1
|
Zhao R, Huang S, Li J, Gu A, Fu M, Hua W, Mao Y, Lei QY, Lu B, Wen W. Excessive STAU1 condensate drives mTOR translation and autophagy dysfunction in neurodegeneration. J Cell Biol 2024; 223:e202311127. [PMID: 38913026 PMCID: PMC11194678 DOI: 10.1083/jcb.202311127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024] Open
Abstract
The double-stranded RNA-binding protein Staufen1 (STAU1) regulates a variety of physiological and pathological events via mediating RNA metabolism. STAU1 overabundance was observed in tissues from mouse models and fibroblasts from patients with neurodegenerative diseases, accompanied by enhanced mTOR signaling and impaired autophagic flux, while the underlying mechanism remains elusive. Here, we find that endogenous STAU1 forms dynamic cytoplasmic condensate in normal and tumor cell lines, as well as in mouse Huntington's disease knockin striatal cells. STAU1 condensate recruits target mRNA MTOR at its 5'UTR and promotes its translation both in vitro and in vivo, and thus enhanced formation of STAU1 condensate leads to mTOR hyperactivation and autophagy-lysosome dysfunction. Interference of STAU1 condensate normalizes mTOR levels, ameliorates autophagy-lysosome function, and reduces aggregation of pathological proteins in cellular models of neurodegenerative diseases. These findings highlight the importance of balanced phase separation in physiological processes, suggesting that modulating STAU1 condensate may be a strategy to mitigate the progression of neurodegenerative diseases with STAU1 overabundance.
Collapse
Affiliation(s)
- Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingyu Li
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Paluch KV, Platz KR, Rudisel EJ, Erdmann RR, Laurin TR, Dittenhafer-Reed KE. The role of lysine acetylation in the function of mitochondrial ribosomal protein L12. Proteins 2024; 92:583-592. [PMID: 38146092 DOI: 10.1002/prot.26654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post-translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single-site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.
Collapse
Affiliation(s)
- Katelynn V Paluch
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Karlie R Platz
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Emma J Rudisel
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Ryan R Erdmann
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Taylor R Laurin
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | | |
Collapse
|
3
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
4
|
Jansova D, Tetkova A, Koncicka M, Kubelka M, Susor A. Localization of RNA and translation in the mammalian oocyte and embryo. PLoS One 2018. [PMID: 29529035 PMCID: PMC5846722 DOI: 10.1371/journal.pone.0192544] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The tight correlation between mRNA distribution and subsequent protein localization and function indicate a major role for mRNA localization within the cell. RNA localization, followed by local translation, presents a mechanism for spatial and temporal gene expression regulation utilized by various cell types. However, little is known about mRNA localization and translation in the mammalian oocyte and early embryo. Importantly, fully-grown oocyte becomes transcriptionally inactive and only utilizes transcripts previously synthesized and stored during earlier development. We discovered an abundant RNA population in the oocyte and early embryo nucleus together with RNA binding proteins. We also characterized specific ribosomal proteins, which contribute to translation in the oocyte and embryo. By applying selected markers to mouse and human oocytes, we found that there might be a similar mechanism of RNA metabolism in both species. In conclusion, we visualized the localization of RNAs and translation machinery in the oocyte, that could shed light on this terra incognita of these unique cell types in mouse and human.
Collapse
Affiliation(s)
- Denisa Jansova
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
- * E-mail: (DJ); (AS)
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Marketa Koncicka
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- * E-mail: (DJ); (AS)
| |
Collapse
|
5
|
Mekdad HE, Boutant E, Karnib H, Biedma ME, Sharma KK, Malytska I, Laumond G, Roy M, Réal E, Paillart JC, Moog C, Darlix JL, Mély Y, de Rocquigny H. Characterization of the interaction between the HIV-1 Gag structural polyprotein and the cellular ribosomal protein L7 and its implication in viral nucleic acid remodeling. Retrovirology 2016; 13:54. [PMID: 27515235 PMCID: PMC4982112 DOI: 10.1186/s12977-016-0287-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background In HIV-1 infected cells, the integrated viral DNA is transcribed by the host cell machinery to generate the full length HIV-1 RNA (FL RNA) that serves as mRNA encoding for the Gag and GagPol precursors. Virion formation is orchestrated by Gag, and the current view is that a specific interaction between newly made Gag molecules and FL RNA initiates the process. This in turn would cause FL RNA dimerization by the NC domain of Gag (GagNC). However the RNA chaperoning activity of unprocessed Gag is low as compared to the mature NC protein. This prompted us to search for GagNC co-factors. Results Here we report that RPL7, a major ribosomal protein involved in translation regulation, is a partner of Gag via its interaction with the NC domain. This interaction is mediated by the NC zinc fingers and the N- and C-termini of RPL7, respectively, but seems independent of RNA binding, Gag oligomerization and its interaction with the plasma membrane. Interestingly, RPL7 is shown for the first time to exhibit a potent DNA/RNA chaperone activity higher than that of Gag. In addition, Gag and RPL7 can function in concert to drive rapid nucleic acid hybridization. Conclusions Our results show that GagNC interacts with the ribosomal protein RPL7 endowed with nucleic acid chaperone activity, favoring the notion that RPL7 could be a Gag helper chaperoning factor possibly contributing to the start of Gag assembly. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0287-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hala El Mekdad
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Emmanuel Boutant
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Hassan Karnib
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Marina E Biedma
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Kamal Kant Sharma
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Iuliia Malytska
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Géraldine Laumond
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Marion Roy
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg Cedex, France
| | - Eléonore Réal
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg Cedex, France
| | - Christiane Moog
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1109, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg Cedex, France
| | - Jean Luc Darlix
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France.
| |
Collapse
|
6
|
Ma L, Kohlmann M, Wochner M, Krawinkel U, Przybylski M, Liu S. Mass Spectrometric Analysis of Noncovalent Complexes Between Synthetic Peptides from Human Ribosomal Protein L7 and Protein G. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2014.922475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Li Ma
- Atmospheric Environment Institute of Safety and Pollution Control, Jinan University, Guangzhou, China
- Department of Chemistry and Biology, Analytical Chemistry, University of Konstanz, Konstanz, Germany
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Markus Kohlmann
- Department of Chemistry and Biology, Analytical Chemistry, University of Konstanz, Konstanz, Germany
- R&D DSAR/Drug Disposition FF, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Michael Wochner
- Department of Chemistry and Biology, Analytical Chemistry, University of Konstanz, Konstanz, Germany
| | - Ulrich Krawinkel
- Department of Chemistry and Biology, Analytical Chemistry, University of Konstanz, Konstanz, Germany
| | - Michael Przybylski
- Department of Chemistry and Biology, Analytical Chemistry, University of Konstanz, Konstanz, Germany
| | - Shuying Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Ma L, Kohlmann M, Przybylski M, Liu S. Characterization of Non-Covalent Complexes of Synthetic Peptides of RNA Polymerase Subunit σ70 From Chlamydia trachomatiswith Protein G by nanoESI-MS. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2014.968661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Li Ma
- Atmospheric Environment Institute of Safety and Pollution Control, School of Environmental Air Security and Pollution Control Engineering, Jinan University, Guangzhou, China
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Markus Kohlmann
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- R&D DSAR/Drug Disposition FF, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | - Shuying Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Wadhwa R, Ryu J, Ahn HM, Saxena N, Chaudhary A, Yun CO, Kaul SC. Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease. J Biol Chem 2015; 290:8447-56. [PMID: 25645922 DOI: 10.1074/jbc.m114.627463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mortalin/mtHsp70/Grp75 (mot-2), a heat shock protein 70 family member, is an essential chaperone, enriched in cancers, and has been shown to possess pro-proliferative and anti-apoptosis functions. An allelic form of mouse mortalin (mot-1) that differs by two amino acids, M618V and G624R, in the C terminus substrate-binding domain has been reported. Furthermore, genome sequencing of mortalin from Parkinson disease patients identified two missense mutants, R126W and P509S. In the present study, we investigated the significance of these mutations in survival, proliferation, and oxidative stress tolerance in human cells. Using mot-1 and mot-2 recombinant proteins and specific antibodies, we performed screening to find their binding proteins and then identified ribosomal protein L-7 (RPL-7) and elongation factor-1 α (EF-1α), which differentially bind to mot-1 and mot-2, respectively. We demonstrate that mot-1, R126W, or P509S mutant (i) lacks mot-2 functions involved in carcinogenesis, such as p53 inactivation and hTERT/hnRNP-K (heterogeneous nuclear ribonucleoprotein K) activation; (ii) causes increased level of endogenous oxidative stress; (iii) results in decreased tolerance of cells to exogenous oxidative stress; and (iv) shows differential binding and impact on the RPL-7 and EF-1α proteins. These factors may mediate the transformation of longevity/pro-proliferative function of mot-2 to the premature aging/anti-proliferative effect of mutants, and hence may have significance in cellular aging, Parkinson disease pathology, and prognosis.
Collapse
Affiliation(s)
- Renu Wadhwa
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Jihoon Ryu
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Hyo Min Ahn
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Nishant Saxena
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Anupama Chaudhary
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Chae-Ok Yun
- the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Sunil C Kaul
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| |
Collapse
|
9
|
Moskalev A, Shaposhnikov M, Snezhkina A, Kogan V, Plyusnina E, Peregudova D, Melnikova N, Uroshlev L, Mylnikov S, Dmitriev A, Plusnin S, Fedichev P, Kudryavtseva A. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation. PLoS One 2014; 9:e86051. [PMID: 24475070 PMCID: PMC3901678 DOI: 10.1371/journal.pone.0086051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022] Open
Abstract
General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Anastasia Snezhkina
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Valeria Kogan
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Ekaterina Plyusnina
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Darya Peregudova
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
| | - Nataliya Melnikova
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Leonid Uroshlev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergey Mylnikov
- Department of Genetics, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Dmitriev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Sergey Plusnin
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Peter Fedichev
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Anna Kudryavtseva
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| |
Collapse
|
10
|
Tetel MJ, Acharya KD. Nuclear receptor coactivators: regulators of steroid action in brain and behaviour. J Neuroendocrinol 2013; 25:1209-18. [PMID: 23795583 PMCID: PMC3830605 DOI: 10.1111/jne.12065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022]
Abstract
Steroid hormones act in specific regions of the brain to alter behaviour and physiology. Although it has been well established that the bioavailability of the steroid and the expression of its receptor is critical for understanding steroid action in the brain, the importance of nuclear receptor coactivators in the brain is becoming more apparent. The present review focuses on the function of the p160 family of coactivators, which includes steroid receptor coactivator-1 (SRC-1), SRC-2 and SRC-3, in steroid receptor action in the brain. The expression, regulation and function of these coactivators in steroid-dependent gene expression in both brain and behaviour are discussed.
Collapse
Affiliation(s)
- M J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | |
Collapse
|
11
|
Serre V, Rozanska A, Beinat M, Chretien D, Boddaert N, Munnich A, Rötig A, Chrzanowska-Lightowlers ZM. Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1304-12. [PMID: 23603806 PMCID: PMC3787750 DOI: 10.1016/j.bbadis.2013.04.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/25/2013] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
Abstract
Multiple respiratory chain deficiencies represent a common cause of mitochondrial diseases and are associated with a wide range of clinical symptoms. We report a subject, born to consanguineous parents, with growth retardation and neurological deterioration. Multiple respiratory chain deficiency was found in muscle and fibroblasts of the subject as well as abnormal assembly of complexes I and IV. A microsatellite genotyping of the family members detected only one region of homozygosity on chromosome 17q24.2-q25.3 in which we focused our attention to genes involved in mitochondrial translation. We sequenced MRPL12, encoding the mitochondrial ribosomal protein L12 and identified a c.542C>T transition in exon 5 changing a highly conserved alanine into a valine (p.Ala181Val). This mutation resulted in a decreased steady-state level of MRPL12 protein, with altered integration into the large ribosomal subunit. Moreover, an overall mitochondrial translation defect was observed in the subject's fibroblasts with a significant reduction of synthesis of COXI, COXII and COXIII subunits. Modeling of MRPL12 shows Ala181 positioned in a helix potentially involved in an interface of interaction suggesting that the p.Ala181Val change might be predicted to alter interactions with the elongation factors. These results contrast with the eubacterial orthologues of human MRPL12, where L7/L12 proteins do not appear to have a selective effect on translation. Therefore, analysis of the mutated version found in the subject presented here suggests that the mammalian protein does not function in an entirely analogous manner to the eubacterial L7/L12 equivalent.
Collapse
Affiliation(s)
- Valérie Serre
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Agata Rozanska
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marine Beinat
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Dominique Chretien
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Nathalie Boddaert
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Arnold Munnich
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Agnès Rötig
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
- Department of Pediatrics, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Zofia M. Chrzanowska-Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
12
|
Noutsios GT, Silveyra P, Bhatti F, Floros J. Exon B of human surfactant protein A2 mRNA, alone or within its surrounding sequences, interacts with 14-3-3; role of cis-elements and secondary structure. Am J Physiol Lung Cell Mol Physiol 2013; 304:L722-35. [PMID: 23525782 PMCID: PMC3680765 DOI: 10.1152/ajplung.00324.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/03/2013] [Indexed: 01/22/2023] Open
Abstract
Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5' untranslated (5'UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5'UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 β/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA.
Collapse
Affiliation(s)
- Georgios T Noutsios
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
13
|
Tbx20 regulation of cardiac cell proliferation and lineage specialization during embryonic and fetal development in vivo. Dev Biol 2011; 363:234-46. [PMID: 22226977 DOI: 10.1016/j.ydbio.2011.12.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/29/2011] [Accepted: 12/20/2011] [Indexed: 11/21/2022]
Abstract
TBX20 gain-of-function mutations in humans are associated with congenital heart malformations and myocardial defects. However the effects of increased Tbx20 function during cardiac chamber development and maturation have not been reported previously. CAG-CAT-Tbx20 transgenic mice were generated for Cre-dependent induction of Tbx20 in myocardial lineages in the developing heart. βMHCCre-mediated overexpression of Tbx20 in fetal ventricular cardiomyocytes results in increased thickness of compact myocardium, induction of cardiomyocyte proliferation, and increased expression of Bmp10 and pSmad1/5/8 at embryonic day (E) 14.5. βMHCCre-mediated Tbx20 overexpression also leads to increased expression of cardiac conduction system (CCS) genes Tbx5, Cx40, and Cx43 throughout the ventricular myocardium. In contrast, Nkx2.5Cre mediated overexpression of Tbx20 in the embryonic heart results in reduced cardiomyocyte proliferation, increased expression of a cell cycle inhibitor, p21(CIP1), and decreased expression of Tbx2, Tbx5, and N-myc1 at E9.5, concomitant with decreased phospho-ERK1/2 expression. Together, these analyses demonstrate that Tbx20 differentially regulates cell proliferation and cardiac lineage specification in embryonic versus fetal cardiomyocytes. Induction of pSmad1/5/8 at E14.5 and inhibition of dpERK expression at E9.5 are consistent with selective Tbx20 regulation of these pathways in association with stage-specific effects on cardiomyocyte proliferation. Together, these in vivo data support distinct functions for Tbx20 in regulation of cardiomyocyte lineage maturation and cell proliferation at embryonic and fetal stages of heart development.
Collapse
|
14
|
Chakraborty S, Wirrig EE, Hinton RB, Merrill WH, Spicer DB, Yutzey KE. Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Dev Biol 2010; 347:167-79. [PMID: 20804746 DOI: 10.1016/j.ydbio.2010.08.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/12/2010] [Accepted: 08/19/2010] [Indexed: 11/17/2022]
Abstract
During embryogenesis the heart valves develop from undifferentiated mesenchymal endocardial cushions (EC), and activated interstitial cells of adult diseased valves share characteristics of embryonic valve progenitors. Twist1, a class II basic-helix-loop-helix (bHLH) transcription factor, is expressed during early EC development and is down-regulated later during valve remodeling. The requirements for Twist1 down-regulation in the remodeling valves and the consequences of prolonged Twist1 activity were examined in transgenic mice with persistent expression of Twist1 in developing and mature valves. Persistent Twist1 expression in the remodeling valves leads to increased valve cell proliferation, increased expression of Tbx20, and increased extracellular matrix (ECM) gene expression, characteristic of early valve progenitors. Among the ECM genes predominant in the EC, Col2a1 was identified as a direct transcriptional target of Twist1. Increased Twist1 expression also leads to dysregulation of fibrillar collagen and periostin expression, as well as enlarged hypercellular valve leaflets prior to birth. In human diseased aortic valves, increased Twist1 expression and cell proliferation are observed adjacent to nodules of calcification. Overall, these data implicate Twist1 as a critical regulator of valve development and suggest that Twist1 influences ECM production and cell proliferation during disease.
Collapse
Affiliation(s)
- Santanu Chakraborty
- The Heart Institute, Cincinnati Children's Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
15
|
Duncan KA, Jimenez P, Carruth LL. The selective estrogen receptor-alpha coactivator, RPL7, and sexual differentiation of the songbird brain. Psychoneuroendocrinology 2009; 34 Suppl 1:S30-8. [PMID: 19524373 DOI: 10.1016/j.psyneuen.2009.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 02/03/2023]
Abstract
The brain and behavior of the Australian zebra finch (Taeniopygia guttata) are sexually dimorphic. Only males sing courtship songs and the regions of the brain involved in the learning and production of song are significantly larger in males than females. Therefore the zebra finch serves as an excellent model for studying the mechanisms that influence brain sexual differentiation, and the majority of past research on this system has focused on the actions of steroid hormones in the development of these sex differences. Coregulators, such as coactivators and corepressors, are proteins and RNA activators that work by enhancing or depressing the transcriptional activity of the nuclear steroid receptor with which they associate, and thereby modulating the development of sex-specific brain morphologies and behaviors. The actions of these proteins may help elucidate the hormonal mechanisms that underlie song nuclei development. Research described in this review focus on the role of estrogen receptor coactivators in the avian brain; more specifically we will focus on the role of RPL7 (ribosomal protein L7; also known as L7/SPA) on sexual differentiation of the zebra finch song system. Collectively, these studies provide information about the role of steroid receptor coactivators on development of the zebra finch song system as well as on sexual differentiation of brain.
Collapse
Affiliation(s)
- Kelli A Duncan
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | | | |
Collapse
|
16
|
Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem 2009; 284:28319-28331. [PMID: 19696026 DOI: 10.1074/jbc.m109.024406] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the heart, autophagy is required for normal cardiac function and also has been implicated in cardiovascular disease. FoxO transcription factors promote autophagy in skeletal muscle and have additional roles in regulation of cell size, proliferation, and metabolism. Here we investigate the role of FoxO transcription factors in regulating autophagy and cell size in cardiomyocytes. In cultured rat neonatal cardiomyocytes, glucose deprivation leads to decreased cell size and induction of autophagy pathway genes LC3, Gabarapl1, and Atg12. Likewise, overexpression of either FoxO1 or FoxO3 reduces cardiomyocyte cell size and induces expression of autophagy pathway genes. Moreover, inhibition of FoxO activity by dominant negative FoxO1 (Delta256) blocks cardiomyocyte cell size reduction upon starvation, suggesting the necessity of FoxO function in cardiomyocyte cell size regulation. Under starvation conditions, endogenous FoxO1 and FoxO3 are localized to the nucleus and bind to promoter sequences of Gabarapl1 and Atg12. In vivo studies show that cellular stress, such as starvation or ischemia/reperfusion in mice, results in induction of autophagy in the heart with concomitant dephosphorylation of FoxO, consistent with increased activity of nuclear FoxO transcription factors. Together these results provide evidence for an important role for FoxO1 and FoxO3 in regulating autophagy and cell size in cardiomyocytes.
Collapse
Affiliation(s)
- Arunima Sengupta
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229
| | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229.
| |
Collapse
|
17
|
Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol 2009; 30:328-42. [PMID: 19401208 PMCID: PMC2720417 DOI: 10.1016/j.yfrne.2009.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior.
Collapse
|
18
|
Ponce ML, Koelling S, Kluever A, Heinemann DEH, Miosge N, Wulf G, Frosch KH, Schütze N, Hufner M, Siggelkow H. Coexpression of osteogenic and adipogenic differentiation markers in selected subpopulations of primary human mesenchymal progenitor cells. J Cell Biochem 2008; 104:1342-55. [PMID: 18286543 DOI: 10.1002/jcb.21711] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Knowledge of the basic mechanisms controlling osteogenesis and adipogenesis might provide new insights into the prevention of osteoporosis and age-related osteopenia. With the help of magnetic cell sorting and fluorescence activated cell sorting (FACS), osteoblastic subpopulations of mesenchymal progenitor cells were characterized. Alkaline phosphatase (AP) negative cells expressed low levels of osteoblastic and adipocytic markers. AP positive cells expressed adipocytic markers more strongly than the AP negative cell populations, thus suggesting that committed osteoblasts exhibit a greater adipogenic potential. AP negative cells differentiated to the mature osteoblastic phenotype, as demonstrated by increased AP-activity and osteocalcin secretion under standard osteogenic culture conditions. Surprisingly, this was accompanied by increased expression of adipocytic gene markers such as peroxisome proliferator-activated receptor-gamma2, lipoprotein lipase and fatty acid binding protein. The induction of adipogenic markers was suppressed by transforming growth factor-beta1 (TGF-beta1) and promoted by bone morphogenetic protein 2 (BMP-2). Osteogenic culture conditions including BMP-2 induced both the formation of mineralized nodules and cytoplasmic lipid vacuoles. Upon immunogold electron microscopic analysis, osteoblastic and adipogenic marker proteins were detectable in the same cell. Our results suggest that osteogenic and adipogenic differentiation in human mesenchymal progenitor cells might not be exclusively reciprocal, but rather, a parallel event until late during osteoblast development.
Collapse
Affiliation(s)
- M L Ponce
- Department of Gastroenterology and Endocrinology, Georg-August-University Goettingen, Goettingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu S, De Croos JNA, Storey KB. Cold acclimation-induced up-regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica. Gene 2008; 424:48-55. [PMID: 18706984 DOI: 10.1016/j.gene.2008.07.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/28/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
Abstract
Natural freezing survival by the wood frog, Rana sylvatica, involves multiple organ-specific changes in gene expression. The present study used differential display PCR to find cold-responsive genes in wood frog skin. A cDNA was retrieved from skin that was in higher amounts in cold- versus warm-acclimated frogs. The cDNA was used to probe a wood frog liver cDNA library and retrieve a long sequence that, after the further application of 5'RACE, was shown to encode the full sequence of the ribosomal large subunit protein 7 (RPL7) (GenBank accession number AF175983). Wood frog RPL7 contained 246 amino acids and shared 90% identity with Xenopus laevis RPL7, 82-83% with chicken and zebrafish homologues, and 79% with mammalian RPL7. Multiple binding domains found in human RPL7 showed differing degrees of conservation in the frog protein. Transcript levels of rpl7 were elevated up to 4-fold in skin of cold-acclimated frogs as compared with warm-acclimated animals. Organ-specific responses by rpl7 transcripts also occurred when frogs were given survivable freezing exposures. Transcripts rose by 1.8-3.3 fold in brain and skeletal muscle during freezing but were unaffected in central organs such as liver and heart. Up-regulation of rpl7 also occurred in brain of anoxia-exposed frogs and RPL7 protein levels increased strongly in heart under both freezing and dehydration stresses. Cold- and freezing-responsive up-regulation of the rpl7 gene and RPL7 protein in selected organs suggests that targeted changes in selected ribosomal proteins may be an integral part of natural freeze tolerance.
Collapse
Affiliation(s)
- Shaobo Wu
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | | | | |
Collapse
|
20
|
Chakraborty S, Cheek J, Sakthivel B, Aronow BJ, Yutzey KE. Shared gene expression profiles in developing heart valves and osteoblast progenitor cells. Physiol Genomics 2008; 35:75-85. [PMID: 18612084 DOI: 10.1152/physiolgenomics.90212.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The atrioventricular (AV) valves of the heart develop from undifferentiated mesenchymal endocardial cushions, which later mature into stratified valves with diversified extracellular matrix (ECM). Because the mature valves express genes associated with osteogenesis and exhibit disease-associated calcification, we hypothesized the existence of shared regulatory pathways active in developing AV valves and in bone progenitor cells. To define gene regulatory programs of valvulogenesis relative to osteoblast progenitors, we undertook Affymetrix gene expression profiling analysis of murine embryonic day (E)12.5 AV endocardial cushions compared with E17.5 AV valves (mitral and tricuspid) and with preosteoblast MC3T3-E1 (subclone4) cells. Overall, MC3T3 cells were significantly more similar to E17.5 valves than to E12.5 cushions, supporting the hypothesis that valve maturation involves the expression of many genes also expressed in osteoblasts. Several transcription factors characteristic of mesenchymal and osteoblast precursor cells, including Twist1, are predominant in E12.5 cushion. Valve maturation is characterized by differential regulation of matrix metalloproteinases and their inhibitors as well as complex collagen gene expression. Among the most highly enriched genes during valvulogenesis were members of the small leucine-rich proteoglycan (SLRP) family including Asporin, a known negative regulator of osteoblast differentiation and mineralization. Together, these data support shared gene expression profiles of the developing valves and osteoblast bone precursor cells in normal valve development and homeostasis with potential functions in calcific valve disease.
Collapse
Affiliation(s)
- Santanu Chakraborty
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
21
|
Duncan KA, Carruth LL. The sexually dimorphic expression of L7/SPA, an estrogen receptor coactivator, in zebra finch telencephalon. Dev Neurobiol 2008; 67:1852-66. [PMID: 17823931 DOI: 10.1002/dneu.20539] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sex differences in the zebra finch (Taeniopygia guttata) brain are robust and include differences in morphology (song control nuclei in males are significantly larger) and behavior (only males sing courtship songs). In zebra finches, hormonal manipulations during development fail to reverse sex differences in song nuclei size and suggest that the classical model of sexual differentiation is incomplete for birds. Coactivators act to initiate transcriptional activity of steroid receptors, and may help explain why hormonal manipulations alone are not sufficient to demasculinize the male zebra finch brain. The present study investigated the expression and localization of L7/SPA (an estrogen receptor coactivator) mRNA and protein expression across the development of zebra finch song nuclei from males and females collected on P1 (song nuclei not yet formed), P10 (posthatch day 10, song nuclei formed), P30 (30 days posthatch, sexually immature but song nuclei formed and birds learning to sing), and adult birds (older than 65 days and sexually mature). Northern blot analysis showed a significant sex difference in P1 and adult L7/SPA mRNA expression while Western blot analysis also showed enhanced expression in the male brain at all age points. Both in situ hybridization and immunohistochemistry demonstrated that L7/SPA mRNA and protein were located in the song nuclei as well as expressed globally. Elevated coactivator expression may be a possible mechanism controlling the development of male song control nuclei, and coactivators such as L7/SPA may be important regulators of the masculinizing effects of estradiol on brain sexual differentiation.
Collapse
Affiliation(s)
- Kelli A Duncan
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
22
|
Barakat A, Müller KF, Sáenz-de-Miera LE. Molecular evolutionary analyses of the Arabidopsis L7 ribosomal protein gene family. Gene 2007; 403:143-50. [PMID: 17889453 DOI: 10.1016/j.gene.2007.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 07/21/2007] [Accepted: 08/06/2007] [Indexed: 11/20/2022]
Abstract
Cytoplasmic ribosomal protein (r-protein) genes in Arabidopsis thaliana are encoded by 80 multigene families that contain between two and seven members. Gene family members are typically similar at the protein sequence level, with the most divergent members of any gene family retaining 94% identity, on average. However, three Arabidopsis r-protein families - S15a, L7 and P2 - contain highly divergent family members. Here, we investigated the organization, structure, expression and molecular evolution of the L7 r-protein family. Phylogenetic analyses showed that L7 r-protein gene family members constitute two distinct phylogenetic groups. The first group including RPL7B, RPL7C and RPL7D has homologs in plants, animals and fungi. The second group represented by RPL7A is found in plants but has no orthologs from other fully-sequenced eukaryotic genomes. These two groups may have derived from a duplication event prior to the divergence of animals and plants. All four L7 r-protein genes are expressed and all exhibit a differential expression in inflorescence and flowers. RPL7A and RPL7B are less expressed than the other genes in all tissues analyzed. Molecular characterization of nucleic and protein sequences of L7 r-protein genes and analysis of their codon usage did not indicate any functional divergence. The probable evolution of an extra-ribosomal function of group 2 genes is discussed.
Collapse
Affiliation(s)
- Abdelali Barakat
- Department of Biology, Institute of Molecular Evolutionary Genetics, 403 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, United States.
| | | | | |
Collapse
|
23
|
Chakraborty AK, Yamaga S. Differential gene expression in genetically matched mouse melanoma cells with different metastatic potential. Gene 2003; 315:165-75. [PMID: 14557076 DOI: 10.1016/s0378-1119(03)00736-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vitro fusion of weakly metastatic Cloudman S91 melanoma cells with macrophages from DBA/2J mice (syngeneic with Cloudman S91 melanoma) produced hybrids with metastatic potentials ranging from low to high, with more than half showing enhanced metastasis over the parental melanoma [Clin. Exp. Metastasis 16 (1998) 299]. These hybrids, derived from the same parental fusion partners, represent a unique genetically matched model for analyzing differential gene expression regulating the metastatic phenotype. We have examined the differences in gene expression in metastatic fusion hybrid compared to its parental partners, non-/poorly metastatic melanoma cells and normal macrophages. An approach by selective polymerase chain reaction (PCR) amplification and display of 3' end restriction fragments of double-stranded cDNAs was used [Methods Enzymol. 303 (1999) 272]. Gene expression analyses showed an extensive set of transcripts that were up- or down-regulated in the most metastatic hybrid, H95-1, compared to the parental macrophages or melanoma cells. Sequence analyses of more than 60 of these differentially expressed cDNAs revealed significant up- or down-regulation of a number of genes known to be associated with metastasis of melanoma and other solid tumors. Some genes are found to express exclusively either in normal macrophages or in melanoma. Thirteen fragment sequences were found with no matches with GenBank search. Comparison of these gene expression patterns should be of great value in understanding the coordinate programs regulating metastasis. Further, the increased expression of gene(s) common in macrophage and fusion hybrids may be of importance in identifying the regulatory factor(s) related to macrophage-like trait, motility, a critical step of metastatic processes, in hybrids.
Collapse
Affiliation(s)
- A K Chakraborty
- Department of Dermatology, LCI 505, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | |
Collapse
|
24
|
Barrera G, Pizzimenti S, Laurora S, Moroni E, Giglioni B, Dianzani MU. 4-Hydroxynonenal affects pRb/E2F pathway in HL-60 human leukemic cells. Biochem Biophys Res Commun 2002; 295:267-75. [PMID: 12150942 DOI: 10.1016/s0006-291x(02)00649-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
4-Hydroxynonenal (HNE), a highly reactive product of lipid peroxidation, has an antiproliferative effect in several tumor cell lines and provokes alteration of cell cycle progression in HL-60 cells. HNE down-regulates c-myc expression in K562, HL-60, and MEL cells. This prompted us to study the cascade of phenomena that, starting from the CKIs expression and the phosphorylation of pRb, arrives at the E2F binding to consensus sequence in the P2 promoter of the c-myc gene. Treatment of HL-60 cells with HNE (1 microM) causes a p53-independent increase of p21(WAF1/CIP1) expression, pRb dephosphorylation, a decrease of low molecular weight E2F complexes and an increase of high molecular weight E2F complexes bound to P2 c-myc promoter. E2F4 expression is reduced by HNE treatment as well as the amount of pRb/E2F4 complexes, whereas the amount of pRb/E2F1 complexes is increased. In conclusion, HNE can affect the pRb/E2F pathway by modifying the expression of several genes involved in the control of cell proliferation.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Dipartimento di Medicina e Oncologia Sperimentale, Sezione di Patologia Generale, Corso Raffaello 30, 10125 Turin, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Batetta B, Bonatesta RR, Sanna F, Putzolu M, Mulas MF, Collu M, Dessì S. Cell growth and cholesterol metabolism in human glucose-6-phosphate dehydrogenase deficient lymphomononuclear cells. Cell Prolif 2002; 35:143-54. [PMID: 12027950 PMCID: PMC6496648 DOI: 10.1046/j.1365-2184.2002.00231.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Accepted: 10/08/2001] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is an inflammatory-fibroproliferative response of the arterial wall involving a complex set of interconnected events where cell proliferation (lymphomonocytes, and endothelial and smooth-muscle cells) and substantial perturbations of intracellular cholesterol metabolism are considered to be among the main features. Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the hexose-monophosphate shunt pathway, is an essential enzyme involved in both cell growth and cholesterol metabolism, raising the question as to whether G6PD deficiency may have metabolic and growth implications in a deficient population. In the present study, we investigated cell growth and cholesterol metabolism in peripheral blood lymphomononuclear cells (PBMC) from G6PD-normal (n = 5) and -deficient (n = 5) subjects stimulated with lectins (phytohaemoagglutinin and Concanavalin A). G6PD activity, DNA ([3H]-thymidine incorporation) cholesterol synthesis and esterification ([14C]-acetate and [14C]-oleate incorporation), and G6PD, HMGCoA reductase and low density lipoprotein (LDL) receptor mRNA levels (RT-PCR) all increased following lectin stimulation in both normal and G6PD-deficient cells. However, these parameters were significantly lower in G6PD-deficient cells (P < 0.05). It is of interest that G6PD-deficient PBMC, which showed lower expression of G6PD and higher expression of the LDL receptor gene than normal PBMC under basal conditions, exhibited an opposite pattern after stimulation: G6PD and HMGCoA reductase being expressed at significantly higher levels in deficient than in normal cells (P < 0.05). We conclude that the reduced capability of G6PD-deficient cells to respond to mitogenic stimuli and to synthesize cholesterol esters may represent favourable conditions for reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- B Batetta
- Dipartimento di Scienze Biomediche e Biotecnologie, Sez di Patologia Sperimentale, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kaye DM, Vaddadi G, Gruskin SL, Du XJ, Esler MD. Reduced myocardial nerve growth factor expression in human and experimental heart failure. Circ Res 2000; 86:E80-4. [PMID: 10764418 DOI: 10.1161/01.res.86.7.e80] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintenance of cardiac performance is tightly controlled by the autonomic nervous system. In congestive heart failure (CHF), although the adverse pathophysiological effects of cardiac sympathetic overactivity are increasingly recognized, the paradoxical finding of reduced sympathetic innervation density in the failing heart remains unexplained. Given these observations, we tested the hypothesis that a reduction in the myocardial production of nerve growth factor (NGF), which is important for the maintenance of sympathetic neuronal survival, could explain the conflicting neurochemical and neuroanatomical profile of CHF. In healthy humans (n=11), there was a significantly greater transcardiac venoarterial plasma NGF gradient than in CHF patients (n=11, P<0.05). In a rat model of CHF, a 40% reduction (P<0.05) NGF mRNA expression was apparent in association with a 24% reduction in tissue NGF content (P<0.05). In conjunction, evidence of reduced sympathetic innervation in the failing heart was apparent, as measured histologically by catecholamine fluorescence and by expression of the neuronal NGF receptor trkA. Norepinephrine (10 micromol/L) exposure reduced both NGF mRNA and protein expression in isolated cardiomyocytes, suggesting that myocardial NGF downregulation may represent an adaptive response to sympathetic overactivity. These data indicate that NGF expression in the heart is dynamic and may be altered in cardiovascular disease states. In CHF, reduced NGF expression may account for alterations in sympathetic neuronal function and neuroanatomy. The full text of this article is available at http://www.circresaha.org.
Collapse
Affiliation(s)
- D M Kaye
- Molecular Neurocardiology Laboratory, Baker Medical Research Institute, PO Box 6492, StKilda Rd Central, Melbourne VIC 8008, Australia.
| | | | | | | | | |
Collapse
|
27
|
Dieci G, Bottarelli L, Ballabeni A, Ottonello S. tRNA-assisted overproduction of eukaryotic ribosomal proteins. Protein Expr Purif 2000; 18:346-54. [PMID: 10733889 DOI: 10.1006/prep.2000.1203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural studies of eukaryotic ribosomes are complicated by the tendency of their constituent proteins to be expressed at very low levels in Escherichia coli. We find that this is mainly due to their exceptionally high content of AGA/AGG arginine codons, which are poorly utilized by the bacterial translational machinery. In fact, we could overcome this limitation by the combined use of a T7 RNA polymerase expression vector and a plasmid carrying the E. coli gene argU, which encodes the minor tRNA(Arg) species that reads AGA/AGG codons. In this system, five cytoplasmic ribosomal proteins from three different eukaryotic lineages (Saccharomyces cerevisiae S8, L13, and L14; Arabidopsis thaliana L13; and Homo sapiens L7) could be overexpressed to up to 50% of total bacterial protein and were purified to homogeneity in tens of milligrams amounts. The purification procedure simply involved metal affinity chromatography followed, in some cases, by an additional heparin chromatography step. Recombinant polypeptides bound RNA with high affinity (K(d) between 50 and 300 nM). This novel overexpression/purification strategy will allow the production of high amounts of most eukaryotic ribosomal proteins in a form suitable for structural and functional studies. Coupled with recently completed and ongoing whole-genome sequencing projects, it will facilitate the molecular characterization of the eukaryotic ribosome.
Collapse
Affiliation(s)
- G Dieci
- Institute of Biochemical Sciences, University of Parma, Parma, I-43100, Italy
| | | | | | | |
Collapse
|
28
|
Abstract
Ribosomal proteins have the complex task of coordinating protein biosynthesis to maintain cell homeostasis and survival. Recent evidence suggests that a number of ribosomal proteins have secondary functions independent of their involvement in protein biosynthesis. A number of these proteins function as cell proliferation regulators and in some instances as inducers of cell death. Specifically, expression of human ribosomal protein L13a has been shown to induce apoptosis, presumably by arresting cell growth in the G2/M phase of the cell cycle. In addition, inhibition of expression of L13a induces apoptosis in target cells, suggesting that this protein is necessary for cell survival. Similar results have been obtained in the yeast Saccharomyces cerevisiae, where inactivation of the yeast homologues of L13a, rp22 and rp23, by homologous recombination results in severe growth retardation and death. In addition, a closely related ribosomal protein, L7, arrests cells in G1 and also induces apoptosis. Thus, it appears that a group of ribosomal proteins may function as cell cycle checkpoints and compose a new family of cell proliferation regulators.
Collapse
Affiliation(s)
- F W Chen
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
29
|
Shahmolky N, Lefebvre DL, Poon R, Bai Y, Sharma M, Rosen CF. UVB and γ-Radiation Induce the Expression of mRNAs Encoding the Ribosomal Subunit L13A in Rat Keratinocytes. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb08146.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Leonhardt S, Shahab M, Luft H, Wuttke W, Jarry H. Reduction of luteinzing hormone secretion induced by long-term feed restriction in male rats is associated with increased expression of GABA-synthesizing enzymes without alterations of GnRH gene expression. J Neuroendocrinol 1999; 11:613-9. [PMID: 10447799 DOI: 10.1046/j.1365-2826.1999.00377.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In rats, fasting or restriction of feed intake impairs the activity of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator which results in reduced luteinizing hormone (LH) secretion. It is still unknown which neurotransmitters are involved in this phenomenon. However, it is known that increased GABA concentrations in the hypothalamus reduce GnRH biosynthesis and release. Therefore, we examined whether 17 days of feed restriction in male rats affected the hypothalamic gene expression of GnRH and the GABA-synthesizing enzymes glutaminase (GLS) and glutamic acid decarboxylase-which exists in two forms, GAD67 and GAD65-in the mammalian brain. Furthermore, the expression of the GnRH receptor (GnRH-R) and the GABA transporter 1 (GAT-1) were investigated. Feed restriction resulted in a 75% reduction in body weight (b.w.) compared to rats fed ad libitum. Serum concentrations of LH and testosterone in the feed restricted group were significantly reduced to approximately 15% of that of rats fed ad libitum, while the FSH concentration remained unchanged. In the mediobasal hypothalamus (MBH) where GnRH is released into the portal vessels, mRNA levels of GAD67 and GLS were increased twofold compared to rats fed ad libitum while no changes were observed in the preoptic area of the hypothalamus (POA) where GnRH is biosynthesised. Neither the expression of preoptic GnRH mRNA nor the expression of GAD65 and of GnRH-R mRNA in both hypothalamic structures was affected by feed restriction. In the anterior pituitary, a significant reduction of the expression of GnRH-R, LH-beta and the alpha subunit was observed in the feed restricted rats, whereas FSH-beta mRNA levels remained constant. Thus, feed restriction selectively increased the expression of GABA-synthesizing enzymes in the MBH but did not modify GnRH expression in the POA. However, the reduced expression of the LH-beta- and alpha-subunit and of the GnRH-R in the anterior pituitary indicates that pulsatile GnRH release may have been attenuated or even abolished. We suggest, that enhanced expression of GABA-synthesizing enzymes reflects increased GABAergic neurotransmission and thereby reducing GnRH release from the MBH.
Collapse
Affiliation(s)
- S Leonhardt
- Division of Clinical and Experimental Endocrinology, Department of Obstetrics and Gynecology, University of Göttingen, Germany
| | | | | | | | | |
Collapse
|
31
|
Pizzimenti S, Barrera G, Dianzani MU, Brüsselbach S. Inhibition of D1, D2, and A-cyclin expression in HL-60 cells by the lipid peroxydation product 4-hydroxynonenal. Free Radic Biol Med 1999; 26:1578-86. [PMID: 10401624 DOI: 10.1016/s0891-5849(99)00022-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
4-Hydroxynonenal (HNE), a product of lipid peroxidation, is an highly reactive aldehyde that, at concentration similar to those found in normal cells, blocks proliferation and induces a granulocytic-like differentiation in HL-60 cells. These effects are accompained by a marked increase in the proportion G0/G1 cells. The mechanisms of HNE action were investigated by analyzing the expression of the cyclins and cyclin-dependent protein kinases (CDKs), controlling the cell cycle progression. Data obtained by exposing cells to dimethyl sulfoxide (DMSO) were used for comparison. 4-Hydroxynonenal downregulated both mRNA and protein contents of cyclins D1, D2, and A until 24 h from the treatments, whereas DMSO inhibited cyclin D1 and D2 expression until the end of experiment (2 days) and induces an increase of cyclin A until 1 day. Cyclins B and E, and protein kinase CDK2 and CDK4 expressions were not affected by HNE, whereas DMSO induced an increase of cyclin E, B, and CDK2 from 8 h to 1 day. These data are in agreement with previous results indicating a different time-course of accumulation in G0/G1 phases of cells treated with HNE and DMSO and suggest that the HNE inhibitory effect on proliferation and cell cycle progression may depend by the downregulation of D1, D2, and A cyclin expression.
Collapse
Affiliation(s)
- S Pizzimenti
- Dipartimento di Medicina e Oncologia Sperimentale, Università di Torino, Italy.
| | | | | | | |
Collapse
|
32
|
von Mikecz A, Neu E, Krawinkel U, Hemmerich P. Human ribosomal protein L7 carries two nucleic acid-binding domains with distinct specificities. Biochem Biophys Res Commun 1999; 258:530-6. [PMID: 10329420 DOI: 10.1006/bbrc.1999.0682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein L7 is associated with the large subunit of eukaryotic ribosomes that can act as a co-regulator of nuclear receptor-mediated transcription. In this study we show that L7 carries in addition to the known N-terminal nucleic acid-binding domain (NBD 1) a second one (NBD 2) which maps to the 50 C-terminal amino acids of the protein. The amino acid sequence of this region does not contain any of the known nucleic acid binding motifs; thus, NBD 2 may represent a new class of nucleic acid-binding protein motifs. NBD 2 is conserved in all known eukaryotic L7 homologs, whereas NBD 1 is only present in mammalian L7. Binding studies show that NBD 2 is functionally different from NBD 1 in that it binds preferentially to 28S rRNA, suggesting that NBD 2 is involved in the attachment of protein L7 to the large ribosomal subunit. Potential functions of NBD 1 and NBD 2 in translational and nuclear receptor-mediated transcriptional control are discussed.
Collapse
Affiliation(s)
- A von Mikecz
- Department of Immunology, University of Konstanz, Konstanz, Germany
| | | | | | | |
Collapse
|
33
|
Donauer J, Wochner M, Witte E, Peter HH, Schlesier M, Krawinkel U. Autoreactive human T cell lines recognizing ribosomal protein L7. Int Immunol 1999; 11:125-32. [PMID: 10069410 DOI: 10.1093/intimm/11.2.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sera of patients suffering from systemic lupus erythematosus (SLE) frequently contain oligoclonal IgG autoantibodies with high affinity for the ribosomal protein L7 (rpL7). The humoral autoimmune response to rpL7 apparently is driven by antigen and T cell dependent. In order to analyze the T cell response to rpL7 we cultured peripheral blood lymphocytes of healthy individuals and SLE patients in the presence of recombinant rpL7. After 10 days, the cytokine response to re-stimulation with rpL7 was examined using a spot-ELISA. Measuring IFN-gamma secretion, the T cells of two patients and four healthy donors showed a significant increase in the number of spots as compared to control cells. Secretion of IL-4 or IL-10 was not detected. From the antigen-stimulated primary cultures we established by limiting dilution cloning six rpL7-reactive, IFN-gamma-secreting T cell lines which show a CD3+CD4+CD8- phenotype. One line additionally was shown to be positive for HLA-DR and CD45R0, but negative for CD27 and CD31. The cell lines carry alphabeta TCR chains which differ from each other in sequence and specificity. rpL7 fragments rich in basic amino acids could be identified as epitopes recognized by the TCR of three cell lines. Recognition of rpL7 is HLA-DR6 restricted or respectively HLA-DP restricted in the two cell lines analyzed.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigen-Presenting Cells/immunology
- Autoantigens/immunology
- Cell Line
- Cells, Cultured
- Cytokines/biosynthesis
- Enzyme-Linked Immunosorbent Assay/methods
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Histocompatibility Antigens Class II/immunology
- Humans
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/immunology
- Ribosomal Proteins/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- J Donauer
- Faculty of Biology, University of Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Hemmerich P, Neu E, Macht M, Peter HH, Krawinkel U, von Mikecz A. Correlation between chlamydial infection and autoimmune response: molecular mimicry between RNA polymerase major sigma subunit from Chlamydia trachomatis and human L7. Eur J Immunol 1998; 28:3857-66. [PMID: 9842929 DOI: 10.1002/(sici)1521-4141(199811)28:11<3857::aid-immu3857>3.0.co;2-m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
L7 is one of the ribosomal proteins frequently targeted by autoantibodies in rheumatic autoimmune diseases. A computer search revealed a region within the immunodominant epitope of L7 (peptide II) that is highly homologous to amino acid sequence 264-286 of the RNA polymerase major sigma factor of the eubacterium Chlamydia trachomatis. Anti-L7 autoantibodies affinity purified from the immunodominant epitope were able to recognize this sequence as they reacted with purified recombinant sigma factor. Immunofluorescence labeling experiments on C. trachomatis lysates revealed a punctate staining pattern of numerous spots when incubated with the affinity-purified anti-peptide II autoantibodies. Binding of autoantibodies to peptide II was inhibited by the homologous sigma peptide. This is the first demonstration of epitope mimicry between a human and a chlamydial protein on the level of B cells. Antibody screening revealed a significant correlation between the presence of anti-L7 autoantibodies and C. trachomatis infection in patients with systemic lupus erythematosus and mixed connective tissue disease. Our results suggest that molecular mimicry is involved in the initiation of anti-L7 autoantibody response and may represent a first glance into the immunopathology of Chlamydia with respect to systemic rheumatic diseases.
Collapse
Affiliation(s)
- P Hemmerich
- Department of Molecular Biology, Institute for Molecular Biotechnology, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Richter A, Baack M, Holthoff HP, Ritzi M, Knippers R. Mobilization of chromatin-bound Mcm proteins by micrococcal nuclease. Biol Chem 1998; 379:1181-7. [PMID: 9792452 DOI: 10.1515/bchm.1998.379.8-9.1181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mcm (minichromosome maintenance) proteins are important components of the eukaryotic replication initiation apparatus. We investigate the binding of human Mcm proteins to HeLa cell chromatin using micrococcal nuclease as a tool. In previous work we prepared chromatin under low ionic strength conditions. The use of a low salt buffer was necessary to prevent the dissociation of Mcm proteins. Here we use chromatin prepared at more physiological salt concentrations (100 mM NaCl) following the procedure of Fujita et al. (J. Biol. Chem. 272, 10928-10935; 1997) who had shown that ATP stabilizes the interaction of Mcm proteins with chromatin. We show here that micrococcal nuclease released Mcm proteins early during the digestion process suggesting that Mcm proteins reside on chromatin sites which are more open to nuclease attack than bulk chromatin. Released Mcm proteins sedimented through glycerol gradients as a multiprotein complex comprising several of the six known human Mcm proteins.
Collapse
Affiliation(s)
- A Richter
- Department of Biology, Universität Konstanz, Germany
| | | | | | | | | |
Collapse
|
36
|
Ward MR, Sasahara T, Agrotis A, Dilley RJ, Jennings GL, Bobik A. Inhibitory effects of tranilast on expression of transforming growth factor-beta isoforms and receptors in injured arteries. Atherosclerosis 1998; 137:267-75. [PMID: 9622270 DOI: 10.1016/s0021-9150(97)00275-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tranilast (N(3,4-dimethoxycinnamoyl)anthranilic acid), an agent which in cell culture inhibits transforming growth factor-beta (TGF-beta) secretion and antagonises the effects of TGF-beta and platelet-derived growth factor (PDGF) on cell migration and proliferation, has been reported to reduce the incidence of restenosis after angioplasty in angiographically validated human clinical trials. We investigated in a rat model of balloon angioplasty whether tranilast's effects in vivo could be attributed to inhibition of expression of TGF-beta and/or its receptor types. Using a standardised reverse transcriptase-polymerase chain reaction (RT-PCR) assay, we examined the effects of three doses of tranilast (25, 50 and 100 mg/kg) on the expression of two TGF-beta isoforms, the types I and II TGF-beta receptors and two putative TGF-beta responses, induction of integrins alpha(v) and beta3 mRNA, 2 h after oral administration and 26 h after vessel injury. Tranilast attenuated in a dose-dependent and reversible manner the injury-induced increases in mRNA levels encoding TGF-beta1, TGF-beta3, two type I TGF-beta receptors ALK-5 and ALK-2, and the type II receptor TbetaRII. At the highest dose mRNA levels encoding TGF-beta1 and TbetaRII were attenuated to levels approaching or below those observed in uninjured vessels. Messenger RNAs encoding TGF-beta3, ALK-5 and ALK-2 were all attenuated by between 70 and 74% (all P < 0.05). Tranilast also attenuated in a reversible manner the elevations in mRNA levels for integrins alpha(v) and beta3 observed after vessel injury, by 90 and 72%, respectively. We also investigated, in cultured smooth muscle cells derived from injured carotid arteries, the extent to which tranilast (300 mg/l) attenuated any increases in expression of type I and type II receptors stimulated by PDGF-BB and TGF-beta1, growth factors implicated in smooth muscle cell migration and proliferation in injured vessels. Increases in mRNA levels of the type I receptors ALK-5 and ALK-2 induced by PDGF-BB and TGF-beta1 were almost completely prevented by tranilast. Tranilast also prevented the PDGF-BB induced increases in TbetaRII but only partially inhibited the TGF-beta1 induced upregulation of TbetaRII. We conclude that tranilast can inhibit transcriptional mechanisms associated with the upregulation of TGF-beta and its receptor types in balloon catheter injured vessels. It is possible that these mechanisms contribute to its ability to reduce the frequency of restenosis after angioplasty.
Collapse
MESH Headings
- Angioplasty, Balloon/adverse effects
- Animals
- Arterial Occlusive Diseases/etiology
- Arterial Occlusive Diseases/metabolism
- Carotid Arteries/drug effects
- Carotid Arteries/pathology
- Carotid Artery Injuries
- Cell Division/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- DNA Primers/chemistry
- Dose-Response Relationship, Drug
- Integrins/antagonists & inhibitors
- Integrins/genetics
- Integrins/metabolism
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Platelet Aggregation Inhibitors/pharmacology
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- M R Ward
- Cell Biology Laboratory, Baker Medical Research Institute, Prahran, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Berghöfer-Hochheimer Y, Zurek C, Wölfl S, Hemmerich P, Munder T. L7 protein is a coregulator of vitamin D receptor-retinoid X receptor-mediated transactivation. J Cell Biochem 1998; 69:1-12. [PMID: 9513041 DOI: 10.1002/(sici)1097-4644(19980401)69:1<1::aid-jcb1>3.0.co;2-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The vitamin D receptor (VDR) heterodimerizes with the retinoid X receptor (RXR) and requires additional protein-protein interactions to regulate the expression of target genes. Using the yeast two-hybrid system, we identified the previously described protein L7, that specifically interacted with the VDR in the presence of vitamin D. Deletion analysis indicated, that the N-terminus of L7, which harbours a basic region leucine zipper like domain, mediated interaction with the VDR. Binding assays with purified GST-L7 demonstrated, that L7 specifically pulled down the VDR, that was either expressed in yeast or endogenously contained in the cell line U937. Interestingly, L7 inhibited ligand-dependent VDR-RXR heterodimerization, when constitutively expressed in yeast. We also demonstrate that L7 repressed binding of VDR-RXR heterodimers to a vitamin D response element. Surprisingly, L7 recruited RXR to the same response element in the presence of 9-cis retinoic acid. Ligand-dependent protein-protein interaction in the yeast two-hybrid system confirmed, that binding of L7 also was targeted at the RXR. Our data suggest, that protein L7 is a coregulator of VDR-RXR mediated transactivation of genes, that modulates transcriptional activity by interfering with binding of the receptors to genomic enhancer elements.
Collapse
Affiliation(s)
- Y Berghöfer-Hochheimer
- Hans-Knöll-Institut für Naturstoff-Forschung e.V., Department of Cell and Molecular Biology, Jena, Germany
| | | | | | | | | |
Collapse
|
38
|
Tanaka M, Tanaka T, Harata M, Suzuki T, Mitsui Y. Triplet repeat-containing ribosomal protein L14 gene in immortalized human endothelial cell line (t-HUE4). Biochem Biophys Res Commun 1998; 243:531-7. [PMID: 9480843 DOI: 10.1006/bbrc.1998.8125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A cDNA encoding human 60S ribosomal subunit protein L14 (hRL14) was isolated from a human immortal endothelial cell line, t-HUE4. This cell line was established via a series of cell lines cultured in a serum-free and a protein-free medium, and a directional cDNA library has been constructed and screened in search for the genes modulating protein synthesis machinery in cell proliferation. A putative full-length clone with an open reading frame of 220 amino acids; predicted molecular weight of 23.6 kDa. A significant identity for hRL14 was observed with rat RL14 (85% identity), with exception of COOH-terminal region, but not with any eukaryote amino acid sequences so far deposited to database. The typical features of ribosomal proteins were observed in hRL14, as seen in nuclear targeting sequences necessary for the transport from cytoplasm to nucleolus, a bZIP like (basic region-leucine zipper) element for the binding to rRNA, and the internal repeat sequences; the pentapeptide QKA(A/S)X. The COOH-terminal region of the transcripts contained fifteen triplet repeats (GCT; alanine) at nucleotide 465 to 509, which is significantly expanded compared to the rat RL14. However, the repeat number was all the same among the normal human endothelial cell line and the cell lines established in the course of t-HUE4 establishment. A single band with about 800 bases was identified by Northern blot analysis without tissue specificity. This GCT repeat was found to be one of the longest uninterrupted repeats in a coding sequence, which were associated with the highest degree of polymorphism.
Collapse
Affiliation(s)
- M Tanaka
- National Institute of Bioscience and Human-Technology, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Ward MR, Agrotis A, Kanellakis P, Dilley R, Jennings G, Bobik A. Inhibition of protein tyrosine kinases attenuates increases in expression of transforming growth factor-beta isoforms and their receptors following arterial injury. Arterioscler Thromb Vasc Biol 1997; 17:2461-70. [PMID: 9409216 DOI: 10.1161/01.atv.17.11.2461] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transforming growth factor-beta 1 (TGF-beta 1) has been implicated in neointima formation in mechanically injured vessels and in restenosis after angioplasty. To further understand the significance of TGF-beta s in neointima formation, we examined the temporal expression of three TGF-beta isoforms (-beta 1, -beta 2, and -beta 3), their receptors (ALK-2, ALK-5, and T beta RII), and two putative TGF-beta responses (elevations in alpha v and beta 3 integrin mRNAs) in balloon catheter-injured rat carotid arteries and their dependency on tyrosine kinase activity. Using a standardized reverse transcriptase-polymerase chain reaction assay optimized to estimate mRNA levels, we observed distinct patterns of mRNA regulation for TGF-beta 1, -beta 2, and -beta 3 during the 48 hours immediately after injury, which were localized to the vessel's media. TGF-beta 1 mRNA increased 10-fold during this time while TGF-beta 3 mRNA also increased almost 2-fold. There were also increases in mRNAs encoding the TGF-beta type I receptors ALK-5 and ALK-2, as well as the type II receptor (T beta RII). Eight hours after the injury, mRNA levels for ALK-2 and ALK-5 were on average 2-fold higher; mRNA encoding the type II receptor increased approximately 3-fold by 24 hours. There were also associated increases in TGF-beta 1, TGF-beta 3, ALK-5, and T beta RII immunoreactive peptide levels. Peak increases in mRNAs for integrins alpha v and beta 3 averaged approximately 2-fold and 2.5-fold, respectively. Perivascular administration of the tyrosine kinase inhibitor genistein at the time of vessel injury markedly (> 85%) inhibited elevations in mRNAs encoding TGF-beta 1, TGF-beta 3, T beta RII, and the two integrins alpha v and beta 3, while application of its inactive chemically similar homologue daidzein did not prevent the injury-induced elevations in mRNA levels. Since the increases in integrins alpha v and beta 3 mRNA could be theoretically attributed to TGF-beta actions despite being dependent on tyrosine kinase activity, we examined whether the observed elevations in integrins alpha v and beta 3 were due to TGF-beta 1 secretion, using cultured rat carotid artery smooth muscle cells. TGF-beta 1 neutralizing antibodies specifically inhibited elevations in integrins alpha v and beta 3 mRNAs due to platelet-derived growth factor-BB and fibroblast growth factor-2. We conclude that multiple components of the TGF-beta system in vessels are activated following injury and influence expression of integrin receptors important for smooth muscle cell migration. Activation of the TGF-beta system appears to be highly dependent on tyrosine kinases.
Collapse
MESH Headings
- Activin Receptors, Type I
- Angioplasty, Balloon/adverse effects
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Carotid Arteries/metabolism
- Carotid Artery Injuries
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Genistein/pharmacology
- Integrin alphaV
- Integrin beta3
- Isoflavones/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Platelet Membrane Glycoproteins/biosynthesis
- Platelet Membrane Glycoproteins/genetics
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Growth Factor/biosynthesis
- Receptors, Growth Factor/genetics
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/genetics
- Signal Transduction
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/genetics
- Tunica Intima/injuries
- Tunica Intima/pathology
- Wound Healing/physiology
Collapse
Affiliation(s)
- M R Ward
- Cell Biology Laboratory, Baker Medical Research Institute, Prahran, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Wong J, Rauhöft C, Dilley RJ, Agrotis A, Jennings GL, Bobik A. Angiotensin-converting enzyme inhibition abolishes medial smooth muscle PDGF-AB biosynthesis and attenuates cell proliferation in injured carotid arteries: relationships to neointima formation. Circulation 1997; 96:1631-40. [PMID: 9315558 DOI: 10.1161/01.cir.96.5.1631] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND ACE inhibitors can attenuate the development of intimal fibrocellular lesions after balloon catheter vessel injury, but the mechanisms responsible are unknown. METHODS AND RESULTS To evaluate how basic fibroblast growth factor (FGF-2) and the platelet-derived growth factor (PDGF) isoforms are affected by ACE inhibition in injured rat carotid arteries in relation to smooth muscle cell (SMC) proliferation, we examined the effects of oral perindopril on FGF-2 and PDGF isoform levels in carotid arteries 2 days after balloon catheter injury. [3H]Thymidine incorporation into medial and intimal SMCs was also assessed. Uninjured vessels contained two forms of FGF-2, with molecular weights of 18 and 22 kD, and PDGF-AA. Two days after injury, FGF-2 and PDGF-AA levels were markedly reduced, but high levels of PDGF-AB became apparent when the SMCs were proliferating. Perindopril completely abolished the biosynthesis of PDGF-AB but had little effect on residual FGF-2. This was accompanied by a 25% reduction in medial SMC proliferation. Neointimal cell proliferation 10 days after injury was unaffected by perindopril, although neointima size was reduced by 30%. Commencing perindopril treatment 4 days after the injury confirmed that early events associated with effects on medial SMCs were the major contributors to the attenuated neointimal lesions. CONCLUSIONS The ability of ACE inhibitors such as perindopril to attenuate neointima formation and growth in balloon catheter-injured rat carotid arteries is dependent on early events in the media, the inhibition of SMC PDGF-AB biosynthesis and attenuation of proliferation. Neointima formation in similarly injured vessels containing SMCs that are either unresponsive to PDGF-AB or exhibit an ACE-independent profile of growth factor biosynthesis responses may account for the ineffectiveness of ACE inhibition in some species.
Collapse
Affiliation(s)
- J Wong
- Cell Biology Laboratory, Baker Medical Research Institute and Alfred Hospital, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Witte S, Krawinkel U. Specific interactions of the autoantigen L7 with multi-zinc finger protein ZNF7 and ribosomal protein S7. J Biol Chem 1997; 272:22243-7. [PMID: 9268371 DOI: 10.1074/jbc.272.35.22243] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The eucaryotic protein L7, which associates with the large subunit of ribosomes, has been shown to be a major autoantigen in systemic autoimmune arthritis. The N terminus carries a sequence motif that is similar to the leucine zipper domain of eucaryotic transcription factors. This domain promotes the homodimerization of protein L7 through alpha-helical coiled-coil formation and binds to distinct mRNAs, thereby inhibiting their cell-free translation. Using a yeast two-hybrid selection, we have identified from a Jurkat T lymphoma cDNA library ribosomal protein S7 and the multi-zinc finger protein ZNF7 as proteins that interact with protein L7. A fragment of L7 carrying the leucine zipper-like domain is fully sufficient to mediate these interactions. Their potential biological significance is indicated by low apparent dissociation constants of S7-L7 (15 x 10(-9) M) and, respectively, ZNF7-L7 (2 x 10(-9) M) complexes and co-immunoprecipitation of proteins S7, ZNF7, and L7 from a cell lysate with an anti-L7 antibody. We also show that ZNF7-like L7 and S7 can exist in a ribosome-bound form. This study provides further evidence suggesting that L7 is involved in translational regulation through interactions with components of the translational apparatus.
Collapse
Affiliation(s)
- S Witte
- Fakultät für Biologie, Universität Konstanz, Postfach 5560, 78434 Konstanz, Germany.
| | | |
Collapse
|
43
|
Hemmerich P, Bosbach S, von Mikecz A, Krawinkel U. Human ribosomal protein L7 binds RNA with an alpha-helical arginine-rich and lysine-rich domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:549-56. [PMID: 9182989 DOI: 10.1111/j.1432-1033.1997.00549.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study we mapped the RNA-binding domain of human ribosomal protein L7 and characterized its conformation-dependent RNA-binding specificity. Binding competition assays demonstrated preferential binding of L7 to mRNAs and rRNA, but not to tRNA. The ribohomopolymer poly(G) is bound with high affinity whereas poly(U), poly(C), or poly(A) show low affinity to L7. Furthermore, L7 binds to double-stranded but not to single-stranded DNA. Deletion mapping showed that the RNA-binding domain of L7 is represented by an arginine-rich and lysine-rich oligopeptide (ELKIKRLRKKFAQKMLRKARRK), which is reminiscent of the arginine-rich motif (ARM) found in one family of RNA-binding proteins. The isolated RNA-binding domain is capable of high-affinity binding to the Rev-responsive element (RRE) of human immunodeficiency virus type 1 in vitro. Circular dichroic studies demonstrated a concentration-dependent and ligand-induced alpha-helical transition of a synthetic peptide carrying the arginine-lysine-rich RNA-binding domain of protein L7. Peptides carrying a mutation that destroys the alpha-helical conformation do not bind RNA.
Collapse
Affiliation(s)
- P Hemmerich
- Universität Konstanz, Lehrstuhl für Immunologie, Germany
| | | | | | | |
Collapse
|
44
|
Neu E, Hemmerich PH, Peter HH, Krawinkel U, von Mikecz AH. Characteristic epitope recognition pattern of autoantibodies against eukaryotic ribosomal protein L7 in systemic autoimmune diseases. ARTHRITIS AND RHEUMATISM 1997; 40:661-71. [PMID: 9125248 DOI: 10.1002/art.1780400411] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To define the epitope-recognition pattern and the fine specificity of the autoantibody response to protein L7 in patients with rheumatic diseases. METHODS The epitope-recognition pattern was studied by enzyme-linked immunosorbent assay utilizing overlapping fragments of L7. The fine specificity was examined by binding inhibition and isoelectric focusing. RESULTS We observed a disease-specific epitope-recognition pattern of anti-L7 autoantibodies. There was one immunodominant epitope that was recognized by all anti-L7-positive sera from patients with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and systemic sclerosis (SSc). Additional recognition of minor epitopes was observed; it arises by intramolecular epitope spreading and was correlated with disease activity in SLE patients. SSc patients differed from SLE and RA patients in that their sera did not recognize certain minor epitopes. The major epitope was recognized by high-affinity autoantibodies of limited heterogeneity. Minor epitopes were recognized by heterogeneous low-affinity autoantibodies. CONCLUSION The anti-L7 autoantibody response is oligoclonal. Additional B cell clones are activated by antigen during active phases of disease.
Collapse
Affiliation(s)
- E Neu
- Universität Konstanz, Germany
| | | | | | | | | |
Collapse
|
45
|
Yu M, Miller RH, Emerson S, Purcell RH. A hydrophobic heptad repeat of the core protein of woodchuck hepatitis virus is required for capsid assembly. J Virol 1996; 70:7085-91. [PMID: 8794354 PMCID: PMC190760 DOI: 10.1128/jvi.70.10.7085-7091.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The capsid particle of hepadnaviruses is assembled from its dimer precursors. However, the mechanism of the protein-protein interaction is still poorly understood. A small region in the capsid protein of woodchuck hepatitis virus (WHV) contains four hydrophobic residues, including leucine 101, leucine 108, valine 115, and phenylalanine 122, that are conserved and spaced every seventh residue in the primary sequence to form a hydrophobic heptad repeat (hhr). A hydrophobic force often plays an important role in the interaction of proteins. Therefore, to investigate the role of this region in capsid assembly, we individually changed the codons specifying these four hydrophobic amino acids to codons specifying alanine or proline. In addition, we examined the in vivo infectivity of a WHV genome bearing a naturally occurring single amino acid change (histidine 104-->proline) in the hhr region. The phenotype of each altered genome was determined in both eukaryotic and prokaryotic systems by a capsid protein assay and electron microscopic examination. We show that replacement of any one of the four hydrophobic residues with alanine did not prevent capsid assembly. However, assembled capsid particles were not detected if combinations of any two of the four residues were substituted with alanines or if the spacing of these four hydrophobic residues was changed. An individual introduction of a proline (which dramatically changes the secondary structure of proteins) into different positions of this small region also abolished capsid assembly in vitro or viral replication in vivo. These results suggested that the hhr region of the core protein of WHV was critical for capsid assembly.
Collapse
Affiliation(s)
- M Yu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0470, USA
| | | | | | | |
Collapse
|
46
|
Witte S, Neumann F, Krawinkel U, Przybylski M. Mass spectrometric identification of leucine zipper-like homodimer complexes of the autoantigen L7. J Biol Chem 1996; 271:18171-5. [PMID: 8663440 DOI: 10.1074/jbc.271.30.18171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The eucaryotic protein L7 has been shown to associate in the cytoplasm with the large subunit of ribosomes and to interact specifically with as yet unknown cognate sites of mRNA, thereby inhibiting cell-free translation (Neumann, F., Hemmerich, P., von Mikecz, A., Peter, H. H., and Krawinkel, U.(1995) Nucleic Acids Res. 23, 195-202). The N-terminal region of protein L7 contains a sequence motif similar to the leucine zipper domain of eucaryotic transcription factors, which promotes dimerization through alpha-helical coiled coil formation. Using electrospray-ionization mass spectrometry as a method of molecular specificity, we have directly identified the dimeric complexes comprising the leucine zipper-like region of protein L7 and have determined the dissociation constant of L7 homodimers in an affinity binding assay. We also demonstrate the high content of alpha-helicity of the dimer by circular dichroism spectra and computer-based structure simulation and show that the leucine zipper region of protein L7 is fully sufficient to mediate the inhibition of cell-free mRNA translation. A structural basis for the function of L7 to regulate translation is discussed. From the present results we conclude that L7 interacts with double stranded mRNA in a similar fashion as leucine zipper proteins with specific cognate sites on double stranded DNA.
Collapse
Affiliation(s)
- S Witte
- Fakultät für Biologie and the Fakultät für Chemie, Universität Konstanz, Postfach 5560, 78434 Konstanz, Germany
| | | | | | | |
Collapse
|
47
|
Vladimirov SN, Ivanov AV, Karpova GG, Musolyamov AK, Egorov TA, Thiede B, Wittmann-Liebold B, Otto A. Characterization of the human small-ribosomal-subunit proteins by N-terminal and internal sequencing, and mass spectrometry. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:144-9. [PMID: 8706699 DOI: 10.1111/j.1432-1033.1996.0144u.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reverse-phase HPLC was used to fractionate 40S ribosomal proteins from human placenta. Application of a C4 reverse-phase column allowed us to obtain 27 well-resolved peaks. The protein composition of each chromatographic fraction was established by two-dimensional polyacrylamide gel electrophoresis and N-terminal sequencing. N-terminally blocked proteins were cleaved with endoproteinase Lys-C, and suitable peptides were sequenced. All sequences were compared with those of ribosomal proteins available from data bases. This allowed us to identify all proteins from the 40S human ribosomal subunit in the HPLC elution profile. By matrix-assisted laser-desorption ionization mass spectrometry the masses of the 40S proteins were determined and checked for the presence of post-translational modifications. For several proteins differences to the deduced sequences and the calculated masses were found to be due to post-translational modifications.
Collapse
Affiliation(s)
- S N Vladimirov
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division, Russian Academy of Sciences, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Marty L, Fort P. A delayed-early response nuclear gene encoding MRPL12, the mitochondrial homologue to the bacterial translational regulator L7/L12 protein. J Biol Chem 1996; 271:11468-76. [PMID: 8626705 DOI: 10.1074/jbc.271.19.11468] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have characterized a new delayed-early response mRNA encoding a 21-kDa product (MRPL12) that accumulates during the G1 phase of growth-stimulated cells. MRPL12 is the mammalian homologue to chloroplastic and bacterial L12 ribosomal proteins. Immunofluorescence microscopy and cell fractionation indicate a predominant mitochondrial localization in various mammalian cell lines. The NH2-terminal 49 amino acids are necessary and sufficient to target the protein within the mitochondria and are probably cleaved off during import. MRPL12 proteins associated in vitro and cofractionate with ribosomal structures, as is the case for prokaryotic L12 proteins. Expression of a dominant inhibitory truncated protein leads to a severe reduction in cell growth by inhibiting mitochondrial ATP production. MRPL12 is the first mammalian mitochondrial ribosomal protein to be characterized.
Collapse
Affiliation(s)
- L Marty
- Institut de Génétique Moléculaire, UMR5535, CNRS-Universités Montpellier I et II, France
| | | |
Collapse
|
49
|
Przybylski M, Glocker MO. Elektrospray-Massenspektrometrie von Biomakromoleülkomplexen mit nichtkovalenten Wechselwirkungen – neue analytische Perspektiven für supramolekulare Chemie und molekulare Erkennungsprozesse. Angew Chem Int Ed Engl 1996. [DOI: 10.1002/ange.19961080804] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Wool IG, Chan YL, Glück A. Structure and evolution of mammalian ribosomal proteins. Biochem Cell Biol 1995; 73:933-47. [PMID: 8722009 DOI: 10.1139/o95-101] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mammalian (rat) ribosomes have 80 proteins; the sequence of amino acids in 75 have been determined. What has been learned of the structure of the rat ribosomal proteins is reviewed with particular attention to their evolution and to amino acid sequence motifs. The latter include: clusters of basic or acidic residues; sequence repeats or shared sequences; zinc finger domains; bZIP elements; and nuclear localization signals. The occurrence and the possible significance of phosphorylated residues and of ubiquitin extensions is noted. The characteristics of the mRNAs that encode the proteins are summarized. The relationship of the rat ribosomal proteins to the proteins in ribosomes from humans, yeast, archaebacteria, and Escherichia coli is collated.
Collapse
Affiliation(s)
- I G Wool
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|