1
|
Banchenko S, Weise C, Lanka E, Saenger W, Geibel S. Helix Bundle Domain of Primase RepB' Is Required for Dinucleotide Formation and Extension. ACS OMEGA 2021; 6:28903-28911. [PMID: 34746582 PMCID: PMC8567376 DOI: 10.1021/acsomega.1c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/13/2023]
Abstract
During DNA replication, primases synthesize oligonucleotide primers on single-stranded template DNA, which are then extended by DNA polymerases to synthesize a complementary DNA strand. Primase RepB' of plasmid RSF1010 initiates DNA replication on two 40 nucleotide-long inverted repeats, termed ssiA and ssiB, within the oriV of RSF1010. RepB' consists of a catalytic domain and a helix bundle domain, which are connected by long α-helix 6 and an unstructured linker. Previous work has demonstrated that RepB' requires both domains for the initiation of dsDNA synthesis in DNA replication assays. However, the precise functions of these two domains in primer synthesis have been unknown. Here, we report that both domains of RepB' are required to synthesize a 10-12 nucleotide-long DNA primer, whereas the isolated domains are inactive. Mutational analysis of the catalytic domain indicates that the solvent-exposed W50 plays a critical role in resolving hairpin structures formed by ssiA and ssiB. Three structurally conserved aspartates (D77, D78, and D134) of RepB' catalyze the nucleotidyl transfer reaction. Mutations on the helix bundle domain are identified that either reduce the primer length to a dinucleotide (R285A) or abolish the primer synthesis (D238A), indicating that the helix bundle domain is required to form and extend the initial dinucleotide synthesized by the catalytic domain.
Collapse
Affiliation(s)
- Sofia Banchenko
- Charité—Universitätsmedizin
Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, Institute of Medical Physics
and Biophysics, Charitéplatz
1, 10117 Berlin, Germany
| | - Christoph Weise
- Freie
Universität Berlin, Institute for
Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Erich Lanka
- Max-Planck-Institut
für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Wolfram Saenger
- Freie
Universität Berlin, Institute for Chemistry, Biochemistry and Structural Biochemistry, Takustr. 6, 14195 Berlin, Germany
| | - Sebastian Geibel
- Institute
for Molecular Infection Biology & Rudolf Virchow Center for Integrative
and Translational Bioimaging, Julius-Maximilians-Universität
Würzburg, Josef-Schneider
Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
2
|
Miele SAB, Cerrudo CS, Parsza CN, Nugnes MV, Mengual Gómez DL, Belaich MN, Ghiringhelli PD. Identification of Multiple Replication Stages and Origins in the Nucleopolyhedrovirus of Anticarsia gemmatalis. Viruses 2019; 11:E648. [PMID: 31311127 PMCID: PMC6669502 DOI: 10.3390/v11070648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
To understand the mechanism of replication used by baculoviruses, it is essential to describe all the factors involved, including virus and host proteins and the sequences where DNA synthesis starts. A lot of work on this topic has been done, but there is still confusion in defining what sequence/s act in such functions, and the mechanism of replication is not very well understood. In this work, we performed an AgMNPV replication kinetics into the susceptible UFL-Ag-286 cells to estimate viral genome synthesis rates. We found that the viral DNA exponentially increases in two different phases that are temporally separated by an interval of 5 h, probably suggesting the occurrence of two different mechanisms of replication. Then, we prepared a plasmid library containing virus fragments (0.5-2 kbp), which were transfected and infected with AgMNPV in UFL-Ag-286 cells. We identified 12 virus fragments which acted as origins of replication (ORI). Those fragments are in close proximity to core genes. This association to the core genome would ensure vertical transmission of ORIs. We also predict the presence of common structures on those fragments that probably recruit the replication machinery, a structure also present in previously reported ORIs in baculoviruses.
Collapse
Affiliation(s)
- Solange A B Miele
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Argentina
- Institute for Integrative Biology of the Cell (I2BC), Evolution and Maintenance of Circular Chromosomes, CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Carolina S Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Argentina
| | - Cintia N Parsza
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Argentina
| | - María Victoria Nugnes
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Argentina
| | - Diego L Mengual Gómez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Argentina
| | - Mariano N Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Argentina.
| | - P Daniel Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Argentina
| |
Collapse
|
3
|
Abstract
Plasmids are autonomously replicating pieces of DNA. This article discusses theta plasmid replication, which is a class of circular plasmid replication that includes ColE1-like origins of replication popular with expression vectors. All modalities of theta plasmid replication initiate synthesis with the leading strand at a predetermined site and complete replication through recruitment of the host's replisome, which extends the leading strand continuously while synthesizing the lagging strand discontinuously. There are clear differences between different modalities of theta plasmid replication in mechanisms of DNA duplex melting and in priming of leading- and lagging-strand synthesis. In some replicons duplex melting depends on transcription, while other replicons rely on plasmid-encoded trans-acting proteins (Reps); primers for leading-strand synthesis can be generated through processing of a transcript or in other replicons by the action of host- or plasmid-encoded primases. None of these processes require DNA breaks. The frequency of replication initiation is tightly regulated to facilitate establishment in permissive hosts and to achieve a steady state. The last section of the article reviews how plasmid copy number is sensed and how this feedback modulates the frequency of replication.
Collapse
|
4
|
Lilly J, Camps M. Mechanisms of Theta Plasmid Replication. Microbiol Spectr 2015; 3:PLAS-0029-2014. [PMID: 26005599 PMCID: PMC4441207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Plasmids are autonomously replicating pieces of DNA. This chapter discusses theta plasmid replication, which is class of circular plasmid replication that includes ColE1-like origins of replication popular with expression vectors. All modalities of theta plasmid replication initiate synthesis with the leading-strand at a pre-determined site and complete replication through recruitment of the host's replisome, which extends the leading-strand continuously while synthesizing the lagging-strand discontinuously. There are clear differences between different modalities of theta plasmid replication in mechanisms of DNA duplex melting and in priming of leading- and lagging-strand synthesis. In some replicons duplex melting depends on transcription, while other replicons rely on plasmid-encoded trans-acting proteins (Reps); primers for leading-strand synthesis can be generated through processing of a transcript or in other replicons by the action of host- or plasmid-encoded primases. None of these processes require DNA breaks. The frequency of replication initiation is tightly regulated to facilitate establishment in permissive hosts and to achieve a steady state. The last section of the chapter reviews how plasmid copy number is sensed and how this feedback modulates the frequency of replication.
Collapse
Affiliation(s)
- Joshua Lilly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064
| |
Collapse
|
5
|
Loftie-Eaton W, Rawlings DE. Diversity, biology and evolution of IncQ-family plasmids. Plasmid 2011; 67:15-34. [PMID: 22037393 DOI: 10.1016/j.plasmid.2011.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/16/2022]
Abstract
Plasmids of IncQ-family are distinguished by having a unique strand-displacement mechanism of replication that is capable of functioning in a wide variety of bacterial hosts. In addition, these plasmids are highly mobilizable and therefore very promiscuous. Common features of the replicons have been used to identify IncQ-family plasmids in DNA sequence databases and in this way several unstudied plasmids have been compared to more well-studied IncQ plasmids. We propose that IncQ plasmids can be divided into four subgroups based on a number of mutually supportive criteria. The most important of these are the amino acid sequences of their three essential replication proteins and the observation that the replicon of each subgroup has become fused to four different lineages of mobilization genes. This review of IncQ-family plasmid diversity has highlighted several events in the evolution of these plasmids and raised several questions for further research.
Collapse
Affiliation(s)
- Wesley Loftie-Eaton
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | |
Collapse
|
6
|
Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 2011; 74:570-88. [PMID: 21119018 DOI: 10.1128/mmbr.00026-10] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structured forms of DNA with intrastrand pairing are generated in several cellular processes and are involved in biological functions. These structures may arise on single-stranded DNA (ssDNA) produced during replication, bacterial conjugation, natural transformation, or viral infections. Furthermore, negatively supercoiled DNA can extrude inverted repeats as hairpins in structures called cruciforms. Whether they are on ssDNA or as cruciforms, hairpins can modify the access of proteins to DNA, and in some cases, they can be directly recognized by proteins. Folded DNAs have been found to play an important role in replication, transcription regulation, and recognition of the origins of transfer in conjugative elements. More recently, they were shown to be used as recombination sites. Many of these functions are found on mobile genetic elements likely to be single stranded, including viruses, plasmids, transposons, and integrons, thus giving some clues as to the manner in which they might have evolved. We review here, with special focus on prokaryotes, the functions in which DNA secondary structures play a role and the cellular processes giving rise to them. Finally, we attempt to shed light on the selective pressures leading to the acquisition of functions for DNA secondary structures.
Collapse
|
7
|
Meyer R. Replication and conjugative mobilization of broad host-range IncQ plasmids. Plasmid 2009; 62:57-70. [PMID: 19465049 PMCID: PMC2752045 DOI: 10.1016/j.plasmid.2009.05.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/21/2022]
Abstract
The IncQ plasmids have a broader host-range than any other known replicating element in bacteria. Studies on the replication and conjugative mobilization of these plasmids, which have mostly been focused on the nearly identical RSF1010 and R1162, are summarized with a view to understanding how this broad host-range is achieved. Several significant features of IncQ plasmids emerge from these studies: (1) initiation of replication, involving DnaA-independent activation of the origin and a dedicated primase, is strictly host-independent. (2) The plasmids can be conjugatively mobilized by a variety of different type IV transporters, including those engaged in the secretion of proteins involved in pathogenesis. (3) Stability is insured by a combination of high copy-number and modulated gene expression to reduce metabolic load.
Collapse
Affiliation(s)
- Richard Meyer
- Institute for Cell and Molecular Biology, University of Texas at Austin, 78712-0162, USA.
| |
Collapse
|
8
|
Structure and function of primase RepB' encoded by broad-host-range plasmid RSF1010 that replicates exclusively in leading-strand mode. Proc Natl Acad Sci U S A 2009; 106:7810-5. [PMID: 19416864 DOI: 10.1073/pnas.0902910106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the initiation of DNA replication, dsDNA is unwound by helicases. Primases then recognize specific sequences on the template DNA strands and synthesize complementary oligonucleotide primers that are elongated by DNA polymerases in leading- and lagging-strand mode. The bacterial plasmid RSF1010 provides a model for the initiation of DNA replication, because it encodes the smallest known primase RepB' (35.9 kDa), features only 1 single-stranded primase initiation site on each strand (ssiA and ssiB, each 40 nt long with 5'- and 3'-terminal 6 and 13 single-stranded nucleotides, respectively, and nucleotides 7-27 forming a hairpin), and is replicated exclusively in leading strand mode. We present the crystal structure of full-length dumbbell-shaped RepB' consisting of an N-terminal catalytic domain separated by a long alpha-helix and tether from the C-terminal helix-bundle domain and the structure of the catalytic domain in a specific complex with the 6 5'-terminal single-stranded nucleotides and the C7-G27 base pair of ssiA, its single-stranded 3'-terminus being deleted. The catalytic domains of RepB' and the archaeal/eukaryotic family of Pri-type primases share a common fold with conserved catalytic amino acids, but RepB' lacks the zinc-binding motif typical of the Pri-type primases. According to complementation studies the catalytic domain shows primase activity only in the presence of the helix-bundle domain. Primases that are highly homologous to RepB' are encoded by broad-host-range IncQ and IncQ-like plasmids that share primase initiation sites ssiA and ssiB and high sequence identity with RSF1010.
Collapse
|
9
|
Kostjukov V, Pahomov V, Andrejuk D, Davies D, Evstigneev M. Investigation of the complexation of the anti-cancer drug novantrone with the hairpin structure of the deoxyheptanucleotide 5′-d(GpCpGpApApGpC). J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Kostyukov VV, Rogova OV, Pakhomov VI, Evstigneev MP. Structural and thermodynamic analysis of the conformational states of self-complementary hexanucleotides 5′-d(GCATGC) and 5′-d(GCTAGC) in Aqueous Solution. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907040033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Cheung AK. Palindrome regeneration by template strand-switching mechanism at the origin of DNA replication of porcine circovirus via the rolling-circle melting-pot replication model. J Virol 2004; 78:9016-29. [PMID: 15308698 PMCID: PMC506941 DOI: 10.1128/jvi.78.17.9016-9029.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Palindromic sequences (inverted repeats) flanking the origin of DNA replication with the potential of forming single-stranded stem-loop cruciform structures have been reported to be essential for replication of the circular genomes of many prokaryotic and eukaryotic systems. In this study, mutant genomes of porcine circovirus with deletions in the origin-flanking palindrome and incapable of forming any cruciform structures invariably yielded progeny viruses containing longer and more stable palindromes. These results suggest that origin-flanking palindromes are essential for termination but not for initiation of DNA replication. Detection of template strand switching in the middle of an inverted repeat strand among the progeny viruses demonstrated that both the minus genome and a corresponding palindromic strand served as templates simultaneously during DNA biosynthesis and supports the recently proposed rolling-circle "melting-pot" replication model. The genome configuration presented by this model, a four-stranded tertiary structure, provides insights into the mechanisms of DNA replication, inverted repeat correction (or conversion), and illegitimate recombination of any circular DNA molecule with an origin-flanking palindrome.
Collapse
Affiliation(s)
- Andrew K Cheung
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, Ames, Iowa 50010, USA.
| |
Collapse
|
12
|
Gardner MN, Rawlings DE. Evolution of compatible replicons of the related IncQ-like plasmids, pTC-F14 and pTF-FC2. MICROBIOLOGY-SGM 2004; 150:1797-1808. [PMID: 15184566 DOI: 10.1099/mic.0.26951-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two closely related but compatible plasmids of the IncQ-2alpha and IncQ-2beta groups, pTF-FC2 and pTC-F14, were discovered in two acidiphilic chemolithotrophic bacteria. Cross-complementation and cross-regulation experiments by the replication proteins were carried out to discover what changes were necessary when the plasmids evolved to produce two incompatibility groups. The requirement of a pTC-F14 oriV for a RepC DNA-binding protein was plasmid specific, whereas the requirement for the RepA helicase and RepB primase was less specific and could be complemented by the IncQ-2alpha plasmid pTC-FC2, and the IncQ-1beta plasmid pIE1108. None of the IncQ-1alpha plasmid replication proteins could complement the pTC-F14 oriV, and pTC-F14 and RSF1010 were incompatible. This incompatibility was associated with the RepC replication protein and was not due to iteron incompatibility. Replication of pTC-F14 took place from a 5.7 kb transcript that originated upstream of the mobB gene located within the region required for mobilization. A pTC-F14 mobB-lacZ fusion was regulated by the pTC-F14 repB gene product and was plasmid specific, as it was not regulated by the RepB proteins of pTF-FC2 or the IncQ-1alpha and IncQ-1beta plasmids. Plasmid pTC-F14 appears to have evolved independently functioning iterons and a plasmid-specific RepC-binding protein; it also has a major replication transcript that is independently regulated from that of pTF-FC2. However, the RepA and RepB proteins have the ability to function with either replicon.
Collapse
Affiliation(s)
- Murray N Gardner
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Douglas E Rawlings
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
13
|
Rawlings DE, Tietze E. Comparative biology of IncQ and IncQ-like plasmids. Microbiol Mol Biol Rev 2001; 65:481-96, table of contents. [PMID: 11729261 PMCID: PMC99038 DOI: 10.1128/mmbr.65.4.481-496.2001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids belonging to Escherichia coli incompatibility group Q are relatively small (approximately 5 to 15 kb) and able to replicate in a remarkably broad range of bacterial hosts. These include gram-positive bacteria such as Brevibacterium and Mycobacterium and gram-negative bacteria such as Agrobacterium, Desulfovibrio, and cyanobacteria. These plasmids are mobilized by several self-transmissible plasmids into an even more diverse range of organisms including yeasts, plants, and animal cells. IncQ plasmids are thus highly promiscuous. Recently, several IncQ-like plasmids have been isolated from bacteria found in environments as diverse as piggery manure and highly acidic commercial mineral biooxidation plants. These IncQ-like plasmids belong to different incompatibility groups but have similar broad-host-range replicons and mobilization properties to the IncQ plasmids. This review covers the ecology, classification, and evolution of IncQ and IncQ-like plasmids.
Collapse
Affiliation(s)
- D E Rawlings
- Department of Microbiology, University of Stellenbosch, Matieland 7602, South Africa.
| | | |
Collapse
|
14
|
Gardner MN, Deane SM, Rawlings DE. Isolation of a new broad-host-range IncQ-like plasmid, pTC-F14, from the acidophilic bacterium Acidithiobacillus caldus and analysis of the plasmid replicon. J Bacteriol 2001; 183:3303-9. [PMID: 11344137 PMCID: PMC99627 DOI: 10.1128/jb.183.11.3303-3309.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A moderately thermophilic (45 to 50 degrees C), highly acidophilic (pH 1.5 to 2.5), chemolithotrophic Acidithiobacillus caldus strain, f, was isolated from a biooxidation process used to treat nickel ore. Trans-alternating field electrophoresis analysis of total DNA from the A. caldus cells revealed two plasmids of approximately 14 and 45 kb. The 14-kb plasmid, designated pTC-F14, was cloned and shown by replacement of the cloning vector with a kanamycin resistance gene to be capable of autonomous replication in Escherichia coli. Autonomous replication was also demonstrated in Pseudomonas putida and Agrobacterium tumefaciens LBA 4404, which suggested that pTC-F14 is a broad-host-range plasmid. Sequence analysis of the pTC-F14 replicon region revealed five open reading frames and a replicon organization like that of the broad-host-range IncQ plasmids. Three of the open reading frames encoded replication proteins which were most closely related to those of IncQ-like plasmid pTF-FC2 (amino acid sequence identities: RepA, 81%; RepB, 78%; RepC, 74%). However, the two plasmids were fully compatible and pTC-F14 represents a new IncQ-like plasmid replicon. Surprisingly, asymmetrical incompatibility was found with the less closely related IncQ plasmid R300B derivative pKE462 and the IncQ-like plasmid derivative pIE1108. Analysis of the pTC-F14 oriV region revealed five direct repeats consisting of three perfectly conserved 22-bp iterons flanked by iterons of 23 and 21 bp. Plasmid pTC-F14 had a copy number of 12 to 16 copies per chromosome in both E. coli, and A. caldus. The rep gene products of pTC-F14 and pTF-FC2 were unable to functionally complement each other's oriV regions, but replication occurred when the genes for each plasmid's own RepA, RepB, and RepC proteins were provided in trans. Two smaller open reading frames were found between the repB and repA genes of pTC-F14, which encode proteins with high amino acid sequence identity (PasA, 81%; PasB, 72%) to the plasmid addiction system of pTF-FC2. This is the second time a plasmid stability system of this type has been found on an IncQ-like plasmid.
Collapse
Affiliation(s)
- M N Gardner
- Department of Microbiology, University of Stellenbosch, Matieland 7602, South Africa
| | | | | |
Collapse
|
15
|
Chou SH, Tseng YY, Chu BY. Stable formation of a pyrimidine-rich loop hairpin in a cruciform promoter. J Mol Biol 1999; 292:309-20. [PMID: 10493877 DOI: 10.1006/jmbi.1999.3066] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the solution structure of a TCC-loop hairpin in the cruciform promoter for the bacteriophage N4 virion RNA polymerase (N4 vRNAP). This hairpin and its complementary GGA-loop hairpin are extruded at physiological superhelical density and are required for vRNAP recognition. Contrary to its complementary GGA-loop, the three pyrimidines in the TCC-loop are all unpaired. However, with the help of two juxtaposed stem Watson-Crick G.C base-pairs, each nucleotide in the loop employs a special method to stabilize the hairpin structure. The resulting structures display extensive loop base-stacking rearrangement yet minor backbone distortion, which is largely accomplished through some loop zeta and alpha torsional angle changes. Consistent with the structural studies, UV melting of the GAAGCTCCGCTTC hairpin revealed a higher melting temperature (66 degrees C) than that of the GAACGTCCCGTTC hairpin (58 degrees C) with reversed stem G.C base-pairs, indicating significant contribution from the extra three loop-stem H-bonds. Thermodynamic parameters DeltaG degrees 25of the GAAGCTCCGCTTC hairpin and its complementary GAAGCGGAGCTTC hairpin are -4.1 and -4. 3 kcal/mol respectively, indicating approximately equal contribution of each hairpin to the cruciform formation of the N4 virion RNA polymerase promoter. No significant loop dynamics in the microsecond to millisecond NMR time-scale was observed, and the abundant well-defined exchangeable and non-exchangeable proton NOEs allowed us to efficiently determine a well-converged family for the final structures of the TCC-loop hairpin.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | | | | |
Collapse
|
16
|
2 The Development of Plasmid Vectors. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
17
|
Slama-Schwok A, Brossalina E, Demchenko Y, Best-Belpomme M, Vlassov V. Structural flexibility of a DNA hairpin located in the long terminal repeat of the Drosophila 1731 retrotransposon. Nucleic Acids Res 1998; 26:5142-51. [PMID: 9801312 PMCID: PMC147971 DOI: 10.1093/nar/26.22.5142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure of the DNA binding site of the Nuclear single-stranded Binding Factor (NssBF), located in the long terminal repeat of the Drosophila 1731 retrotransposon, was investigated by melting temperature experiments, chemical probing and fluorescence measurements using a macrocyclic bis-acridine. The most probable structure of this element, named Bc, mainly involves two hairpins in equilibrium at pH 6.0 at low concentration. The hairpins differ in their apical loop size; 4 and 8 nt. The structural flexibility of Bc probably derives from the three consecutive CATA repeats complementary to the GTAT nucleotides of the palindrome. In contrast, the Bc complementary strand adopts a single hairpin. Since Bc is implicated in repression of transcription via binding of two specific factors, its structural flexibility could be associated with this process.
Collapse
Affiliation(s)
- A Slama-Schwok
- INSERM U310, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
18
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 696] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Abstract
The analysis of the complete nucleotide sequence of the small resistance plasmid pIE1107 revealed a close similarity to the well-known IncQ plasmids. Highly conserved replication proteins and nearly identical origins of replication (oriV) suggest equivalent functions in the related replication systems. However, pIE1107 contains two copies of IncQ-oriV-like DNA which are slightly different regarding the iterons. Upon deletion of a silent copy of IncQ-oriV-like DNA the resulting plasmid is fully compatible with IncQ plasmids, indicating that there is no mutual communication between the replication control of the respective replicons. Experiments with cloned oriV DNA strongly suggest that the replication initiation protein of pIE1107 has specialized into the distinct target-iterons of its own oriV which differs only by a few nucleotides from the oriV of IncQ plasmids. Implications from the apparent highly specific protein-DNA recognition and from the incompatibility properties of pIE1107 for the evolution of a family of compatible, IncQ-like plasmids are discussed.
Collapse
Affiliation(s)
- E Tietze
- Robert Koch-Institut, Bereich Wernigerode, Wernigerode, D 38843, Federal Republic of Germany
| |
Collapse
|
20
|
Lin CT, Lyu YL, Liu LF. A cruciform-dumbbell model for inverted dimer formation mediated by inverted repeats. Nucleic Acids Res 1997; 25:3009-16. [PMID: 9224600 PMCID: PMC146860 DOI: 10.1093/nar/25.15.3009] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Small inverted repeats (small palindromes) on plasmids have been shown to mediate a recombinational rearrangement event in Escherichia coli leading to the formation of inverted dimers (giant palindromes). This recombinational rearrangement event is efficient and independent of RecA and RecBCD. In this report, we propose a cruciform-dumbbell model to explain the inverted dimer formation mediated by inverted repeats. In this model, the inverted repeats promote the formation of a DNA cruciform which is processed by an endonuclease into a linear DNA with two hairpin loops at its ends. Upon DNA replication, this linear dumbbell-like DNA is then converted to the inverted dimer. In support of this model, linear dumbbell DNA molecules with unidirectional origin of DNA replication (ColE1 ori ) have been constructed and shown to transform E.coli efficiently resulting in the formation of the inverted dimer. The ability of linear dumbbell DNA to transform E.coli suggests that the terminal loops may be important in bypassing the requirement of DNA supercoiling for initiation of replication of the ColE1 ori.
Collapse
Affiliation(s)
- C T Lin
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
21
|
Portes-Sentis S, Sergeant A, Gruffat H. A particular DNA structure is required for the function of a cis-acting component of the Epstein-Barr virus OriLyt origin of replication. Nucleic Acids Res 1997; 25:1347-54. [PMID: 9060428 PMCID: PMC146601 DOI: 10.1093/nar/25.7.1347] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OriLyt, thecis-acting element of Epstein-Barr virus lytic origin of replication, consists of upstream and downstream components. The upstream component plays a dual role in transcription and replication. The downstream component contains a homopurine-homopyrimidine sequence which forms an H palindrome. We show that the downstream component can adopt a triple helix structure in vitro, that the 5' border of the homopyrimidine sequence is sensitive to P1 nuclease when carried by a supercoiled plasmid and that an oligonucleotide complementary to the homopyrimidine strand is taken up by a plasmid carrying the OriLyt H palindrome. We also show that all mutations which alter the H palindrome impair both oligonucleotide uptake and OriLyt-dependent replication. Interestingly, compensatory mutations which restore an H palindrome also restore oligonucleotide uptake by the mutated plasmids and their OriLyt-dependent replication. Thus, there is a strong correlation between the inability of the OriLyt H palindrome to form a non-B-DNA structure in vitro and impairment of OriLyt-dependent replication. This suggests that the presence of a non-B-DNA structure in the OriLyt downstream component is required for OriLyt-dependent replication.
Collapse
Affiliation(s)
- S Portes-Sentis
- Laboratoire de Virologie Humaine, U412 INSERM, ENS-Lyon, 46 Allée d'Italie, F-69364 Lyon cedex 07, France
| | | | | |
Collapse
|
22
|
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 1996; 63:1-22. [PMID: 8891900 DOI: 10.1002/(sici)1097-4644(199610)63:1%3c1::aid-jcb1%3e3.0.co;2-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inverted repeats occur nonrandomly in the DNA of most organisms. Stem-loops and cruciforms can form from inverted repeats. Such structures have been detected in pro- and eukaryotes. They may affect the supercoiling degree of the DNA, the positioning of nucleosomes, the formation of other secondary structures of DNA, or directly interact with proteins. Inverted repeats, stem-loops, and cruciforms are present at the replication origins of phage, plasmids, mitochondria, eukaryotic viruses, and mammalian cells. Experiments with anti-cruciform antibodies suggest that formation and stabilization of cruciforms at particular mammalian origins may be associated with initiation of DNA replication. Many proteins have been shown to interact with cruciforms, recognizing features like DNA crossovers, four-way junctions, and curved/bent DNA of specific angles. A human cruciform binding protein (CBP) displays a novel type of interaction with cruciforms and may be linked to initiation of DNA replication.
Collapse
Affiliation(s)
- C E Pearson
- McGill Cancer Centre, McGill University, Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
23
|
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: Significance for initiation of DNA replication. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(199610)63:1<1::aid-jcb1>3.0.co;2-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Abstract
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two single-stranded circular DNAs, A and B, that replicate through a rolling-circle mechanism in nuclei of infected plant cells. The TGMV origin of replication is located in a conserved 5' intergenic region and includes at least two functional elements: the origin recognition site of the essential viral replication protein, AL1, and a sequence motif with the potential to form a hairpin or cruciform structure. To address the role of the hairpin motif during TGMV replication, we constructed a series of B-component mutants that resolved sequence changes from structural alterations of the motif. Only those mutant B DNAs that retained the capacity to form the hairpin structure replicated to wild-type levels in tobacco protoplasts when the viral replication proteins were provided in trans from a plant expression cassette. In contrast, the same B DNAs replicated to significantly lower levels in transient assays that included replicating, wild-type TGMV A DNA. These data established that the hairpin structure is essential for TGMV replication, whereas its sequence affects the efficiency of replication. We also showed that TGMV AL1 functions as a site-specific endonuclease in vitro and mapped the cleavage site to the loop of the hairpin. In vitro cleavage analysis of two TGMV B mutants with different replication phenotypes indicated that there is a correlation between the two assays for origin activity. These results suggest that the in vivo replication results may reflect structural and sequence requirements for DNA cleavage during initiation of rolling-circle replication.
Collapse
Affiliation(s)
- B M Orozco
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | |
Collapse
|