1
|
Wang X, Zhu J, Zhang D, Liu G. Ribosomal control in RNA virus-infected cells. Front Microbiol 2022; 13:1026887. [PMID: 36419416 PMCID: PMC9677555 DOI: 10.3389/fmicb.2022.1026887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Viruses are strictly intracellular parasites requiring host cellular functions to complete their reproduction cycle involving virus infection of host cell, viral genome replication, viral protein translation, and virion release. Ribosomes are protein synthesis factories in cells, and viruses need to manipulate ribosomes to complete their protein synthesis. Viruses use translation initiation factors through their own RNA structures or cap structures, thereby inducing ribosomes to synthesize viral proteins. Viruses also affect ribosome production and the assembly of mature ribosomes, and regulate the recognition of mRNA by ribosomes, thereby promoting viral protein synthesis and inhibiting the synthesis of host antiviral immune proteins. Here, we review the remarkable mechanisms used by RNA viruses to regulate ribosomes, in particular, the mechanisms by which RNA viruses induce the formation of specific heterogeneous ribosomes required for viral protein translation. This review provides valuable insights into the control of viral infection and diseases from the perspective of viral protein synthesis.
Collapse
|
2
|
Meng H, Wang Q, Liu M, Li Z, Hao X, Zhao D, Dong Y, Liu S, Zhang F, Cui J, Ni B, Shan H, Liu F. The 5′-end motif of Senecavirus A cDNA clone is genetically modified in 36 different ways for uncovering profiles of virus recovery. Front Microbiol 2022; 13:957849. [PMID: 36060787 PMCID: PMC9428520 DOI: 10.3389/fmicb.2022.957849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Senecavirus A (SVA) is an emerging picornavirus. Its genome is one positive-sense, single-stranded RNA. The viral protein (VPg) is covalently linked to the extreme 5′ end of the SVA genome. A complex hairpin-pseudoknot-hairpin (HPH) RNA structure was computationally predicted to form at the 5′ end of the SVA genome. A total of three extra “U” residues (UUU) served as a linker between the HPH structure and the VPg, causing putative UUU–HPH formation at the extreme 5′ end of the SVA genome. It is unclear how the UUU–HPH structure functions. One SVA cDNA clone (N0) was constructed previously in our laboratory. Here, the N0 was genetically tailored for reconstructing a set of 36 modified cDNA clones (N1 to N36) in an attempt to rescue replication-competent SVAs using reverse genetics. The results showed that a total of nine viruses were successfully recovered. Out of them, five were independently rescued from the N1 to N5, reconstructed by deleting the first five nucleotides (TTTGA) one by one from the extreme 5′ end of N0. Interestingly, these five viral progenies reverted to the wild-type or/and wild-type-like genotype, suggesting that SVA with an ability to repair nucleotide defects in its extreme 5′ end. The other four were independently rescued from the N26 to N29, containing different loop-modifying motifs in the first hairpin of the HPH structure. These four loop-modifying motifs were genetically stable after serial passages, implying the wild-type loop motif was not a high-fidelity element in the first hairpin during SVA replication. The other genetically modified sequences were demonstrated to be lethal elements in the HPH structure for SVA recovery, suggesting that the putative HPH formation was a crucial cis-acting replication element for SVA propagation.
Collapse
Affiliation(s)
- Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qi Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Meiling Liu
- Department of Animal Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaojing Hao
- Qingdao Workstation of Animal Husbandry, Qingdao, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaqin Dong
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuang Liu
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Jin Cui
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Bo Ni
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
- *Correspondence: Bo Ni
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Hu Shan
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Fuxiao Liu
| |
Collapse
|
3
|
Chen P, Wojdyla JA, Colasanti O, Li Z, Qin B, Wang M, Lohmann V, Cui S. Biochemical and structural characterization of hepatitis A virus 2C reveals an unusual ribonuclease activity on single-stranded RNA. Nucleic Acids Res 2022; 50:9470-9489. [PMID: 35947700 PMCID: PMC9458454 DOI: 10.1093/nar/gkac671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
The HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24-27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity. We identified an ATPase-independent nuclease activity of HAV 2C with a preference for polyuridylic single-stranded RNAs. We determined the crystal structure of an HAV 2C fragment to 2.2 Å resolution, containing an ATPase domain, a region equivalent to enterovirus 2C zinc-finger (ZFER) and a C-terminal amphipathic helix (PBD). The PBD of HAV 2C occupies a hydrophobic pocket (Pocket) in the adjacent 2C, and we show the PBD-Pocket interaction is vital for 2C functions. We identified acidic residues that are essential for the ribonuclease activity and demonstrated mutations at these sites abrogate virus replication. We built a hexameric-ring model of HAV 2C, revealing the ribonuclease-essential residues clustering around the central pore of the ring, whereas the ATPase active sites line up at the gaps between adjacent 2Cs. Finally, we show the ribonuclease activity is shared by other picornavirus 2Cs. Our findings identified a previously unfound activity of picornavirus 2C, providing novel insights into the mechanisms of virus replication.
Collapse
Affiliation(s)
| | | | | | | | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Volker Lohmann
- Correspondence may also be addressed to Volker Lohmann. Tel: +49 6221 56 6449; Fax: +49 6221 56 4570;
| | - Sheng Cui
- To whom correspondence should be addressed. Tel: +86 10 67828669; Fax: +86 10 67855012;
| |
Collapse
|
4
|
Pintó RM, Pérez-Rodríguez FJ, D'Andrea L, de Castellarnau M, Guix S, Bosch A. Hepatitis A Virus Codon Usage: Implications for Translation Kinetics and Capsid Folding. Cold Spring Harb Perspect Med 2018. [PMID: 29530949 DOI: 10.1101/cshperspect.a031781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Codon usage bias is universal to all genomes. Hepatitis A virus (HAV) codon usage is highly biased and deoptimized with respect to its host. Accordingly, HAV is unable to induce cellular translational shutoff and its internal ribosome entry site (IRES) is inefficient. Codon usage deoptimization may be seen as a hawk (host cell) versus dove (HAV) game strategy for accessing transfer RNA (tRNA). HAV avoids use of abundant host cell codons and thereby eludes competition for the corresponding tRNAs. Instead, codons that are abundant or rare in cellular messenger RNAs (mRNAs) are used relatively rarely in its genome, although intermediately abundant host cell codons are abundant in the viral genome. Rare codons in the capsid coding region slow down the translation elongation rate, and in doing so intrinsically modulate capsid folding, which is critical to the stability of a virus transmitted through the fecal-oral route. HAV is a paradigmatic example of what has been proposed as a codon usage "code" for protein structure.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Francisco-Javier Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Lucia D'Andrea
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Montserrat de Castellarnau
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| |
Collapse
|
5
|
Improving virus production through quasispecies genomic selection and molecular breeding. Sci Rep 2016; 6:35962. [PMID: 27808108 PMCID: PMC5093897 DOI: 10.1038/srep35962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022] Open
Abstract
Virus production still is a challenging issue in antigen manufacture, particularly with slow-growing viruses. Deep-sequencing of genomic regions indicative of efficient replication may be used to identify high-fitness minority individuals suppressed by the ensemble of mutants in a virus quasispecies. Molecular breeding of quasispecies containing colonizer individuals, under regimes allowing more than one replicative cycle, is a strategy to select the fittest competitors among the colonizers. A slow-growing cell culture-adapted hepatitis A virus strain was employed as a model for this strategy. Using genomic selection in two regions predictive of efficient translation, the internal ribosome entry site and the VP1-coding region, high-fitness minority colonizer individuals were identified in a population adapted to conditions of artificially-induced cellular transcription shut-off. Molecular breeding of this population with a second one, also adapted to transcription shut-off and showing an overall colonizer phenotype, allowed the selection of a fast-growing population of great biotechnological potential.
Collapse
|
6
|
Abstract
Coronaviruses have large positive-strand RNA genomes that are 5' capped and 3' polyadenylated. The 5'-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15-16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3'-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5' leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells.
Collapse
Affiliation(s)
- K Nakagawa
- The University of Texas Medical Branch, Galveston, TX, United States
| | - K G Lokugamage
- The University of Texas Medical Branch, Galveston, TX, United States
| | - S Makino
- The University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, United States; UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
7
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
8
|
Tolf C, Gullberg M, Johansson ES, Tesh RB, Andersson B, Lindberg AM. Molecular characterization of a novel Ljungan virus (Parechovirus; Picornaviridae) reveals a fourth genotype and indicates ancestral recombination. J Gen Virol 2009; 90:843-853. [PMID: 19264646 DOI: 10.1099/vir.0.007948-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ljungan virus (LV) was discovered 20 years ago in Swedish bank voles (Myodes glareolus, previously referred to as Clethrionomys glareolus) during the search for an infectious agent causing lethal myocarditis in young athletes. To date, the genomes of four LV isolates, including the prototype 87-012 strain, have been characterized. Three of these LV strains were isolated from bank voles trapped in Sweden. Sequence analysis of an American virus (M1146), isolated from a montane vole (Microtus montanus) in western USA, indicates that this strain represents a genotype that is different from the Swedish strains. Here, we present genomic analyses of a fifth LV strain (64-7855) isolated from a southern red-backed vole (Myodes gapperi) trapped during arbovirus studies in New York state in the north-eastern USA in the 1960s. Sequence analysis of the 64-7855 genome showed an LV-like genome organization and sequence similarity to other LV strains. Genetic and phylogenetic analyses of the evolutionary relationship between the 64-7855 strain and other viruses within the family Picornaviridae, including previously published LV strains, demonstrated that the 64-7855 strain constitutes a new genotype within the LV species. Analyses also showed that different regions of the 64-7855 genome have different phylogenetic relationships with other LV strains, indicating that previous recombination events have been involved in the evolution of this virus.
Collapse
Affiliation(s)
- Conny Tolf
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | - Maria Gullberg
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | - E Susanne Johansson
- Discipline of Immunology and Microbiology, Faculty of Health, The University of Newcastle, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, NSW 2300, Australia
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - A Michael Lindberg
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| |
Collapse
|
9
|
Ekström JO, Tolf C, Fahlgren C, Johansson ES, Arbrandt G, Niklasson B, Edman KA, Lindberg AM. Replication of Ljungan virus in cell culture: The genomic 5′-end, infectious cDNA clones and host cell response to viral infections. Virus Res 2007; 130:129-39. [PMID: 17645978 DOI: 10.1016/j.virusres.2007.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/30/2007] [Accepted: 06/08/2007] [Indexed: 11/15/2022]
Abstract
Ljungan virus (LV) is a picornavirus recently isolated from bank voles (Clethrionomys glareolus). The previously uncharacterised 5'-end sequence of the LV genome was determined. Infectious cDNA clones were constructed of the wild type LV prototype strain 87-012 and of the cytolytically replicating cell culture adapted variant 87-012G. Virus generated from cDNA clones showed identical growth characteristics as uncloned virus stocks. Cell culture adapted LV, 87-012G, showed a clear cytopathic effect (CPE) at 3-4 days post-infection (p.i.). Virus titers, determined by plaque titration, increased however only within the first 18h p.i. Replication of LV (+) strand RNA was determined by real-time PCR and corresponded in time with increasing titers. In contrast, the amounts of the replication intermediate, the (-) strand, continued to increase until the cells showed CPE. This indicates separate controlling mechanisms for replication of LV (+) and (-) genome strands. Replication was also monitored by immunofluorescence (IF) staining. IF staining of both prototype 87-012 and the CPE causing 87-012G showed groups of 5-25 infected cells at 48h p.i., suggesting a, for picornaviruses, not previously described direct cell-to-cell transmission.
Collapse
Affiliation(s)
- Jens-Ola Ekström
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang B, Morace G, Gauss-Müller V, Kusov Y. Poly(A) binding protein, C-terminally truncated by the hepatitis A virus proteinase 3C, inhibits viral translation. Nucleic Acids Res 2007; 35:5975-84. [PMID: 17726047 PMCID: PMC2034478 DOI: 10.1093/nar/gkm645] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 12/30/2022] Open
Abstract
Proteolytic cleavage of translation initiation factors is a means to interfere with mRNA circularization and to induce translation arrest during picornaviral replication or apoptosis. It was shown that the regulated cleavages of eukaryotic initiation factor (eIF) 4G and poly(A)-binding protein (PABP) by viral proteinases correlated with early and late arrest of host cap-dependent and viral internal ribosome entry site (IRES)-dependent translation, respectively. Here we show that in contrast to coxsackievirus, eIF4G is not a substrate of proteinase 3C of hepatitis A virus (HAV 3C(pro)). However, PABP is cleaved by HAV 3C(pro) in vitro and in vivo, separating the N-terminal RNA-binding domain (NTD) of PABP from the C-terminal protein-interaction domain. In vitro, NTD has a dominant negative effect on HAV IRES-dependent translation and an enhanced binding affinity to the RNA structural element pY1 in the 5' nontranslated region of the HAV RNA that is essential for viral genome replication. The results point to a regulatory role of PABP cleavage in RNA template switching of viral translation to RNA synthesis.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Medical Molecular Biology, University of Lübeck, Germany and Istituto Superiore di Sanita, Rome, Italy
| | - Graziella Morace
- Institute of Medical Molecular Biology, University of Lübeck, Germany and Istituto Superiore di Sanita, Rome, Italy
| | - Verena Gauss-Müller
- Institute of Medical Molecular Biology, University of Lübeck, Germany and Istituto Superiore di Sanita, Rome, Italy
| | - Yuri Kusov
- Institute of Medical Molecular Biology, University of Lübeck, Germany and Istituto Superiore di Sanita, Rome, Italy
| |
Collapse
|
11
|
Nagashima S, Sasaki J, Taniguchi K. The 5'-terminal region of the Aichi virus genome encodes cis-acting replication elements required for positive- and negative-strand RNA synthesis. J Virol 2005; 79:6918-31. [PMID: 15890931 PMCID: PMC1112095 DOI: 10.1128/jvi.79.11.6918-6931.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | |
Collapse
|
12
|
Feng Q, Yu H, Liu Y, He C, Hu J, Sang H, Ding N, Ding M, Fung YWW, Lau LT, Yu ACH, Chen J. Genome comparison of a novel foot-and-mouth disease virus with other FMDV strains. Biochem Biophys Res Commun 2004; 323:254-63. [PMID: 15351730 DOI: 10.1016/j.bbrc.2004.08.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Indexed: 11/18/2022]
Abstract
The genome of a novel foot-and-mouth disease virus, HKN/2002, was 8104 nucleotides (nt) in length (excluding the poly(C) tract and poly(A) tail) and was composed of a 1042-nt 5'-untranslated region (UTR), a 6966-nt open reading frame, and a 93-nt 3'-UTR. Genome sequences of HKN/2002 and other known FMDV strains were compared. The VP1, VP2, and VP3-based neighbor-joining (NJ) trees were divided into distinct clusters according to different serotypes, while other region-based NJ trees exhibited some degree of intercross among serotypes. Mutations in HKN/2002 were revealed, including frequent deletions and insertions in the G-H loop of VP1, and deletion involving 10 amino acid residues in the 3A protein. An evolutionary relationship of HKN/2002 with an Asian FMDV lineage isolated from a Hong Kong swine host in 1970 was postulated. A 43-nt deletion identified in the 5'-UTR of HKN/2002 possibly contributed to the loss of one pseudo-knot domain.
Collapse
Affiliation(s)
- Qian Feng
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nagashima S, Sasaki J, Taniguchi K. Functional analysis of the stem-loop structures at the 5' end of the Aichi virus genome. Virology 2003; 313:56-65. [PMID: 12951021 DOI: 10.1016/s0042-6822(03)00346-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aichi virus is a member of the family Picornaviridae. Computer-assisted secondary structure prediction suggested the formation of three stem-loop structures (SL-A, SL-B, and SL-C from the 5' end) within the 5'-end 120 nucleotides of the genome. We have already shown that the most 5'-end stem-loop, SL-A, is critical for viral RNA replication. Here, using an infectious cDNA clone and a replicon harboring a luciferase gene, we revealed that formation of SL-B and SL-C on the positive strand is essential for viral RNA replication. In addition, the specific nucleotide sequence of the loop segment of SL-B was also shown to be critical for viral RNA replication. Mutations of the upper and lower stems of SL-C that do not disrupt the base-pairings hardly affected RNA replication, but decreased the yields of viable viruses significantly compared with for the wild-type. This suggests that SL-C plays a role at some step besides RNA replication during virus infection.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | |
Collapse
|
14
|
Sasaki J, Taniguchi K. The 5'-end sequence of the genome of Aichi virus, a picornavirus, contains an element critical for viral RNA encapsidation. J Virol 2003; 77:3542-8. [PMID: 12610129 PMCID: PMC149490 DOI: 10.1128/jvi.77.6.3542-3548.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Picornavirus positive-strand RNAs are selectively encapsidated despite the coexistence of viral negative-strand RNAs and cellular RNAs in infected cells. However, the precise mechanism of the RNA encapsidation process in picornaviruses remains unclear. Here we report the first identification of an RNA element critical for encapsidation in picornaviruses. The 5' end of the genome of Aichi virus, a member of the family Picornaviridae, folds into three stem-loop structures (SL-A, SL-B, and SL-C, from the most 5' end). In the previous study, we constructed a mutant, termed mut6, by exchanging the seven-nucleotide stretches of the middle part of the stem in SL-A with each other to maintain the base pairings of the stem. mut6 exhibited efficient RNA replication and translation but formed no plaques. The present study showed that in cells transfected with mut6 RNA, empty capsids were accumulated, but few virions containing RNA were formed. This means that mut6 has a severe defect in RNA encapsidation. Site-directed mutational analysis indicated that as the mutated region was narrowed, the encapsidation was improved. As a result, the mutation of the 7 bp of the middle part of the stem in SL-A was required for abolishing the plaque-forming ability. Thus, the 5'-end sequence of the Aichi virus genome was shown to play an important role in encapsidation.
Collapse
Affiliation(s)
- Jun Sasaki
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | | |
Collapse
|
15
|
Kweon CH, Ko YJ, Kim WI, Kwon BJ, Hyun BH, Sohn HJ, Choi KS, Shin JH. Molecular characterization of foot-and-mouth disease virus O/SKR/2000. Virus Res 2002; 90:15-22. [PMID: 12457959 DOI: 10.1016/s0168-1702(02)00139-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular cloning and sequencing of the genome of foot-and-mouth disease virus (FMDV) O/SKR/2000, one of PanAsia strain, were performed from FMDV infected cattle. From the poly (C) tract of the 5' nontranslated region (NTR) to the 3' NTR including 14 base pairs (bp) of poly (A) tail, 7813 bp sequences comprising approximately 95% of the whole genome were obtained by reverse transcription polymerase reaction (RT-PCR). The deduced amino acid sequences of the structural and nonstructural proteins (NSP) of the O/SKR/2000 virus were analyzed for the sequence similarity among type O strains. Comparison between FMDV O/SKR/2000 and other strains indicates that overall the number of amino acids appears to be conserved without any deletion in either NSP or capsid proteins, thus, suggesting that O/SKR/2000 evolved with minor difference from preexisting strains.
Collapse
Affiliation(s)
- Chang Hee Kweon
- Virology Research Division, National Veterinary Research and Quarantine Service, Ministry of Agriculture and Forestry, Anyang, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Witwer C, Rauscher S, Hofacker IL, Stadler PF. Conserved RNA secondary structures in Picornaviridae genomes. Nucleic Acids Res 2001; 29:5079-89. [PMID: 11812840 PMCID: PMC97546 DOI: 10.1093/nar/29.24.5079] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The family Picornaviridae contains important pathogens including, for example, hepatitis A virus and foot-and-mouth disease virus. The genome of these viruses is a single messenger-active (+)-RNA of 7200-8500 nt. Besides coding for the viral proteins, it also contains functionally important RNA secondary structures, among them an internal ribosomal entry site (IRES) region towards the 5'-end. This contribution provides a comprehensive computational survey of the complete genomic RNAs and a detailed comparative analysis of the conserved structural elements in seven of the currently nine genera in the family PICORNAVIRIDAE: Compared with previous studies we find: (i) that only smaller sections of the IRES region than previously reported are conserved at single base-pair resolution and (ii) that there is a number of significant structural elements in the coding region. Furthermore, we identify potential cis-acting replication elements in four genera where this feature has not been reported so far.
Collapse
Affiliation(s)
- C Witwer
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria
| | | | | | | |
Collapse
|
17
|
Hinton TM, Crabb BS. The novel picornavirus Equine rhinitis B virus contains a strong type II internal ribosomal entry site which functions similarly to that of Encephalomyocarditis virus. J Gen Virol 2001; 82:2257-2269. [PMID: 11514737 DOI: 10.1099/0022-1317-82-9-2257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine rhinitis B virus (ERBV) has recently been classified as an Erbovirus, a new genus in the Picornaviridae family. ERBV is distantly related to members of the Cardiovirus and Aphthovirus genera which utilize a type II internal ribosome entry sequence (IRES) to initiate translation. We show that ERBV also possesses the core stem-loop structures (H-L) of a type II IRES. The function of the ERBV IRES was characterized using bicistronic plasmids that were analysed both by transfection into BHK-21 cells and by in vitro transcription and translation in rabbit reticulocyte lysates. In both systems, a region encompassed by nucleotides (nt) 189-920 downstream of the poly(C) tract was required for maximal translation. This sequence includes stem-loops H-L as well as four additional upstream stem-loops. Nt 904 corresponds to the second of three in-frame AUG codons located immediately downstream of the polypyrimidine tract (nucleotides 869-880). Site-directed mutagenesis demonstrated that AUG2 is the major initiation codon despite the appropriate positioning of AUG1 16 nt downstream of the polypyrimidine tract. In direct IRES competition experiments, the ERBV IRES was able to compete strongly for translation factors with the IRES of Encephalomyocarditis virus (EMCV). This was true when the assays were performed in vitro (with the IRESs competing either in cis or trans) and in vivo (with the IRESs competing in cis). A comparative analysis of the strength of several IRESs revealed that the ERBV IRES, like that of the EMCV, is a powerful inducer of translation and may have similar potential for use in mammalian expression systems.
Collapse
Affiliation(s)
- Tracey M Hinton
- Department of Microbiology and Immunology and the Co-operative Research Centre for Vaccine Technology, The University of Melbourne, Australia1
| | - Brendan S Crabb
- The Walter and Eliza Hall Institute of Medical Research, PO The Royal Melbourne Hospital, VIC 3050, Australia2
- Department of Microbiology and Immunology and the Co-operative Research Centre for Vaccine Technology, The University of Melbourne, Australia1
| |
Collapse
|
18
|
Sasaki J, Kusuhara Y, Maeno Y, Kobayashi N, Yamashita T, Sakae K, Takeda N, Taniguchi K. Construction of an infectious cDNA clone of Aichi virus (a new member of the family Picornaviridae) and mutational analysis of a stem-loop structure at the 5' end of the genome. J Virol 2001; 75:8021-30. [PMID: 11483747 PMCID: PMC115046 DOI: 10.1128/jvi.75.17.8021-8030.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aichi virus is the type species of a new genus, Kobuvirus, of the family Picornaviridae. In this study, we constructed a full-length cDNA clone of Aichi virus whose in vitro transcripts were infectious to Vero cells. During construction of the infectious cDNA clone, a novel sequence of 32 nucleotides was identified at the 5' end of the genome. Computer-assisted prediction of the secondary structure of the 5' end of the genome, including the novel sequence, suggested the formation of a stable stem-loop structure consisting of 42 nucleotides. The function of this stem-loop in virus replication was investigated using various site-directed mutants derived from the infectious cDNA clone. Our data indicated that correct folding of the stem-loop at the 5' end of the positive strand, but not at the 3' end of the negative strand, is critical for viral RNA replication. The primary sequence in the lower part of the stem was also suggested to be crucial for RNA replication. In contrast, nucleotide changes in the loop segment did not so severely reduce the efficiency of virus replication. A double mutant, in which both nucleotide stretches of the middle part of the stem were replaced by their complementary nucleotides, had efficient RNA replication and translation abilities but was unable to produce viruses. These results indicate that the stem-loop at the 5' end of the Aichi virus genome is an element involved in both viral RNA replication and production of infectious virus particles.
Collapse
Affiliation(s)
- J Sasaki
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen S, Le SY, Newton DL, Maizel JV, Rybak SM. A gender-specific mRNA encoding a cytotoxic ribonuclease contains a 3' UTR of unusual length and structure. Nucleic Acids Res 2000; 28:2375-82. [PMID: 10871370 PMCID: PMC102719 DOI: 10.1093/nar/28.12.2375] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A cDNA (2855 nt) encoding a putative cytotoxic ribonuclease (rapLR1) related to the antitumor protein onconase was cloned from a library derived from the liver of gravid female amphibian Rana pipiens. The cDNA was mainly comprised (83%) of 3' untranslated region (UTR). Secondary structure analysis predicted two unusual folding regions (UFRs) in the RNA 3' UTR. Two of these regions (711-1442 and 1877-2130 nt) contained remarkable, stalk-like, stem-loop structures greater than 38 and 12 standard deviations more stable than by chance, respectively. Secondary structure modeling demonstrated similar structures in the 3' UTRs of other species at low frequencies (0.01-0.3%). The size of the rapLR1 cDNA corresponded to the major hybridizing RNA cross-reactive with a genomic clone encoding onconase (3.6 kb). The transcript was found only in liver mRNA from female frogs. In contrast, immunoreactive onconase protein was detected only in oocytes. Deletion of the 3' UTR facilitated the in vitro translation of the rapLR1 cDNA. Taken together these results suggest that these unusual UFRs may affect mRNA metabolism and/or translation.
Collapse
Affiliation(s)
- S Chen
- Laboratory of Experimental and Computational Biology, Division of Basic Science, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
20
|
Rijnbrand RC, Lemon SM. Internal ribosome entry site-mediated translation in hepatitis C virus replication. Curr Top Microbiol Immunol 1999; 242:85-116. [PMID: 10592657 DOI: 10.1007/978-3-642-59605-6_5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R C Rijnbrand
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston 77555-1019, USA
| | | |
Collapse
|
21
|
Sella O, Gerlitz G, Le SY, Elroy-Stein O. Differentiation-induced internal translation of c-sis mRNA: analysis of the cis elements and their differentiation-linked binding to the hnRNP C protein. Mol Cell Biol 1999; 19:5429-40. [PMID: 10409733 PMCID: PMC84385 DOI: 10.1128/mcb.19.8.5429] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous reports we showed that the long 5' untranslated region (5' UTR) of c-sis, the gene encoding the B chain of platelet-derived growth factor, has translational modulating activity due to its differentiation-activated internal ribosomal entry site (D-IRES). Here we show that the 5' UTR contains three regions with a computer-predicted Y-shaped structure upstream of an AUG codon, each of which can confer some degree of internal translation by itself. In nondifferentiated cells, the entire 5' UTR is required for maximal basal IRES activity. The elements required for the differentiation-sensing ability (i.e., D-IRES) were mapped to a 630-nucleotide fragment within the central portion of the 5' UTR. Even though the region responsible for IRES activation is smaller, the full-length 5' UTR is capable of mediating the maximal translation efficiency in differentiated cells, since only the entire 5' UTR is able to confer the maximal basal IRES activity. Interestingly, a 43-kDa protein, identified as hnRNP C, binds in a differentiation-induced manner to the differentiation-sensing region. Using UV cross-linking experiments, we show that while hnRNP C is mainly a nuclear protein, its binding activity to the D-IRES is mostly nuclear in nondifferentiated cells, whereas in differentiated cells such binding activity is associated with the ribosomal fraction. Since the c-sis 5' UTR is a translational modulator in response to cellular changes, it seems that the large number of cross-talking structural entities and the interactions with regulated trans-acting factors are important for the strength of modulation in response to cellular changes. These characteristics may constitute the major difference between strong IRESs, such as those seen in some viruses, and IRESs that serve as translational modulators in response to developmental signals, such as that of c-sis.
Collapse
Affiliation(s)
- O Sella
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
22
|
Hofacker IL, Stadler PF. Automatic detection of conserved base pairing patterns in RNA virus genomes. COMPUTERS & CHEMISTRY 1999; 23:401-14. [PMID: 10404627 DOI: 10.1016/s0097-8485(99)00013-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Almost all RNA molecules--and consequently also almost all subsequences of a large RNA molecule-form secondary structures. The presence of secondary structure in itself therefore does not indicate any functional significance. In fact, we cannot expect a conserved secondary structure for all parts of a viral genome or a mRNA, even if there is a significant level of sequence conservation. We present a novel method for detecting conserved RNA secondary structures in a family of related RNA sequences. The method is based on combining the prediction of base pair probability matrices and comparative sequence analysis. It can be applied to small sets of long sequences and does not require a prior knowledge of conserved sequence or structure motifs. As such it can be used to scan large amounts of sequence data for regions that warrant further experimental investigation. Applications to complete genomic RNAs of some viruses show that in all cases the known secondary structure features are identified. In addition, we predict a substantial number of conserved structural elements which have not been described so far.
Collapse
Affiliation(s)
- I L Hofacker
- Institut für Theoretische Chemie, Universität Wien, Austria
| | | |
Collapse
|
23
|
Abstract
IRESs are known to recruit ribosomes directly, without a previous scanning of untranslated region of mRNA by the ribosomes. IRESs have been found in a number of viral and cellular mRNAs. Experimentally, IRESs are commonly used to direct the expression of the second cistrons of bicistronic mRNAs. The mechanism of action of IRESs is not fully understood and a certain number of laboratories were not successful in using them in a reliable manner. Three observations done in our laboratory suggested that IRESs might not work as functionally as it was generally believed. Stem loops added before IRESs inhibited mRNA translation. When added into bicistronic mRNAs, IRESs initiated translation of the second cistrons efficiently only when the intercistronic region contained about 80 nucleotides, and they did not work any more effectively with intercistronic regions containing at least 300-400 nucleotides. Conversely, IRESs inserted at any position into the coding region of a cistron interrupted its translation and initiated translation of the following cistron. The first two data are hardly compatible with the idea that IRESs are able to recruit ribosomes without using the classical scanning mechanism. IRESs are highly structured and cannot be scanned by the 40S ribosomal subunit. We suggest that IRESs are short-circuited and are essentially potent stimulators favoring translation in particular physiological situations.
Collapse
Affiliation(s)
- L M Houdebine
- Laboratoire de Differenciation Cellulaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | | |
Collapse
|
24
|
Hofacker IL, Fekete M, Flamm C, Huynen MA, Rauscher S, Stolorz PE, Stadler PF. Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Res 1998; 26:3825-36. [PMID: 9685502 PMCID: PMC147758 DOI: 10.1093/nar/26.16.3825] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We propose a new method for detecting conserved RNA secondary structures in a family of related RNA sequences. Our method is based on a combination of thermodynamic structure prediction and phylogenetic comparison. In contrast to purely phylogenetic methods, our algorithm can be used for small data sets of approximately 10 sequences, efficiently exploiting the information contained in the sequence variability. The procedure constructs a prediction only for those parts of sequences that are consistent with a single conserved structure. Our implementation produces reasonable consensus structures without user interference. As an example we have analysed the complete HIV-1 and hepatitis C virus (HCV) genomes as well as the small segment of hantavirus. Our method confirms the known structures in HIV-1 and predicts previously unknown conserved RNA secondary structures in HCV.
Collapse
Affiliation(s)
- I L Hofacker
- Institut für Theoretische Chemie, Universität Wien, Wien, Austria, EMBL, Heidelberg, Germany, Max Delbrück Center, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Kaplan GG. Characterization of replication-competent hepatitis A virus constructs containing insertions at the N terminus of the polyprotein. J Virol 1998; 72:349-57. [PMID: 9420233 PMCID: PMC109382 DOI: 10.1128/jvi.72.1.349-357.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/1997] [Accepted: 09/17/1997] [Indexed: 02/05/2023] Open
Abstract
To determine whether hepatitis A virus (HAV) could tolerate the insertion of exogenous sequences, we constructed full-length HAV cDNAs containing in-frame insertions at the N terminus of the polyprotein and transfected the derived T7 RNA polymerase in vitro transcripts into FRhK-4 cells. Replication of HAVvec1, a construct containing an insertion of 60 nucleotides coding for a polylinker, a 2B/2C cleavage site for HAV protease 3Cpro, and two initiation codons that restored the sequence of the N terminus of the polyprotein, was detected 2 weeks after transfection by indirect immunofluorescence analysis using anti-HAV monoclonal antibodies. Western blot analysis of HAVvec1-infected cells using anti-VP2 and anti-VP4 antibodies failed to detect the expression of the inserted sequences. Insertion of a 24-mer oligonucleotide coding for a FLAG epitope into HAVvec1 resulted in its HAV-mediated expression which was retained upon deletion of a Gln residue from the inserted 2B/2C cleavage site. Western blot analysis using anti-FLAG and anti-VP2 antibodies showed that the FLAG epitope accumulated in infected cells fused to VP0. Replacement of the FLAG epitope with an epitope of the circumsporozoite protein (CSP) of Plasmodium falciparum resulted in its stable HAV-mediated expression for at least six serial passages in FRhK-4 cells. Sedimentation analysis in sucrose density gradients showed that the CSP epitope accumulated in infected cells fused to VP0, forming 80S empty capsids which also contained native VP0. Our data suggest that the HAV internal ribosome entry site can efficiently direct dual initiation of translation of the polyprotein from AUG codons separated by 66 to 78 nucleotides and show that HAV can tolerate insertions at the N terminus of the polyprotein.
Collapse
Affiliation(s)
- Y Zhang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
26
|
Yang Q, Sarnow P. Location of the internal ribosome entry site in the 5' non-coding region of the immunoglobulin heavy-chain binding protein (BiP) mRNA: evidence for specific RNA-protein interactions. Nucleic Acids Res 1997; 25:2800-7. [PMID: 9207027 PMCID: PMC146825 DOI: 10.1093/nar/25.14.2800] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 220 nucleotide 5'non-coding region (5'NCR) of the human immunoglobulin heavy chain binding protein (BiP) mRNA contains an internal ribosome entry site (IRES) that mediates the translation of the second cistron in a dicistronic mRNA in cultured mammalian cells. In this study, experiments are presented that locate the IRES immediately upstream of the start-site AUG codon in the BiP mRNA. Furthermore, crosslinking of thiouridine-labeled BiP IRES-containing RNA to cellular proteins identified the specific binding of two proteins, p60 and p95, to the 3'half of the BiP 5'NCR. Interestingly, both p60 and p95 bound also specifically to several viral IRES elements. This correlation suggests that p60 and p95 could have roles in internal initiation of cellular and viral IRES elements.
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
27
|
Bernstein J, Sella O, Le SY, Elroy-Stein O. PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem 1997; 272:9356-62. [PMID: 9083072 DOI: 10.1074/jbc.272.14.9356] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has become clear that a given cell type can qualitatively and quantitatively affect the expression of the platelet-derived growth factor B (PDGF2/c-sis) gene at multiple levels. In a previous report, we showed that PDGF2/c-sis 5'-untranslated region has a translational modulating activity during megakaryocytic differentiation of K562 cells. This study points to the mechanism used for this translational modulation. The unusual mRNA leader, which imposes a major barrier to conventional ribosomal scanning, was found to contain an internal ribosomal entry site that becomes more potent in differentiating cells and was termed differentiation-linked internal ribosomal entry site (D-IRES). The D-IRES element defines a functional role for the cumbersome 1022-nucleotide-long mRNA leader and accounts for its uncommon, evolutionary conserved architecture. The differentiation-linked enhancement of internal translation, which provides an additional step to the fine tuning of PDGF2/c-sis gene expression, might be employed by numerous critical regulatory genes with unusual mRNA leaders and might have widespread implications for cellular growth and development.
Collapse
Affiliation(s)
- J Bernstein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
28
|
Martin LR, Palmenberg AC. Tandem mengovirus 5' pseudoknots are linked to viral RNA synthesis, not poly(C)-mediated virulence. J Virol 1996; 70:8182-6. [PMID: 8892950 PMCID: PMC190899 DOI: 10.1128/jvi.70.11.8182-8186.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The RNA genomes from the cardioviruses, hepatoviruses, and aphthoviruses encode two to five tandem pseudoknots within their 5' untranslated regions. These pseudoknots lie adjacent to a pyrimidine-rich sequence, which in cardio- and aphthoviruses takes the form of a homopolymeric poly(C) tract. Seven deletion mutations within mengovirus pseudoknots PK(B) and PK(C) were created and characterized. tested in tissue culture, mengovirus genomes with alterations in PK(C) were viable but had small plaque phenotypes. Larger plaque revertants were isolated and partially characterized, and each proved to be a second-site pseudorevertant with (unmapped) changes elsewhere in the genome. The infectious PK(C) mutant viruses were highly lethal to mice, and deletions in this motif did not affect mengovirus virulence in the same manner as deletions in the adjacent poly(C) tract. In contrast, deletions in PK(B), or deletions which spanned PK(B) + PK(C), produced nonviable genomes. Cell-free translations directed by any of the altered PK sequences gave normal polyprotein amounts relative to wild-type mengovirus. But viral RNA accumulation during HeLa cell infection was dramatically impaired, even with the least disruptive of the PK(C) changes, suggesting the pseudoknots play an essential though undefined role in RNA synthesis and moreover that an intact PK(B) structure is critical to this function.
Collapse
Affiliation(s)
- L R Martin
- Institute for Molecular Virology and Department of Animal Health & Biomedical Sciences, University of Wisconsin--Madison, 53706, USA
| | | |
Collapse
|
29
|
Jia XY, Tesar M, Summers DF, Ehrenfeld E. Replication of hepatitis A viruses with chimeric 5' nontranslated regions. J Virol 1996; 70:2861-8. [PMID: 8627760 PMCID: PMC190143 DOI: 10.1128/jvi.70.5.2861-2868.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of the 5' nontranslated region in the replication of hepatitis A virus (HAV) was studied by analyzing the translation and replication of chimeric RNAs containing the encephalomyocarditis virus (EMCV) internal ribosome entry segment (IRES) and various lengths (237, 151, or 98 nucleotides [nt]) of the 5'-terminal HAV sequence. Translation of all chimeric RNAs, truncated to encode only capsid protein sequences, occurred with equal efficiency in rabbit reticulocyte lysates and was much enhanced over that exhibited by the HAV IRES. Transfection of FRhK-4 cells with the parental HAV RNA and with chimeric RNA generated a viable virus which was stable over continuous passage; however, more than 151 nt from the 5' terminus of HAV were required to support virus replication. Single-step growth curves of the recovered viruses from the parental RNA transfection and from transfection of RNA containing the EMCV IRES downstream of the first 237 nt of HAV demonstrated replication with similar kinetics and similar yields. When FRhK-4 cells infected with recombinant vaccinia virus producing SP6 RNA polymerase to amplify HAV RNA were transfected with plasmids coding for these viral RNAs or with subclones containing only HAV capsid coding sequences downstream of the parental or chimeric 5' nontranslated region, viral capsid antigens were synthesized from the HAV IRES with an efficiency equal to or greater than that achieved with the EMCV IRES. These data suggest that the inherent translation efficiency of the HAV IRES may not be the major limiting determinant of the slow-growth phenotype of HAV.
Collapse
Affiliation(s)
- X Y Jia
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717, USA
| | | | | | | |
Collapse
|
30
|
Kusov Y, Weitz M, Dollenmeier G, Gauss-Müller V, Siegl G. RNA-protein interactions at the 3' end of the hepatitis A virus RNA. J Virol 1996; 70:1890-7. [PMID: 8627714 PMCID: PMC190017 DOI: 10.1128/jvi.70.3.1890-1897.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The regulative cis-acting terminal RNA structures and the proteins involved in the amplification of the hepatitis A virus (HAV) genome are unknown. By UV cross-linking/label transfer experiments, we have analyzed sequences of the 3'-nontranslated region (3'NTR) and preceding domains of the viral genome for their ability to interact with host proteins. A series of cDNA constructs were used to create genomic- and antigenomic-sense transcripts. The results show that the 3'-NTR-poly(A) interacted with host cell proteins with molecular masses of 38, 45, 57, 84, and 110 kDa only weakly, compared with RNA structures also consisting of 3D-coding regions. Protein p38 was most efficiently labeled after interaction with secondary-structure elements located at the 3' end of the HAV RNA, p38 also interacted with a 5'-terminal RNA probe. Optimal RNA binding was found to be dependent on the salt concentration. The specificity of the RNA-protein interaction was proven by competition assays. These data might indicate that a higher-order structure formed at the junction of the 3Dpol-coding sequence and the 3'-NTR of the HAV genome (putative RNA pseudoknot) significantly improves binding of host proteins and thus suggests that this structure might be essential for the formation of the replication complex initiating minus-strand RNA synthesis.
Collapse
Affiliation(s)
- Y Kusov
- Institute of Clinical Microbiology and Immunology, St. Gallan, Switzerland,
| | | | | | | | | |
Collapse
|
31
|
Martin LR, Duke GM, Osorio JE, Hall DJ, Palmenberg AC. Mutational analysis of the mengovirus poly(C) tract and surrounding heteropolymeric sequences. J Virol 1996; 70:2027-31. [PMID: 8627731 PMCID: PMC190034 DOI: 10.1128/jvi.70.3.2027-2031.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previously, we described three mengovirus mutants derived from cDNA plasmids, containing shortened poly(C) tracts (C8, C12, and C13UC10), that exhibited strong attenuation for virulence in mice yet grew like wild-type virus in HeLa cells. Thirteen additional mutants hav now been constructed and characterized. Five of these differ only in poly(C) length, including one with a precise deletion of the tract. The other mutants bear deletions into the regions juxtaposing poly(C). Studies with HeLa cells confirm the essential dispensability of mengovirus's poly(C) tract but reveal a subtle, measurable correlation between poly(C) length and plaque diameter. Virulence studies with mice also revealed a strong correlation between poly(C) length and virulence. For the poly(C)-flanking mutations, the 15 bases directly 5' of the tract proved dispensable for virus viability, whereas the 20 to 30 bases 3' of poly(C) were critical for growth, thus implicating this region in the basal replication of the virus.
Collapse
Affiliation(s)
- L R Martin
- Institute for Molecular Virology, University of Wisconsin, Madison 53706, USA.
| | | | | | | | | |
Collapse
|
32
|
Kool ET. Topologically Modified Biopolymers: Properties of Synthetic Circular DNAs and RNAs. TRENDS IN POLYMER SCIENCE 1995; 3:396-402. [PMID: 28042207 PMCID: PMC5199043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Circular nucleic acid molecules can have chemical and biological properties very different from those of the corresponding linear nucleic acid polymers. Described here are methods used recently for construction of such circular molecules, and some of the properties that can arise from making this topological change. Among the unusual properties found for circular nucleic acids are: strong resistance to degradation in biological media; high affinity of binding to other nucleic acids; high sequence selectivity in nucleic acid binding; topological linkage to biomolecules; and the ability to template the synthesis of specific repeating nucleic acid and protein polymers. These properties may be useful in biochemical, medical diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Eric T Kool
- Dept of Chemistry, University of Rochester, Rochester, NY 14627, USA (
| |
Collapse
|
33
|
Borman AM, Bailly JL, Girard M, Kean KM. Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nucleic Acids Res 1995; 23:3656-63. [PMID: 7478993 PMCID: PMC307262 DOI: 10.1093/nar/23.18.3656] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
On the basis of primary sequence comparisons and secondary structure predictions, picornavirus internal ribosome entry segments (IRESes) have been divided into three groups (entero- and rhinoviruses; cardio- and and aphthoviruses; and hepatitis A virus). Here, we describe a detailed comparison of the ability of IRESes from each group to direct internal initiation of translation in vitro using a single dicistronic mRNA (the only variable being the IRES inserted into the dicistronic region). We studied the influence of various parameters on the capacity of six different picornaviral IRESes, and the non-picornaviral hepatitis C virus IRES, to direct internal initiation of translation: salt concentration, the addition of HeLa cell proteins to rabbit reticulocyte lysate translation reactions, the presence of foot-and-mouth disease virus Lb or human rhinovirus 2A proteinase. On the basis of the characteristics of IRES-driven translation in vitro, the picornaviral IRESes can be classified in a similar manner to when sequence homologies are considered. IRESes from each of the three groups responded differently to all of the parameters tested, indicating that while all of these elements can direct internal ribosome entry, the functional requirements for efficient IRES activity vary dramatically. In the individual optimal conditions for translation initiation, the best IRESes were those from the cardio- and aphthoviruses, followed by those from the enteroviruses, which exhibited up to 70% of the efficiency of the EMCV element in directing internal initiation of translation.
Collapse
Affiliation(s)
- A M Borman
- Unit de Virologie Moléculaire (CNRS URA 1966), Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
34
|
Wang C, Le SY, Ali N, Siddiqui A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5' noncoding region. RNA (NEW YORK, N.Y.) 1995; 1:526-537. [PMID: 7489514 PMCID: PMC1482419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Translation of the human hepatitis C virus (HCV) RNA genome occurs by a mechanism known as "internal ribosome entry." This unusual strategy of translation is employed by naturally uncapped picornaviral genomic RNAs and several cellular mRNAs. A common feature of these RNAs is a relatively long 5' noncoding region (NCR) that folds into a complex secondary structure harboring an internal ribosome entry site (IRES). Evidence derived from the use of dicistronic expression systems, combined with an extensive mutational analysis, demonstrated the presence of an IRES within the HCV 5'NCR. The results of our continued mutational analysis to map the critical structural elements of the HCV IRES has led to the identification of a pseudoknot structure upstream of the initiator AUG. The evidence presented in this study is based upon the mutational analysis of the putative pseudoknot structure. This is further substantiated by biochemical and enzymatic probing of the wild-type and mutant 5'NCR. Further, the thermodynamic calculations, based upon a modified RNAKNOT program, are consistent with the presence of a pseudoknot structure located upstream of the initiator AUG. Maintenance of this structural element is critical for internal initiation of translation. The pseudoknot structure in the 5'NCR represents a highly conserved feature of all HCV subtypes and members of the pestivirus family, including hog cholera virus and bovine viral diarrhea virus.
Collapse
Affiliation(s)
- C Wang
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
35
|
Meyer K, Petersen A, Niepmann M, Beck E. Interaction of eukaryotic initiation factor eIF-4B with a picornavirus internal translation initiation site. J Virol 1995; 69:2819-24. [PMID: 7707504 PMCID: PMC188976 DOI: 10.1128/jvi.69.5.2819-2824.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We studied the interaction of cellular proteins with the internal ribosome entry site (IRES) of foot-and-mouth disease virus by UV cross-linking and observed specific binding of a 80-kDa protein contained in cytosolic HeLa cell extract and in rabbit reticulocyte lysate. Binding of the protein was dependent on the presence of ATP. Immunoprecipitation with eIF-4B antiserum revealed that the protein is identical to the initiation factor eIF-4B. Deletions in the 3' part, but not in the 5' part, of the IRES interfered with UV cross-linking, indicating that the binding site of eIF-4B is located close to the end of the element. Attempts to separate ribosome-associated from non-ribosome-associated protein fractions of cytosolic cell extracts led to the loss of cross-linking activity. This finding suggests that additional protein factors contribute to this interaction of eIF-4B with the IRES of foot-and-mouth disease virus.
Collapse
Affiliation(s)
- K Meyer
- Biochemisches Institut am Klinikum, Justus-Liebig-Universität Giessen, Germany
| | | | | | | |
Collapse
|
36
|
Le SY, Sonenberg N, Maizel JV. Unusual folding regions and ribosome landing pad within hepatitis C virus and pestivirus RNAs. Gene 1995; 154:137-43. [PMID: 7890155 DOI: 10.1016/0378-1119(94)00859-q] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A statistically significant folding region is identified in the 5' untranslated region (5'-UTR) of hepatitis C virus (HCV), bovine viral diarrhea virus and hog cholera virus. This unusual folding region (UFR) detected in HCV encompasses 199 nucleotides (nt) and coincides with the reported internal ribosome entry site or ribosome landing pad (RLP), as determined by the 5' and 3' deletions [Tsukiyama-Kohara et al., J. Virol. 66 (1992) 1476-1483]. The RNA structure predicted in the UFR of HCV consists of a large stem-loop and a pseudoknot. The proposed structural model is consistent with RNase sensitivity studies [Brown et al., Nucleic Acids Res. 20 (1992) 5041-5045]. Moreover, the structure is highly conserved among these divergent HCV and pestivirus RNAs. The covariation of paired bases in the helical regions offers support for the proposed structural models. The pseudoknot predicted in these UFR shares a similar structural feature to those proposed in the RLP of cardioviruses, aphthoviruses and hepatitis A virus. Based on the common structural motif, a putative base-pairing model between HCV RNA and 18S rRNA, as well as pestiviral RNAs and 18S rRNA are suggested. Intriguingly, the proposed base-pairing models in this study are comparable to those proposed in picornaviruses in terms of their folded shape and location of the predicted complementary sequences between viral RNAs and 18S rRNA. Taken together, we suggest that the common base-pairing model between the UFR detected in the 5'-UTR of pestivirus and HCV and 18S rRNA have a general function in the internal initiation of cap-independent translation.
Collapse
Affiliation(s)
- S Y Le
- Laboratory of Mathematical Biology, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | | | | |
Collapse
|
37
|
Escarmís C, Dopazo J, Dávila M, Palma EL, Domingo E. Large deletions in the 5'-untranslated region of foot-and-mouth disease virus of serotype C. Virus Res 1995; 35:155-67. [PMID: 7762289 DOI: 10.1016/0168-1702(94)00091-p] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nucleotide sequences of the 5'-untranslated region (5'-UTR), at the 3'-side of the poly C tract, have been compared for 21 isolates of foot-and-mouth disease virus (FMDV) of serotype C from Europe, South America and The Philippines. A deletion of 43 nucleotides is present in the European isolates as compared with most American isolates. A larger deletion of 86 nucleotides is present in some viruses from South America and The Philippines. These deletions include the loss of one or two pseudoknot structures predicted in this region of the 5'-UTR. In addition, multiple point mutations have allowed the derivation of a phylogenetic tree which defines a grouping of isolates very similar to that derived from the capsid gene sequences of the same viruses. The study provides evidence that deletion (or addition) events must be very frequent during evolution of FMDV type C, since viruses which are phylogenetically very closely related (they belong to the same tree branch) may differ in the presence or absence of these deletions. Implications for FMDV evolution are discussed.
Collapse
Affiliation(s)
- C Escarmís
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Hellen CU, Wimmer E. Translation of encephalomyocarditis virus RNA by internal ribosomal entry. Curr Top Microbiol Immunol 1995; 203:31-63. [PMID: 7555090 DOI: 10.1007/978-3-642-79663-0_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Picornavirus 5' NCRs contain IRES elements that have been divided into two groups, exemplified by PV (type 1) and EMCV (type 2). These elements are functionally related and have an intriguing level of structural and sequence similarity. Some conserved RNA sequences and/or structures may correspond to cis-acting elements involved in IRES function, so that there may also be similarities in the mechanism by which the two types or IRES promote initiation. The function of both types of IRES element appears to depend on a cellular 57 kDa polypeptide, which has been identified as the predominantly nuclear hnRNP protein PTB. However, a specific function for p57/PTB in translation has not yet been established. These two groups can be differentiated on the basis of their requirements for trans-acting factors. The EMCV IRES functions efficiently in a broader range of eukaryotic cell types than type 1 IRES elements, probably because the latter require additional factor(s). A second distinction between these IRES element is that initiation occurs directly at the 3' border of type 2 IRES elements, whereas a nonessential spacer of between 30 nt and 154 nt separates type 1 IRES elements from the downstream initiation codon.
Collapse
Affiliation(s)
- C U Hellen
- Department of Microbiology and Immunology, SUNY Health Sciences Center at Brooklyn 11203-2098, USA
| | | |
Collapse
|
39
|
Wang C, Siddiqui A. Structure and function of the hepatitis C virus internal ribosome entry site. Curr Top Microbiol Immunol 1995; 203:99-115. [PMID: 7555093 DOI: 10.1007/978-3-642-79663-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- C Wang
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
40
|
Wang C, Sarnow P, Siddiqui A. A conserved helical element is essential for internal initiation of translation of hepatitis C virus RNA. J Virol 1994; 68:7301-7. [PMID: 7933114 PMCID: PMC237171 DOI: 10.1128/jvi.68.11.7301-7307.1994] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Translation of hepatitis C virus (HCV) RNA is initiated by cap-independent internal ribosome binding to the 5' noncoding region (NCR). To identify the sequences and structural elements within the 5' NCR of HCV RNA that contribute to the initiation of translation, a series of point mutations was introduced within this sequence. Since the pyrimidine-rich tract is considered a characteristic feature of picornavirus internal ribosome entry site (IRES) elements, our mutational analysis focused on two putative pyrimidine tracts (Py-I and Py-II) within the HCV 5' NCR. Translational efficiency of these mutant RNAs was examined by in vitro translation and after RNA transfection into liver-derived cells. Mutational analysis of Py-I (nucleotides 120 to 130), supported by compensatory mutants, demonstrates that the primary sequence of this motif is not important but that a helical structural element associated with this region is critical for HCV IRES function. Mutations in Py-II (nucleotides 191 to 199) show that this motif is dispensable for IRES function as well. Thus, the pyrimidine-rich tract motif, which is considered as an essential element of the picornavirus IRES elements, does not appear to be a functional component of the HCV IRES. Further, the insertional mutagenesis study suggests a requirement for proper spacing between the initiator AUG and the upstream structures of the HCV IRES element for internal initiation of translation.
Collapse
Affiliation(s)
- C Wang
- Department of Microbiology, University of Colorado Medical School, Denver 80262
| | | | | |
Collapse
|
41
|
Whetter LE, Day SP, Elroy-Stein O, Brown EA, Lemon SM. Low efficiency of the 5' nontranslated region of hepatitis A virus RNA in directing cap-independent translation in permissive monkey kidney cells. J Virol 1994; 68:5253-63. [PMID: 8035522 PMCID: PMC236470 DOI: 10.1128/jvi.68.8.5253-5263.1994] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To characterize in vivo the translational control elements present in the 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) RNA, we created an HAV-permissive monkey kidney cell line (BT7-H) that stably expresses T7 RNA polymerase and carries out cytoplasmic transcription of uncapped RNA from transfected DNA containing the T7 promoter. The presence of an internal ribosomal entry site (IRES) within the 5'NTR of HAV was confirmed by using BT7-H cells transcribing bicistronic RNAs in which the 5'NTR was placed within the intercistronic space, controlling translation of a downstream reporter protein (bacterial chloramphenicol acetyltransferase). However, translation directed by the 5'NTR in these bicistronic transcripts and in monocistronic T7 transcripts in which the HAV 5'NTR was placed upstream of the chloramphenicol acetyltransferase coding sequence was very inefficient compared with the translation of monocistronic transcripts containing either the IRES of encephalomyocarditis (EMC) virus or a short nonpicornavirus 5' nontranslated leader sequence. A large deletion within the HAV IRES (delta 355-532) eliminated IRES activity in bicistronic transcripts. In contrast, larger deletions within the IRES in monocistronic transcripts (delta 1-354, delta 1-532, delta 1-633, and delta 158-633) resulted in 4- to 14-fold increases in translation. In the latter case, this was most probably due to a shift from IRES-directed translation to translation initiation by 5'-end-dependent scanning. Translation of RNAs containing either the EMC virus IRES or the nonpicornavirus leader was significantly enhanced by cotransfection of the reporter constructs with pEP2A, which directs transcription of RNA containing the EMC virus IRES fused to the poliovirus 2Apro coding region. This 2Apro enhancement of cap-independent translation suggests a greater availability of limiting cellular translation factors following 2Apro-mediated cleavage of the p220 subunit of the eukaryotic initiation factor eIF-4F and subsequent shutdown of 5' cap-dependent translation. In contrast, pEP2A cotransfection resulted in severe inhibition of translation directed by the HAV IRES in either monocistronic or bicistronic transcripts. This inhibition was due to competition from the EMC virus IRES present in pEP-2A transcripts, as well as the expression of proteolytically active 2Apro. 2Apro-mediated suppression of HAV translation was not seen with transcripts containing large deletions in the HAV IRES (delta 158-633, delta 1-532, or delta 1-633). These data suggest that the HAV IRES may have a unique requirement for intact p220 or that it may be dependent on active expression of another cellular translation factor which is normally present in severely limiting quantities.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L E Whetter
- Department of Medicine, University of North Carolina at Chapel Hill 27599-7030
| | | | | | | | | |
Collapse
|
42
|
Abstract
Many new RNA pseudoknot structures have been detected and proposed in the past year. Although we are still waiting for the first detailed structure of a pseudoknot, their role in processes such as translational autoregulation or ribosomal frameshifting has been extensively studied and is now well established. Pseudoknot structures appear to play a pivotal role in small subunit ribosomal RNA and in the noncoding regions of viral RNAs. There are also strong indications that RNA pseudoknots are highly suitable structural motifs for the recognition and binding of proteins.
Collapse
|
43
|
Brown EA, Zajac AJ, Lemon SM. In vitro characterization of an internal ribosomal entry site (IRES) present within the 5' nontranslated region of hepatitis A virus RNA: comparison with the IRES of encephalomyocarditis virus. J Virol 1994; 68:1066-74. [PMID: 8289336 PMCID: PMC236545 DOI: 10.1128/jvi.68.2.1066-1074.1994] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lengthy 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) forms a highly ordered secondary structure, which has been suggested to play an important role in controlling viral translation by allowing for translation initiation by internal ribosome entry. To test this hypothesis, synthetic bicistronic RNAs, with all or part of the HAV 5'NTR in the intercistronic space, were translated in rabbit reticulocyte lysates. In the presence of an upstream cistron designed to block ribosomal scanning, the HAV 5'NTR was capable of directing the internal initiation of translation, confirming the presence of an internal ribosome entry site (IRES). Analysis of various deletion mutants demonstrated that the 5' border of the IRES is located between nucleotides 151 and 257, while the 3' border extends to the 3' end of the 5'NTR, between nucleotide 695 and the first initiation codon at 735. Except for a segment between bases 638 and 694, deletion of stem-loop structures between bases 151 and the 3' end of the 5'NTR inhibited or abolished translation. The addition of a 5' cap structure (m7GpppN) to monocistronic or bicistronic transcripts decreased the translation of a reporter gene downstream of the HAV 5'NTR but enhanced translation of the upstream cistron in bicistronic transcripts. This finding indicates that a 5' cap structure is inhibitory to HAV IRES-directed translation initiation and that the cap structure and the HAV IRES probably compete for the same limiting translation factors. The efficiency with which monocistronic constructs containing the HAV 5'NTR directed translation in reticulocyte lysates was compared with results for monocistronic constructs containing the IRES of the more rapidly growing encephalomyocarditis virus (EMCV). These results indicated that the HAV 5'NTR was more than 25-fold less active than the EMCV IRES in producing translation product. HAV 5'NTR-directed translation was inhibited by the presence of a one-fifth molar quantity of RNA containing the EMCV IRES, while a fivefold molar excess of the HAV 5'NTR did not inhibit EMCV IRES-directed translation. The relatively weak activity of the HAV IRES may thus be due to a reduced affinity for cellular translation factors which are present in limiting quantities in rabbit reticulocyte lysate.
Collapse
Affiliation(s)
- E A Brown
- Department of Medicine, University of North Carolina at Chapel Hill 27599-7030
| | | | | |
Collapse
|