1
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
2
|
El-Khoury R, Damha MJ. End-ligation can dramatically stabilize i-motifs at neutral pH. Chem Commun (Camb) 2023; 59:3715-3718. [PMID: 36883338 DOI: 10.1039/d2cc07063d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Stabilizing i-motif structures at neutral pH and physiological temperature remains a major challenge. Here, we demonstrate the use of chemical end-ligation to stabilize intramolecular i-motifs at both acidic and neutral pH. We also demonstrate that combining 2'-deoxy-2'-fluoroarabinocytidine substitutions and end-ligation results in an i-motif with an unparalleled thermal stability of 54 °C at neutral pH. Overall, the ligated i-motifs presented herein may be used in screens for selective i-motif ligands and proteins and could find important applications in nanotechnology.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montréal, H3A0B8, Canada.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, H3A0B8, Canada.
| |
Collapse
|
3
|
Lee KH, Kim S, Lee SW. Pros and Cons of In Vitro Methods for Circular RNA Preparation. Int J Mol Sci 2022; 23:13247. [PMID: 36362032 PMCID: PMC9654983 DOI: 10.3390/ijms232113247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/29/2023] Open
Abstract
mRNA is gaining success as a new therapeutic agent and vaccine. However, mRNA has limitations in stability. To overcome the shortcomings of mRNA, circular RNA is emerging as a new modality. In this review, several current methods of manufacturing circular RNA in vitro are introduced and their advantages and disadvantages are reviewed. Furthermore, this study discusses which fields and directions of research and development are needed for the increase in the efficacy and productivity of circular RNA as a therapeutic agent and vaccine formulation.
Collapse
Affiliation(s)
| | | | - Seong-Wook Lee
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
| |
Collapse
|
4
|
Liu X, Zhang Y, Zhou S, Dain L, Mei L, Zhu G. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release 2022; 348:84-94. [PMID: 35649485 PMCID: PMC9644292 DOI: 10.1016/j.jconrel.2022.05.043] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNA) is a class of natural (biogenic) or synthetic closed RNA without 5' or 3' ends. Meanwhile, their unique covalently-closed structures of circRNA prevent RNA degradation by exonucleases, thereby empowering them with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNA. Natural circRNA can be non-coding RNAs as well as protein-coding RNA, the latter of which was recently discovered. The physiological functions of biogenic circRNAs, which largely remain elusive, include protein and gene sponges, cell activity modulators, and protein translation. The discovery that the circRNA levels can be correlated with some human diseases empowers circRNA with the potential as a novel type of disease biomarkers and a noncanonical class of therapeutic targets. Recently, synthetic circRNA have been engineered to explore their applications as a novel class of mRNA therapeutics and vaccines. In this review, we will discuss the current understanding of the biogenesis and physiological functions of natural circRNAs, the approaches to circRNA synthesis, and current research in the exploration of endogenous circRNAs as novel therapeutic targets and testing circRNAs as an emerging class of RNA therapeutics and vaccines.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yu Zhang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shurong Zhou
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Mei
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Garafutdinov RR, Sakhabutdinova AR, Gilvanov AR, Chemeris AV. Rolling Circle Amplification as a Universal Method for the Analysis of a Wide Range of Biological Targets. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1172-1189. [PMID: 34931113 PMCID: PMC8675116 DOI: 10.1134/s1068162021060078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
Detection and quantification of biotargets are important analytical tasks, which are solved using a wide range of various methods. In recent years, methods based on the isothermal amplification of nucleic acids (NAs) have been extensively developed. Among them, a special place is occupied by rolling circle amplification (RCA), which is used not only for the detection of a specific NA but also for the analysis of other biomolecules, and is also a versatile platform for the development of highly sensitive methods and convenient diagnostic devices. The present review reveals a number of methodical aspects of RCA-mediated analysis; in particular, the data on its key molecular participants are presented, the methods for increasing the efficiency and productivity of RCA are described, and different variants of reporter systems are briefly characterized. Differences in the techniques of RCA-mediated analysis of biotargets of various types are shown. Some examples of using different RCA variants for the solution of specific diagnostic problems are given.
Collapse
Affiliation(s)
- R. R. Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. R. Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. R. Gilvanov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. V. Chemeris
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
6
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
7
|
Li J, Mohammed-Elsabagh M, Paczkowski F, Li Y. Circular Nucleic Acids: Discovery, Functions and Applications. Chembiochem 2020; 21:1547-1566. [PMID: 32176816 DOI: 10.1002/cbic.202000003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Circular nucleic acids (CNAs) are nucleic acid molecules with a closed-loop structure. This feature comes with a number of advantages including complete resistance to exonuclease degradation, much better thermodynamic stability, and the capability of being replicated by a DNA polymerase in a rolling circle manner. Circular functional nucleic acids, CNAs containing at least a ribozyme/DNAzyme or a DNA/RNA aptamer, not only inherit the advantages of CNAs but also offer some unique application opportunities, such as the design of topology-controlled or enabled molecular devices. This article will begin by summarizing the discovery, biogenesis, and applications of naturally occurring CNAs, followed by discussing the methods for constructing artificial CNAs. The exploitation of circular functional nucleic acids for applications in nanodevice engineering, biosensing, and drug delivery will be reviewed next. Finally, the efforts to couple functional nucleic acids with rolling circle amplification for ultra-sensitive biosensing and for synthesizing multivalent molecular scaffolds for unique applications in biosensing and drug delivery will be recapitulated.
Collapse
Affiliation(s)
- Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Mostafa Mohammed-Elsabagh
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Freeman Paczkowski
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
8
|
Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. J Transl Med 2019; 99:1442-1453. [PMID: 31217510 DOI: 10.1038/s41374-019-0273-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are post-transcriptional regulators involved in the initiation and progression of many tumors. Recently, naturally occurring circular RNAs (circRNAs) have been described in eukaryotic cells:;they comprise a new class of gene regulators. Naturally occurring circular miR sponges, which induce miR loss-of-function, can prevent endogenous onco-miRs from binding to their cognate mRNA targets. These findings suggest that synthetic (artificial) circular RNAs could be constructed as therapeutic molecular sponges to suppress harmful onco-miRs. Using enzymatic ligation, we designed and constructed a circular RNA containing both miR-21 and miR-93 binding sites. The synthetic circular sponge was resistant to digestion with RNase R. Luciferase assays and functional experiments showed that the circular multi-miR sponge was more stable than its linear counterpart. Moreover, endogenous miR-21 and miR-93 were inhibited by the circular sponge. In addition, the synthetic sponge significantly suppressed cellular proliferation and migration while promoting apoptosis in esophageal carcinoma cells. Finally, in a murine xenograft model, the circular sponge significantly inhibited tumor growth in vivo. Taken together, these findings establish that the design and construction of efficient artificial miR sponges represent a novel strategy to achieve miR loss-of-function in molecular cancer therapeutics.
Collapse
|
9
|
Meyer A, Vasseur JJ, Dumy P, Morvan F. Phthalimide-Oxy Derivatives for 3′- or 5′-Conjugation of Oligonucleotides by Oxime Ligation and Circularization of DNA by “Bis- or Tris-Click” Oxime Ligation. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Albert Meyer
- Institut des Biomolécules Max Mousseron; IBMM, UMR 5247; Université Montpellier, CNRS, ENSCM; 34095 Montpellier Cedex 5 France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron; IBMM, UMR 5247; Université Montpellier, CNRS, ENSCM; 34095 Montpellier Cedex 5 France
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron; IBMM, UMR 5247; Université Montpellier, CNRS, ENSCM; 34095 Montpellier Cedex 5 France
| | - François Morvan
- Institut des Biomolécules Max Mousseron; IBMM, UMR 5247; Université Montpellier, CNRS, ENSCM; 34095 Montpellier Cedex 5 France
| |
Collapse
|
10
|
Kramer M, Richert C. Enzyme-Free Ligation of 5'-Phosphorylated Oligodeoxynucleotides in a DNA Nanostructure. Chem Biodivers 2017; 14. [PMID: 28710838 DOI: 10.1002/cbdv.201700315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Multicomponent reactions are difficult synthetic transformations. For DNA, there is a special opportunity to align multiple strands in a folded nanostructure, so that they are preorganized to give a specific sequence. Multistrand reactions in DNA origami structures have previously been performed using photochemical crosslinking, 1,3-diploar cycloadditions or phosphoramidate-forming reactions. Here we report carbodiimide-driven phosphodiester formation in a small origami sheet that produces DNA strands up to 600 nucleotides in length in a single step. The method uses otherwise unmodified oligodeoxynucleotides with a 5'-terminal phosphate as starting materials. Compared to an enzymatic multistrand ligation involving linear duplexes, the carbodiimide-driven ligation gave fewer side products, as detected by gel electrophoresis. The full-length 600mer product was successfully amplified by polymerase chain reaction.
Collapse
Affiliation(s)
- Markus Kramer
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
11
|
Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System. Life (Basel) 2016; 6:life6040040. [PMID: 27827919 PMCID: PMC5198075 DOI: 10.3390/life6040040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks.
Collapse
|
12
|
Abstract
Over the past 2 decades, different types of circular RNAs have been discovered in all kingdoms of life, and apparently, those circular species are more abundant than previously thought. Apart from circRNAs in viroids and viruses, circular transcripts have been discovered in rodents more than 20 y ago and recently have been reported to be abundant in many organisms including humans. Their exact function remains still unknown, although one may expect extensive functional studies to follow the currently dominant research into identification and discovery of circRNA by sophisticated sequencing techniques and bioinformatics. Functional studies require models and as such methods for preparation of circRNA in vitro. Here, we will review current protocols for RNA circularization and discuss future prospects in the field.
Collapse
Affiliation(s)
- Sabine Müller
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| | - Bettina Appel
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| |
Collapse
|
13
|
Krasnoslobodtsev AV, Zhang Y, Viazovkina E, Gall A, Bertagni C, Lyubchenko YL. A flexible nanoarray approach for the assembly and probing of molecular complexes. Biophys J 2016; 108:2333-9. [PMID: 25954890 DOI: 10.1016/j.bpj.2015.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/08/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Immobilization is a key step involved in probing molecular interactions using single-molecule force spectroscopy methods, including atomic force microscopy (AFM). To our knowledge, we describe a novel approach termed flexible nanoarray (FNA) in which the interaction between the two internally immobilized amyloid β peptides is measured by pulling of the tether. The FNA tether was synthesized with nonnucleotide phosphoramidite monomers using the DNA synthesis chemistry. The two anchoring points for immobilization of the peptides inside the tether were incorporated at defined distances between them and from the ends of the polymer. Decamers of amyloid β peptide capable of dimer formation were selected as a test system. The formation of the peptide dimers was verified by AFM force spectroscopy by pulling the tether at the ends. In these experiments, the thiolated end of the FNA tether was covalently immobilized on the AFM substrate functionalized with maleimide. The other end of the FNA tether was functionalized with biotin to form a noncovalent link with the streptavidin functionalized AFM tip during the approach stage. The dimers' rupture fingerprint was unambiguously identified on the force curves by its position and the force value. The FNA design allowed reversible experiments in which the monomers were allowed to associate after the rupture of the dimers by performing the approach stage before the rupture of the biotin-streptavidin link. This suggests that the FNA technique is capable of analyzing multiple intermolecular interactions in the same molecular complex. The computational analysis showed that the tethered peptides assemble into the same dimer structure as that formed by nontethered peptides, suggesting that the FNA tether has the necessary flexibility to enable assembly of the dimer even during the course of the force spectroscopy experiment.
Collapse
Affiliation(s)
- Alexey V Krasnoslobodtsev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska; Department of Physics, University of Nebraska Omaha, Omaha, Nebraska
| | - Yuliang Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | | | | | - Chad Bertagni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska; Department of Biology and Chemistry, Morningside College, Sioux City, Iowa
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
14
|
Yang H, Seela F. Circular DNA by "Bis-Click" Ligation: Template-Independent Intramolecular Circularization of Oligonucleotides with Terminal Alkynyl Groups Utilizing Bifunctional Azides. Chemistry 2015; 22:1435-44. [PMID: 26685101 DOI: 10.1002/chem.201503615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/19/2022]
Abstract
A highly effective and convenient "bis-click" strategy was developed for the template-independent circularization of single-stranded oligonucleotides by employing copper(I)-assisted azide-alkyne cycloaddition. Terminal triple bonds were incorporated at both ends of linear oligonucleotides. Alkynylated 7-deaza-2'-deoxyadenosine and 2'-deoxyuridine residues with different side chains were used in solid-phase synthesis with phosphoramidite chemistry. The bis-click ligation of linear 9- to 36-mer oligonucleotides with 1,4-bis(azidomethyl)benzene afforded circular DNA in a simple and selective way; azido modification of the oligonucleotide was not necessary. Short ethynyl side chains were compatible with the circularization of longer oligonucleotides, whereas octadiynyl residues were used for short 9-mers. Compared with linear duplexes, circular bis-click constructs exhibit a significantly increased duplex stability over their linear counterparts. The intramolecular bis-click ligation protocol is not limited to DNA, but may also be suitable for the construction of other macrocycles, such as circular RNAs, peptides, or polysaccharides.
Collapse
Affiliation(s)
- Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany), Fax: (+49) 251-53406857
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. .,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany), Fax: (+49) 251-53406857.
| |
Collapse
|
15
|
Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 2015; 43:2454-65. [PMID: 25662225 PMCID: PMC4344496 DOI: 10.1093/nar/gkv045] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
In the plenitude of naturally occurring RNAs, circular RNAs (circRNAs) and their biological role were underestimated for years. However, circRNAs are ubiquitous in all domains of life, including eukaryotes, archaea, bacteria and viruses, where they can fulfill diverse biological functions. Some of those functions, as for example playing a role in the life cycle of viral and viroid genomes or in the maturation of tRNA genes, have been elucidated; other putative functions still remain elusive. Due to the resistance to exonucleases, circRNAs are promising tools for in vivo application as aptamers, trans-cleaving ribozymes or siRNAs. How are circRNAs generated in vivo and what approaches do exist to produce ring-shaped RNAs in vitro? In this review we illustrate the occurrence and mechanisms of RNA circularization in vivo, survey methods for the generation of circRNA in vitro and provide appropriate protocols.
Collapse
Affiliation(s)
- Sonja Petkovic
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Ernst Moritz Arndt Universität Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| |
Collapse
|
16
|
Tong Z, Mikheikin A, Krasnoslobodtsev A, Lv Z, Lyubchenko YL. Novel polymer linkers for single molecule AFM force spectroscopy. Methods 2013; 60:161-8. [PMID: 23624104 DOI: 10.1016/j.ymeth.2013.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 11/30/2022] Open
Abstract
Flexible polymer linkers play an important role in various imaging and probing techniques that require surface immobilization, including atomic force microscopy (AFM). In AFM force spectroscopy, polymer linkers are necessary for the covalent attachment of molecules of interest to the AFM tip and the surface. The polymer linkers tether the molecules and provide their proper orientation in probing experiments. Additionally, the linkers separate specific interactions from nonspecific short-range adhesion and serve as a reference point for the quantitative analysis of single molecule probing events. In this report, we present our results on the synthesis and testing of a novel polymer linker and the identification of a number of potential applications for its use in AFM force spectroscopy experiments. The synthesis of the linker is based on the well-developed phosphoramidate (PA) chemistry that allows the routine synthesis of linkers with predetermined lengths and PA composition. These linkers are homogeneous in length and can be terminated with various functional groups. PA linkers with different functional groups were synthesized and tested in experimental systems utilizing different immobilization chemistries. We probed interactions between complementary DNA oligonucleotides; DNA and protein complexes formed by the site-specific binding protein SfiI; and interactions between amyloid peptide (Aβ42). The results of the AFM force spectroscopy experiments validated the feasibility of the proposed approach for the linker design and synthesis. Furthermore, the properties of the tether (length, functional groups) can be adjusted to meet the specific requirements for different force spectroscopy experiments and system characteristics, suggesting that it could be used for a large number of various applications.
Collapse
Affiliation(s)
- Zenghan Tong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | |
Collapse
|
17
|
El-Sagheer AH, Brown T. Click Chemistry – a Versatile Method for Nucleic Acid Labelling, Cyclisation and Ligation. DNA CONJUGATES AND SENSORS 2012. [DOI: 10.1039/9781849734936-00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The copper-catalysed [3+2] alkyne azide cycloaddition reaction (the CuAAC reaction) is the classic example of ‘click’ chemistry, a relatively new concept that has been influential in many areas of science. It is used in the nucleic acid field for DNA cross-linking, oligonucleotide ligation and cyclisation, DNA and RNA labelling, attaching DNA to surfaces, producing modified nucleobases and backbones, synthesising ribozymes and monitoring nucleic acid biosynthesis. More recently a related click reaction, the ring strain-promoted azide–alkyne [3+2] cycloaddition (SPAAC) reaction has been used successfully in DNA strand ligation and labelling. This does not require copper catalysis, and therefore has many potential uses in vivo. In this review we discuss recent developments in nucleic acid click chemistry and their applications in biology, biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Afaf H. El-Sagheer
- School of Chemistry University of Southampton Highfield, Southampton SO17 1BJ UK
- Chemistry Branch Dept. of Science and Mathematics Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, 43721 Egypt
| | - Tom Brown
- School of Chemistry University of Southampton Highfield, Southampton SO17 1BJ UK
| |
Collapse
|
18
|
Abstract
MicroRNAs (miRNAs) are a class of RNAs that play important regulatory roles in the cell. The detection of microRNA has attracted significant interest recently, as abnormal miRNA expression has been linked to cancer and other diseases. Here, we present a straightforward method for isothermal amplified detection of miRNA that involves two separate nucleic acid-templated chemistry steps. The miRNA first templates the cyclization of an oligodeoxynucleotide from a linear precursor containing a 5'-iodide and a 3'-phosphorothioate. The sequence is amplified through rolling circle amplification with 29 DNA polymerase and then detected via a second amplification using fluorogenic templated probes. Tests showed that the cyclization proceeds in ∼50% yield over 24 h and is compatible with the conditions required for rolling circle polymerization, unlike enzymatic ligations which required non-compatible buffer conditions. The polymerization yielded 188-fold amplification, and separate experiments showed ∼15-fold signal amplification from the templated fluorogenic probes. When all components are combined, results show miRNA detection down to 200 pM in solution, and correlation of the detected signal with the initial concentration of miRNA. The doubly templated double-amplification method demonstrates a new approach to detection of rolling circle products and significant advantages in ease of operation for miRNA detection.
Collapse
Affiliation(s)
- Emily M Harcourt
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | |
Collapse
|
19
|
Abstract
After more than twenty years of effort, using DNA to fabricate addressable nanostructures is now a well-established technology. In this tutorial review, we attempt to present an overview of the applications of DNA templates, including its biological significance, the directing of chemical reactions at the molecular level, as well as the placing of nanoparticles and proteins in position.
Collapse
Affiliation(s)
- Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | | |
Collapse
|
20
|
Mukae M, Ihara T, Tabara M, Jyo A. Anthracene–DNA conjugates as building blocks of designed DNA structures constructed by photochemical reactions. Org Biomol Chem 2009; 7:1349-54. [DOI: 10.1039/b821869b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Yanvarev DV, Shirokova EA, Kukhanova MK, Skoblov YS. A new chemical method of synthesis of modified nucleoside [32P]phosphates. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Diegelman AM, Kool ET. Chemical and enzymatic methods for preparing circular single-stranded DNAs. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.2. [PMID: 18428858 DOI: 10.1002/0471142700.nc0502s00] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Small circular oligonucleotides can be used for diagnostic, therapeutic, and laboratory purposes. These systems have gained considerable attention in recent years because they form unusually strong and specific complexes with RNA and DNA strands. Synthetic circular DNAs of 20 to 200 nucleotides can also serve as catalysts for amplified DNA and RNA synthesis by a rolling circle mechanism. This unit presents methods for synthesizing small circular oligonucleotides. These simple "one-pot" procedures are carried out using short DNA splints that hold the circle together until it is chemically or enzymatically ligated.
Collapse
|
23
|
Lietard J, Meyer A, Vasseur JJ, Morvan F. New strategies for cyclization and bicyclization of oligonucleotides by click chemistry assisted by microwaves. J Org Chem 2007; 73:191-200. [PMID: 18067317 DOI: 10.1021/jo702177c] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of cyclic, branched, and bicyclic oligonucleotides was performed by copper-catalyzed azide-alkyne cycloaddition assisted by microwaves in solution and on solid support. For that purpose, new phosphoramidite building blocks and new solid supports were designed to introduce alkyne and bromo functions into the same oligonucleotide by solid-phase synthesis on a DNA synthesizer. The bromine atom was then substituted by sodium azide to yield azide oligonucleotides. Cyclizations were found to be more efficient in solution than on solid support. This method allowed the efficient preparation of cyclic (6- to 20-mers), branched (with one or two dangling sequences), and bicyclic (2 x 10-mers) oligonucleotides.
Collapse
Affiliation(s)
- Jory Lietard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université Montpellier 1, Université Montpellier 2, Place Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
24
|
Abstract
Current studies of lariat RNA structure and function are hindered by the lack of access to synthetic lariats. A novel approach to the synthesis of both DNA and RNA lariats is presented here. Noteworthy features of the methodology are the regiospecific formation of the 2'-5'-phosphodiester linkage, the unusual parallel stranded DNA/RNA hybrid (or parallel RNA/RNA duplex) that forms between an RNA template and a folded 22-nt DNA (or RNA) substrate, and the efficiency of the chemical ligation step at an adenosine branchpoint (50-80%). The DNA and RNA lariats were purified by polyacrylamide gel electrophoresis, and their structure and nucleotide composition were confirmed by MALDI-TOF mass spectrometry. Thermal denaturation as well as enzymatic and chemical hydrolysis fully supported the proposed lariat structures. Characterization of control parallel duplexes was conducted by gel shift assays and enzymatic degradation with RNase H. The successful synthesis of the lariat molecules described here will allow structural and biochemical studies aimed at better understanding the splicing and debranching mechanisms in which these unusual nucleic acids are involved.
Collapse
Affiliation(s)
- Debbie Mitra
- Department of Chemistry, Otto Maass Chemistry Building, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada
| | | |
Collapse
|
25
|
Kanevskii IE, Kuznetsova SA. Synthesis of reactive nucleic acid analogues and their application for the study of structure and functions of biopolymers. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1998v067n07abeh000394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Seio K, Terada T, Mizuta M, Ohkubo A, Taguchi H, Sekine M. Synthesis and Hybridization Properties of Oligodeoxynucleotides with Long-Chain Linkers. Helv Chim Acta 2007. [DOI: 10.1002/hlca.200790203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Grimau MG, Aviñó A, Gargallo R, Eritja R. Synthesis and triplex-forming properties of cyclic oligonucleotides with (G,A)-antiparallel strands. Chem Biodivers 2007; 2:275-85. [PMID: 17191980 DOI: 10.1002/cbdv.200590010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cyclic oligonucleotides carrying an oligopurine Watson-Crick sequence linked to the corresponding (G,A)- and (G,T)-antiparallel strands were prepared by nonenzymatic template-assisted cyclization of phosphorylated precursors. Cyclization was attempted using 3'-phosphate and 5'-phosphate linear precursors with carbodiimide or BrCN activation. The best results were obtained with the 5'-phosphorylated precursors and carbodiimide activation. Cyclic oligonucleotides bind polypyrimidine target sequence by formation of antiparallel triplexes. We have used UV and circular dichroism (CD) spectroscopy to analyze triplexes formed by cyclic oligonucleotides carrying G and A in the reverse-Hoogsteen strand. The relative stability of the triplexes formed by cyclic and linear oligonucleotides with a common polypyrimidine target was determined by melting experiments. The most-stable triplexes were formed by the cyclic oligonucleotide, followed by the unphosphorylated and phosphorylated oligonucleotide precursors, and, finally, the corresponding hairpin. Although the differences in binding affinity between cyclic oligonucleotides and their corresponding linear precursors are small, the use of cyclic oligonucleotides offers a clear advantage over conventional duplex recognition.
Collapse
Affiliation(s)
- Marta G Grimau
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona, C.S.I.C., Jordi Girona 18-26, E-08034 Barcelona
| | | | | | | |
Collapse
|
28
|
Dolinnaya NG, Merenkova IN, Shabarova ZA. Sequence-Dependent Structural Variations of DNA Revealed by Chemical Ligation. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/15257779408013215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Letsinger RL, Wu T, Elghanian R. Chemical and Photochemical Ligation of Oligonucleotide Blocks. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319708002929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Robert L. Letsinger
- a Department of Chemistry , Northwestern University , IL 60091, Evanston , U.S.A
| | - Taifeng Wu
- a Department of Chemistry , Northwestern University , IL 60091, Evanston , U.S.A
| | - Robert Elghanian
- a Department of Chemistry , Northwestern University , IL 60091, Evanston , U.S.A
| |
Collapse
|
30
|
Abstract
We describe a general and efficient two-step strategy for lariat RNA synthesis. In the first step, a deoxyribozyme synthesizes 2',5'-branched RNA. In the second step, T4 RNA ligase closes the loop that completes the lariat. The loop-closure reaction can form either a natural or unnatural lariat isomer, depending on which of the two 3'-termini of the branched RNA reacts with the lone 5'-end. We demonstrate two approaches to control formation of either lariat isomer. In conjunction with other routes for lariat RNA synthesis, the two-step strategy described here will facilitate biochemical studies that require lariat RNAs of varying nucleotide sequence.
Collapse
Affiliation(s)
- Yangming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
31
|
Abstract
Recent X-ray crystallographic studies on the human telomere sequence d[AGGG(TTAGGG)3] revealed a unimolecular, parallel quadruplex structure in the presence of potassium ions, while earlier NMR results in the presence of sodium ions indicated a unimolecular, antiparallel quadruplex. In an effort to identify and isolate the parallel form in solution, we have successfully ligated into circular products the single-stranded human telomere and several modified human telomere sequences in potassium-containing solutions. Using these sequences with one or two terminal phosphates, we have made chemically ligated products via creation of an additional loop. Circular products have been identified by polyacrylamide gel electrophoresis, enzymatic digestion with exonuclease VII and electrospray mass spectrometry in negative ion mode. Optimum pH for the ligation reaction of the human telomere sequence ranges from 4.5 to 6.0. Several buffers were also examined, with MES yielding the greatest ligation efficiency. Human telomere sequences with two phosphate groups, one each at the 3′ and 5′ ends, were more efficient at ligation, via pyrophosphate bond formation, than the corresponding sequences with only one phosphate group, at the 5′ end. Circular dichroism spectra showed that the ligation product was derived from an antiparallel, single-stranded guanine quadruplex rather than a parallel single-stranded guanine quadruplex structure.
Collapse
Affiliation(s)
| | - Richard H. Shafer
- To whom correspondence should be addressed. Tel: +1 415 476 2761; Fax: +1 415 476 0688;
| |
Collapse
|
32
|
Zhou T, Chen G, Wang Y, Zhang Q, Yang M, Li T. Synthesis of unimolecularly circular G-quadruplexes as prospective molecular probes. Nucleic Acids Res 2004; 32:e173. [PMID: 15591017 PMCID: PMC535693 DOI: 10.1093/nar/gnh162] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthesis of unimolecularly circular G-quadruplex has been accomplished for the first time during our investigation on the template basis of G-quadruplex through chemical ligations of guanine-rich linear sequences of oligodeoxyribonucleotides. The uniqueness of this newly designed circularization course is its self-recognition and self-templating on the scale of individual strand of oligodeoxyribonucleotide in which the same linear sequence serves both as a template and as a substrate simultaneously. The results from our exonuclease and DNAse hydrolysis studies confirm that there is indeed absence of open termini within the structure of the identified circular product. Our subsequent investigation on the loop-size effect indicates that the unimolecularly circular G-quadruplex possessing two or more thymine nucleotides within their connecting loops is readily attainable, while the linear sequence with a single thymine nucleotide between guanine tracts is not a proper precursor for our ligation reaction. In addition, conformation dependency of the circularization course as well as the effects of alkali ions, pH values and concentration of potassium ions on the circularization reaction are examined during our investigation. The implication of our current studies and possible application of the obtained unimolecularly circular G-quadruplex in certain biological processes are also discussed in this report.
Collapse
Affiliation(s)
- Tianyan Zhou
- Department of Pharmaceutics, School of Pharmacy, Peking University, 38 Xueyuan Road, Hiandian District, Beijing 100083
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Nucleic acid "lariats" have been of great interest to the biological community since their discovery two decades ago as splicing intermediates in the biosynthesis of messenger RNA (lariat RNA introns). We report here the first synthesis of lariat DNA and RNA via template-mediated chemical ligation of Y-shaped oligonucleotides. The method allows for the synthesis of lariat DNA of any base composition as well as the more biologically relevant lariat RNA. Typically, branched precursors and complementary linear templates ("splints") were dissolved in an equimolar ratio at a total concentration of 10(-4) M, and ligation was promoted by addition of cyanogen bromide in a pH 7.6 buffer. The template-directed cyclization was very efficient, since the amount of circularized lariat product observed in all cases was in the 40-60% range. The lariats were purified by polyacrylamide gel electrophoresis, and their structure and nucleotide composition confirmed by MALDI-TOF mass spectrometry. Thermal denaturation and circular dichroism studies of lariat:RNA and lariat:DNA duplexes were fully supportive of the isolated "lasso" structures. Further characterization was conducted by enzymatic degradation with spleen phosphodiesterase (a 3'-exonuclease) and the RNA lariat debranching enzyme, a specific 2',5'-phosphodiesterase.
Collapse
Affiliation(s)
- Sandra Carriero
- Department of Chemistry, Otto Maass Chemistry Building, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada
| | | |
Collapse
|
34
|
Li T, Liu D, Chen J, Lee AH, Qi J, Chan AS. Construction of circular oligodeoxyribonucleotides on the new structural basis of i-motif. J Am Chem Soc 2001; 123:12901-2. [PMID: 11749549 DOI: 10.1021/ja011401x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T Li
- Open Laboratory of Chirotechnology, Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | | | | | | | | | | |
Collapse
|
35
|
Kuhn H, Frank-Kamenetskii MD, Demidov VV. High-purity preparation of a large DNA dumbbell. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2001; 11:149-53. [PMID: 11446590 DOI: 10.1089/108729001300338672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report on the efficient biochemical synthesis of a large DNA dumbbell starting from a pair of short DNA hairpins with long single-stranded tails of arbitrary sequence. The DNA dumbbell is obtained by enzymatic ligation yielding a 94-bp duplex stem closed at both termini by single-stranded loops of 5 nt. Following ligation, all unligated precursors and monoligated by-products were multiply biotinylated via nick-translation or primer-extension or both. Thus, they could readily be removed from the DNA dumbbell preparation by a mild biomagnetic separation procedure. The closed conformation of the purified DNA dumbbell was verified by its altered gel mobility as compared with unligated or monoligated samples and by an exonuclease assay. Considering the promising therapeutic potential of DNA dumbbells, the developed biosynthetic approach could be used for high-purity preparation of longer, covalently closed DNA decoys.
Collapse
Affiliation(s)
- H Kuhn
- Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, MA 02215, USA
| | | | | |
Collapse
|
36
|
A novel linker for the solid-phase synthesis of a library of 3′-thiophosphorylated dinucleotides. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)00550-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Maksimenko AV, Volkov EM, Bertrand JR, Porumb H, Malvy C, Shabarova ZA, Gottikh MB. Targeting of single-stranded DNA and RNA containing adjacent pyrimidine and purine tracts by triple helix formation with circular and clamp oligonucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3592-603. [PMID: 10848976 DOI: 10.1046/j.1432-1327.2000.01388.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work was to construct an anti-messenger targeted to the pim-1 oncogene transcript, based on circular or clamp oligodeoxyribonucleotides. The formation of bimolecular triplexes by clamp or circular oligonucleotides was investigated using single-stranded targets of both DNA (5'-CCCTCCTTTGAAGAA-3') and RNA type (5'-CCCUCCUUUGAAGAA-3'). The third, 'Hoogsteen' strand of the triplex was represented by G,T-rich sequences. The secondary structures of the complexes were determined by thermal denaturation, circular dichroism and gel mobility shift experiments and shown to depend on the nature of the target strand. With DNA as target, the sequence of a clamp (or circular) oligonucleotide that formed the triple helix was 3'-GGGAGGAAACTTCTTTT-TTGTTGTTT-TT-GGTGGG-5', where the first TT dinucleotide (in italics) is a linker and the second TT (bold) represents the bridge through which the 'Hoogsteen' strand switches from one strand of the Watson-Crick duplex to the other, once the duplex is formed by the corresponding portion of the anti-messenger (underlined). The portion of the 'Hoogsteen' sequence of the triplex between the two TT dinucleotides binds to the 3' extremity of the target strand and runs parallel to it. The portion situated at the 5' end of the oligonucleotide switches to the purine tract of the complementary strand of the duplex and is antiparallel to it. In contrast, with RNA as target, for a branched clamp oligonucleotide that formed a triple helix over its entire length (5'-TTCTTCAAAGGAGGG-3' 3'-GGGTGGTTT-T-GTTGTT-5') the portion of the 'Hoogsteen' sequence that bound to the 3' extremity of the target strand had to be antiparallel to it.
Collapse
Affiliation(s)
- A V Maksimenko
- Belozersky Research Institute of Physico-Chemical Biology and Department of Chemistry, Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
38
|
Selvasekaran J, Turnbull KD. Chemical ligation of oligodeoxyribonucleotides on circular DNA templates. Nucleic Acids Res 1999; 27:624-7. [PMID: 9862989 PMCID: PMC148224 DOI: 10.1093/nar/27.2.624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the use of small circular DNA as a triplex-directing template for the highly efficient chemical ligation of oligodeoxyribonucleotides (ODNs) using cyanogen bromide (BrCN). These investigations compared the use of a linear homopyrimidine DNA template (17mer) and a circular pyrimidine-rich DNA template (44mer) for directing the chemical ligation of two homopurine ODNs (6mer + 11mer). The effects of substrate/template ratio, buffer, salt, ionic strength, pH and temperature have been examined in the BrCN activated ligation reactions. The optimal yield of 51% for ligation on the linear template was at pH 6.0, 200 mM MgCl2, 4 degreesC. In contrast, near quantitative ligation on the circular template occurred at higher pH, higher temperature, and showed less dependence on Mg2+concentration (97% yield, pH 7.5, 200 mM MgCl2, 25 degreesC). The relative observed rate of the ligation reaction was a minimum of 35 times faster on the circular DNA template relative to the linear template at pH 7.5, 200 mM MgCl2, 4 degreesC. These investigations reveal that chemical ligation of short ODNs on circularized DNA templates through triplex formation is a highly efficient process over a broad range of conditions.
Collapse
Affiliation(s)
- J Selvasekaran
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|
39
|
Kool ET. Recognition of DNA, RNA, and Proteins by Circular Oligonucleotides. Acc Chem Res 1998; 31:502-510. [PMID: 19946615 DOI: 10.1021/ar9602462] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric T. Kool
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| |
Collapse
|
40
|
Liu J, Taylor JS. Template-directed photoligation of oligodeoxyribonucleotides via 4-thiothymidine. Nucleic Acids Res 1998; 26:3300-4. [PMID: 9628933 PMCID: PMC147698 DOI: 10.1093/nar/26.13.3300] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-enzymatic, template-directed ligation of oligonucleotides in aqueous solution has been of great interest because of its potential synthetic and biomedical utility and implications for the origin of life. Though there are many methods for template-directed chemical ligation of oligonucleotides, there are only three reported photochemical methods. In the first report, template-directed photoligation was effected by cyclobutane dimer formation between the 5'- and 3'-terminal thymidines of two oligonucleotides with >290 nm light, which also damages DNA itself. To make the photochemistry of native DNA more selective, we have replaced the thymidine at the 5'-end of one oligonucleotide with 4-thiothymidine (s4T) and show that it photoreacts at 366 nm with a T at the 3'-endof another oligonucleotide in the presence of a complementary template. When a single mismatch is introduced opposite either the s4T or its adjoining T, the ligation efficiency drops by a factor of five or more. We also show that by linking the two ends of the oligonucleotides together, photoligation can be used to form circular DNA molecules and to 'photopadlock' circular DNA templates. Thus, s4T-mediated photo-ligation may have applications to phototriggered antisense-based or antigene-based genetic tools, diagnostic agents and drugs, especially for those situations in which chemical or enzyme-mediated ligation isundesirable or impossible, for example inside a cell.
Collapse
Affiliation(s)
- J Liu
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130, USA
| | | |
Collapse
|
41
|
Shabarova ZA, Fedorova OA, Dolinnaya NG, Gottikh MB. Derivatization and template-guided ligation of oligodeoxyribonucleotides using cyanogen bromide and N-substituted morpholines. ORIGINS LIFE EVOL B 1997; 27:555-66. [PMID: 11536842 DOI: 10.1023/a:1006577107354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyanogen bromide has been found to induce the template-guided condensation of oligonucleotides only in the presence of N-substituted morpholines. Based on 31P, 1H and 13C NMR spectroscopy data, the mechanism of the phosphomonoester group activation by cyanogen bromide in N-substituted morpholine buffers is suggested. It has also been shown that BrCN can be used for the synthesis of oligonucleotide derivatives in aqueous solution.
Collapse
Affiliation(s)
- Z A Shabarova
- Chemistry Department, Lomonosov Moscow State University, Russia
| | | | | | | |
Collapse
|
42
|
Kool ET. Preorganization of DNA: Design Principles for Improving Nucleic Acid Recognition by Synthetic Oligonucleotides. Chem Rev 1997; 97:1473-1488. [PMID: 11851456 PMCID: PMC2790533 DOI: 10.1021/cr9603791] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric T. Kool
- Department of Chemistry and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14627
| |
Collapse
|
43
|
James KD, Ellington AD. Surprising fidelity of template-directed chemical ligation of oligonucleotides. CHEMISTRY & BIOLOGY 1997; 4:595-605. [PMID: 9281525 DOI: 10.1016/s1074-5521(97)90245-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Nucleic acid replication via oligonucleotide ligation has been shown to be extremely prone to errors. If this is the case, it is difficult to envision how the assembly and replication of short oligonucleotides could have contributed to the origin of life and to the evolution of a putative RNA world. In order to assess the fidelity of oligonucleotide replication more accurately, chemical ligation reactions were performed with constant-sequence DNA templates and random-sequence DNA pools as substrates. RESULTS In keeping with earlier results, constant-sequence hairpin templates were not faithfully copied by random-sequence substrates. Linear templates, however, showed exceptional replication fidelity, particularly when random hexamers were ligated at 25 degrees C. Surprisingly, at low temperatures the formation of G.A base pairs was common and sometimes occurred even more readily than the formation of the corresponding Watson-Crick A-T and G-C base pairs. CONCLUSIONS The fidelity of ligation reactions increases with temperature and decreases with the length of the random-sequence substrates. Oligonucleotides with a defined sequence can be copied faithfully in the absence of enzymes. Thus, to the extent that short oligonucleotides could readily have been generated by prebiotic mechanisms, it is possible that the earliest self-replicators arose via oligonucleotide ligation.
Collapse
Affiliation(s)
- K D James
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
44
|
Alazzouzi E, Escaja N, Grandas A, Pedroso E. Eine kurze Festphasensynthese für cyclische Oligodesoxyribonucleotide. Angew Chem Int Ed Engl 1997. [DOI: 10.1002/ange.19971091333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Chakhmakhcheva OG, Buryakova AA, Choob MV, Kalinkina AL, Efimov VA, Rando RF. Synthesis of Circular Oligonucleotide Conjugates. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708006207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Guzaev A, Lönnberg H. A novel solid support for synthesis of 3′-phosphorylated chimeric oligonucleotides containing internucleosidic methyl phosphotriester and methylphosphonate linkages. Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(97)00739-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Lim CS, Hunt CA. Synthesis of DNA Dumbbells: Chemical vs. Enzymatic Ligation of Self-Complementary Oligonucleotides. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708002520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Kool ET. Topological modification of oligonucleotides for potential inhibition of gene expression. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf02172109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Dolinnaya NG, Shabarova ZA. Chemical ligation as a method for the assembly of double-stranded nucleic acids: Modifications and local structure studies. Russ Chem Bull 1996. [DOI: 10.1007/bf01457755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Fedorova OA, Gottikh MB, Oretskaya TS, Shabarova ZA. Cyanogen Bromide-Induced Chemical Ligation: Mechanism and Optimization of the Reaction Conditions. ACTA ACUST UNITED AC 1996. [DOI: 10.1080/07328319608007382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|