEX, France
| | - R Debuchy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - C Souaid
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, Aix-Marseille University, 13288, Marseille, France
| | - D Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - P Grognet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| | - F Malagnac
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
HP1s modulate the S-Adenosyl Methionine synthesis pathway in liver cancer cells. Biochem J 2020; 477:1033-1047. [PMID: 32091571 DOI: 10.1042/bcj20190621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer in adults. Among the altered pathways leading to HCC, an increasing role is attributed to abnormal epigenetic regulation. Members of the Heterochromatin Protein (HP1) 1 family are key players in chromatin organisation, acting as docking sites for chromatin modifiers. Here, we inactivated HP1α in HepG2 human liver carcinoma cells and showed that HP1α participated in cell proliferation. HP1α-depleted cells have a global decrease in DNA methylation and consequently a perturbed chromatin organisation, as exemplified by the reactivation of transcription at centromeric and pericentromeric regions, eventhough the protein levels of chromatin writers depositing methylation marks, such as EZH2, SETDB1, SUV39H1, G9A and DNMT3A remained unaltered. This decrease was attributed mainly to a low S-Adenosyl Methionine (SAM) level, a cofactor involved in methylation processes. Furthermore, we showed that this decrease was due to a modification in the Methionine adenosyl transferase 2A RNA (MAT2A) level, which modifies the ratio of MAT1A/MAT2A, two enzymes that generate SAM. Importantly, HP1α reintroduction into HP1α-depleted cells restored the MAT2A protein to its initial level. Finally, we demonstrated that this transcriptional deregulation of MAT2A in HP1α-depleted cells relied on a lack of recruitment of HP1β and HP1γ to MAT2A promoter where an improper non-CpG methylation site was promoted in the vicinity of the transcription start site where HP1β and HP1γ bound. Altogether, these results highlight an unanticipated link between HP1 and the SAM synthesis pathway, and emphasise emerging functions of HP1s as sensors of some aspects of liver cell metabolism.
Collapse
|
11
|
Li X, Gou J, Li H, Yang X. Bioinformatic analysis of the expression and prognostic value of chromobox family proteins in human breast cancer. Sci Rep 2020; 10:17739. [PMID: 33082469 PMCID: PMC7576141 DOI: 10.1038/s41598-020-74792-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Chromobox (CBX) family proteins control chromatin structure and gene expression. However, the functions of CBXs in cancer progression, especially breast cancer, are inadequately studied. We assessed the significance of eight CBX proteins in breast cancer. We performed immunohistochemistry and bioinformatic analysis of data from Oncomine, GEPIA Dataset, bcGenExMiner, Kaplan–Meier Plotter, and cBioPortal. We compared mRNA and protein expression levels of eight CBX proteins between breast tumor and normal tissue. The expression difference of CBX7 was the greatest, and CBX7 was downregulated in breast cancer tissues compared with normal breast tissues. The expression of CBX2 was strongly associated with tumor stage. We further analyzed the association between the eight CBX proteins and the following clinicopathological features: menopause age, estrogen receptor (ER), progesterone receptor (PR) and HER-2 receptor status, nodal status, P53 status, triple-negative status, and the Scarff–Bloom–Richardson grade (SBR) and Nottingham prognostic index (NPI). Survival analysis in the Kaplan–Meier Plotter database showed that the eight CBX proteins were significantly associated with prognosis. Moreover, CBX genes in breast cancer patients had a high net alteration frequency of 57%. There were significant co-expression correlations between the following CBX protein pairs: CBX4 positively with CBX8, CBX6 positively with CBX7, and CBX2 negatively with CBX7. We also analyzed the Gene Ontology enrichment of the CBX proteins, including biological processes, cellular components, and molecular functions. CBX 1/2/3/5/8 may be oncogenes for breast cancer, whereas CBX 6 and 7 may be tumor suppressors for breast cancer. All eight CBX proteins may be predictive for prognosis. Clinical trials are needed to confirm the significance of the eight CBX proteins in breast cancer.
Collapse
Affiliation(s)
- Xiaomin Li
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Junhe Gou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongjiang Li
- Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Xiaoqin Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| |
Collapse
|
12
|
Singh PB, Belyakin SN, Laktionov PP. Biology and Physics of Heterochromatin- Like Domains/Complexes. Cells 2020; 9:E1881. [PMID: 32796726 PMCID: PMC7465696 DOI: 10.3390/cells9081881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories where they regulate chromatin template-dependent processes. Domains are more than 100 kb in size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission yeast to human, with an expansion in size and number in mammals. Some of the likely functions of domains/complexes include silencing of the donor mating type region in fission yeast, preservation of DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift away from the monomer as the "unit of incompatibility" that determines the sign and magnitude of the Flory-Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal "clutch", consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of "clutches" in a domain/complex. Our approach could provide an additional tool for understanding the biophysics of the 3D genome.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, Nur-Sultan City 010000, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Stepan N. Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| | - Petr P. Laktionov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| |
Collapse
|
13
|
Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals. Genes (Basel) 2020; 11:genes11060595. [PMID: 32481609 PMCID: PMC7349813 DOI: 10.3390/genes11060595] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.
Collapse
|
14
|
Singh PB, Newman AG. On the relations of phase separation and Hi-C maps to epigenetics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191976. [PMID: 32257349 PMCID: PMC7062049 DOI: 10.1098/rsos.191976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1-5 Mb) heterochromatin-like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer-polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 'bridging' are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin-like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Nur-Sultan Z05K4F4, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russian Federation
| | - Andrew G. Newman
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
15
|
DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88. Cells 2019; 8:cells8091097. [PMID: 31533340 PMCID: PMC6770535 DOI: 10.3390/cells8091097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.
Collapse
|
16
|
Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 2019; 20:7-23. [PMID: 30390049 DOI: 10.1038/s41576-018-0072-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research over the past three decades has firmly established lysine acetyltransferases (KATs) as central players in regulating transcription. Recent advances in genomic sequencing, metabolomics, animal models and mass spectrometry technologies have uncovered unexpected new roles for KATs at the nexus between the environment and transcriptional regulation. Thousands of reversible acetylation sites have been mapped in the proteome that respond dynamically to the cellular milieu and maintain major processes such as metabolism, autophagy and stress response. Concurrently, researchers are continuously uncovering how deregulation of KAT activity drives disease, including cancer and developmental syndromes characterized by severe intellectual disability. These novel findings are reshaping our view of KATs away from mere modulators of chromatin to detectors of the cellular environment and integrators of diverse signalling pathways with the ability to modify cellular phenotype.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
17
|
Sheikh BN, Guhathakurta S, Akhtar A. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. EMBO Rep 2019; 20:e47630. [PMID: 31267707 PMCID: PMC6607013 DOI: 10.15252/embr.201847630] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The functionality of chromatin is tightly regulated by post-translational modifications that modulate transcriptional output from target loci. Among the post-translational modifications of chromatin, reversible ε-lysine acetylation of histone proteins is prominent at transcriptionally active genes. Lysine acetylation is catalyzed by lysine acetyltransferases (KATs), which utilize the central cellular metabolite acetyl-CoA as their substrate. Among the KATs that mediate lysine acetylation, males absent on the first (MOF/KAT8) is particularly notable for its ability to acetylate histone 4 lysine 16 (H4K16ac), a modification that decompacts chromatin structure. MOF and its non-specific lethal (NSL) complex members have been shown to localize to gene promoters and enhancers in the nucleus, as well as to microtubules and mitochondria to regulate key cellular processes. Highlighting their importance, mutations or deregulation of NSL complex members has been reported in both human neurodevelopmental disorders and cancer. Based on insight gained from studies in human, mouse, and Drosophila model systems, this review discusses the role of NSL-mediated lysine acetylation in a myriad of cellular functions in both health and disease. Through these studies, the importance of the NSL complex in regulating core transcriptional and signaling networks required for normal development and cellular homeostasis is beginning to emerge.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| | - Sukanya Guhathakurta
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
- Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Asifa Akhtar
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| |
Collapse
|
18
|
Cadmium-induced genome-wide DNA methylation changes in growth and oxidative metabolism in Drosophila melanogaster. BMC Genomics 2019; 20:356. [PMID: 31072326 PMCID: PMC6507226 DOI: 10.1186/s12864-019-5688-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cadmium (Cd)-containing chemicals can cause serious damage to biological systems. In animals and plants, Cd exposure can lead to metabolic disorders or death. However, for the most part the effects of Cd on specific biological processes are not known. DNA methylation is an important mechanism for the regulation of gene expression. In this study we examined the effects of Cd exposure on global DNA methylation in a living organism by whole-genome bisulfite sequencing (WGBS) using Drosophila melanogaster as model. Results A total of 71 differentially methylated regions and 63 differentially methylated genes (DMGs) were identified by WGBS. A total of 39 genes were demethylated in the Cd treatment group but not in the control group, whereas 24 showed increased methylation in the former relative to the latter. In most cases, demethylation activated gene expression: genes such as Cdc42 and Mekk1 were upregulated as a result of demethylation. There were 37 DMGs that overlapped with differentially expressed genes from the digital expression library including baz, Act5C, and ss, which are associated with development, reproduction, and energy metabolism. Conclusions DNA methylation actively regulates the physiological response to heavy metal stress in Drosophila in part via activation of apoptosis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5688-z) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Singh PB, Shloma VV, Belyakin SN. Maternal regulation of chromosomal imprinting in animals. Chromosoma 2019; 128:69-80. [PMID: 30719566 PMCID: PMC6536480 DOI: 10.1007/s00412-018-00690-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 11/29/2022]
Abstract
Chromosomal imprinting requires an epigenetic system that "imprints" one of the two parental chromosomes such that it results in a heritable (cell-to-cell) change in behavior of the "imprinted" chromosome. Imprinting takes place when the parental genomes are separate, which occurs during gamete formation in the respective germ-lines and post-fertilization during the period when the parental pro-nuclei lie separately within the ooplasm of the zygote. In the mouse, chromosomal imprinting is regulated by germ-line specific DNA methylation. But the methylation machinery in the respective germ-lines does not discriminate between imprinted and non-imprinted regions. As a consequence, the mouse oocyte nucleus contains over a thousand oocyte-specific germ-line differentially methylated regions (gDMRs). Upon fertilization, the sperm provides a few hundred sperm-specific gDMRs of its own. Combined, there are around 1600 imprinted and non-imprinted gDMRs in the pro-nuclei of the newly fertilized zygote. It is a remarkable fact that beginning in the maternal ooplasm, there are mechanisms that manage to preserve DNA methylation at ~ 26 known imprinted gDMRs in the face of the ongoing genome-wide DNA de-methylation that characterizes pre-implantation development. Specificity is achieved through the binding of KRAB-zinc finger proteins to their cognate recognition sequences within the gDMRs of imprinted genes. This in turn nucleates the assembly of localized heterochromatin-like complexes that preserve methylation at imprinted gDMRs through recruitment of the maintenance methyl transferase Dnmt1. These studies have shown that a germ-line imprint may cause parent-of-origin-specific behavior only if "licensed" by mechanisms that operate post-fertilization. Study of the germ-line and post-fertilization contributions to the imprinting of chromosomes in classical insect systems (Coccidae and Sciaridae) show that the ooplasm is the likely site where imprinting takes place. By comparing molecular and genetic studies across these three species, we suggest that mechanisms which operate post-fertilization play a key role in chromosomal imprinting phenomena in animals and conserved components of heterochromatin are shared by these mechanisms.
Collapse
Affiliation(s)
- Prim B Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Astana, Z05K4F4, Kazakhstan.
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation.
| | - Victor V Shloma
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation
- Genomics Laboratory, Institute of Molecular and Cellular Biology SD RAS, Lavrentyev ave, 8/2, Novosibirsk, 630090, Russian Federation
| | - Stepan N Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation
- Genomics Laboratory, Institute of Molecular and Cellular Biology SD RAS, Lavrentyev ave, 8/2, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
20
|
Cheng W, Tian L, Wang B, Qi Y, Huang W, Li H, Chen YJ. Downregulation of HP1α suppresses proliferation of cholangiocarcinoma by restoring SFRP1 expression. Oncotarget 2018; 7:48107-48119. [PMID: 27385214 PMCID: PMC5217004 DOI: 10.18632/oncotarget.10371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/12/2016] [Indexed: 12/29/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) is a gene that mediates chromatin conformation, gene silencing and cancer progression. However, little is known regarding the impact of HP1α in the pathogenesis of cholangiocarcinoma (CCA). In the present study, we demonstrate that HP1α is significantly upregulated in CCA tissues and cell lines, while downregulation of HP1α leads to suppression of cell proliferation. Then we find that downregulation of HP1α can decrease H3K9me3 enrichment and DNA methylation rate of secreted frizzled-related protein 1 (SFRP1) promoter, resulting in restoring the expression of SFRP1. Moreover, restoration of SFRP1 expression can suppress CCA cells proliferation. These results provide a mechanistic understanding of the role of HP1α in the pathogenesis of CCA and may offer a novel therapeutic target in this disease.
Collapse
Affiliation(s)
- Wenlong Cheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Tian
- Department of Wuhan Medical Care Center for Women and Children, Wuhan, Hubei Province, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yongqiang Qi
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenhua Huang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongbo Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yong-Jun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
22
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Vad-Nielsen J, Jakobsen KR, Daugaard TF, Thomsen R, Brügmann A, Sørensen BS, Nielsen AL. Regulatory dissection of the CBX5 and hnRNPA1 bi-directional promoter in human breast cancer cells reveals novel transcript variants differentially associated with HP1α down-regulation in metastatic cells. BMC Cancer 2016; 16:32. [PMID: 26791953 PMCID: PMC4721113 DOI: 10.1186/s12885-016-2059-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 01/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The three members of the human heterochromatin protein 1 (HP1) family of proteins, HP1α, HP1β, and HPγ, are involved in chromatin packing and epigenetic gene regulation. HP1α is encoded from the CBX5 gene and is a suppressor of metastasis. CBX5 is down-regulated at the transcriptional and protein level in metastatic compared to non-metastatic breast cancer. CBX5 shares a bi-directional promoter structure with the hnRNPA1 gene. But whereas CBX5 expression is down-regulated in metastatic cells, hnRNAP1 expression is constant. Here, we address the regulation of CBX5 in human breast cancer. METHODS Transient transfection and transposon mediated integration of dual-reporter mini-genes containing the bi-directional hnRNPA1 and CBX5 promoter was performed to investigate transcriptional regulation in breast cancer cell lines. Bioinformatics and functional analysis were performed to characterize transcriptional events specifically regulating CBX5 expression. TSA treatment and Chromatin Immunoprecipitation (ChIP) were performed to investigate the chromatin structure along CBX5 in breast cancer cells. Finally, expression of hnRNPA1 and CBX5 mRNA isoforms were measured by quantitative reverse transcriptase PCR (qRT-PCR) in breast cancer tissue samples. RESULTS We demonstrate that an hnRNPA1 and CBX5 bi-directional core promoter fragment does not comprise intrinsic capacity for specific CBX5 down-regulation in metastatic cells. Characterization of transcriptional events in the 20 kb CBX5 intron 1 revealed existence of several novel CBX5 transcripts. Two of these encode consensus HP1α protein but used autonomous promoters in intron 1 by which HP1α expression could be de-coupled from the bi-directional promoter. In addition, another CBX5 transcriptional isoform, STET, was discovered. This transcript includes CBX5 exon 1 and part of intron 1 sequences but lacks inclusion of HP1α encoding exons. Inverse correlation between STET and HP1α coding CBX5 mRNA expression was observed in breast cancer cell lines and tissue samples from breast cancer patients. CONCLUSION We find that HP1α is down-regulated in a mechanism involving CBX5 promoter downstream sequences and that regulation through alternative polyadenylation and splicing generates a transcript, STET, with potential importance in carcinogenesis.
Collapse
Affiliation(s)
- Johan Vad-Nielsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Kristine Raaby Jakobsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark.,Department of Clinical-Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Fuglsang Daugaard
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rune Thomsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Anja Brügmann
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Boe Sandahl Sørensen
- Department of Clinical-Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
24
|
Vad-Nielsen J, Nielsen AL. Beyond the histone tale: HP1α deregulation in breast cancer epigenetics. Cancer Biol Ther 2015; 16:189-200. [PMID: 25588111 DOI: 10.1080/15384047.2014.1001277] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis. However, how HP1α deregulation plays dual mechanistic functions for cancer cell proliferation and metastasis suppression and the underlying cellular mechanisms are not yet comprehensively described. In this paper we provide an overview of the role of HP1α as a new sight of epigenetics in proliferation and metastasis of human breast cancer. This highlights the importance of addressing HP1α in breast cancer diagnostics and therapeutics.
Collapse
Key Words
- CBX, chromobox homolog
- CD, chromo domain
- CSC, cancer stem cells
- CSD, cromo shadow domain
- CTE, C-terminal extension
- DNMT, DNA-methyltransferase
- EMT, epithelial-to-mesenchymal transition
- HDMT, histone demethylase
- HMT, histone methyltransferase
- HP1, heterochromatin protein 1
- NTE, N-terminal extension
- PEV, position effect variegation
- SOMU, sumoylation
- TGS, transcriptional gene silencing
- TSS, transcriptional start site
- bp, base pair
- breast-cancer, metastasis
- chromatin
- epigenetics
- histone-modifications
- invasion
- mitosis
- proliferation
Collapse
|
25
|
Vedelek B, Blastyák A, Boros IM. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins. PLoS One 2015; 10:e0142771. [PMID: 26566042 PMCID: PMC4643883 DOI: 10.1371/journal.pone.0142771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - András Blastyák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
26
|
Simon JM, Parker JS, Liu F, Rothbart SB, Ait-Si-Ali S, Strahl BD, Jin J, Davis IJ, Mosley AL, Pattenden SG. A Role for Widely Interspaced Zinc Finger (WIZ) in Retention of the G9a Methyltransferase on Chromatin. J Biol Chem 2015; 290:26088-102. [PMID: 26338712 PMCID: PMC4646261 DOI: 10.1074/jbc.m115.654459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/23/2015] [Indexed: 11/06/2022] Open
Abstract
G9a and GLP lysine methyltransferases form a heterodimeric complex that is responsible for the majority of histone H3 lysine 9 mono- and di-methylation (H3K9me1/me2). Widely interspaced zinc finger (WIZ) associates with the G9a-GLP protein complex, but its role in mediating lysine methylation is poorly defined. Here, we show that WIZ regulates global H3K9me2 levels by facilitating the interaction of G9a with chromatin. Disrupting the association of G9a-GLP with chromatin by depleting WIZ resulted in altered gene expression and protein-protein interactions that were distinguishable from that of small molecule-based inhibition of G9a/GLP, supporting discrete functions of the G9a-GLP-WIZ chromatin complex in addition to H3K9me2 methylation.
Collapse
Affiliation(s)
- Jeremy M Simon
- From the Carolina Institute for Developmental Disabilities, Department of Cell Biology and Physiology, and the Department of Genetics, Curriculum in Bioinformatics and Computational Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joel S Parker
- the Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Feng Liu
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott B Rothbart
- the Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Slimane Ait-Si-Ali
- the Laboratoire Epigénétique et Destin Cellulaire, UMR7216, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Brian D Strahl
- the Lineberger Comprehensive Cancer Center, the Curriculum in Genetics and Molecular Biology, and the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jian Jin
- the Department of Structural and Chemical Biology, the Department of Oncological Sciences, and the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ian J Davis
- the Department of Genetics, the Lineberger Comprehensive Cancer Center, the Department of Pediatrics, and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - Amber L Mosley
- the Department of Biochemistry and Molecular Biology and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Samantha G Pattenden
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599,
| |
Collapse
|
27
|
Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila. J Proteomics 2014; 102:137-47. [PMID: 24681131 DOI: 10.1016/j.jprot.2014.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/20/2014] [Accepted: 03/15/2014] [Indexed: 01/21/2023]
Abstract
UNLABELLED Heterochromatin protein 1 (HP1) was first described in Drosophila melanogaster as a heterochromatin associated protein required for epigenetic gene silencing. Most eukaryotes have at least three HP1 homologs that play differential roles in heterochromatin and euchromatin. However, despite the fact that the three HP1 proteins bind to different regions of the genome, several studies show that most of the interactions occur in a manner specific to HP1a. In addition, little is known about the overall interaction network of the three Drosophila HP1 homologs, HP1a, HP1b, and HP1c. Here, we performed the first comprehensive proteomic analysis of Drosophila HP1 homologs by coupling a double-affinity purification approach with MudPIT analysis to identify interacting proteins of Drosophila HP1. We discovered 160-310 proteins co-eluted with HP1, including a number of novel HP1-binding partners along with the previously identified HP1 binding proteins. Finally, we showed that slight and unique binding preferences might exist between the three HP1 proteins in Drosophila. These studies are the first to systematically analyze the interactome of HP1 paralogs and provide the basic clues as to the molecular mechanism by which HP1 might control cellular processes. BIOLOGICAL SIGNIFICANCE Most eukaryotes have at least three HP1 homologs with similar domain structures but with differential roles in heterochromatin and euchromatin. However, little is known about the overall interactome of the three Drosophila HP1 homologs, HP1a, HP1b, and HP1c. The present study compared interacting proteins of three HP1 homologs in Drosophila. To better understand the underlying mechanisms for gene regulation of HP1, a double-affinity purification and MudPIT mass spectrometry were employed to identify differential proteins as well as common binding proteins of HP1. Therefore, this study provides not only the comparative proteomic analysis but also molecular mechanism underlying the HP1 homolog-specific function.
Collapse
|
28
|
González-Barrios R, Soto-Reyes E, Quiroz-Baez R, Fabián-Morales E, Díaz-Chávez J, Del Castillo V, Mendoza J, López-Saavedra A, Castro C, Herrera LA. Differential distribution of HP1 proteins after trichostatin a treatment influences chromosomal stability in HCT116 and WI-38 cells. Cell Div 2014; 9:6. [PMID: 25729403 PMCID: PMC4343280 DOI: 10.1186/s13008-014-0006-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
Background Heterochromatin protein 1 (HP1) is important in the establishment, propagation, and maintenance of constitutive heterochromatin, especially at the pericentromeric region. HP1 might participate in recruiting and directing Mis12 to the centromere during interphase, and HP1 disruption or abrogation might lead to the loss of Mis12 incorporation into the kinetochore. Therefore, the centromere structure and kinetochore relaxation that are promoted in the absence of Mis12 could further induce chromosome instability (CIN) by reducing the capacity of the kinetochore to anchor microtubules. The aim of this study was to determine whether alterations in the localization of HP1 proteins induced by trichostatin A (TSA) modify Mis12 and Centromere Protein A (CENP-A) recruitment to the centromere and whether changes in the expression of HP1 proteins and H3K9 methylation at centromeric chromatin increase CIN in HCT116 and WI-38 cells. Methods HCT116 and WI-38 cells were cultured and treated with TSA to evaluate CIN after 24 and 48 h of exposure. Immunofluorescence, Western blot, ChIP, and RT-PCR assays were performed in both cell lines to evaluate the localization and abundance of HP1α/β, Mis12, and CENP-A and to evaluate chromatin modifications during interphase and mitosis, as well as after 24 and 48 h of TSA treatment. Results Our results show that the TSA-induced reduction in heterochromatic histone marks on centromeric chromatin reduced HP1 at the centromere in the non-tumoral WI-38 cells and that this reduction was associated with cell cycle arrest and CIN. However, in HCT116 cells, HP1 proteins, together with MIS12 and CENP-A, relocated to centromeric chromatin in response to TSA treatment, even after H3K9me3 depletion in the centromeric nucleosomes. The enrichment of HP1 and the loss of H3K9me3 were associated with an increase in CIN, suggesting a response mechanism at centromeric and pericentromeric chromatin that augments the presence of HP1 proteins in those regions, possibly ensuring chromosome segregation despite serious CIN. Our results provide new insight into the epigenetic landscape of centromeric chromatin and the role of HP1 proteins in CIN. Electronic supplementary material The online version of this article (doi:10.1186/s13008-014-0006-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Ricardo Quiroz-Baez
- Departamento de Investigación Básica, Dirección de Investigación, Instituto Nacional de Geriatría, Secretaría de Salud, México, DF 10200 México
| | - Eunice Fabián-Morales
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Victor Del Castillo
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Julia Mendoza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Alejandro López-Saavedra
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Clementina Castro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México ; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, México, DF 04510 México
| |
Collapse
|
29
|
Culver-Cochran AE, Chadwick BP. Loss of WSTF results in spontaneous fluctuations of heterochromatin formation and resolution, combined with substantial changes to gene expression. BMC Genomics 2013; 14:740. [PMID: 24168170 PMCID: PMC3870985 DOI: 10.1186/1471-2164-14-740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/26/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Williams syndrome transcription factor (WSTF) is a multifaceted protein that is involved in several nuclear processes, including replication, transcription, and the DNA damage response. WSTF participates in a chromatin-remodeling complex with the ISWI ATPase, SNF2H, and is thought to contribute to the maintenance of heterochromatin, including at the human inactive X chromosome (Xi). WSTF is encoded by BAZ1B, and is one of twenty-eight genes that are hemizygously deleted in the genetic disorder Williams-Beuren syndrome (WBS). RESULTS To explore the function of WSTF, we performed zinc finger nuclease-assisted targeting of the BAZ1B gene and isolated several independent knockout clones in human cells. Our results show that, while heterochromatin at the Xi is unaltered, new inappropriate areas of heterochromatin spontaneously form and resolve throughout the nucleus, appearing as large DAPI-dense staining blocks, defined by histone H3 lysine-9 trimethylation and association of the proteins heterochromatin protein 1 and structural maintenance of chromosomes flexible hinge domain containing 1. In three independent mutants, the expression of a large number of genes were impacted, both up and down, by WSTF loss. CONCLUSIONS Given the inappropriate appearance of regions of heterochromatin in BAZ1B knockout cells, it is evident that WSTF performs a critical role in maintaining chromatin and transcriptional states, a property that is likely compromised by WSTF haploinsufficiency in WBS patients.
Collapse
Affiliation(s)
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
30
|
Abstract
Heterochromatin is the enigmatic eukaryotic genome compartment found mostly at telomeres and centromeres. Conventional approaches to sequence assembly and genetic manipulation fail in this highly repetitive, gene-sparse, and recombinationally silent DNA. In contrast, genetic and molecular analyses of euchromatin-encoded proteins that bind, remodel, and propagate heterochromatin have revealed its vital role in numerous cellular and evolutionary processes. Utilizing the 12 sequenced Drosophila genomes, Levine et al1 took a phylogenomic approach to discover new such protein “surrogates” of heterochromatin function and evolution. This paper reported over 20 new members of what was traditionally believed to be a small and static Heterochromatin Protein 1 (HP1) gene family. The newly identified HP1 proteins are structurally diverse, lineage-restricted, and expressed primarily in the male germline. The birth and death of HP1 genes follows a “revolving door” pattern, where new HP1s appear to replace old HP1s. Here, we address alternative evolutionary models that drive this constant innovation.
Collapse
Affiliation(s)
- Mia T Levine
- Division of Basic Sciences; Howard Hughes Medical Institute; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | | |
Collapse
|
31
|
Kumar R, Horikoshi N, Singh M, Gupta A, Misra HS, Albuquerque K, Hunt CR, Pandita TK. Chromatin modifications and the DNA damage response to ionizing radiation. Front Oncol 2013; 2:214. [PMID: 23346550 PMCID: PMC3551241 DOI: 10.3389/fonc.2012.00214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/29/2012] [Indexed: 01/01/2023] Open
Abstract
In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin. Nat Struct Mol Biol 2012; 19:458-60. [DOI: 10.1038/nsmb.2244] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/06/2012] [Indexed: 12/15/2022]
|
33
|
Mitsunobu H, Izumi M, Mon H, Tatsuke T, Lee JM, Kusakabe T. Molecular characterization of heterochromatin proteins 1a and 1b from the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2012; 21:9-20. [PMID: 22142192 DOI: 10.1111/j.1365-2583.2011.01115.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Heterochromatin protein 1s (HP1s) are nonhistone chromosomal proteins that play a direct role in the formation and maintenance of heterochromatin structure. Similarly to Caenorhabditis elegans, silkworms possess holocentric chromosomes, in which diffused kinetochores extend along the length of each chromosome. We have isolated two silkworm HP1 homologues, BmHP1a and BmHP1b. Cytological analysis showed a unique localization of BmHP1s during cell division, in which these proteins first appear to dissociate from the chromosomes, but then return to enclose the chromosomes during metaphase. BmHP1s formed homo- and hetero-dimers and interacted with BmSu(var)3-9, which is a methyltransferase for histone H3 lysine 9 (H3K9). We further showed, using a silkworm cell-based reporter system, that BmHP1b had higher transcriptional repression activity than BmHP1a, whereas BmHP1a interacted more strongly with BmSu(var)3-9 than did BmHP1b. These results suggest that silkworm HP1a and HP1b may play different roles in heterochromatin formation in holocentric silkworm chromosomes.
Collapse
Affiliation(s)
- H Mitsunobu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
34
|
González-Barrios R, Soto-Reyes E, Herrera LA. Assembling pieces of the centromere epigenetics puzzle. Epigenetics 2012; 7:3-13. [PMID: 22207360 PMCID: PMC3329500 DOI: 10.4161/epi.7.1.18504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The centromere is a key region for cell division where the kinetochore assembles, recognizes and attaches to microtubules so that each sister chromatid can segregate to each daughter cell. The centromeric chromatin is a unique rigid chromatin state promoted by the presence of the histone H3 variant CENP-A, in which epigenetic histone modifications of both heterochromatin or euchromatin states and associated protein elements are present. Although DNA sequence is not regarded as important for the establishment of centromere chromatin, it has become clear that this structure is formed as a result of a highly regulated epigenetic event that leads to the recruitment and stability of kinetochore proteins. We describe an integrative model for epigenetic processes that conform regional chromatin interactions indispensable for the recruitment and stability of kinetochore proteins. If alterations of these chromatin regions occur, chromosomal instability is promoted, although segregation may still take place.
Collapse
Affiliation(s)
- Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., México
| | | | | |
Collapse
|
35
|
Kim H, Heo K, Choi J, Kim K, An W. Histone variant H3.3 stimulates HSP70 transcription through cooperation with HP1γ. Nucleic Acids Res 2011; 39:8329-41. [PMID: 21742762 PMCID: PMC3201866 DOI: 10.1093/nar/gkr529] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Histone variant H3.3 and heterochromatin protein 1γ (HP1γ) are two functional components of chromatin with role in gene transcription. However, the regulations of their dynamics during transcriptional activation and the molecular mechanisms underlying their actions remain poorly understood. Here, we provide evidence that heat shock-induced transcription of the human HSP70 gene is regulated via the coordinated and interdependent action of H3.3 and HP1γ. H3.3 and HP1γ are rapidly co-enriched at the human HSP70 promoters upon heat shock in a manner that closely parallels the initiation of transcription. Knockdown of H3.3 prevents the stable recruitment of HP1γ, inhibits active histone modifications, and attenuates HSP70 promoter activity. Likewise, knockdown of HP1γ leads to the decreased levels of H3.3 in the promoter regions and the repression of HSP70 genes. HP1γ selectively recognizes particular modification states of H3.3 in the nucleosome for its action. Moreover, HP1γ is overexpressed in three representative cancer cell lines, and its knockdown leads to reduction in HSP70 gene transcription and inhibition of cancer cell proliferation. We conclude that the physical and functional interactions between H3.3 and HP1γ make a unique contribution to acute HSP70 transcription and cancer development related to the misregulation of this transcription event.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
36
|
Kwon SH, Workman JL. The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 2011; 33:280-9. [PMID: 21271610 DOI: 10.1002/bies.201000138] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heterochromatin protein 1 (HP1) is a positive regulator of active transcription in euchromatin. HP1 was first identified in Drosophila melanogaster as a major component of heterochromatin. Most eukaryotes have at least three isoforms of HP1, which are conserved in overall structure but localize differentially to heterochromatin and euchromatin. Although initial studies revealed a key role for HP1 in heterochromatin formation and gene silencing, recent progress has shed light on additional roles for HP1 in processes such as euchromatic gene expression. Recent studies have highlighted the importance of HP1-mediated gene regulation in euchromatin. Here, we focus on recent advances in understanding the role of HP1 in active transcription in euchromatin and how modification and localization of HP1 can regulate distinct functions for this protein in different contexts.
Collapse
Affiliation(s)
- So Hee Kwon
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
37
|
Caillier M, Thénot S, Tribollet V, Birot AM, Samarut J, Mey A. Role of the epigenetic regulator HP1γ in the control of embryonic stem cell properties. PLoS One 2010; 5:e15507. [PMID: 21085495 PMCID: PMC2981578 DOI: 10.1371/journal.pone.0015507] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/06/2010] [Indexed: 12/30/2022] Open
Abstract
The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs.
Collapse
Affiliation(s)
- Maïa Caillier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | - Sandrine Thénot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | - Anne-Marie Birot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
- * E-mail: (AM); (JS)
| | - Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
- * E-mail: (AM); (JS)
| |
Collapse
|
38
|
Piacentini L, Pimpinelli S. Positive regulation of euchromatic gene expression by HP1. Fly (Austin) 2010; 4:299-301. [PMID: 20855965 DOI: 10.4161/fly.4.4.13261] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HP1 is a conserved prototype protein that plays an essential role in heterochromatin formation and epigenetic gene silencing through its interaction with histone methyltransferase enzymes (HMTases) and the histone H3 at lysine 9 (H3-MeK9). HP1 is also involved in telomere capping and, more surprisingly, in positive regulation of gene expression. Recently, a wide expression analysis, using a RIP-chip assays (RNA-immunoprecipitation on microarrays), has shown that HP1 associates with the transcripts of more than one hundred euchromatic genes and interacts with the heterogeneous nuclear ribonucleoproteins (hnRNPs) that are known to be involved in RNA processing. By these results, HP1 seems to be part of a complex that stabilizes RNA transcripts. Though previously unsuspected, it was also found that HP1-interacting hnRNPs have a functional role in heterochromatin formation. These proteins bind heterochromatin and are dominant suppressors of position effect variegation. Taken together, the results in the paper by Piacentini et al. open a window on a possible new conceptual landscape in which similar epigenetic mechanisms could have a significant role, both in the metabolism of RNA transcripts and in heterochromatin formation, producing opposite functional effects. These data seem to establish a functional link between euchromatin and heterochromatin.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur, Fondazione Cenci Bolognetti and Dipartimento di Genetica e Biologia molecolare, Università La Sapienza, Roma, Italy
| | | |
Collapse
|
39
|
Yoshimura S, Harada A, Odawara J, Azuma M, Okada S, Nakamura M, Ohkawa Y, Tachibana T. Rat monoclonal antibody specific for the chromatin remodeling factor, CHD1. Hybridoma (Larchmt) 2010; 29:237-40. [PMID: 20568999 DOI: 10.1089/hyb.2009.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CHD1 is a subfamily member of the CHD family, which possesses a chromodomain, a helicase domain, and a DNA-binding domain. The CHD family regulates gene expression by contributing to ATP-dependent chromatin remodeling. CHD1 exists in the transcriptionally active region and alters the chromatin structure. Little is known about the function of endogenous CHD1, however, and studies have been hindered by the lack of an antibody specific for CHD1 in mammals. In the present study, we established a monoclonal antibody specifically against CHD1 using the rat medial iliac lymph node method. Immunoblot analysis using our monoclonal antibody showed specific binding to CHD1, allowing us to identify the deduced full-length CHD1. In addition, cell immunostaining clearly revealed the nuclear localization of CHD1. This monoclonal antibody will be useful for further analysis of CHD1 function in mammals.
Collapse
Affiliation(s)
- Saori Yoshimura
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Harada A, Yoshimura S, Odawara J, Azuma M, Okada S, Nakamura M, Tachibana T, Ohkawa Y. Generation of a rat monoclonal antibody specific for CHD2. Hybridoma (Larchmt) 2010; 29:173-7. [PMID: 20443711 DOI: 10.1089/hyb.2009.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CHD2 is a member of the CHD family that contains chromodomain, helicase domain as well as DNA-binding domain. The CHD family is involved in gene expression and transcription by ATP-dependent chromatin remodeling. Analysis of mutant mouse revealed that CHD2 is involved in development as well as hematopoiesis, which suggests the involvement of CHD2 in gene expression. However, CHD2 has not yet been analyzed biochemically as there is no specific antibody against it. Here, we report on the establishment of specific monoclonal antibody (MAb) against CHD2 utilizing a rat medial iliac lymph node method. Through cell immunostaining utilizing established MAb to CHD2, we confirmed that CHD2 was localized in euchromatin. Additionally, IP-Western revealed that the expression level of full-length CHD2 did not change during the differentiation stage. Additionally, a specific signal was confirmed around 95 kDa at the undifferentiated stage. This clearly indicated that CHD2 was involved in specific gene expression at this stage. Thus, this antibody can contribute to elucidating the function of CHD2 in cell expression.
Collapse
Affiliation(s)
- Akihito Harada
- Department of Epigenetics, SSP Stem Cell Unit, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Billur M, Bartunik HD, Singh PB. The essential function of HP1 beta: a case of the tail wagging the dog? Trends Biochem Sci 2010; 35:115-23. [PMID: 19836960 DOI: 10.1016/j.tibs.2009.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/27/2009] [Accepted: 09/03/2009] [Indexed: 12/25/2022]
Abstract
A large body of work in various organisms has shown that the presence of HP1 structural proteins and methylated lysine 9 of histone H3 (H3K9me) represent the characteristic hallmarks of heterochromatin. We propose that a more critical assessment of the physiological importance of the H3K9me-HP1 interaction is warranted in light of recent studies on the mammalian HP1 beta protein. Based on this new research, we conclude that the essential function of HP1 beta (and perhaps that of its orthologues in other species) lies outside the canonical heterochromatic H3K9me-HP1 interaction. We suggest instead that binding of a small fraction of HP1 beta to the H3 histone fold performs a critical role in heterochromatin function and organismal survival.
Collapse
Affiliation(s)
- Mustafa Billur
- Division of Immunoepigenetics, Department of Immunology and Cell Biology, Forschungszentrum Borstel, D-23845 Borstel, Germany
| | | | | |
Collapse
|
42
|
Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet 2009; 5:e1000670. [PMID: 19798443 PMCID: PMC2743825 DOI: 10.1371/journal.pgen.1000670] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin Protein 1 (HP1a) is a well-known conserved protein involved in heterochromatin formation and gene silencing in different species including humans. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone methyltransferase enzymes (HMTases) methylate the histone H3 at lysine 9 (H3K9me), creating selective binding sites for itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we performed an extensive screening by RIP-chip assay (RNA–immunoprecipitation on microarrays), and we found that HP1a is associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs) involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms have a significant role on both RNA and heterochromatin metabolisms. Heterochromatin Protein 1 (HP1a) is a very well known prototype protein of a general model for heterochromatin formation and epigenetic gene silencing in different species including humans. Here, we report our experiments showing that HP1a is also required for the positive regulation of more than one hundred euchromatic genes by its association with the corresponding RNA transcripts and by its interaction with heterogeneous nuclear ribonucleoproteins (hnRNPs) belonging to different classes. Importantly, we also found that all the tested hnRNP proteins bind to the heterochromatin and are dominant suppressors of position effect variegation, thus suggesting they also have a role in heterochromatin organization. Taken together, our data show novel and important functions, not only for HP1a, but also for hnRNPs, which were previously believed to participate only in RNA processing. These results shed new light on the epigenetic mechanisms of gene silencing and gene expression. They also establish a link between RNA transcript metabolism and heterochromatin formation and change several aspects of the canonical views about these apparently different processes.
Collapse
|
43
|
Lieberthal JG, Kaminsky M, Parkhurst CN, Tanese N. The role of YY1 in reduced HP1alpha gene expression in invasive human breast cancer cells. Breast Cancer Res 2009; 11:R42. [PMID: 19566924 PMCID: PMC2716511 DOI: 10.1186/bcr2329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/31/2009] [Accepted: 06/30/2009] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Heterochromatin protein 1 (HP1) associates with chromatin by binding to histone H3 and contributes to gene silencing. There are three isoforms of HP1 in mammals: HP1alpha, beta, and gamma. Studies have shown that the level of HP1alpha is reduced in invasive human breast cancer cell lines such as MDA-MB-231 and HS578T compared with non-invasive cell lines such as MCF7 and T47D. It is hypothesized that reduced HP1alpha expression may lead to impaired epigenetic silencing of genes that are important in the acquisition of an invasive phenotype. We set out to determine whether reduced expression of HP1alpha in invasive breast cancer cell lines occurs at the level of transcription. METHODS We used transient transfection assays to investigate the mechanism of differential transcriptional activity of the human HP1alpha gene promoter in different cell lines. Mutational analysis of putative transcription factor binding sites in an HP1alpha gene reporter construct was performed to identify transcription factors responsible for the differential activity. SiRNA-mediated knockdown and chromatin immunoprecipitation experiments were performed to determine the role of a specific transcription factor in regulating the HP1alpha gene. RESULTS The transcription factor yin yang 1 (YY1) was found to play a role in differential transcriptional activity of the HP1alpha gene. Examination of the YY1 protein and mRNA levels revealed that both were reduced in the invasive cell line HS578T compared with MCF7 cells. YY1 knockdown in MCF7 cells resulted in a decreased level of HP1alpha mRNA, indicating that YY1 positively regulates HP1alpha expression. Chromatin immunoprecipitation experiments verified YY1 occupancy at the HP1alpha gene promoter in MCF7 cells but not HS578T cells. Overexpression of YY1 in HS578T cells decreased cell migration in a manner independent of HP1alpha overexpression. CONCLUSIONS Our data suggests that a reduction of YY1 expression in breast cancer cells could contribute to the acquisition of an invasive phenotype through increased cell migration as well as by reduced expression of HP1alpha.
Collapse
Affiliation(s)
- Jason G Lieberthal
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Marissa Kaminsky
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Christopher N Parkhurst
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Naoko Tanese
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
44
|
Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, Venkatachalam S. Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene 2009; 28:1053-62. [PMID: 19137022 PMCID: PMC2648865 DOI: 10.1038/onc.2008.440] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 10/20/2008] [Accepted: 10/30/2008] [Indexed: 01/24/2023]
Abstract
The chromodomain helicase DNA-binding proteins (CHDs) are known to affect transcription through their ability to remodel chromatin and modulate histone deacetylation. In an effort to understand the functional role of the CHD2 in mammals, we have generated a Chd2 mutant mouse model. Remarkably, the Chd2 protein appears to play a critical role in the development, hematopoiesis and tumor suppression. The Chd2 heterozygous mutant mice exhibit increased extramedullary hematopoiesis and susceptibility to lymphomas. At the cellular level, Chd2 mutants are defective in hematopoietic stem cell differentiation, accumulate higher levels of the chromatin-associated DNA damage response mediator, gamma H2AX, and exhibit an aberrant DNA damage response after X-ray irradiation. Our data suggest a direct role for the chromatin remodeling protein in DNA damage signaling and genome stability maintenance.
Collapse
Affiliation(s)
- P Nagarajan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
45
|
Misri S, Pandita S, Kumar R, Pandita TK. Telomeres, histone code, and DNA damage response. Cytogenet Genome Res 2009; 122:297-307. [PMID: 19188699 DOI: 10.1159/000167816] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2008] [Indexed: 12/30/2022] Open
Abstract
Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability.
Collapse
Affiliation(s)
- S Misri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | |
Collapse
|
46
|
Dialynas GK, Vitalini MW, Wallrath LL. Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat Res 2008; 647:13-20. [PMID: 18926834 DOI: 10.1016/j.mrfmmm.2008.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
All cells of a given organism contain nearly identical genetic information, yet tissues display unique gene expression profiles. This specificity is in part due to transcriptional control by epigenetic mechanisms that involve post-translational modifications of histones. These modifications affect the folding of the chromatin fiber and serve as binding sites for non-histone chromosomal proteins. Here we discuss functions of the Heterochromatin Protein 1 (HP1) family of proteins that recognize H3K9me, an epigenetic mark generated by the histone methyltransferases SU(VAR)3-9 and orthologues. Loss of HP1 proteins causes chromosome segregation defects and lethality in some organisms; a reduction in levels of HP1 family members is associated with cancer progression in humans. These consequences are likely due to the role of HP1 in centromere stability, telomere capping and the regulation of euchromatic and heterochromatic gene expression.
Collapse
Affiliation(s)
- George K Dialynas
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
47
|
Gelato KA, Fischle W. Role of histone modifications in defining chromatin structure and function. Biol Chem 2008; 389:353-63. [PMID: 18225984 DOI: 10.1515/bc.2008.048] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromosomes in eukaryotic cell nuclei are not uniformly organized, but rather contain distinct chromatin elements, with each state having a defined biochemical structure and biological function. These are recognizable by their distinct architectures and molecular components, which can change in response to cellular stimuli or metabolic requirements. Chromatin elements are characterized by the fundamental histone and DNA components, as well as other associated non-histone proteins and factors. Post-translational modifications of histone proteins in particular often correlate with a specific chromatin structure and function. Patterns of histone modifications are implicated as having a role in directing the level of chromatin compaction, as well as playing roles in multiple functional pathways directing the readout of distinct regions of the genome. We review the properties of various chromatin elements and the apparent links of histone modifications with chromatin organization and functional output.
Collapse
Affiliation(s)
- Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|
48
|
Inoue A, Hyle J, Lechner MS, Lahti JM. Perturbation of HP1 localization and chromatin binding ability causes defects in sister-chromatid cohesion. Mutat Res 2008; 657:48-55. [PMID: 18790078 DOI: 10.1016/j.mrgentox.2008.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 01/06/2023]
Abstract
Sister-chromatid cohesion, the machinery used in eukaryote organisms to prevent aneuploidy, tethers sister chromatids together after their replication in S phase until mitosis. Previous studies in fission yeast, Drosophila and mammals have demonstrated the requirement for the heterochromatin formation pathway for proper centromeric cohesion. However, the exact role of heterochromatin protein 1 (HP1) in sister-chromatid cohesion in mammals is still unknown. In this study, we disrupted endogenous HP1 expression in HeLa cells using a dominant-negative mutant of HP1beta and wild-type or mutant forms of HP1alpha. We then examined their effects on chromosome alignment, segregation and cohesion. Enforced expression of these constructs leads to frequent chromosome misalignment and missegregation. Mitotic chromosomes from these cells also exhibit a loosened primary constriction and separated sister chromatids. We further demonstrate that alignment of the cohesin proteins around kinetochores was also aberrant and that cohesin complexes bound less tightly in these cells. Unexpectedly, we observed a "wavy" chromosome morphology resembling that seen upon depletion of condensin proteins in cells with over-expression of HP1alpha, but not in cells expressing the HP1beta mutant. These results indicate that proper HP1 status is required for sister-chromatid cohesion in mammalian cells, and suggest that HP1alpha might be required for chromosome condensation.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | |
Collapse
|
49
|
Kulkarni S, Nagarajan P, Wall J, Donovan DJ, Donell RL, Ligon AH, Venkatachalam S, Quade BJ. Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. Am J Med Genet A 2008; 146A:1117-27. [PMID: 18386809 DOI: 10.1002/ajmg.a.32178] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herein we characterize an apparently balanced de novo translocation, t(X;15)(p22.2;q26.1)dn, in a female patient with scoliosis, hirsutism, learning problems, and developmental delay (DGAP025). Other clinical findings include a high-arched palate, 2-3 syndactyly of the toes, and mildly elevated serum testosterone. No known or predicted genes are disrupted by the Xp22.2 breakpoint. The 15q26.1 breakpoint disrupts chromodomain helicase DNA binding protein 2 (CHD2). Another member of the chromatin-remodeling gene family, CHD7, has been associated with a defined constellation of congenital anomalies known as coloboma, heart anomaly, choanal atresia, mental retardation, genital and ear anomalies syndrome (CHARGE) and idiopathic scoliosis. Monosomy of 15q26 also has been associated with a spectrum of congenital abnormalities and growth retardation that overlaps with those of DGAP025. To provide a biological correlate, we characterized a mutant mouse model with Chd2 disruption that is associated with embryonic and perinatal lethality. Expression analysis indicated that Chd2 is expressed in the heart, forebrain, extremities, facial and dorsal regions during specific times of embryonic development. Chd2(+/m) mice showed pronounced lordokyphosis, reduced body fat, postnatal runting, and growth retardation. These data suggest that haploinsufficiency for CHD2 could result in a complex of abnormal human phenotypes that includes scoliosis and possibly features similar to CHARGE syndrome.
Collapse
Affiliation(s)
- Shashikant Kulkarni
- Division of Women's and Perinatal Pathology and Clinical Cytogenetics Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ritou E, Bai M, Georgatos SD. Variant-specific patterns and humoral regulation of HP1 proteins in human cells and tissues. J Cell Sci 2007; 120:3425-35. [PMID: 17855381 DOI: 10.1242/jcs.012955] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have examined the occurrence and distribution of HP1α and HP1β under in vivo, ex vivo and in vitro conditions. Consistent with a non-essential role in heterochromatin maintenance, both proteins are diminished or undetectable in several types of differentiated cells and are universally downregulated during erythropoiesis. Variant-specific patterns are observed in almost all human and mouse tissues examined. Yet, the most instructive example of HP1 plasticity is observed in the lymph nodes, where HP1α and HP1β exhibit regional patterns that are exactly complementary to one another. Furthermore, whereas HP1α shows a dispersed sub-nuclear distribution in the majority of peripheral lymphocytes, it coalesces into large heterochromatic foci upon stimulation with various mitogens and IL-2. The effect of inductive signals on HP1α distribution is reproduced by coculture of immortalized T- and B-cells and can be confirmed using specific markers. These complex patterns reveal an unexpected plasticity in HP1 variant expression and strongly suggest that the sub-nuclear distribution of HP1 proteins is regulated by humoral signals and microenvironmental cues.
Collapse
Affiliation(s)
- Eleni Ritou
- Stem Cell and Chromatin Group, Laboratory of Biology, The University of Ioannina School of Medicine, Dourouti, Greece
| | | | | |
Collapse
|