1
|
Abstract
Group II introns are large self-splicing ribozymes found in bacterial genomes, in organelles of plants and fungi, and even in some animal organisms. Many organellar group II introns interrupt important housekeeping genes; therefore, their splicing is critical for the survival of the host organism. Group II introns are versatile catalytic RNAs: they facilitate their own excision from a pre-mRNA, they promote ligation of exons to form a translation-competent mature mRNA; they can act like mobile genomic elements and insert themselves into RNA and DNA targets with remarkable precision, which makes them attractive tools for genetic engineering. The first step in characterization of any group II intron is the evaluation of its catalytic activity and its ability to properly fold into the native functionally active structure. This chapter describes kinetic assays used to characterize folding and catalytic properties of group II intron-derived ribozymes.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Keating KS, Toor N, Perlman PS, Pyle AM. A structural analysis of the group II intron active site and implications for the spliceosome. RNA (NEW YORK, N.Y.) 2010; 16:1-9. [PMID: 19948765 PMCID: PMC2802019 DOI: 10.1261/rna.1791310] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/12/2009] [Indexed: 05/20/2023]
Abstract
Group II introns are self-splicing, mobile genetic elements that have fundamentally influenced the organization of terrestrial genomes. These large ribozymes remain important for gene expression in almost all forms of bacteria and eukaryotes and they are believed to share a common ancestry with the eukaryotic spliceosome that is required for processing all nuclear pre-mRNAs. The three-dimensional structure of a group IIC intron was recently determined by X-ray crystallography, making it possible to visualize the active site and the elaborate network of tertiary interactions that stabilize the molecule. Here we describe the molecular features of the active site in detail and evaluate their correspondence with prior biochemical, genetic, and phylogenetic analyses on group II introns. In addition, we evaluate the structural significance of RNA motifs within the intron core, such as the major-groove triple helix and the domain 5 bulge. Having combined what is known about the group II intron core, we then compare it with known structural features of U6 snRNA in the eukaryotic spliceosome. This analysis leads to a set of predictions for the molecular structure of the spliceosomal active site.
Collapse
Affiliation(s)
- Kevin S Keating
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
3
|
Toor N, Keating KS, Fedorova O, Rajashankar K, Wang J, Pyle AM. Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA (NEW YORK, N.Y.) 2010; 16:57-69. [PMID: 19952115 PMCID: PMC2802037 DOI: 10.1261/rna.1844010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Group II introns are large ribozymes that act as self-splicing and retrotransposable RNA molecules. They are of great interest because of their potential evolutionary relationship to the eukaryotic spliceosome, their continued influence on the organization of many genomes in bacteria and eukaryotes, and their potential utility as tools for gene therapy and biotechnology. One of the most interesting features of group II introns is their relative lack of nucleobase conservation and covariation, which has long suggested that group II intron structures are stabilized by numerous unusual tertiary interactions and backbone-mediated contacts. Here, we provide a detailed description of the tertiary interaction networks within the Oceanobacillus iheyensis group IIC intron, for which a crystal structure was recently solved to 3.1 A resolution. The structure can be described as a set of several intricately constructed tertiary interaction nodes, each of which contains a core of extended stacking networks and elaborate motifs. Many of these nodes are surrounded by a web of ribose zippers, which appear to further stabilize local structure. As predicted from biochemical and genetic studies, the group II intron provides a wealth of new information on strategies for RNA folding and tertiary structural organization.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | | | | | |
Collapse
|
4
|
Dotson PP, Sinha J, Testa SM. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction. FEBS J 2008; 275:3110-22. [PMID: 18479464 DOI: 10.1111/j.1742-4658.2008.06464.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group I introns catalyze the self-splicing reaction, and their derived ribozymes are frequently used as model systems for the study of RNA folding and catalysis, as well as for the development of non-native catalytic reactions. Utilizing a group I intron-derived ribozyme from Pneumocystis carinii, we previously reported a non-native reaction termed trans excision-splicing (TES). In this reaction, an internal segment of RNA is excised from an RNA substrate, resulting in the covalent reattachment of the flanking regions. TES proceeds through two consecutive phosphotransesterification reactions, which are similar to the reaction steps of self-splicing. One key difference is that TES utilizes the 3'-terminal guanosine of the ribozyme as the first-step nucleophile, whereas self-splicing utilizes an exogenous guanosine. To further aid in our understanding of ribozyme reactions, a kinetic framework for the first reaction step (substrate cleavage) was established. The results demonstrate that the substrate binds to the ribozyme at a rate expected for simple helix formation. In addition, the rate constant for the first step of the TES reaction is more than one order of magnitude lower than the analogous step in self-splicing. Results also suggest that a conformational change, likely similar to that in self-splicing, exists between the two reaction steps of TES. Finally, multiple turnover is curtailed because dissociation of the cleavage product is slower than the rate of chemistry.
Collapse
Affiliation(s)
- P Patrick Dotson
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
5
|
de Lencastre A, Pyle AM. Three essential and conserved regions of the group II intron are proximal to the 5'-splice site. RNA (NEW YORK, N.Y.) 2008; 14:11-24. [PMID: 18039742 PMCID: PMC2151037 DOI: 10.1261/rna.774008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/05/2007] [Indexed: 05/21/2023]
Abstract
Despite the central role of group II introns in eukaryotic gene expression and their importance as biophysical and evolutionary model systems, group II intron tertiary structure is not well understood. In order to characterize the architectural organization of intron ai5gamma, we incorporated the photoreactive nucleotides s(4)U and s(6)dG at specific locations within the intron core and monitored the formation of cross-links in folded complexes. The resulting data reveal the locations for many of the most conserved, catalytically important regions of the intron (i.e., the J2/3 linker region, the IC1(i-ii) bulge in domain 1, the bulge of D5, and the 5'-splice site), showing that all of these elements are closely colocalized. In addition, we show by nucleotide analog interference mapping (NAIM) that a specific functional group in J2/3 plays a role in first-step catalysis, which is consistent with its apparent proximity to other first-step components. These results extend our understanding of active-site architecture during the first step of group II intron self-splicing and they provide a structural basis for spliceosomal comparison.
Collapse
Affiliation(s)
- Alexandre de Lencastre
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
6
|
Glanz S, Bunse A, Wimbert A, Balczun C, Kück U. A nucleosome assembly protein-like polypeptide binds to chloroplast group II intron RNA in Chlamydomonas reinhardtii. Nucleic Acids Res 2006; 34:5337-51. [PMID: 17012281 PMCID: PMC1636423 DOI: 10.1093/nar/gkl611] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the unicellular green alga Chlamydomonas reinhardtii, the chloroplast-encoded tscA RNA is part of a tripartite group IIB intron, which is involved in trans-splicing of precursor mRNAs. We have used the yeast three-hybrid system to identify chloroplast group II intron RNA-binding proteins, capable of interacting with the tscA RNA. Of 14 candidate cDNAs, 13 encode identical polypeptides with significant homology to members of the nuclear nucleosome assembly protein (NAP) family. The RNA-binding property of the identified polypeptide was demonstrated by electrophoretic mobility shift assays using different domains of the tripartite group II intron as well as further chloroplast transcripts. Because of its binding to chloroplast RNA it was designated as NAP-like (cNAPL). In silico analysis revealed that the derived polypeptide carries a 46 amino acid chloroplast leader peptide, in contrast to nuclear NAPs. The chloroplast localization of cNAPL was demonstrated by laser scanning confocal fluorescence microscopy using different chimeric cGFP fusion proteins. Phylogenetic analysis shows that no homologues of cNAPL and its related nuclear counterparts are present in prokaryotic genomes. These data indicate that the chloroplast protein described here is a novel member of the NAP family and most probably has not been acquired from a prokaryotic endosymbiont.
Collapse
Affiliation(s)
| | | | | | | | - Ulrich Kück
- To whom correspondence should be addressed. Tel: +49 234 3226212; Fax: +49 234 3214184;
| |
Collapse
|
7
|
Gumbs OH, Padgett RA, Dayie KT. Fluorescence and solution NMR study of the active site of a 160-kDa group II intron ribozyme. RNA (NEW YORK, N.Y.) 2006; 12:1693-707. [PMID: 16894219 PMCID: PMC1557703 DOI: 10.1261/rna.137006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 06/29/2006] [Indexed: 05/11/2023]
Abstract
We have reconstructed the group II intron from Pylaiella littoralis (PL) into a hydrolytic ribozyme, comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans that efficiently cleaves spliced exon substrates. Using a novel gel-based fluorescence assay and nuclear magnetic resonance (NMR) spectroscopy, we monitored the direct binding of D5 to D123, characterized the kinetics of the spliced exon hydrolysis reaction (which is mechanistically analogous to the reverse of the second catalytic step of splicing), and identified the binding surface of D123 on D5. This PL ribozyme acts as an RNA endonuclease even at low monovalent (100 mM KCl) and divalent ion concentrations (1-10 mM MgCl(2)). This is in contrast to other group II intron ribozyme systems that require high levels of salt, making NMR analysis problematic. D5 binds tightly to D123 with a K(d) of 650 +/- 250 nM, a K(m) of approximately 300 nM, and a K(cat) of 0.02 min(-1) under single turnover conditions. Within the approximately 160-kDa D123-D5 binary complex, site-specific binding to D123 leads to dramatic chemical shift perturbation of residues localized to the tetraloop and internal bulge within D5, suggesting a structural switch model for D5-assisted splicing. This minimal ribozyme thus recapitulates the essential features of the reverse of the second catalytic step and represents a well-behaved system for ongoing high-resolution structural work to complement folding and catalytic functional studies.
Collapse
Affiliation(s)
- Orlando H Gumbs
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
8
|
Fedorova O, Su LJ, Pyle AM. Group II introns: highly specific endonucleases with modular structures and diverse catalytic functions. Methods 2002; 28:323-35. [PMID: 12431436 DOI: 10.1016/s1046-2023(02)00239-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Group II introns are large catalytic RNAs with a remarkable repertoire of reactions. Here we present construct designs and protocols that were used to develop a set of kinetic frameworks for studying the structure and reaction mechanisms of group II introns and ribozymes derived from them. In addition, we discuss application of these systems to structure/function analysis of the ai5gamma group II intron.
Collapse
Affiliation(s)
- Olga Fedorova
- Department of Biochemistry and Molecular Biophysics, 630 West 168 Street, Box 36, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
9
|
Konforti BB, Liu Q, Pyle AM. A map of the binding site for catalytic domain 5 in the core of a group II intron ribozyme. EMBO J 1998; 17:7105-17. [PMID: 9843514 PMCID: PMC1171057 DOI: 10.1093/emboj/17.23.7105] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Group II introns are ribozymes with a complex tertiary architecture that is of great interest as a model for RNA folding. Domain 5 (D5) is a highly conserved region of the intron that is considered one of the most critical structures in the catalytic core. Despite its central importance, the means by which D5 interacts with other core elements is unclear. To obtain a map of potential interaction sites, dimethyl sulfate was used to footprint regions of the intron that are involved in D5 binding. These studies were complemented by measurements of D5 binding to a series of truncated intron derivatives. In this way, the minimal region of the intron required for strong D5 association was defined and the sites most likely to represent thermodynamically significant positions of tertiary contact were identified. These studies show that ground-state D5 binding is mediated by tertiary contacts to specific regions of D1, including a tetraloop receptor and an adjacent three-way junction. In contrast, D2 and D3 are not found to stabilize D5 association. These data highlight the significance of D1-D5 interactions and will facilitate the identification of specific tertiary contacts between them.
Collapse
Affiliation(s)
- B B Konforti
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 W. 168th Street, Room 616, Hammer Health Sciences Center, New York, NY 10032, USA
| | | | | |
Collapse
|
10
|
Costa M, Christian EL, Michel F. Differential chemical probing of a group II self-splicing intron identifies bases involved in tertiary interactions and supports an alternative secondary structure model of domain V. RNA (NEW YORK, N.Y.) 1998; 4:1055-68. [PMID: 9740125 PMCID: PMC1369682 DOI: 10.1017/s1355838298980670] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dimethyl sulfate modification was used to probe for tertiary structural elements in the group II intron PI.LSU/2 from the mitochondrial pre-ribosomal RNA of the brown alga Pylaiella littoralis. Modification of the lariat form of the intron under conditions that allow both native folding and conformational homogeneity is found to be generally consistent with secondary and tertiary structural features identified previously for group II ribozymes. A comparison of chemical probing at temperatures just below and above the first melting transition illustrates the cooperative unfolding of tertiary structure and identifies novel candidates for tertiary interactions in addition to defining elements of secondary structure. Substitution of the GAAA terminal loop of domain V is shown to be compatible with retention of conformational homogeneity (despite the loss of an important tertiary interaction), but produces a concise methylation footprint in domain I at the site previously shown to harbor the receptor for that loop. The analysis also identified two nucleotide positions in domain V with novel secondary and potential tertiary structural roles. The proposed refinement of domain V secondary structure is supported by an expanded comparative analysis of group II sequences and bears increased resemblance to U2:U6 snRNA pairing in the spliceosome.
Collapse
Affiliation(s)
- M Costa
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | | | |
Collapse
|
11
|
Qin PZ, Pyle AM. The architectural organization and mechanistic function of group II intron structural elements. Curr Opin Struct Biol 1998; 8:301-8. [PMID: 9666325 DOI: 10.1016/s0959-440x(98)80062-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Group II introns are large, self-splicing RNAs and mobile genetic elements that provide good model systems for studies of RNA folding. The structures and mechanistic functions of individual domains are being elucidated, and long-range tertiary interactions between the domains are being identified, thus helping to define the three-dimensional architecture of the intron.
Collapse
Affiliation(s)
- P Z Qin
- Howard Hughes Medical Institute, Department of Applied Physics, New York, NY 10032, USA
| | | |
Collapse
|
12
|
Podar M, Zhuo J, Zhang M, Franzen JS, Perlman PS, Peebles CL. Domain 5 binds near a highly conserved dinucleotide in the joiner linking domains 2 and 3 of a group II intron. RNA (NEW YORK, N.Y.) 1998; 4:151-166. [PMID: 9570315 PMCID: PMC1369604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photocrosslinking has identified the joiner between domains 2 and 3 [J(23)] as folding near domain 5 (D5), a highly conserved helical substructure of group II introns required for both splicing reactions. D5 RNAs labeled with the photocrosslinker 4-thiouridine (4sU) reacted with highly conserved nucleotides G588 and A589 in J(23) of various intron acceptor transcripts. These conjugates retained some ribozyme function with the lower helix of D5 crosslinked to J(23), so they represent active complexes. One partner of the gamma x gamma' tertiary interaction (A587 x U887) is also in J(23); even though gamma x gamma' is involved in step 2 of the splicing reaction, D5 has not previously been found to approach gamma x gamma'. Similar crosslinking patterns between D5 and J(23) were detected both before and after step 1 of the reaction, indicating that the lower helix of D5 is positioned similarly in both conformations of the active center. Our results suggest that the purine-rich J(23) strand is antiparallel to the D5 strand containing U32 and U33. Possibly, the interaction with J(23) helps position D5 correctly in the ribozyme active site; alternatively, J(23) itself might participate in the catalytic center.
Collapse
Affiliation(s)
- M Podar
- Department of Molecular Biology & Oncology, University of Texas, Southwestern Medical Center, Dallas 75235-9148, USA
| | | | | | | | | | | |
Collapse
|
13
|
Konforti BB, Abramovitz DL, Duarte CM, Karpeisky A, Beigelman L, Pyle AM. Ribozyme catalysis from the major groove of group II intron domain 5. Mol Cell 1998; 1:433-41. [PMID: 9660927 DOI: 10.1016/s1097-2765(00)80043-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most highly conserved nucleotides in D5, an essential active site component of group II introns, consist of an AGC triad, of which the G is invariant. To understand how this G participates in catalysis, the mechanistic contribution of its functional groups was examined. We observed that the exocyclic amine of G participates in ground state interactions that stabilize D5 binding from the minor groove. In contrast, each major groove heteroatom of the critical G (specifically N7 or O6) is essential for chemistry. Thus, major groove atoms in an RNA helix can participate in catalysis, despite their presumed inaccessibility. N7 or O6 of the critical G could engage in critical tertiary interactions with the rest of the intron or they could, together with phosphate oxygens, serve as a binding site for catalytic metal ions.
Collapse
Affiliation(s)
- B B Konforti
- Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
14
|
Huang F, Yarus M. A calcium-metalloribozyme with autodecapping and pyrophosphatase activities. Biochemistry 1997; 36:14107-19. [PMID: 9369483 DOI: 10.1021/bi971081n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A previously-isolated ribozyme with capping activity has self-decapping activity, here characterized alongside its additional, somewhat parallel, pyrophosphatase reaction. Decapping is 10-50 times slower than the pyrophosphatase activity, depending on pH. The RNA accelerates pyrophosphate release 170 000 times over a control composed of randomized pppRNA, and 5' capped RNA accelerates decapping 1000-fold over random capped RNA. Triphosphate-linked G(5')pppRNA also supports an unusual cap-exchange reaction, exchanging its cap with guanosine 5'-tetraphosphate to form pentaphosphate-linked G(5')pppppRNA. GDP, a capping reactant for the RNA, appears to suppress both decapping and pyrophosphatase activities. Autodecapping and pyrophosphatase activities have in common an unusual divalent metal ion requirement for Ca2+ or less effectively Mn2+, and both are active over a broad pH range of 4.5-9. 0. These characteristics resemble the capping activity of the same RNA. Kinetic analysis reveals a well-defined Ca2+-RNA complex, and Mg2+ and Sr2+ act as competitive inhibitors of Ca2+. A strong Ca2+-binding site is suggested by a low KM of 40-60 microM at pH >/= 7.0. The role of Ca2+ in these reactions can be surmized from literature data on reactivity of nucleotide phosphates. Pyrophosphatase, capping, and decapping activities of isolate 6 RNA are apparently carried out by a single reaction center, whose rate of reaction with all nucleophiles sums to a constant total rate. This suggests a universal rate-limiting step. Versatile activation of alpha-phosphate by this reaction center raises the possibility of combinatorial ribozymes.
Collapse
Affiliation(s)
- F Huang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
15
|
Jestin JL, Dème E, Jacquier A. Identification of structural elements critical for inter-domain interactions in a group II self-splicing intron. EMBO J 1997; 16:2945-54. [PMID: 9184238 PMCID: PMC1169902 DOI: 10.1093/emboj/16.10.2945] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thus far, conventional biophysical techniques, such as NMR spectroscopy or X-ray crystallography, allow the determination, at atomic resolution, of only structural domains of large RNA molecules such as group I introns. Determination of their overall spatial organization thus still relies on modeling. This requires that a relatively high number of tertiary interactions are defined in order to get sufficient topological constraints. Here, we report the use of a modification interference assay to identify structural elements involved in interdomain interactions. We used this technique, in a group II intron, to identify the elements involved in the interactions between domain V and the rest of the molecule. Domain V contains many of the active site components of these ribozymes. In addition to a previously identified 11 nucleotide motif involved in the binding of the domain V terminal GAAA tetraloop, a small number of elements were shown to be essential for domain V binding. In particular, we show that domain III is specifically required for the interaction with sequences encompassing the conserved 2 nucleotide bulge of domain V.
Collapse
Affiliation(s)
- J L Jestin
- Laboratoire du Metabolisme des ARN, CNRS (URA 13CO) Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
16
|
Costa M, Déme E, Jacquier A, Michel F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol 1997; 267:520-36. [PMID: 9126835 DOI: 10.1006/jmbi.1996.0882] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ribozyme core of group II introns is organized into six domains of secondary structure. Of these, domain II was long thought to be relatively unimportant for group II self-splicing. However, we now demonstrate the existence, in both major subdivisions of the group II family, of essential tertiary interactions involving domain II. theta-theta' is a novel tertiary interaction between the terminal loop of the IC1 stem of domain I and the basal stem of domain II. The theta-theta' interaction appears to stabilize the group II ribozyme core: it is essential for efficient self-splicing at elevated temperatures but, as shown by the use of a bimolecular reaction system, molecules with a defective theta-theta' contact are not affected in catalysis. An interaction, eta-eta', between domains II and VI of subgroup IIB introns was recently reported to mediate a conformational rearrangement between the two steps of the self-splicing reaction. We now show that domains II and VI of subgroup IIA introns also contact each other, although in a somewhat different way. Reinforcement of the eta-eta' interaction of a subgroup IIA intron prevents the use of a specific 2'-hydroxyl group in domain VI to initiate splicing by transesterification at the 5' splice site; the 5' intron-exon junction is hydrolyzed instead. Since disruption of eta-eta' has exactly opposite effects, and promotes reversal of the first transesterification step, it is concluded that formation of eta-eta' mediates a conformational change in subgroup IIA introns as well. Just like the eta-eta' interaction of subgroup IIB introns, the eta-eta' interaction of subgroup IIA introns (and the theta-theta' interaction) involves terminal loops of the GNRA family and their RNA receptors. Therefore, these motifs are used by nature not only to stabilize three-dimensional RNA architectures, but also in situations that require dynamic interactions.
Collapse
Affiliation(s)
- M Costa
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
17
|
Abramovitz DL, Pyle AM. Remarkable morphological variability of a common RNA folding motif: the GNRA tetraloop-receptor interaction. J Mol Biol 1997; 266:493-506. [PMID: 9067606 DOI: 10.1006/jmbi.1996.0810] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the most common RNA tertiary interactions involves the docking of GNRA hairpin loops into stem-loop structures on other regions of RNA. Domain 5 of the group II intron interacts with Domain 1 through such an interaction, which has been characterized thermodynamically and kinetically for the ai5g intron. Using this system, it was possible to test the morphological tolerances of the GNRA tetraloop involved in tertiary interactions. The data presented herein show that a GNRA tetraloop can still participate in tertiary interaction after being physically cut at any phosphodiester linkage within the loop. The "nicked tetraloop" can be expanded by many nucleotides in either direction and the covalently continuous loop can also be expanded without loss of interaction energy. In the context of the nicked tetraloop, the second nucleotide of the tetraloop sequence can be completely deleted without loss of function. By examining radical alterations in tetraloop structure, this study helps define the minimal sequence and structural requirements of a GNRA motif involved in long-range tertiary interaction. It shows that "tetraloop"-like structures capable of forming tertiary interactions can be imbedded in unexpected contexts, such as internal loops and apparently open structure within RNA. It demonstrates that pentaloops and hexaloops can form the same type of interaction, with almost equal affinity, as a tetraloop. Taken together, these data suggest a more generic term for the GNRA tetraloop-receptor interaction: It is proposed herein that the term "GNRA tetraloop" be replaced by "GNn/RA", where n represents a variable number of nucleotides and / indicates that the loop can be divided and interrupted by other sequences.
Collapse
Affiliation(s)
- D L Abramovitz
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
18
|
Boulanger SC, Faix PH, Yang H, Zhuo J, Franzen JS, Peebles CL, Perlman PS. Length changes in the joining segment between domains 5 and 6 of a group II intron inhibit self-splicing and alter 3' splice site selection. Mol Cell Biol 1996; 16:5896-904. [PMID: 8816503 PMCID: PMC231591 DOI: 10.1128/mcb.16.10.5896] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Domain 5 (D5) and domain 6 (D6) are adjacent folded hairpin substructures of self-splicing group II introns that appear to interact within the active ribozyme. Here we describe the effects of changing the length of the 3-nucleotide segment joining D5 to D6 [called J(56)3] on the splicing reactions of intron 5 gamma of the COXI gene of yeast mitochondrial DNA. Shortened variants J(56)0 and J(56)1 were defective in vitro for branching, and the second splicing step was performed inefficiently and inaccurately. The lengthened variant J(56)5 had a milder defect-splicing occurred at a reduced rate but with correct branching and a mostly accurate 3' splice junction choice. Yeast mitochondria were transformed with the J(56)5 allele, and the resulting yeast strain was respiration deficient because of ineffective aI5 gamma splicing. Respiration-competent revertants were recovered, and in one type a single joiner nucleotide was deleted while in the other type a nucleotide of D6 was deleted. Although these revertants still showed partial splicing blocks in vivo and in vitro, including a substantial defect in the second step of splicing, both spliced accurately in vivo. These results establish that a 3-nucleotide J(56) is optimal for this intron, especially for the accuracy of 3' splice junction selection, and indicate that D5 and D6 are probably not coaxially stacked.
Collapse
Affiliation(s)
- S C Boulanger
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Chanfreau G, Jacquier A. An RNA conformational change between the two chemical steps of group II self-splicing. EMBO J 1996; 15:3466-76. [PMID: 8670849 PMCID: PMC451911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
As for nuclear pre-mRNA introns, the splicing pathway of group II self-splicing introns proceeds by two successive transesterifications involving substrates with different chemical configurations. These two reactions have been proposed to be catalysed by two active sites, or alternatively by a single active site rearranging its components to accommodate the successive substrates. Here we show that the structural elements specific for the second splicing step are clustered in peripheral structures of domains II and VI. We show that these structures are not required for catalysis of the second chemical step but, instead, take part in a conformational change that occurs between the two catalytic steps. This rearrangement involves the formation of a tertiary contact between part of domain II and a GNRA tetraloop at the tip of domain VI. The fact that domain VI, which carries the branched structure, is involved in this structural rearrangement and the fact that modifications affecting the structures involved have almost no effect when splicing proceeds without branch formation, suggest that the conformational change results in the displacement of the first-step product out of the active site. These observations give further support to the existence of a single active site in group II introns.
Collapse
Affiliation(s)
- G Chanfreau
- Laboratoire du Métabolisme des ARN (URA 1149 du CNRS), Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
20
|
Abramovitz DL, Friedman RA, Pyle AM. Catalytic role of 2'-hydroxyl groups within a group II intron active site. Science 1996; 271:1410-3. [PMID: 8596912 DOI: 10.1126/science.271.5254.1410] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Domain 5 is an essential active-site component of group II intron ribozymes. The role of backbone substituents in D5 function was explored through synthesis of a series of derivatives containing deoxynucleotides at each position along the D5 strand. Kinetic screens revealed that eight 2'-hydroxyl groups were likely to be critical for activity of D5. Through two separate methods, including competitive inhibition and direct kinetic analysis, effects on binding and chemistry were distinguished. Depending on their function, important 2'-hydroxyl groups lie on opposite faces of the molecule, defining distinct loci for molecular recognition and catalysis by D5.
Collapse
Affiliation(s)
- D L Abramovitz
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
21
|
|
22
|
Affiliation(s)
- P S Perlman
- Department of Biochemistry, University of Texas South-western Medical Center, Dallas 75235, USA
| | | |
Collapse
|
23
|
Griffin EA, Qin Z, Michels WJ, Pyle AM. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2'-hydroxyl groups. CHEMISTRY & BIOLOGY 1995; 2:761-70. [PMID: 9383483 DOI: 10.1016/1074-5521(95)90104-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Group II introns are self-splicing RNAs that have mechanistic similarity to the spliceosome complex involved in messenger RNA splicing in eukaryotes. These autocatalytic molecules can be reconfigured into highly specific, multiple-turnover ribozymes that cleave oligonucleotides in trans. We set out to use a simplified system of this kind to study the mechanism of cleavage. RESULTS Unlike other catalytic RNA molecules, the group II ribozymes cleave DNA linkages almost as readily as RNA linkages. One ribozyme variant cleaves DNA linkages with an efficiency comparable to that of restriction endonuclease EcoRI. Single deoxynucleotide substitutions in the substrate showed that the ribozymes bind substrate without engaging 2'-hydroxyl groups. CONCLUSIONS The ribose 2'-hydroxyl group at the cleavage site has little role in transition-state stabilization by group II ribozymes. Substrate 2'-hydroxyl groups are not involved in substrate binding, suggesting that only base-pairing is required for substrate recognition.
Collapse
Affiliation(s)
- E A Griffin
- Department of Biochemistry and Molecular Biophysics, Columbia College, New York, NY, USA
| | | | | | | |
Collapse
|
24
|
Podar M, Perlman PS, Padgett RA. Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions. Mol Cell Biol 1995; 15:4466-78. [PMID: 7542746 PMCID: PMC230686 DOI: 10.1128/mcb.15.8.4466] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously shown, using phosphorothioate substitutions at splice site, that both transesterification steps of group II intron self-splicing proceed, by stereochemical inversion, with an Sp but not an Rp phosphorothioate. Under alternative reaction conditions or with various intron fragments, group II introns can splice following hydrolysis at the 5' splice site and can also hydrolyze the bond between spliced exons (the spliced-exon reopening reaction). In this study, we have determined the stereochemical specificities of all of the major model hydrolytic reactions carried out by the aI5 gamma intron from Saccharomyces cerevisiae mitochondria. For all substrates containing exon 1 and most of the intron, the stereospecificity of hydrolysis is the same as for the step 1 transesterification reaction. In contrast, the spliced-exon reopening reaction proceeds with an Rp but not an Sp phosphorothioate at the scissile bond, as does true reverse splicing. Thus, by stereochemistry, this reaction appears to be related to the reverse of step 2 of self-splicing. Finally, a substrate RNA that contains the first exon and nine nucleotides of the intron, when reacted with the intron ribozyme, releases the first exon regardless of the configuration of the phosphorothioate at the 5' splice site, suggesting that this substrate can be cleaved by either the step 1 or the step 2 reaction site. Our findings clarify the relationships of these model reactions to the transesterification reactions of the intact self-splicing system and permit new studies to be interpreted more rigorously.
Collapse
Affiliation(s)
- M Podar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038, USA
| | | | | |
Collapse
|
25
|
Boulanger SC, Belcher SM, Schmidt U, Dib-Hajj SD, Schmidt T, Perlman PS. Studies of point mutants define three essential paired nucleotides in the domain 5 substructure of a group II intron. Mol Cell Biol 1995; 15:4479-88. [PMID: 7623838 PMCID: PMC230687 DOI: 10.1128/mcb.15.8.4479] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Domain 5 (D5) is a highly conserved, largely helical substructure of group II introns that is essential for self-splicing. Only three of the 14 base pairs present in most D5 structures (A2.U33, G3.U32, and C4.G31) are nearly invariant. We have studied effects of point mutations of those six nucleotides on self-splicing and in vivo splicing of aI5 gamma, an intron of the COXI gene of Saccharomyces cerevisiae mitochondria. Though none of the point mutations blocked self-splicing under one commonly used in vitro reaction condition, the most debilitating mutations were at G3 and G4. Following mitochondrial Biolistic transformation, it was found that mutations at A2, G3, and C4 blocked respiratory growth and splicing while mutations at the other sites had little effect on either phenotype. Intra-D5 second-site suppressors showed that pairing between nucleotides at positions 2 and 33 and 4 and 31 is especially important for D5 function. At the G3.U32 wobble pair, the mutant A.U pair blocks splicing, but a revertant of that mutant that can form an A+.C base pair regains some splicing. A dominant nuclear suppressor restores some splicing to the G3A mutant but not the G3U mutant, suggesting that a purine is required at position 3. These findings are discussed in terms of the hypothesis of Madhani and Guthrie (H. D. Madhani and C. Guthrie, Cell 71:803-817, 1992) that helix 1 formed between yeast U2 and U6 small nuclear RNAs may be the spliceosomal cognate of D5.
Collapse
Affiliation(s)
- S C Boulanger
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chin K, Pyle AM. Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection. RNA (NEW YORK, N.Y.) 1995; 1:391-406. [PMID: 7493317 PMCID: PMC1482411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
By examining the first step of group II intron splicing in the absence of the second step, we have found that there is an interplay of three distinct reactions at the 5'-splice site: branching, reverse branching, and hydrolytic cleavage. This approach has yielded the first kinetic parameters describing eukaryotic branching and establishes that group II intron catalysis can proceed on a rapid timescale. The efficient reversibility of the first step is due to increased conformational organization in the branched intermediate and it has several important mechanistic implications. Reversibility in the first step requires that the second step of splicing serve as a kinetic trap, thus driving splicing to completion and coordinating the first and second step of splicing. Facile reverse branching also provides the intron with a proofreading mechanism to control the fidelity of 5'-splice site selection and it provides a kinetic basis for the apparent mobility of group II introns.
Collapse
Affiliation(s)
- K Chin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
27
|
Peebles CL, Zhang M, Perlman PS, Franzen JS. Catalytically critical nucleotide in domain 5 of a group II intron. Proc Natl Acad Sci U S A 1995; 92:4422-6. [PMID: 7538669 PMCID: PMC41956 DOI: 10.1073/pnas.92.10.4422] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Domain 5 (D5) is a small hairpin structure within group II introns. A bimolecular assay system depends on binding by D5 to an intron substrate for self-splicing activity. In this study, mutations in D5 identify two among six nearly invariant nucleotides as being critical for 5' splice junction hydrolysis but unimportant for binding. A mutation at another site in D5 blocks binding. Thus, mutations can distinguish two D5 functions: substrate binding and catalysis. The secondary structure of D5 may resemble helix I formed by the U2 and U6 small nuclear RNAs in the eukaryotic spliceosome. Our results support a revision of the previously proposed correspondence between D5 and helix I on the basis of the critical trinucleotide 5'-AGC-3' present in both. We suggest that this trinucleotide plays a similar role in promoting the chemical reactions for both splicing systems.
Collapse
Affiliation(s)
- C L Peebles
- Department of Biological Sciences, University of Pittsburgh, PA 15260-7700, USA
| | | | | | | |
Collapse
|
28
|
Dib-Hajj SD, Boulanger SC, Hebbar SK, Peebles CL, Franzen JS, Perlman PS. Domain 5 interacts with domain 6 and influences the second transesterification reaction of group II intron self-splicing. Nucleic Acids Res 1993; 21:1797-804. [PMID: 8493099 PMCID: PMC309417 DOI: 10.1093/nar/21.8.1797] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The role of domain 5 (d5) from the self-splicing group II intron 5 gamma of the COXI gene of yeast mitochondrial DNA in branching and 3' splice site utilization has been studied using a substrate transcript lacking d5 (delta d5 RNA). This RNA is completely unreactive in vitro, but releases 5' exon by hydrolysis under various reaction conditions when d5 RNA is added in trans. Under an extreme reaction condition, some accurate branching and splicing occur. Much more efficient use of a 3' splice site is obtained when delta d5 RNA is complemented by a transcript containing the wild-type domains 5 and 6 plus the 3' exon. While most delta d5 RNA molecules in that protocol still react by hydrolysis at the 5' splice site, the branching that occurs uses only the d6 tethered to d5 that is provided in trans. The use of this d6 and the 3' splice site also linked to d5, along with the observed indifference to the other d6 and 3' splice site resident in the delta d5 RNA, indicates that d5 plays a key role in positioning d6 for the first reaction step as well as in 3' splice site use. Two models for the manner by which d5 interacts with d6 are discussed.
Collapse
Affiliation(s)
- S D Dib-Hajj
- MCDB Program, Ohio State University, Columbus 43210
| | | | | | | | | | | |
Collapse
|