1
|
Kolberg T, von Löhneysen S, Ozerova I, Wellner K, Hartmann R, Stadler P, Mörl M. Led-Seq: ligation-enhanced double-end sequence-based structure analysis of RNA. Nucleic Acids Res 2023; 51:e63. [PMID: 37114986 PMCID: PMC10287922 DOI: 10.1093/nar/gkad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Structural analysis of RNA is an important and versatile tool to investigate the function of this type of molecules in the cell as well as in vitro. Several robust and reliable procedures are available, relying on chemical modification inducing RT stops or nucleotide misincorporations during reverse transcription. Others are based on cleavage reactions and RT stop signals. However, these methods address only one side of the RT stop or misincorporation position. Here, we describe Led-Seq, a new approach based on lead-induced cleavage of unpaired RNA positions, where both resulting cleavage products are investigated. The RNA fragments carrying 2', 3'-cyclic phosphate or 5'-OH ends are selectively ligated to oligonucleotide adapters by specific RNA ligases. In a deep sequencing analysis, the cleavage sites are identified as ligation positions, avoiding possible false positive signals based on premature RT stops. With a benchmark set of transcripts in Escherichia coli, we show that Led-Seq is an improved and reliable approach based on metal ion-induced phosphodiester hydrolysis to investigate RNA structures in vivo.
Collapse
Affiliation(s)
- Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Sarah von Löhneysen
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Iuliia Ozerova
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Roland K Hartmann
- Institute for Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Lönnberg H. Structural modifications as tools in mechanistic studies of the cleavage of RNA phosphodiester linkages. CHEM REC 2022; 22:e202200141. [PMID: 35832010 DOI: 10.1002/tcr.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Indexed: 11/06/2022]
Abstract
The cleavage of RNA phosphodiester bonds by RNase A and hammerhead ribozyme at neutral pH fundamentally differs from the spontaneous reactions of these bonds under the same conditions. While the predominant spontaneous reaction is isomerization of the 3',5'-phosphodiester linkages to their 2',5'-counterparts, this reaction has never been reported to compete with the enzymatic cleavage reaction, not even as a minor side reaction. Comparative kinetic measurements with structurally modified di-nucleoside monophosphates and oligomeric phosphodiesters have played an important role in clarification of mechanistic details of the buffer-independent and buffer-catalyzed reactions. More recently, heavy atom isotope effects and theoretical calculations have refined the picture. The primary aim of all these studies has been to form a solid basis for mechanistic analyses of the action of more complicated catalytic machineries. In other words, to contribute to conception of a plausible unified picture of RNA cleavage by biocatalysts, such as RNAse A, hammerhead ribozyme and DNAzymes. In addition, structurally modified trinucleoside monophosphates as transition state models for Group I and II introns have clarified some features of the action of large ribozymes.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FI-20014 University of, Turku
| |
Collapse
|
3
|
Putnam WC, Bashkin JK. Oligonucleotides containing abasic threoninol-terpyridine residues as potential artificial ribonucleases. J Inorg Biochem 2022; 232:111831. [DOI: 10.1016/j.jinorgbio.2022.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
|
4
|
Secondary structure prediction for RNA sequences including N 6-methyladenosine. Nat Commun 2022; 13:1271. [PMID: 35277476 PMCID: PMC8917230 DOI: 10.1038/s41467-022-28817-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 01/22/2023] Open
Abstract
There is increasing interest in the roles of covalently modified nucleotides in RNA. There has been, however, an inability to account for modifications in secondary structure prediction because of a lack of software and thermodynamic parameters. We report the solution for these issues for N6-methyladenosine (m6A), allowing secondary structure prediction for an alphabet of A, C, G, U, and m6A. The RNAstructure software now works with user-defined nucleotide alphabets of any size. We also report a set of nearest neighbor parameters for helices and loops containing m6A, using experiments. Interestingly, N6-methylation decreases folding stability for adenosines in the middle of a helix, has little effect on folding stability for adenosines at the ends of helices, and increases folding stability for unpaired adenosines stacked on a helix. We demonstrate predictions for an N6-methylation-activated protein recognition site from MALAT1 and human transcriptome-wide effects of N6-methylation on the probability of adenosine being buried in a helix. RNA folding free energy nearest neighbor parameters were determined for sequences with the nucleotide m6A. The RNAstructure software package can accommodate modified nucleotides, enabling secondary structure prediction of sequences with m6A.
Collapse
|
5
|
Synak J, Rybarczyk A, Blazewicz J. Multi-agent approach to sequence structure simulation in the RNA World hypothesis. PLoS One 2020; 15:e0238253. [PMID: 32857812 PMCID: PMC7455006 DOI: 10.1371/journal.pone.0238253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/12/2020] [Indexed: 12/03/2022] Open
Abstract
The origins of life on Earth have been the subject of inquiry since the early days of philosophical thought and are still intensively investigated by the researchers around the world. One of the theories explaining the life emergence, that gained the most attention recently is the RNA World hypothesis, which assumes that life on Earth was sparked by replicating RNA chains. Since wet lab analysis is time-consuming, many mathematical and computational approaches have been proposed that try to explain the origins of life. Recently proposed one, based on the work by Takeuchi and Hogeweg, addresses the problem of interplay between RNA replicases and RNA parasitic species, which is crucial for understanding the first steps of prebiotic evolution. In this paper, the aforementioned model has been extended and modified by introducing RNA sequence (structure) information and mutation rate close to real one. It allowed to observe the simple evolution mechanisms, which could have led to the more complicated systems and eventually, to the formation of the first cells. The main goal of this study was to determine the conditions that allowed the spontaneous emergence and evolution of the prebiotic replicases equipped with simple functional domains within a large population. Here we show that polymerase ribozymes could have appeared randomly and then quickly started to copy themselves in order for the system to reach equilibrium. It has been shown that evolutionary selection works even in the simplest systems.
Collapse
Affiliation(s)
- Jaroslaw Synak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
- * E-mail: (JB); (AR)
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
- * E-mail: (JB); (AR)
| |
Collapse
|
6
|
Messina KJ, Kierzek R, Tracey MA, Bevilacqua PC. Small Molecule Rescue and Glycosidic Conformational Analysis of the Twister Ribozyme. Biochemistry 2019; 58:4857-4868. [PMID: 31742390 PMCID: PMC6901379 DOI: 10.1021/acs.biochem.9b00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The number of self-cleaving ribozymes has increased sharply in recent years, giving rise to elaborations of the four known ribozyme catalytic strategies, α, β, γ, and δ. One such extension is utilized by the twister ribozyme, which is hypothesized to conduct δ, or general acid catalysis, via N3 of the syn adenine +1 nucleobase indirectly via buffer catalysis at biological pH and directly at lower pH. Herein, we test the δ catalysis role of A1 via chemical rescue and the catalytic relevance of the syn orientation of the nucleobase by conformational analysis. Using inhibited twister ribozyme variants with A1(N3) deaza or A1 abasic modifications, we observe >100-fold chemical rescue effects in the presence of protonatable biological small molecules such as imidazole and histidine, similar to observed rescue values previously reported for C75U/C76Δ in the HDV ribozyme. Brønsted plots for the twister variants support a model in which small molecules rescue catalytic activity via a proton transfer mechanism, suggesting that A1 in the wild type is involved in proton transfer, most likely general acid catalysis. Additionally, through glycosidic conformational analysis in an appropriate background that accommodates the bromine atom, we observe that an 8BrA1-modified twister ribozyme is up to 10-fold faster than a nonmodified A1 ribozyme, supporting crystallographic data that show that A1 is syn when conducting proton transfer. Overall, this study provides functional evidence that the nucleotide immediately downstream of the cleavage site participates directly or indirectly in general acid-base catalysis in the twister ribozyme while occupying the syn conformation.
Collapse
Affiliation(s)
- Kyle J. Messina
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Matthew A. Tracey
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Current Address: Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
7
|
Fuchs E, Falschlunger C, Micura R, Breuker K. The effect of adenine protonation on RNA phosphodiester backbone bond cleavage elucidated by deaza-nucleobase modifications and mass spectrometry. Nucleic Acids Res 2019; 47:7223-7234. [PMID: 31276590 PMCID: PMC6698743 DOI: 10.1093/nar/gkz574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/15/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
The catalytic strategies of small self-cleaving ribozymes often involve interactions between nucleobases and the ribonucleic acid (RNA) backbone. Here we show that multiply protonated, gaseous RNA has an intrinsic preference for the formation of ionic hydrogen bonds between adenine protonated at N3 and the phosphodiester backbone moiety on its 5'-side that facilitates preferential phosphodiester backbone bond cleavage upon vibrational excitation by low-energy collisionally activated dissociation. Removal of the basic N3 site by deaza-modification of adenine was found to abrogate preferential phosphodiester backbone bond cleavage. No such effects were observed for N1 or N7 of adenine. Importantly, we found that the pH of the solution used for generation of the multiply protonated, gaseous RNA ions by electrospray ionization affects phosphodiester backbone bond cleavage next to adenine, which implies that the protonation patterns in solution are at least in part preserved during and after transfer into the gas phase. Our study suggests that interactions between protonated adenine and phosphodiester moieties of RNA may play a more important mechanistic role in biological processes than considered until now.
Collapse
Affiliation(s)
- Elisabeth Fuchs
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Falschlunger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Patutina OA, Bazhenov MA, Miroshnichenko SK, Mironova NL, Pyshnyi DV, Vlassov VV, Zenkova MA. Peptide-oligonucleotide conjugates exhibiting pyrimidine-X cleavage specificity efficiently silence miRNA target acting synergistically with RNase H. Sci Rep 2018; 8:14990. [PMID: 30302012 PMCID: PMC6177439 DOI: 10.1038/s41598-018-33331-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Taking into account the important role of miRNA in carcinogenesis, oncogenic miRNAs are attractive molecules for gene-targeted therapy. Here, we developed a novel series of peptide-oligonucleotide conjugates exhibiting ribonuclease activity targeted to highly oncogenic miRNAs miR-21 and miR-17. When designing the conjugates, we enhanced both nuclease resistance of the targeted oligodeoxyribonucleotide by introducing at its 3'-end mini-hairpin structure displaying high thermostability and robustness against nuclease digestion and the efficiency of its functioning by attachment of the catalytic construction (amide)NH2-Gly(ArgLeu)4-TCAA displaying ribonuclease activity to its 5'-end. Designed miRNases efficiently cleaved miRNA targets, exhibiting Pyr-X specificity, and cleavage specificity had strong dependence on the miRNA sequence in the site of peptide location. In vitro, designed miRNases do not prevent cleavage of miRNA bound with the conjugate by RNase H, and more than an 11-fold enhancement of miRNA cleavage by the conjugate is observed in the presence of RNase H. In murine melanoma cells, miRNase silences mmu-miR-17 with very high efficiency as a result of miR-17 cleavage by miRNase and by recruited RNase H. Thus, miRNases provide a system of double attack of the miRNA molecules, significantly increasing the efficiency of miRNA downregulation in the cells in comparison with antisense oligonucleotide.
Collapse
Affiliation(s)
- O A Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - M A Bazhenov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - S K Miroshnichenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - N L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - D V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - V V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - M A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
9
|
Šponer JE, Šponer J, Mauro ED. New evolutionary insights into the non-enzymatic origin of RNA oligomers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27785893 DOI: 10.1002/wrna.1400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
Abstract
We outline novel findings on the non-enzymatic polymerization of nucleotides under plausible prebiotic conditions and on the spontaneous onset of informational complexity in the founding molecule, RNA. We argue that the unique ability of 3', 5' cyclic guanosine monophosphate to form stacked architectures and polymerize in a self-sustained manner suggests that this molecule may serve as the 'seed of life' from which all self-replicating oligonucleotides can be derived via a logically complete sequence of simple events. WIREs RNA 2017, 8:e1400. doi: 10.1002/wrna.1400 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ernesto Di Mauro
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Tamkovich N, Koroleva L, Kovpak M, Goncharova E, Silnikov V, Vlassov V, Zenkova M. Design, RNA cleavage and antiviral activity of new artificial ribonucleases derived from mono-, di- and tripeptides connected by linkers of different hydrophobicity. Bioorg Med Chem 2016; 24:1346-55. [PMID: 26899594 DOI: 10.1016/j.bmc.2016.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 11/15/2022]
Abstract
A novel series of metal-free artificial ribonucleases (aRNases) was designed, synthesized and assessed in terms of ribonuclease activity and ability to inactivate influenza virus WSN/A33/H1N1 in vitro. The compounds were built of two short peptide fragments, which include Lys, Ser, Arg, Glu and imidazole residues in various combinations, connected by linkers of different hydrophobicity (1,12-diaminododecane or 4,9-dioxa-1,12-diaminododecane). These compounds efficiently cleaved different RNA substrates under physiological conditions at rates three to five times higher than that of artificial ribonucleases described earlier and displayed RNase A-like cleavage specificity. aRNases with the hydrophobic 1,12-diaminododecane linker displayed ribonuclease activity 3-40 times higher than aRNases with the 4,9-dioxa-1,12-diaminododecane linker. The assumed mechanism of RNA cleavage was typical for natural ribonucleases, that is, general acid-base catalysis via the formation of acid/base pairs by functional groups of amino acids present in the aRNases; the pH profile of cleavage confirmed this mechanism. The most active aRNases under study exhibited high antiviral activity and entirely inactivated influenza virus A/WSN/33/(H1N1) after a short incubation period of viral suspension under physiological conditions.
Collapse
Affiliation(s)
- Nikolay Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Lyudmila Koroleva
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Mikhail Kovpak
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Elena Goncharova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Vladimir Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave, 8, Novosibirsk 630090, Russia.
| |
Collapse
|
11
|
Ma X, Yin Y, Geng Z, Yang Z, Wen J, Wang Z. The first example of a model compound of RNase U2 and its intermediate with CPP directly monitored by ESI-MS. RSC Adv 2014. [DOI: 10.1039/c4ra07950g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
12
|
Abstract
Recent progress with techniques for monitoring RNA structure in cells such as ‘DMS-Seq’ and ‘Structure-Seq’ suggests that a new era of RNA structure-function exploration is on the horizon. This will also include systematic investigation of the factors required for the structural integrity of RNA. In this context, much evidence accumulated over 50 years suggests that polyamines play important roles as modulators of RNA structure. Here, we summarize and discuss recent literature relating to the roles of these small endogenous molecules in RNA function. We have included studies directed at understanding the binding interactions of polyamines with polynucleotides, tRNA, rRNA, mRNA and ribozymes using chemical, biochemical and spectroscopic tools. In brief, polyamines bind RNA in a sequence-selective fashion and induce changes in RNA structure in context-dependent manners. In some cases the functional consequences of these interactions have been observed in cells. Most notably, polyamine-mediated effects on RNA are frequently distinct from those of divalent cations (i.e. Mg2+) confirming their roles as independent molecular entities which help drive RNA-mediated processes.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|
13
|
Rahimian M, Yeole SD, Gejji SP. Mechanistic insights for β-cyclodextrin catalyzed phosphodiester hydrolysis. J Mol Model 2014; 20:2198. [PMID: 24652502 DOI: 10.1007/s00894-014-2198-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 03/02/2014] [Indexed: 11/24/2022]
Abstract
Hydrolysis of phosphodiester bond in different substrates containing alkyl or aryl substituents, in the presence of β-cyclodextrin (β-CD) as a catalyst, has been investigated employing the density functional theory. It has been shown that the mechanism of β-CD catalyzed phosphodiester hydrolysis in modeled substrates viz. [p-nitrophenyl][(2,2) methylpropan] phosphodiester (G1); [p-nitrophenyl] [(2,2)methyl butan] phosphodiester (G2); (p-nitrophenyl) (2-methyl pentan) phosphodiester (G3); (p-nitrophenyl) (phenyl) phosphodiester (G4); (p-nitrophenyl) (m-tert-butyl phenyl) phosphodiester (G5) and (p-nitrophenyl) (p-nitrophenyl) phosphodiester (G6) involves net phosphoryl transfer from p-nitrophenyl to the catalyst. The hydrolysis occurs in a single-step D(N)A(N) mechanism wherein the β-CD acts as a competitive general base. The nucleophile addition is facilitated via face-to-face hydrogen-bonded interactions from the secondary hydroxyl groups attached to the top rim of β-CD. The insights for cleavage of phosphodiester along the dissociative pathway have been derived using the molecular electrostatic potential studies as a tool. The activation barrier of substrates containing alkyl group (G2 and G3) are found to be lower than those containing aryl groups (G4, G5 and G6).
Collapse
|
14
|
Abstract
RNA and DNA carry out diverse functions in biology including catalysis, splicing, gene regulation, and storage of genetic information. Interest has grown in understanding how nucleic acids perform such sophisticated functions given their limited molecular repertoire. RNA can fold into diverse shapes that often perturb pKa values and allow it to ionize appreciably under biological conditions, thereby extending its molecular diversity. The goal of this chapter is to enable experimental measurement of pKa's in RNA and DNA. A number of experimental methods for measuring pKa values in RNA and DNA have been developed over the last 10 years, including RNA cleavage kinetics; UV-, fluorescence-, and NMR-detected pH titrations; and Raman crystallography. We begin with general considerations for choosing a pKa assay and then describe experimental conditions, advantages, and disadvantages for these assays. Potential pitfalls in measuring a pKa are provided including the presence of apparent pKa's due to a kinetic pKa or coupled acid- and alkali-promoted RNA unfolding, as well as degradation of RNA, precipitation of metal hydroxides and poor baselines. Use of multiple data fitting procedures and the study of appropriate mutants are described as ways to avoid some of these pitfalls. Application of these experimental methods to RNA and DNA will increase the number of available nucleic acid pKa values in the literature, which should deepen insight into biology and provide benchmarks for pKa calculations. Future directions for measuring pKa's in nucleic acids are discussed.
Collapse
Affiliation(s)
- Pallavi Thaplyal
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Philip C Bevilacqua
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
15
|
Blazewicz J, Figlerowicz M, Kasprzak M, Nowacka M, Rybarczyk A. RNA partial degradation problem: motivation, complexity, algorithm. J Comput Biol 2011; 18:821-34. [PMID: 21563977 DOI: 10.1089/cmb.2010.0153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies conducted during the last decade unexpectedly revealed several new biological functions of RNA molecules. The involvement of RNA in many complex processes requires highly effective systems controlling its accumulation. In this context, the mechanisms of degradation appear as one of the most important factors influencing RNA activity. Here, we present our first attempt to describe the RNA degradation process using bioinformatics methods. Based on the obtained data, we propose a formulation of a new problem, called RNA Partial Degradation Problem (RNA PDP) and the algorithm that is capable of reconstructing an RNA molecule using the results of biochemical analysis of its degradation. In addition, we present the results of biochemical experiments and computational tests.
Collapse
Affiliation(s)
- Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | | | | | | |
Collapse
|
16
|
Development of a software tool and criteria evaluation for efficient design of small interfering RNA. Biochem Biophys Res Commun 2011; 404:313-20. [DOI: 10.1016/j.bbrc.2010.11.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
17
|
KAWAMURA K. Development of Micro-Flow Hydrothermal Monitoring Systems and Their Applications to the Origin of Life Study on Earth. ANAL SCI 2011; 27:675. [DOI: 10.2116/analsci.27.675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kunio KAWAMURA
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| |
Collapse
|
18
|
Sund C, Rousse B, Puri N, Viswanadham G, Agback P, Sandström A, Glemarec C, Yamakage SI, Chattopadhyaya J. The Synthesis of Lariat-RNAs and their Conformational Analysis by NMR Spectroscopy: The Study of their Unique Self-Cleavage Reaction Modelling Some Catalytic RNAs (Ribozymes). ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bscb.19941030910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Tamkovich NV, Zenkov AN, Vlasov VV, Zenkova MA. [An RNA sequence determines the speed of its splitting by artificial ribonucleases]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:223-35. [PMID: 20531481 DOI: 10.1134/s106816201002010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphodiester bonds in RNA situated between similar nucleotides but in different sequences (context) were split under the action of artificial and natural ribonucleases with different speeds, and the reason for this phenomenon has not yet been fully revealed. In this study, the influence of one-nucleotide substitution on the sensitivity to splitting of the phosphodiester bonds in linear and structured RNA with homologous sequences is studied for the first time. It is indicated that the introduction of one-nucleotide substitution in the RNA sequence significantly (up to 10 times) changes the speed of the splitting of the bonds that are separated from the substitution point not only by 1-3, but also 6-8 nucleotides, by artificial ribonucleases. The observed regularities may be explained by the fact that the introduction of a one-nucleotide substitution significantly changes the stacking interactions and the net of hydrogen bonds in the RNA molecule. The applied value of this study consists of the ability of using low-molecular artificial ribonucleases with the aim of choosing the region of the binding of the oligonucleotide in the construction of a conjugate for the site-directed cutting of RNA, because the choice of a phosphodiester bond (motif) easily subjected to splitting significantly determines the effectiveness of artificial ribonucleases of directed action.
Collapse
Affiliation(s)
- N V Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 8, Novosibirsk, 630090 Russia
| | | | | | | |
Collapse
|
20
|
Kovalev NA, Medvedeva DA, Zenkova MA, Vlassov VV. Cleavage of RNA by an amphiphilic compound lacking traditional catalytic groups. Bioorg Chem 2007; 36:33-45. [PMID: 18061645 DOI: 10.1016/j.bioorg.2007.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 12/23/2022]
Abstract
Recently, in experiments with combinatorial libraries of amphiphilic compounds lacking groups, known as catalysts of transesterification reaction, we discovered novel RNA-cleaving compounds [N. Kovalev, E. Burakova, V. Silnikov, M. Zenkova, V. Vlassov, Bioorg. Chem. 34 (2006) 274-286]. In the present study, we investigate cleavage of RNA by the most active representative of these libraries, compound named Dp12. Sequence-specificity of RNA cleavage and influence of reaction conditions on cleavage rate suggested that Dp12 enormously accelerates spontaneous RNA cleavage. Light scattering experiments revealed that the RNA cleavage proceeds within multiplexes formed by assembles of RNA and Dp12 molecules, at Dp12 concentration far below critical concentration of micelle formation. Under these conditions, Dp12 is presented in the solution as individual molecules, but addition of RNA to this solution triggers formation of the multiplexes. The obtained data suggest a possible mechanism of RNA cleavage, which includes interaction of the compound with RNA sugar-phosphate backbone resulting in changing of ribose conformation. This leads to juxtaposition of the 2'-hydroxyl group and internucleotide phosphorus atom at a distance needed for the transesterification to occur.
Collapse
Affiliation(s)
- N A Kovalev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russian Federation
| | | | | | | |
Collapse
|
21
|
Ma Q, Xu Z, Schroeder BR, Sun W, Wei F, Hashimoto S, Konishi K, Leitheiser CJ, Hecht SM. Biochemical evaluation of a 108-member deglycobleomycin library: viability of a selection strategy for identifying bleomycin analogues with altered properties. J Am Chem Soc 2007; 129:12439-52. [PMID: 17887752 DOI: 10.1021/ja0722729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bleomycins (BLMs) are clinically used glycopeptide antitumor antibiotics that have been shown to mediate the sequence-selective oxidative damage of both DNA and RNA. Previously, we described the solid-phase synthesis of a library of 108 unique analogues of deglycoBLM A6, a congener that cleaves DNA analogously to BLM itself. Each member of the library was assayed for its ability to effect single- and double-strand nicking of duplex DNA, sequence-selective DNA cleavage, and RNA cleavage in the presence and absence of a metal ion cofactor. All of the analogues tested were found to mediate concentration-dependent plasmid DNA relaxation to some extent, and a number exhibited double-strand cleavage with an efficiency comparable to or greater than deglycoBLM A6. Further, some analogues having altered linker and metal-binding domains mediated altered sequence-selective cleavage, and a few were found to cleave a tRNA3Lys transcript both in the presence and in the absence of a metal cofactor. The results provide insights into structural elements within BLM that control DNA and RNA cleavage. The present study also permits inferences to be drawn regarding the practicality of a selection strategy for the solid-phase construction and evaluation of large libraries of BLM analogues having altered properties.
Collapse
Affiliation(s)
- Qian Ma
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fedoruk-Wyszomirska A, Wyszko E, Giel-Pietraszuk M, Barciszewska MZ, Barciszewski J. High hydrostatic pressure approach proves RNA catalytic activity without magnesium. Int J Biol Macromol 2007; 41:30-5. [PMID: 17222901 DOI: 10.1016/j.ijbiomac.2006.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
High hydrostatic pressure (HHP) technique was used to evaluate a mechanism of RNA hydrolysis with RNA. We showed that hammerhead ribozyme specifically cleaves RNA substrate at HHP in the absence of Mg(2+). A deoxyribozyme "10-23" was active in the same conditions. These results pointed out that the hydrolytic activity of nucleic acid depends on proper tertiary structure of a complex with a substrate. They prove that magnesium ion is not directly involved in catalysis process. On that basis we show the mechanism of RNA hydrolysis catalyzed with nucleic acids at HHP.
Collapse
|
23
|
Patzel V. In silico selection of active siRNA. Drug Discov Today 2006; 12:139-48. [PMID: 17275734 DOI: 10.1016/j.drudis.2006.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/09/2006] [Accepted: 11/30/2006] [Indexed: 12/25/2022]
Abstract
RNA interference (RNAi) mediated by short interfering RNA (siRNA) represents a powerful reverse genetics tool, and siRNAs are attracting increasing interest as potential therapeutics. Progress in the design of functional siRNAs has significantly contributed to our understanding of cellular RNA silencing pathways and vice versa. Parameters related to RNA sequence and structure have a strong impact on various steps along the silencing pathway and build the backbone of many siRNA design tools. Recent work has demonstrated that there is more to siRNA design than enhancement of gene silencing activity. Current efforts aim at avoidance of off-target effects, the understanding of siRNA-triggered immunostimulation, and evasion of interference with cellular regulatory RNA. Molecular features determining the biological functions of siRNA and their meaning for computational (in silico) selection are the focus of this review.
Collapse
Affiliation(s)
- Volker Patzel
- Max-Planck-Institute for Infection Biology, Department of Immunology, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
24
|
Wyszko E, Nowak M, Pospieszny H, Szymanski M, Pas J, Barciszewska MZ, Barciszewski J. Leadzyme formed in vivo interferes with tobacco mosaic virus infection in Nicotiana tabacum. FEBS J 2006; 273:5022-31. [PMID: 17032353 PMCID: PMC7163940 DOI: 10.1111/j.1742-4658.2006.05497.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/03/2006] [Accepted: 09/12/2006] [Indexed: 11/29/2022]
Abstract
We developed a new method for inhibiting tobacco mosaic virus infection in tobacco plants based on specific RNA hydrolysis induced by a leadzyme. We identified a leadzyme substrate target sequence in genomic tobacco mosaic virus RNA and designed a 16-mer oligoribonucleotide capable of forming a specific leadzyme motif with a five-nucleotide catalytic loop. The synthetic 16-mer RNA was applied with nontoxic, catalytic amount of lead to infected tobacco leaves. We observed inhibition of tobacco mosaic virus infection in tobacco leaves in vivo due to specific tobacco mosaic virus RNA cleavage effected by leadzyme. A significant reduction in tobacco mosaic virus accumulation was observed even when the leadzyme was applied up to 2 h after inoculation of leaves with tobacco mosaic virus. This process, called leadzyme interference, is determined by specific recognition and cleavage of the target site by the RNA catalytic strand in the presence of Pb(2+).
Collapse
Affiliation(s)
- Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
25
|
Putnam WC, Bashkin JK. Synthesis and evaluation of RNA transesterification efficiency using stereospecific serinol-terpyridine conjugates. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:1309-23. [PMID: 16252668 DOI: 10.1080/15257770500230426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Six novel artificial ribonucleases were synthesized employing a stereochemically pure abasic serinol backbone residue for attachment of the RNA transesterification agent copper(II) terpyridine. These stereochemically pure abasic residues were synthesized as phosphoramidite building blocks from the parent L-serine and D-serine starting building blocks and incorporated into oligonucleotides via solid-phase DNA synthesis. These artificial ribonucleases were constructed to determine if the stereochemistry of the alpha carbon of an abasic serinol residue has influence over RNA transesterification through selective placement of a pendant transesterification agent in either the major or minor groove. The novel artificial ribonucleases and previously synthesized artificial ribonucleases were challenged with a 28-mer and 159-mer RNA substrate. It was determined that the stereochemistry of the carbon atom derived from the alpha-carbon of serine did not influence the extent of cleavage in these studies using copper(II) terpyridine conjugated artificial ribonucleases.
Collapse
Affiliation(s)
- William C Putnam
- Department of Chemistry, Washington University, St. Louis, Missouri, USA.
| | | |
Collapse
|
26
|
Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S, Rosenberg A, Cohen D, Labow M, Reinhardt M, Natt F, Hall J. Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol 2005; 23:995-1001. [PMID: 16025102 DOI: 10.1038/nbt1118] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 04/27/2005] [Indexed: 11/10/2022]
Abstract
The largest gene knock-down experiments performed to date have used multiple short interfering/short hairpin (si/sh)RNAs per gene. To overcome this burden for design of a genome-wide siRNA library, we used the Stuttgart Neural Net Simulator to train algorithms on a data set of 2,182 randomly selected siRNAs targeted to 34 mRNA species, assayed through a high-throughput fluorescent reporter gene system. The algorithm, (BIOPREDsi), reliably predicted activity of 249 siRNAs of an independent test set (Pearson coefficient r = 0.66) and siRNAs targeting endogenous genes at mRNA and protein levels. Neural networks trained on a complementary 21-nucleotide (nt) guide sequence were superior to those trained on a 19-nt sequence. BIOPREDsi was used in the design of a genome-wide siRNA collection with two potent siRNAs per gene. When this collection of 50,000 siRNAs was used to identify genes involved in the cellular response to hypoxia, two of the most potent hits were the key hypoxia transcription factors HIF1A and ARNT.
Collapse
Affiliation(s)
- Dieter Huesken
- Novartis Institutes for BioMedical Research, Genome and Proteome Sciences, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Koval'ov N, Kuznetsova I, Burakova E, Sil'nikov V, Zenkova M, Vlassov V. Ribonuclease activity of cationic structures conjugated to lipophilic groups. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:977-81. [PMID: 15560089 DOI: 10.1081/ncn-200026050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cationic compounds containing benzene ring substituted with the bis-quaternary salt of diazabicyclo[2.2.2]octane (DABCO) bearing a polymethylene fragment at the bridge positions display ribonuclease activity. Efficacy of the catalysis is affected by geometry of the cationic structures and the size of the attached aliphatic fragment. The cleavage occurs primarily within CA sequences. The compounds do not possess tradition groups participating in the transesterification step of RNA cleavage reaction, therefore a speculative mechanism of cleavage could be inducing a conformational stress on the RNA sugar phosphate backbone providing fragility to phosphodiester bonds.
Collapse
Affiliation(s)
- N Koval'ov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
28
|
Kuznetsova IL, Zenkova MA, Gross HJ, Vlassov VV. Enhanced RNA cleavage within bulge-loops by an artificial ribonuclease. Nucleic Acids Res 2005; 33:1201-12. [PMID: 15731340 PMCID: PMC549568 DOI: 10.1093/nar/gki264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3′ terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic.
Collapse
Affiliation(s)
| | - Marina A. Zenkova
- To whom correspondence should be addressed. Tel: +7 3832 333761; Fax: +7 3832 333761;
| | - Hans J. Gross
- Institute of Biochemistry, BiocenterAm Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
29
|
Aström H, Strömberg R. Synthesis of new OBAN's and further studies on positioning of the catalytic group. Org Biomol Chem 2004; 2:1901-7. [PMID: 15227543 DOI: 10.1039/b403652b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two new zinc ion dependent oligonucleotide based artificial nucleases (OBAN's) have been synthesized. These consist of 2'-O-methyl modified RNA oligomers conjugated to 5-amino-2,9-dimethylphenanthroline (neocuproine)via a urea linker. OBAN 4 carries the catalytic group on a linker extending from the C-4 of an internal cytosine moiety. OBAN 5 has two neocuproine units attached, each to linkers extending from the C-5 position of uridine moieties, one placed internally and the other at the at the 5'-end of the oligonucleotide. The key step in the synthesis of the OBAN systems is conjugation of the catalytic group to the respective amino linkers of the modified oligonucleotides. This is achieved by first converting the 5-amino-2,9-dimethylphenanthroline to the phenylcarbamate. The reaction of this neocuproine phenylcarbamate with the oligonucleotide carrying one or two primary aliphatic amines in aqueous buffer (at pH 8.5) leads to nearly quantitative formation of the urea-linked conjugates. Both OBAN systems were found to cleave RNA in the bulged out regions formed from the non-complementary part of the target sequences, in the presence of Zn(II) ions. Differences in efficiency between these and previously reported systems are discussed.
Collapse
Affiliation(s)
- Hans Aström
- Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, S-17177, Stockholm, Sweden
| | | |
Collapse
|
30
|
|
31
|
Kaukinen U, Lönnberg H, Peräkylä M. Stabilisation of the transition state of phosphodiester bond cleavage within linear single-stranded oligoribonucleotides. Org Biomol Chem 2003; 2:66-73. [PMID: 14737661 DOI: 10.1039/b309828a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of base sequence on the stability of the transition state (TS) of phosphodiester bond cleavage within linear single-stranded oligoribonucleotides has been studied in order to better understand why the reactivity of some phosphodiester bonds is enhanced compared to an unconstrained linkage. Molecular dynamics simulations of 3.0 ns were carried out for 14 oligonucleotides that contain in the place of the scissile phosphodiester bond a phosphorane structure mimicking the TS of the bond cleavage. The hydrolytic stability of the same oligonucleotides had previously been reported. Both the non-bridging oxyanions and the leaving 5[prime or minute]-oxygen of the pentacoordinated phosphorane moiety were observed to form hydrogen bonds with solvent water molecules in a similar way with all the compounds studied. In addition, water mediated hydrogen bonds between the phosphorane non-bridging oxyanions and the bases of the 3[prime or minute]-flanking sequence were detected with some of the compounds, but not with the most labile ones. Hence, it seems that the enhanced cleavage of some internucleosidic linkages does not result from the TS stabilisation by hydrogen bonding. With heterooligomers, the stacking of bases next to the cleavage site was observed to be enhanced on going from the initial state to the TS, whereas within uracil homooligomer, having initially negligible stacking, no change in the magnitude of stacking was seen. Accordingly, while strong stacking in the initial state is known to retard the phosphodiester bond cleavage, it may in the TS accelerate the reaction. Therefore, enhanced stacking on going from the initial state to transition state appears to be a factor that markedly contributes to the hydrolytic stability of phosphodiester bonds within oligonucleotides and may, at least partly, explain accelerated cleavage compared to fully unconstrained bonds, such as those in polyuridylic acid.
Collapse
Affiliation(s)
- Ulla Kaukinen
- Department of Chemistry, University of Turku, FIN-20014, Turku, Finland
| | | | | |
Collapse
|
32
|
Kaukinen U, Venäläinen T, Lönnberg H, Peräkylä M. The base sequence dependent flexibility of linear single-stranded oligoribonucleotides correlates with the reactivity of the phosphodiester bond. Org Biomol Chem 2003; 1:2439-47. [PMID: 12956059 DOI: 10.1039/b302751a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of base sequence on the structure and flexibility of linear single-stranded RNA molecules and the influence of the base sequence on phosphodiester bond reactivity have been studied. Molecular dynamics simulations of 2.1 ns were carried out for nine chimeric oligonucleotides containing only one unsubstituted ribo unit, all the rest of sugars being 2'-O-methylated. The base sequence has recently been reported to make a big contribution to the reactivity of these compounds. A detailed examination of the interaction energies between the base moieties shows that base stacking is strongly context-dependent and cooperative. The strength of stacking at the site susceptible to chain cleavage by intramolecular transesterification was observed to be dependent on both the flanking bases of the cleavage site and those further apart in the molecule. The interaction energies between the bases in the vicinity of the scissile linkage were found to correlate well with the experimental phosphodiester bond cleavage rates: the stronger the bases close to the cleavage site are stacked, the slower the cleavage rate is.
Collapse
Affiliation(s)
- Ulla Kaukinen
- Department of Chemistry, University of Turku, FIN-20014, Turku, Finland
| | | | | | | |
Collapse
|
33
|
Kawamura K. Kinetics and activation parameter analyses of hydrolysis and interconversion of 2',5'- and 3',5'-linked dinucleoside monophosphate at extremely high temperatures. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:199-210. [PMID: 12595090 DOI: 10.1016/s0304-4165(02)00533-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kinetic analysis of hydrolytic stability of 2',5'- and 3',5'-linked dinucleoside monophosphate (N(2)'pN and N(3)'pN) was successfully performed in aqueous solution at 175-240 degrees C using a new real-time monitoring method for rapid hydrothermal reactions. The half-lives of NpN were in the range 2-8 s at 240 degrees C and apparent activation energy decreases in the order U(2)'pU>A(2)'pA>G(2)'pG>U(3)pU approximately C(3)'pC>A(3)pA. The stability of phosphodiester bond was dependent on the types of base moiety and phosphodiester linkages, but no systematic correlation was found between the structure and stability. The interconversion of 2',5'-adenylyladenosine monophosphate (A(2)'pA) and 3',5'-adenylyladenosine monophosphate (A(3)'pA) was enhanced in the presence of D- or L-histidine. The rate constants of degradation of NpN were dissected into the rate constants of hydrolysis and interconversion between N(2)'pN and N(3)'pN using a computer program SIMFIT. Kinetic analysis supports the mechanism that imidazolium ion and imidazole catalyze interconversion and hydrolysis even under hydrothermal environments. The activation parameters for the hydrolysis and interconversion of NpN were systematically determined for the first time from the temperature dependence of the rate constants, where both DeltaH(app)( not equal ) and DeltaS(app)( not equal ) for 2',5'-linked NpN are larger than those for 3',5'-linked NpN. These parameters support the pseudorotation mechanism through pentacoordinate intermediate from 2',5'- and 3',5'-linked NpN, where the average value of DeltaH( not equal ) (pseudorotation) was estimated to be 30+/-18 kJ mol(-1) at 175-240 degrees C.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Japan.
| |
Collapse
|
34
|
Sakamoto S, Tamura T, Furukawa T, Komatsu Y, Ohtsuka E, Kitamura M, Inoue H. Highly efficient catalytic RNA cleavage by the cooperative action of two Cu(II) complexes embodied within an antisense oligonucleotide. Nucleic Acids Res 2003; 31:1416-25. [PMID: 12595549 PMCID: PMC149831 DOI: 10.1093/nar/gkg238] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Revised: 01/06/2003] [Accepted: 01/06/2003] [Indexed: 11/12/2022] Open
Abstract
Based on our recent studies of RNA cleavage by oligonucleotide-terpyridine.Cu(II) complex 5'- and/or 3'-conjugates, we designed 2'-O-methyloligonucleotides with two terpyridine-attached nucleosides at contiguous internal sites. To connect the 2'-terpyridine-modified uridine residue at the 5'-side to the 5'-O-terpyridyl nucleoside residue at the 3'-side, a dimethoxytrityl derivative of 5-hydroxypropyl-5'-O-terpyridyl-2'-deoxyuridine-3'-phosphoramidite was newly synthesized. Using this unit, we constructed two terpyridine conjugates, with either an unusual phophodiester bond or the bond extended by a propanediol(s)-containing linker. Cleavage reactions of the target RNA oligomer, under the conditions of conjugate excess in the presence of Cu(II), indicated that the conjugates precisely cleaved the RNA at the predetermined site and that one propanediol-containing linker was the most appropriate for inducing high cleavage activity. Furthermore, a comparison of the activity of the propanediol agent with those of the control conjugates with one complex confirmed that the two complexes are required for efficient RNA cleavage. The reaction of the novel cleaver revealed a bell-shaped pH-rate profile with a maximum at pH approximately 7.5, which is a result of the cooperative action of the complexes. In addition, we demonstrated that the agent catalytically cleaves an excess of the RNA, with the kinetic parameter kcat/K(m) = 0.118 nM(-1) x h(-1).
Collapse
Affiliation(s)
- Satoshi Sakamoto
- Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Kawamura K. Kinetic Analysis of the Cleavage of the Ribose Phosphodiester Bond within Guanine and Cytosine-Rich Oligonucleotides and Dinucleotides at 65–200 °C and Its Implications Concerning the Chemical Evolution of RNA. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2003. [DOI: 10.1246/bcsj.76.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Takahashi H, Sawa H, Hasegawa H, Sata T, Hall WW, Nagashima K, Kurata T. Reconstitution of cleavage of human immunodeficiency virus type-1 (HIV-1) RNAs. Biochem Biophys Res Commun 2002; 293:1084-91. [PMID: 12051771 DOI: 10.1016/s0006-291x(02)00345-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A human immunodeficiency virus type 1 (HIV-1) particle contains approximately 1200 molecules of gag proteins and two copies of a 9.2-kb genomic RNA which has been reported to be dimerized and rapidly cleaved and to form a complex with a nucleocapsid protein, p7 (NCp7), during viral budding. These suggest that the cleavage can be reconstituted with gag proteins in vitro. Here we show that the p15(gag) coding region of viral RNA is fragmented in viral particles and that in vitro-synthesized RNA transcripts of HIV-1 undergo cleavage which is activated by NCp7 and other factors. Single-stranded oligoribonucleotides were cleaved between C and A or U and A, leaving 2',3'-cyclic phosphate and 5'-hydroxyl termini. These findings might explain the rapid degradation of genomic RNAs in HIV-1 particles.
Collapse
Affiliation(s)
- Hidehiro Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Zenkova M, Beloglazova N, Sil'nikov V, Vlassov V, Giegé R. RNA cleavage by 1,4-diazabicyclo[2.2.2]octane-imidazole conjugates. Methods Enzymol 2002; 341:468-90. [PMID: 11582799 DOI: 10.1016/s0076-6879(01)41171-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- M Zenkova
- Laboratory of Nucleic Acids Biochemistry, Novosibirsk Institute of Bioorganic Chemistry, Novosibirsk-90, 630090, Russia
| | | | | | | | | |
Collapse
|
38
|
Kaukinen U, Lyytikäinen S, Mikkola S, Lönnberg H. The reactivity of phosphodiester bonds within linear single-stranded oligoribonucleotides is strongly dependent on the base sequence. Nucleic Acids Res 2002; 30:468-74. [PMID: 11788709 PMCID: PMC99829 DOI: 10.1093/nar/30.2.468] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cleavage of short chimeric oligonucleotides containing only one reactive ribonucleoside unit, all other nucleosides being 2'-O-methylated, has been studied at pH 8.5 and 35 degrees C. Among the 20 different sequences that did not exhibit any tendency to form a defined secondary structure, the scissile 5'-UpA-3' and 5'-CpA-3' phosphodiester bonds experienced >100- and up to 35-fold reactivity differences, respectively. Compared with dinucleoside monophosphates, both rate accelerations and retardations of more than one order of magnitude were observed. Even a change of a single base several nucleosides away from the scissile bond markedly affected the reaction rate. Duplex formation at the 3'- and/or 5'-side of the scissile bond was also studied and observed to be strongly rate retarding. The origin of the high sensitivity of phosphodiester bonds to the molecular environment is discussed.
Collapse
Affiliation(s)
- Ulla Kaukinen
- Department of Chemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland
| | | | | | | |
Collapse
|
39
|
Putnam WC, Daniher AT, Trawick BN, Bashkin JK. Efficient new ribozyme mimics: direct mapping of molecular design principles from small molecules to macromolecular, biomimetic catalysts. Nucleic Acids Res 2001; 29:2199-204. [PMID: 11353090 PMCID: PMC55460 DOI: 10.1093/nar/29.10.2199] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2000] [Revised: 01/29/2001] [Accepted: 03/10/2001] [Indexed: 11/13/2022] Open
Abstract
Dramatic improvements in ribozyme mimics have been achieved by employing the principles of small molecule catalysis to the design of macromolecular, biomimetic reagents. Ribozyme mimics derived from the ligand 2,9-dimethylphenanthroline (neocuproine) show at least 30-fold improvements in efficiency at sequence-specific RNA cleavage when compared with analogous o-phenanthroline- and terpyridine-derived reagents. The suppression of hydroxide-bridged dimers and the greater activation of coordinated water by Cu(II) neocuproine (compared with the o-phenanthroline and terpyridine complexes) better allow Cu(II) to reach its catalytic potential as a biomimetic RNA cleavage agent. This work demonstrates the direct mapping of molecular design principles from small-molecule cleavage to macromolecular cleavage events, generating enhanced biomimetic, sequence-specific RNA cleavage agents.
Collapse
Affiliation(s)
- W C Putnam
- Department of Chemistry, Washington University, St Louis, MO 63130-4899, USA
| | | | | | | |
Collapse
|
40
|
Giegé R, Felden B, Zenkova MA, Sil'nikov VN, Vlassov VV. Cleavage of RNA with synthetic ribonuclease mimics. Methods Enzymol 2001; 318:147-65. [PMID: 10889986 DOI: 10.1016/s0076-6879(00)18050-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- R Giegé
- UPR 9002 Structure de Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | |
Collapse
|
41
|
Bibillo A, Figlerowicz M, Ziomek K, Kierzek R. The nonenzymatic hydrolysis of oligoribonucleotides. VII. Structural elements affecting hydrolysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:977-94. [PMID: 10893716 DOI: 10.1080/15257770008033037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Several elements of oligoribonucleotide structure are important for efficient hydrolysis. We have found that the following factors influence oligoribonucleotide hydrolysis: (i) single-stranded structure of RNA flanking the scissile phosphodiester bond, (ii) the substituent on atom C-5 of the uridine adjacent to the cleaved internucleotide bond, (iii) the position of the scissile UA phosphodiester bond within a hairpin loop, (iv) the concentration of formamide, urea, ethanol and sodium chloride.
Collapse
Affiliation(s)
- A Bibillo
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | |
Collapse
|
42
|
Figlerowicz M. Role of RNA structure in non-homologous recombination between genomic molecules of brome mosaic virus. Nucleic Acids Res 2000; 28:1714-23. [PMID: 10734190 PMCID: PMC102819 DOI: 10.1093/nar/28.8.1714] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brome mosaic virus (BMV) is a tripartite genome, positive-sense RNA virus of plants. Previously it was demonstrated that local hybridization between BMV RNAs (RNA-RNA heteroduplex formation) efficiently promotes non-homologous RNA recombination. In addition, studies on the role of the BMV polymerase in RNA recombination suggested that the location of non-homologous crossovers depends mostly on RNA structure. As a result, a detailed analysis of a large number of non-homologous recombinants generated in the BMV-based system was undertaken. Recombination hot-spots as well as putative elements in RNA structure enhancing non-homologous crossovers and targeting them in a site-specific manner were identified. To verify these observations the recombinationally active sequence in BMV RNA3 derivative was modified. The results obtained with new RNA3 mutants suggest that the primary and secondary structure of the sequences involved in a heteroduplex formation rather than the length of heteroduplex plays the most important role in the recombination process. The presented data indicate that the sequences proximal to the heteroduplex may also affect template switching by BMV replicase. Moreover, it was shown that both short homologous sequences and a hairpin structure have to accompany a double-stranded region to target non-homologous crossovers in a site-specific manner.
Collapse
Affiliation(s)
- M Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Pozna, Poland.
| |
Collapse
|
43
|
Oivanen M, Kuusela S, Lönnberg H. Kinetics and Mechanisms for the Cleavage and Isomerization of the Phosphodiester Bonds of RNA by Brønsted Acids and Bases. Chem Rev 1998; 98:961-990. [PMID: 11848921 DOI: 10.1021/cr960425x] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikko Oivanen
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | |
Collapse
|
44
|
Ushijima K, Gouzu H, Hosono K, Shirakawa M, Kagosima K, Takai K, Takaku H. Site-specific cleavage of tRNA by imidazole and/or primary amine groups bound at the 5'-end of oligodeoxyribonucleotides. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1379:217-23. [PMID: 9528657 DOI: 10.1016/s0304-4165(97)00101-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sequence specific RNA cleaving molecules were synthesized by attaching novel polyamine derivatives bearing imidazole and/or primary amine groups to the 5'-end of DNA oligonucleotides as the sequence-recognizing moieties. The actions of the molecules on a half-tRNA(Asp) were investigated. The oligonucleotides directed the nuclease activity (the imidazole and the primary amine are the catalytic groups) of the enzyme to the nucleotides directly adjacent to the complementary target sequence on the substrate RNA. The cleavage reaction shows a bell-shaped pH dependence with a maximum at pH 7.0, indicating the participation of protonated and non-protonated imidazoles residues in the process. The specificity of these hybrid enzymes can be easily altered, and they should prove to be useful tools for probing RNA structures in solution and as potential reactive groups in antisense oligonucleotide derivatives. We also describe the site-specific cleavage of tRNA(Asp) by the cleaving reagents bearing imidazole and/or primary amine groups at the 5'-end of oligodeoxyribonucleotides.
Collapse
Affiliation(s)
- K Ushijima
- Department of Industrial Chemistry, Chiba Institute of Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Ciesiołka J, Michałowski D, Wrzesinski J, Krajewski J, Krzyzosiak WJ. Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs. J Mol Biol 1998; 275:211-20. [PMID: 9466904 DOI: 10.1006/jmbi.1997.1462] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have characterized the susceptibility of various RNA bulges, loops and other single-stranded sequences to hydrolysis promoted by Pb2+. The reactivity of bulges depends primarily on the structural context of the flanking base-pairs and the effect of nucleotide present at the 5' side of the bulge is particularly strong. The efficiency of stacking interactions between the bulged residue and its neighbors seems to determine cleavage specificity and efficiency. Hydrolysis of two- and three-nucleotide bulges depends only slightly on their nucleotide composition. In the case of terminal loops, the efficiency of their hydrolysis usually increases with the loop size and strongly depends on its nucleotide composition. Stable tetraloops UUCG, CUUG and GCAA are resistant to hydrolysis, while in some other loops of the GNRA family a single, weak cleavage occurs, suggesting the existence of structural subclasses within the family. A very efficient, specific hydrolysis of a phosphodiester bond in the single-stranded region adjacent to the stem in oligomer 12 resembles highly specific cleavages of some tRNA molecules. The reaction occurs in the presence of Pb2+, but not in the presence of several other metal ions. The Pb(2+)-cleavable RNA domain may be considered another example of leadzyme. The results of Pb(2+)-induced hydrolysis in model RNA oligomers should be useful in interpretation of cleavage patterns of much larger, naturally occurring RNA molecules.
Collapse
Affiliation(s)
- J Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | | | | | |
Collapse
|
46
|
Reynolds MA, Beck TA, Say PB, Schwartz DA, Dwyer BP, Daily WJ, Vaghefi MM, Metzler MD, Klem RE, Arnold LJ. Antisense oligonucleotide containing an internal, non-nucleotide-based linker promote site-specific cleavage of RNA. Nucleic Acids Res 1996; 24:760-65. [PMID: 8604321 PMCID: PMC145679 DOI: 10.1093/nar/24.4.760] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have designed and synthesized a series of novel antisense methylphosphonate oligonucleotide (MPO) cleaving agents that promote site-specific cleavage on a complementary RNA target. These MPOs contain a non- nucleotide-based linking moiety near the middle of the sequence in place of one of the nucleotide bases. The region surrounding the unpaired base on the RNA strand (i.e. the one directly opposite the non-nucleotide-linker) is sensitive to hydrolytic cleavage catalyzed by ethylenediamine hydrochloride. Furthermore, the regions of the RNA comprising hydrogen bonded domains are resistant to cleavage compared with single-stranded RNA alone. Several catalytic moieties capable of supporting acid/base hydrolysis were coupled to the non-nucleotide-based linker via simple aqueous coupling chemistries. When tethered to the MPO in this manner these moieties are shown to catalyze site-specific cleavage on the RNA target without any additional catalyst.
Collapse
|
47
|
Plavec J, Thibaudeau C, Viswanadham G, Sund C, Sandström A, Chattopadhyaya J. The interaction of the 2′-OH group with the vicinal phosphate in ribonucleoside 3′-ethylphosphate drives the sugar-phosphate backbone into unique (S,ω−) conformational state. Tetrahedron 1995. [DOI: 10.1016/0040-4020(95)00714-j] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Vlassov VV, Zuber G, Felden B, Behr JP, Giegé R. Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure. Nucleic Acids Res 1995; 23:3161-7. [PMID: 7667092 PMCID: PMC307173 DOI: 10.1093/nar/23.16.3161] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hydrolysis of RNA in imidazole buffer and by spermine-imidazole conjugates has been investigated. The RNA models were yeast tRNA(Asp) and a transcript derived from the 3'-terminal sequence of tobacco mosaic virus RNA representing a minihelix capable of being enzymatically aminoacylated with histidine. Imidazole buffer and spermine-imidazole conjugates in the presence of free imidazole cleave phosphodiester bonds in the folded RNAs in a specific fashion. Imidazole buffer induces cleavages preferentially in single-stranded regions because nucleotides in these regions have more conformational freedom and can assume more easily the geometry needed for formation of the hydrolysis intermediate state. Spermine-imidazole constructs supplemented with free imidazole cleave tRNA(Asp) within single-stranded regions after pyrimidine residues with a marked preference for pyrimidine-A sequences. Hydrolysis patterns suggest a cleavage mechanism involving an attack by the imidazole residue of the electrostatically bound spermine-imidazole and by free imidazole at the most accessible single-stranded regions of the RNA. Cleavages in a viral RNA fragment recapitulating a tRNA-like domain were found in agreement with the model of this molecule that accounts for its functional properties, thus illustrating the potential of the imidazole-derived reagents as structural probes for solution mapping of RNAs. The cleavage reactions are simple to perform, provide information reflecting the state of the ribose-phosphate backbone of RNA and can be used for mapping single- and double-stranded regions in RNAs.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Buffers
- Hydrolysis
- Imidazoles
- Molecular Probes
- Molecular Sequence Data
- Molecular Structure
- Nucleic Acid Conformation
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Spermine
- Tobacco Mosaic Virus/genetics
- Tobacco Mosaic Virus/metabolism
Collapse
Affiliation(s)
- V V Vlassov
- Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Novosibirsk
| | | | | | | | | |
Collapse
|
49
|
Jeoung YH, Kumar PK, Suh YA, Taira K, Nishikawa S. Identification of phosphate oxygens that are important for self-cleavage activity of the HDV ribozyme by phosphorothioate substitution interference analysis. Nucleic Acids Res 1994; 22:3722-7. [PMID: 7937083 PMCID: PMC308353 DOI: 10.1093/nar/22.18.3722] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A phosphorothioate substitution interference assay was used to investigate the role of the pro-Rp oxygens of phosphate groups in the self-cleavage reaction of the genomic human hepatitis delta virus (HDV) ribozyme. Incorporation of several different phosphorothioates (NTP alpha S) into the HDV ribozyme inhibited the self-cleavage activity. Incorporation of uridine 5' phosphorothioate or adenosine 5' phosphorothioate maintained 72% of the original self-cleavage activity whereas incorporation of guanosine 5' phosphorothioate or cytosine 5' phosphorothioate into the precursor reduced self-cleavage activity to about 20% in each case. Using partially substituted phosphorothioate-modified transcripts, we identified the pro-Rp oxygens that are important for the ribozyme activity, and they are located at positions 0, 1, 4, 5, 21, 24, 25, 27, 28, 30-34, 40, 43 and 75. In particular, the pro-Rp oxygens at positions 0, 1 and 21 are appear to be critical for the self-cleavage activity of the HDV ribozyme.
Collapse
Affiliation(s)
- Y H Jeoung
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, MITI, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
50
|
Rousse B, Puri N, Viswanadham G, Agback P, Glemarec C, Sandström A, Sund C, Chattopadhyaya J. Solution conformation of hexameric & heptameric lariat-RNAs and their self-cleavage reactions which give products mimicking those from some catalytic RNAs (ribozymes). Tetrahedron 1994. [DOI: 10.1016/s0040-4020(01)80852-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|