1
|
Bürvenich L, Rössler OG, Thiel G. Stimulus-Induced Activation of the Glycoprotein Hormone α-Subunit Promoter in Human Placental Choriocarcinoma Cells: Major Role of a tandem cAMP Response Element. Curr Issues Mol Biol 2024; 46:3218-3235. [PMID: 38666932 PMCID: PMC11049346 DOI: 10.3390/cimb46040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The glycoprotein hormones LH, FSH, TSH and chorionic gonadotropin consist of a common α-subunit and a hormone-specific β-subunit. The α-subunit is expressed in the pituitary and the placental cells, and its expression is regulated by extracellular signal molecules. Much is known about the regulation of the α-subunit gene in the pituitary, but few studies have addressed the regulation of this gene in trophoblasts. The aim of this study was to characterize the molecular mechanism of stimulus-induced α-subunit gene transcription in JEG-3 cells, a cellular model for human trophoblasts, using chromatin-embedded reporter genes under the control of the α-subunit promoter. The results show that increasing the concentration of the second messengers cAMP or Ca2+, or expressing the catalytic subunit of cAMP-dependent protein kinase in the nucleus activated the α-subunit promoter. Similarly, the stimulation of p38 protein kinase activated the α-subunit promoter, linking α-subunit expression to stress response. The stimulation of a Gαq-coupled designer receptor activated the α-subunit promoter, involving the transcription factor CREB, linking α-subunit expression to hormonal stimulation and an increase in intracellular Ca2+. Deletion mutagenesis underscores the importance of a tandem cAMP response element within the glycoprotein hormone α-subunit promoter, which acts as a point of convergence for a multiple signaling pathway.
Collapse
Affiliation(s)
| | | | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany; (L.B.); (O.G.R.)
| |
Collapse
|
2
|
The herpes simplex virus 1 protein ICP4 acts as both an activator and repressor of host genome transcription during infection. Mol Cell Biol 2021; 41:e0017121. [PMID: 34251885 DOI: 10.1128/mcb.00171-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by herpes simplex virus 1 (HSV-1) impacts nearly all steps of host cell gene expression. The regulatory mechanisms by which this occurs, and the interplay between host and viral factors, have yet to be fully elucidated. We investigated how the occupancy of RNA polymerase II (Pol II) on the host genome changes during HSV-1 infection and is impacted by the viral immediate early protein ICP4. Pol II ChIP-seq experiments revealed ICP4-dependent decreases and increases in Pol II levels across the bodies of hundreds of genes. Our data suggest ICP4 represses host transcription by inhibiting recruitment of Pol II and activates host genes by promoting release of Pol II from promoter proximal pausing into productive elongation. Consistent with this, ICP4 was required for the decrease in levels of the pausing factor NELF-A on several HSV-1 activated genes after infection. In the absence of infection, exogenous expression of ICP4 activated, but did not repress, transcription of some genes in a chromatin-dependent context. Our data support the model that ICP4 decreases promoter proximal pausing on host genes activated by infection, and ICP4 is necessary, but not sufficient, to repress transcription of host genes during viral infection.
Collapse
|
3
|
Thiel G, Backes TM, Guethlein LA, Rössler OG. Chromatin-embedded reporter genes: Quantification of stimulus-induced gene transcription. Gene 2021; 787:145645. [PMID: 33848575 DOI: 10.1016/j.gene.2021.145645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Receptors and ion channels expressed on the cell surface ensure proper communication between the cells and the environment. In multicellular organism, stimulus-regulated gene transcription is the basis for communication with the environment allowing individual cells to respond to stimuli such as nutrients, chemical stressors and signaling molecules released by other cells of the organism. Hormones, cytokines, and mitogens bind to receptors and ion channels and induce intracellular signaling cascades involving second messengers, kinases, phosphatases, and changes in the concentration of particular ions. Ultimately, the signaling cascades reach the nucleus. Transcription factors are activated that respond to cellular stimulation and induce changes in gene transcription. Investigating stimulus-transcription coupling combines cell biology with genetics. In this review, we discuss the molecular biology of stimulus-induced transcriptional activators and their responsiveness to extracellular and intracellular signaling molecules and to epigenetic regulators. Stimulus-induced gene expression is measured by several methods, including detection of nuclear translocation of transcription factors, phosphorylation or DNA binding. In this article, we emphasize that the most reliable method to directly measure transcriptional activation involves the use of chromatin-embedded reporter genes.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
4
|
Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S. Limited expression of non-integrating CpG-free plasmid is associated with increased nucleosome enrichment. PLoS One 2020; 15:e0244386. [PMID: 33347482 PMCID: PMC7751972 DOI: 10.1371/journal.pone.0244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
Collapse
Affiliation(s)
- Omar Habib
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Rozita Mohd Sakri
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Nadiah Ghazalli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
5
|
Fourier N, Zolty M, Azriel A, Tedesco D, Levi BZ. MafK Mediates Chromatin Remodeling to Silence IRF8 Expression in Non-immune Cells in a Cell Type-SpecificManner. J Mol Biol 2020; 432:4544-4560. [PMID: 32534063 DOI: 10.1016/j.jmb.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022]
Abstract
The regulation of gene expression is a result of a complex interplay between chromatin remodeling, transcription factors, and signaling molecules. Cell differentiation is accompanied by chromatin remodeling of specific loci to permanently silence genes that are not essential for the differentiated cell activity. The molecular cues that recruit the chromatin remodeling machinery are not well characterized. IRF8 is an immune-cell specific transcription factor and its expression is augmented by interferon-γ. Therefore, it serves as a model gene to elucidate the molecular mechanisms governing its silencing in non-immune cells. Ahigh-throughput shRNA library screen in IRF8 expression-restrictive cells enabled the identification of MafK as modulator of IRF8 silencing, affecting chromatin architecture. ChIP-Seq analysis revealed three MafK binding regions (-25 kb, -20 kb, and IRF8 6th intron) within the IRF8 locus. These MafK binding sites are sufficient to repress a reporter gene when cloned in genome-integrated lentiviral reporter constructs in only expression-restrictive cells. Conversely, plasmid-based constructs do not demonstrate such repressive effect. These results highlight the role of these MafK binding sites in mediating repressed chromatin assembly. Finally, a more thorough genomic analysis was performed, using CRISPR-Cas9 to delete MafK-int6 binding region in IRF8 expression-restrictive cells. Deleted clones exhibited an accessible chromatin conformation within the IRF8 locus that was accompanied by a significant increase in basal expression of IRF8 that was further induced by interferon-γ. Taken together, we identified and characterized several MafK binding elements within the IRF8 locus that mediate repressive chromatin conformation resulting in the silencing of IRF8 expression in a celltype-specific manner.
Collapse
Affiliation(s)
- Nitsan Fourier
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Zolty
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aviva Azriel
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Ben-Zion Levi
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Dong Y, Avva SVSP, Maharjan M, Jacobi J, Hart CM. Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila. Genetics 2020; 215:89-101. [PMID: 32179582 PMCID: PMC7198264 DOI: 10.1534/genetics.120.303144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator-binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator-binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast two-hybrid assays. Here, we focus on the transcription factor Serendipity δ (Sry-δ). Interactions were confirmed in pull-down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoter-proximal BEAF both when bound to DNA adjacent to BEAF or > 2-kb upstream to activate a reporter gene in transient transfection experiments. The interaction between BEAF and Sry-δ was detected using both a minimal developmental promoter (y) and a housekeeping promoter (RpS12), while BEAF alone strongly activated the housekeeping promoter. These two functions for BEAF implicate it in playing a direct role in gene regulation at hundreds of BEAF-associated promoters.
Collapse
Affiliation(s)
- Yuankai Dong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - S V Satya Prakash Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Mukesh Maharjan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Janice Jacobi
- Hayward Genetics Center, Tulane University, New Orleans, Louisiana 70112
| | - Craig M Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
7
|
Wu N, Nguyen XN, Wang L, Appourchaux R, Zhang C, Panthu B, Gruffat H, Journo C, Alais S, Qin J, Zhang N, Tartour K, Catez F, Mahieux R, Ohlmann T, Liu M, Du B, Cimarelli A. The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathog 2019; 15:e1008093. [PMID: 31600344 PMCID: PMC6805002 DOI: 10.1371/journal.ppat.1008093] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 09/18/2019] [Indexed: 01/29/2023] Open
Abstract
ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.
Collapse
Affiliation(s)
- Nannan Wu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuan-Nhi Nguyen
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Li Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Romain Appourchaux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Chengfei Zhang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Baptiste Panthu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Chloé Journo
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sandrine Alais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Juliang Qin
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Zhang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kevin Tartour
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Frédéric Catez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Theophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (BD); (AC)
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- * E-mail: (BD); (AC)
| |
Collapse
|
8
|
Shao W, Alcantara SGM, Zeitlinger J. Reporter-ChIP-nexus reveals strong contribution of the Drosophila initiator sequence to RNA polymerase pausing. eLife 2019; 8:41461. [PMID: 31021316 PMCID: PMC6483594 DOI: 10.7554/elife.41461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase II (Pol II) pausing is a general regulatory step in transcription, yet the stability of paused Pol II varies widely between genes. Although paused Pol II stability correlates with core promoter elements, the contribution of individual sequences remains unclear, in part because no rapid assay is available for measuring the changes in Pol II pausing as a result of altered promoter sequences. Here, we overcome this hurdle by showing that ChIP-nexus captures the endogenous Pol II pausing on transfected plasmids. Using this reporter-ChIP-nexus assay in Drosophila cells, we show that the pausing stability is influenced by downstream promoter sequences, but that the strongest contribution to Pol II pausing comes from the initiator sequence, in which a single nucleotide, a G at the +2 position, is critical for stable Pol II pausing. These results establish reporter-ChIP-nexus as a valuable tool to analyze Pol II pausing.
Collapse
Affiliation(s)
- Wanqing Shao
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
9
|
Localization of the kinase Ataxia Telangiectasia Mutated to Adenovirus E4 mutant DNA replication centers is important for its inhibitory effect on viral DNA accumulation. Virology 2018; 527:47-56. [PMID: 30453211 DOI: 10.1016/j.virol.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Adenovirus (Ad) type 5 (Ad5) E4 deletion mutants including H5dl1007 (E4-) induce a DNA damage response (DDR) that activates the kinase ataxia-telangiectasia mutated (ATM), which can interfere with efficient viral DNA replication. We find that localization of active phosphorylated ATM (pATM) to E4- viral replication centers (VRCs) is important for its inhibitory effect. ATM is necessary for localization of RNF8 and 53BP1 to E4 mutant VRCs, while recruitment of DDR factors Mre11, Mdc1 and γH2AX is ATM-independent, raising the possibility that ATM may affect viral chromatin at VRCs. We assessed E4- and Ad5 chromatin organization by micrococcal nuclease (MN) digestion. A significant fraction of Ad5 DNA is somewhat resistant to MN digestion, whereas E4- DNA is more susceptible. ATM inhibition increases the fraction of E4- DNA that is resistant to MN digestion. Our results address possible mechanisms through which ATM inhibits E4- DNA replication.
Collapse
|
10
|
Ramos Pittol JM, Oruba A, Mittler G, Saccani S, van Essen D. Zbtb7a is a transducer for the control of promoter accessibility by NF-kappa B and multiple other transcription factors. PLoS Biol 2018; 16:e2004526. [PMID: 29813070 PMCID: PMC5993293 DOI: 10.1371/journal.pbio.2004526] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/08/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Abstract
Gene expression in eukaryotes is controlled by DNA sequences at promoter and enhancer regions, whose accessibility for binding by regulatory proteins dictates their specific patterns of activity. Here, we identify the protein Zbtb7a as a factor required for inducible changes in accessibility driven by transcription factors (TFs). We show that Zbtb7a binds to a significant fraction of genomic promoters and enhancers, encompassing many target genes of nuclear factor kappa B (NFκB) p65 and a variety of other TFs. While Zbtb7a binding is not alone sufficient to directly activate promoters, it is required to enable TF-dependent control of accessibility and normal gene expression. Using p65 as a model TF, we show that Zbtb7a associates with promoters independently of client TF binding. Moreover, the presence of prebound Zbtb7a can specify promoters that are amenable to TF-induced changes in accessibility. Therefore, Zbtb7a represents a widely used promoter factor that transduces signals from other TFs to enable control of accessibility and regulation of gene expression. Gene activation is driven by the binding of regulatory proteins to the specific DNA sequences that control each gene. However, these sequences are not always accessible for binding in every type of cell, and so differences in their accessibility can underlie the range of cell types in which particular genes can be activated. Although several cellular processes can alter the accessibilities of these sequences, it is still often unclear how these processes are directed to act at specific genes. We have discovered that the protein Zbtb7a binds near numerous gene-regulatory sequences throughout the genome and that it enables other DNA-binding proteins to trigger changes in their accessibility and to activate nearby genes. However, unlike many other factors that control gene activation, the binding of Zbtb7a alone does not seem to be sufficient to switch on gene expression; instead, its function is required for activation of genes that are independently bound by a specific set of transcription factors (TFs), and it could therefore be considered to “transduce” their gene-regulatory activities. The implication of this is that the presence or absence of Zbtb7a at any gene in a particular cell type may represent one of the aspects that can determine whether that gene is able to be activated or not.
Collapse
Affiliation(s)
- José Miguel Ramos Pittol
- Institute for Research on Cancer and Aging, Nice, Nice, France
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Agata Oruba
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Simona Saccani
- Institute for Research on Cancer and Aging, Nice, Nice, France
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail: (DE); (SS)
| | - Dominic van Essen
- Institute for Research on Cancer and Aging, Nice, Nice, France
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail: (DE); (SS)
| |
Collapse
|
11
|
Thiel G, Rössler OG. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements. Gene 2018. [PMID: 29514046 DOI: 10.1016/j.gene.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
12
|
Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev 2018; 32:42-57. [PMID: 29378788 PMCID: PMC5828394 DOI: 10.1101/gad.308619.117] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/21/2017] [Indexed: 12/03/2022]
Abstract
Here, Mikhaylichenko et al. investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. The authors demonstrate that while the timing of enhancer transcription is correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers and conclude that this is likely an inherent sequence property of the elements themselves. Gene expression is regulated by promoters, which initiate transcription, and enhancers, which control their temporal and spatial activity. However, the discovery that mammalian enhancers also initiate transcription questions the inherent differences between enhancers and promoters. Here, we investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. We show that while the timing of enhancer transcription is generally correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers. To assess how this impacts function, we developed a dual transgenic assay to simultaneously measure enhancer and promoter activities from a single element in the same embryo. Extensive transgenic analysis revealed a relationship between the direction of endogenous transcription and the ability to function as an enhancer or promoter in vivo, although enhancer RNA (eRNA) production and activity are not always strictly coupled. Some enhancers (mainly bidirectional) can act as weak promoters, producing overlapping spatio–temporal expression. Conversely, bidirectional promoters often act as strong enhancers, while unidirectional promoters generally cannot. The balance between enhancer and promoter activity is generally reflected in the levels and directionality of eRNA transcription and is likely an inherent sequence property of the elements themselves.
Collapse
Affiliation(s)
- Olga Mikhaylichenko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Vladyslav Bondarenko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Dermot Harnett
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Ignacio E Schor
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Matilda Males
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| |
Collapse
|
13
|
Stimulation of transient receptor potential M3 (TRPM3) channels increases interleukin-8 gene promoter activity involving AP-1 and extracellular signal-regulated protein kinase. Cytokine 2017; 103:133-141. [PMID: 28982580 DOI: 10.1016/j.cyto.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Stimulation of Ca2+ permeable TRPM3 (transient receptor potential melastatin-3) channels with the steroid ligand pregnenolone sulfate activates stimulus-responsive transcription factors, including the transcription factor AP-1 (activator protein-1). As part of a search for AP-1-regulated target genes we analyzed the gene encoding interleukin-8 (IL-8) in HEK293 cells expressing TRPM3 channels. Here, we show that stimulation of TRPM3 channels activated transcription of an IL-8 promoter-controlled reporter gene that was embedded into the chromatin of the cells. Mutational analysis of the IL-8 promoter revealed that the AP-1 binding site of the IL-8 promoter was essential to connect TRPM3 stimulation with the transcription of the IL-8 gene. Genetic experiments revealed that the basic region leucine zipper proteins c-Jun and ATF2 and the ternary complex factor Elk-1 are essential to couple TRPM3 channel stimulation with the IL-8 gene. Moreover, we identified extracellular signal-regulated protein kinase (ERK1/2) as signal transducer connecting TRPM3 stimulation with enhanced transcription of the IL-8 gene. Furthermore, we show that stimulation of TRPC6 (transient receptor potential canonical-6) channels with its ligand hyperforin also increased IL-8 promoter activity, involving the AP-1 binding site within the IL-8 gene, suggesting that activation of IL-8 gene transcription may be a common theme following TRP channel stimulation.
Collapse
|
14
|
Thiel G, Rössler OG. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors. Pharmacol Res 2017; 117:166-176. [DOI: 10.1016/j.phrs.2016.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/10/2023]
|
15
|
Histones Are Rapidly Loaded onto Unintegrated Retroviral DNAs Soon after Nuclear Entry. Cell Host Microbe 2016; 20:798-809. [PMID: 27866901 DOI: 10.1016/j.chom.2016.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/25/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Chromosomal structure of nuclear DNA is usually maintained by insertion of nucleosomes into preexisting chromatin, both on newly synthesized DNA at replication forks and at sites of DNA damage. But during retrovirus infection, a histone-free DNA copy of the viral genome is synthesized that must be loaded with nucleosomes de novo. Here, we show that core histones are rapidly loaded onto unintegrated Moloney murine leukemia virus DNAs. Loading of nucleosomes requires nuclear entry, but does not require viral DNA integration. The histones associated with unintegrated DNAs become marked by covalent modifications, with a delay relative to the time of core histone loading. Expression from unintegrated DNA can be enhanced by modulation of the histone-modifying machinery. The data show that histone loading onto unintegrated DNAs occurs very rapidly after nuclear entry and does not require prior establishment of an integrated provirus.
Collapse
|
16
|
Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, Ahituv N, Shendure J. A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Res 2016; 27:38-52. [PMID: 27831498 PMCID: PMC5204343 DOI: 10.1101/gr.212092.116] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022]
Abstract
Candidate enhancers can be identified on the basis of chromatin modifications, the binding of chromatin modifiers and transcription factors and cofactors, or chromatin accessibility. However, validating such candidates as bona fide enhancers requires functional characterization, typically achieved through reporter assays that test whether a sequence can increase expression of a transcriptional reporter via a minimal promoter. A longstanding concern is that reporter assays are mainly implemented on episomes, which are thought to lack physiological chromatin. However, the magnitude and determinants of differences in cis-regulation for regulatory sequences residing in episomes versus chromosomes remain almost completely unknown. To address this systematically, we developed and applied a novel lentivirus-based massively parallel reporter assay (lentiMPRA) to directly compare the functional activities of 2236 candidate liver enhancers in an episomal versus a chromosomally integrated context. We find that the activities of chromosomally integrated sequences are substantially different from the activities of the identical sequences assayed on episomes, and furthermore are correlated with different subsets of ENCODE annotations. The results of chromosomally based reporter assays are also more reproducible and more strongly predictable by both ENCODE annotations and sequence-based models. With a linear model that combines chromatin annotations and sequence information, we achieve a Pearson's R2 of 0.362 for predicting the results of chromosomally integrated reporter assays. This level of prediction is better than with either chromatin annotations or sequence information alone and also outperforms predictive models of episomal assays. Our results have broad implications for how cis-regulatory elements are identified, prioritized and functionally validated.
Collapse
Affiliation(s)
- Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Daniela M Witten
- Departments of Statistics and Biostatistics, University of Washington, Seattle, Washington 98195, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California, San Francisco, San Francisco, California 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| |
Collapse
|
17
|
Zhao N, Li S, Wang R, Xiao M, Meng Y, Zeng C, Fang JH, Yang J, Zhuang SM. Expression of microRNA-195 is transactivated by Sp1 but inhibited by histone deacetylase 3 in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:933-42. [PMID: 27179445 DOI: 10.1016/j.bbagrm.2016.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
MiR-195 expression is frequently reduced in various cancers, but its underlying mechanisms remain unknown. To explore whether abnormal transcription contributed to miR-195 downregulation in hepatocellular carcinoma (HCC), we characterized the -2165-bp site upstream of mature miR-195 as transcription start site and the -2.4 to -2.0-kb fragment as the promoter of miR-195 gene. Subsequent investigation showed that deletion of the predicted Sp1 binding site decreased the miR-195 promoter activity; Sp1 silencing significantly reduced the miR-195 promoter activity and the endogenous miR-195 level; Sp1 directly interacted with the miR-195 promoter in vitro and in vivo. These data suggest Sp1 as a transactivator for miR-195 transcription. Interestingly, miR-195 expression was also subjected to epigenetic regulation. Histone deacetylase 3 (HDAC3) could anchor to the miR-195 promoter via interacting with Sp1 and consequently repress the Sp1-mediated miR-195 transactivation by deacetylating histone in HCC cells. Consistently, substantial increase of HDAC3 protein was detected in human HCC tissues and HDAC3 upregulation was significantly correlated with miR-195 downregulation, suggesting that HDAC3 elevation may represent an important cause for miR-195 reduction in HCC. Our findings uncover the mechanisms underlying the transcriptional regulation and expression deregulation of miR-195 in HCC cells and provide new insight into microRNA biogenesis in cancer cells.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Siwen Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Ruizhi Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Manhuan Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Yu Meng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Chunxian Zeng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Jian-Hong Fang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Jine Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Shi-Mei Zhuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
18
|
Khateb M, Fourier N, Barnea-Yizhar O, Ram S, Kovalev E, Azriel A, Rand U, Nakayama M, Hauser H, Gepstein L, Levi BZ. The Third Intron of the Interferon Regulatory Factor-8 Is an Initiator of Repressed Chromatin Restricting Its Expression in Non-Immune Cells. PLoS One 2016; 11:e0156812. [PMID: 27257682 PMCID: PMC4892516 DOI: 10.1371/journal.pone.0156812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/19/2016] [Indexed: 12/03/2022] Open
Abstract
Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron’s properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation.
Collapse
Affiliation(s)
- Mamduh Khateb
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Nitsan Fourier
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ofer Barnea-Yizhar
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sigal Ram
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ekaterina Kovalev
- Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Aviva Azriel
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ulfert Rand
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manabu Nakayama
- Department of Technology Development, Kazusa DNA Research Institute, Kazusa-Kamatari, Kazusa, Japan
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lior Gepstein
- Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ben-Zion Levi
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
19
|
Piekna-Przybylska D, Bambara RA, Balakrishnan L. Acetylation regulates DNA repair mechanisms in human cells. Cell Cycle 2016; 15:1506-17. [PMID: 27104361 DOI: 10.1080/15384101.2016.1176815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Robert A Bambara
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Lata Balakrishnan
- b Department of Biology , Indiana University-Purdue University Indianapolis , Indianapolis , IN , USA
| |
Collapse
|
20
|
Cheng D, Zhao Y, Wang S, Jia W, Kang J, Zhu J. Human Telomerase Reverse Transcriptase (hTERT) Transcription Requires Sp1/Sp3 Binding to the Promoter and a Permissive Chromatin Environment. J Biol Chem 2015; 290:30193-203. [PMID: 26487723 DOI: 10.1074/jbc.m115.662221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
The transcription of human telomerase gene hTERT is regulated by transcription factors (TFs), including Sp1 family proteins, and its chromatin environment. To understand its regulation in a relevant chromatin context, we employed bacterial artificial chromosome reporters containing 160 kb of human genomic sequence containing the hTERT gene. Upon chromosomal integration, the bacterial artificial chromosomes recapitulated endogenous hTERT expression, contrary to transient reporters. Sp1/Sp3 expression did not correlate with hTERT promoter activity, and these TFs bound to the hTERT promoters in both telomerase-positive and telomerase-negative cells. Mutation of the proximal GC-box resulted in a dramatic decrease of hTERT promoter activity, and mutations of all five GC-boxes eliminated its transcriptional activity. Neither mutations of GC-boxes nor knockdown of endogenous Sp1 impacted promoter binding by other TFs, including E-box-binding proteins, and histone acetylation and trimethylation of histone H3K9 at the hTERT promoter in telomerase-positive and -negative cells. The result indicated that promoter binding by Sp1/Sp3 was essential, but not a limiting step, for hTERT transcription. hTERT transcription required a permissive chromatin environment. Importantly, our data also revealed different functions of GC-boxes and E-boxes in hTERT regulation; although GC-boxes were essential for promoter activity, factors bound to the E-boxes functioned to de-repress hTERT promoter.
Collapse
Affiliation(s)
- De Cheng
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210
| | - Yuanjun Zhao
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Shuwen Wang
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210
| | - Wenwen Jia
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiyue Zhu
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210, the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| |
Collapse
|
21
|
Chromatin-Mediated Reversible Silencing of Sense-Antisense Gene Pairs in Embryonic Stem Cells Is Consolidated upon Differentiation. Mol Cell Biol 2015; 35:2436-47. [PMID: 25963662 DOI: 10.1128/mcb.00029-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
Genome-wide gene expression studies have indicated that the eukaryotic genome contains many gene pairs showing overlapping sense and antisense transcription. Regulation of these coding and/or noncoding gene pairs involves intricate regulatory mechanisms. In the present study, we utilized an enhanced green fluorescent protein (EGFP)-tagged reporter plasmid cis linked to a doxycycline-inducible antisense promoter, generating antisense transcription that fully overlaps EGFP, to study the mechanism and dynamics of gene silencing after induction of noncoding antisense transcription in undifferentiated and differentiating mouse embryonic stem cells (ESCs). We found that EGFP silencing is reversible in ESCs but is locked into a stable state upon ESC differentiation. Reversible silencing in ESCs is chromatin dependent and is associated with accumulation of trimethylated lysine 36 on histone H3 (H3K36me3) at the EGFP promoter region. In differentiating ESCs, antisense transcription-induced accumulation of H3K36me3 was associated with an increase in CpG methylation at the EGFP promoter. Repression of the sense promoter was affected by small-molecule inhibitors which interfere with DNA methylation and histone demethylation pathways. Our results indicate a general mechanism for silencing of fully overlapping sense-antisense gene pairs involving antisense transcription-induced accumulation of H3K36me3 at the sense promoter, resulting in reversible silencing of the sense partner, which is stabilized during ESC differentiation by CpG methylation.
Collapse
|
22
|
SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun 2015; 6:6569. [PMID: 25798578 PMCID: PMC4382998 DOI: 10.1038/ncomms7569] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022] Open
Abstract
Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription.
Collapse
|
23
|
Nagel ZD, Chaim IA, Samson LD. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst) 2014; 19:199-213. [PMID: 24780560 DOI: 10.1016/j.dnarep.2014.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Mladenova V, Mladenov E, Russev G. Organization of Plasmid DNA into Nucleosome-Like Structures after Transfection in Eukaryotic Cells. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10817609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
25
|
Keren-Shaul H, Lev-Maor G, Ast G. Pre-mRNA splicing is a determinant of nucleosome organization. PLoS One 2013; 8:e53506. [PMID: 23326444 PMCID: PMC3542351 DOI: 10.1371/journal.pone.0053506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
Chromatin organization affects alternative splicing and previous studies have shown that exons have increased nucleosome occupancy compared with their flanking introns. To determine whether alternative splicing affects chromatin organization we developed a system in which the alternative splicing pattern switched from inclusion to skipping as a function of time. Changes in nucleosome occupancy were correlated with the change in the splicing pattern. Surprisingly, strengthening of the 5' splice site or strengthening the base pairing of U1 snRNA with an internal exon abrogated the skipping of the internal exons and also affected chromatin organization. Over-expression of splicing regulatory proteins also affected the splicing pattern and changed nucleosome occupancy. A specific splicing inhibitor was used to show that splicing impacts nucleosome organization endogenously. The effect of splicing on the chromatin required a functional U1 snRNA base pairing with the 5' splice site, but U1 pairing was not essential for U1 snRNA enhancement of transcription. Overall, these results suggest that splicing can affect chromatin organization.
Collapse
Affiliation(s)
- Hadas Keren-Shaul
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
26
|
de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 2012; 40:10596-613. [PMID: 23002135 PMCID: PMC3510492 DOI: 10.1093/nar/gks863] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE), instructive epigenetic marks need to be identified and their writers/erasers should then be fused to gene-specific DNA binding domains. The appropriate epigenetic mark(s) to change in order to efficiently modulate gene expression might have to be validated for any given chromatin context and should be (mitotically) stable. Various insights in such issues have been obtained by sequence-specific targeting of epigenetic enzymes, as is presented in this review. Features of such studies provide critical aspects for further improving EGE. An example of this is the direct effect of the edited mark versus the indirect effect of recruited secondary proteins by targeting epigenetic enzymes (or their domains). Proof-of-concept of expression modulation of an endogenous target gene is emerging from the few EGE studies reported. Apart from its promise in correcting disease-associated epi-mutations, EGE represents a powerful tool to address fundamental epigenetic questions.
Collapse
Affiliation(s)
- Marloes L de Groote
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713 GZ, Groningen, The Netherlands
| | | | | |
Collapse
|
27
|
Žumer K, Plemenitaš A, Saksela K, Peterlin BM. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res 2011; 39:7908-19. [PMID: 21724609 PMCID: PMC3185428 DOI: 10.1093/nar/gkr527] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/17/2023] Open
Abstract
Autoimmune regulator (AIRE) is a transcription factor that induces the expression of a large subset of otherwise strictly tissue restricted antigens in medullary thymic epithelial cells, thereby enabling their presentation to developing T cells for negative selection. Mutations in AIRE lead to autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a rare monogenetic disease. Although it has been reported that AIRE interacts with proteins involved in nuclear transport, DNA-damage response, chromatin remodeling, transcription and pre-mRNA-splicing, the precise mechanism of AIRE-induced tissue restricted antigen expression has remained elusive. In this study, we investigated an APECED patient mutation that causes the loss of the extreme C-terminus of AIRE and found that this mutant protein is transcriptionaly inactive. When tethered heterologously to DNA, this domain could stimulate transcription and splicing by itself. Moreover, the loss of this C-terminus disrupted interactions with the positive transcription elongation factor b (P-TEFb). Via P-TEFb, AIRE increased levels of RNA polymerase II on and enhanced pre-mRNA splicing of heterologous and endogenous target genes. Indeed, the inhibition of CDK9, the kinase subunit of P-TEFb, inhibited AIRE-induced pre-mRNA splicing of these genes. Thus, AIRE requires P-TEFb to activate transcription elongation and co-transcriptional processing of target genes.
Collapse
Affiliation(s)
- Kristina Žumer
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
28
|
Chen Y, Dong E, Grayson DR. Analysis of the GAD1 promoter: trans-acting factors and DNA methylation converge on the 5' untranslated region. Neuropharmacology 2010; 60:1075-87. [PMID: 20869372 DOI: 10.1016/j.neuropharm.2010.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 12/22/2022]
Abstract
GAD67 corresponds to one of two enzymes that decarboxylates glutamate to produce γ-aminobutyric acid, the main inhibitory neurotransmitter in the mammalian central nervous system, hence defining the cellular phenotype of a diverse set of inhibitory interneurons of the brain. Reduced cortical GAD67 mRNA levels have consistently been reported in schizophrenia and bipolar disorder with psychosis. The human gene encoding GAD67, GAD1, is located on chromosome 2q31.1 and the transcriptional start site resides within a large CpG island that spans a region extending from upstream through the first exon. We have analyzed the GAD1 promoter using transient transfection analysis of upstream and downstream sequences in NT2 cells, a human neuroprogenitor cell line. Interestingly, results from these studies show that cis-acting regulatory elements are located downstream of the RNA start site and are in the region corresponding to the first exon. Trans-acting factors such as Pitx2 and the Dlx family of transcription factors are active in promoting downstream reporter expression even when all of the 5' flanking sequences are removed. However, those constructs that contain an internal deletion from +66 to +173 bp fail to support expression even when these factors are provided in trans. We have previously shown that the Class I histone deacetylase inhibitor MS-275 potently activates GAD1 mRNA expression in NT2 cells suggesting the possibility that the promoter is sensitive to drugs that induce chromatin remodeling. Using methyl DNA immuneprecipitation of MS-275-treated NT2 cells, we provide data showing that Class I HDAC inhibition mediated an increase in GAD1 expression and that this was accompanied by decreased GAD1 promoter methylation. Moreover, the reduced levels of GAD1 DNA methylation are highest in those regions proximal to the location of the in vitro defined cis-acting regulatory elements. Our data suggest that changes in promoter methylation associated with gene regulation are not random but overlap the locations of proximal cis-acting elements. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Ying Chen
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | | | | |
Collapse
|
29
|
Qiu T, Zhao D, Zhou G, Liang Y, He Z, Liu Z, Peng X, Zhou L. A positively charged QDs-based FRET probe for micrococcal nuclease detection. Analyst 2010; 135:2394-9. [DOI: 10.1039/c0an00254b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Wang S, Zhao Y, Leiby MA, Zhu J. Studying human telomerase gene transcription by a chromatinized reporter generated by recombinase-mediated targeting of a bacterial artificial chromosome. Nucleic Acids Res 2009; 37:e111. [PMID: 19528078 PMCID: PMC2761251 DOI: 10.1093/nar/gkp511] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endogenous human telomerase reverse transcriptase (hTERT) gene is repressed in somatic cells. To study the mechanisms of its repression, we developed a strategy of retrovirus-directed Cre recombinase-mediated BAC targeting, or RMBT, to generate single-copy integrations of BAC at pre-engineered chromosomal sites. This technique involved retroviral transduction of acceptor loci, containing an HSV thymidine kinase marker, and subsequent integration of BAC constructs into the acceptor sites, utilizing the loxP and lox511 sites present in the vector backbones. The BAC reporter, with a Renilla luciferase cassette inserted downstream of the hTERT promoter, was retrofitted with a puromycin marker. Through puromycin selection and ganciclovir counter-selection, a targeting efficiency of over 50% was achieved. We demonstrated that the activity and chromatin structures of the hTERT promoter in chromosomally integrated BAC reporter recapitulated its endogenous counterpart of the host cells. Therefore, we have established a genetically amendable platform to study chromatin and epigenetic regulation of the hTERT gene. The highly efficient and versatile RMBT technique has general applicability for studying largely unexplored chromatin-dependent mechanisms of promoter regulation of various genes.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
31
|
Safronova O, Pluemsampant S, Nakahama KI, Morita I. Regulation of chemokine gene expression by hypoxia via cooperative activation of NF-kappaB and histone deacetylase. Int J Biochem Cell Biol 2009; 41:2270-80. [PMID: 19446037 DOI: 10.1016/j.biocel.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 11/28/2022]
Abstract
Hypoxia is a microenvironmental factor frequently associated with tumors and inflammation. This study addresses the question of how hypoxia modulates the basal and IL-1 beta-induced production of cytokines and aims to identify the underlying mechanism of hypoxic transcriptional repression. We found that despite the similarities of the promoter structures of IL-8 and MCP-1, these chemokines were differently regulated by hypoxia (an increase in IL-8, but a decrease in MCP-1 mRNA and protein expression). Such differences were not observed in a reporter gene assay, in which both of the promoters were activated by hypoxia. The difference in the response to hypoxia between MCP-1 expression and the promoter assay was not due to mRNA instability. Using proteosome inhibitor MG132 and I kappaB overexpression we demonstrated that an NF-kappaB-dependent mechanism was involved in both the activation of IL-8 and the repression of MCP-1 mRNA expression in response to hypoxia. The histone deacetylase inhibitor Trihostatin A abolished the inhibitory actions of hypoxia on IL-1 beta-induced MCP-1 gene expression. Furthermore, hypoxia induced histone deacetylase activity in the nuclear extracts. Although stimulation with IL-1 beta and/or hypoxia increased the acetylation of histones H3 and H4 in the presence of Trihostatin A, histone acetylation remained unchanged when the cells were treated without histone deacetylase inhibitor. Collectively, our findings suggest that transiently transfected promoters are not subject to the same NF-kappaB regulatory mechanisms as their chromatinized counterparts. NF-kappaB, activated by hypoxia, can act as a transcriptional repressor via a mechanism that involves deacetylation of histones.
Collapse
Affiliation(s)
- Olga Safronova
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|
32
|
Hebbar PB, Archer TK. Altered histone H1 stoichiometry and an absence of nucleosome positioning on transfected DNA. J Biol Chem 2008; 283:4595-601. [PMID: 18156629 PMCID: PMC3339569 DOI: 10.1074/jbc.m709121200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The packaging of DNA with histones to form chromatin represents an important and powerful mechanism to regulate gene expression. Critical aspects of chromatin-specific contributions to gene regulation have been revealed by the comparison of the activities from DNA regulatory elements examined both as transiently transfected reporters and stably integrated reporters organized as chromatin. Using the mouse mammary tumor virus (MMTV) promoter as a model, we probed the structural differences between transiently transfected and stably integrated DNA templates. We demonstrated that all four core histones and the linker histone (H1) are associated with the transient template. However, whereas the core histones were present at a similar stoichiometry between the transient and the stable templates, we found that linker histone H1 molecules are fewer on the transient template. By using supercoiling assay, we show that the transient template shows intermediate levels of nucleosomal assembly. Overexpression of H1 resulted in repression of MMTV transcriptional activity and reduced accessibility to restriction endonucleases on the transient MMTV promoter. However, the addition of exogenous H1 failed to impose a normal chromatin structure on the transient template as measured by micrococcal nuclease digestion pattern. Thus, our results suggest that while transiently transfected DNA acquires a full complement of core histones, the underrepresentation of H1 on the transient template is indicative of structural differences between the two templates that may underlie the differences in the mechanisms of activation of the two templates.
Collapse
Affiliation(s)
- Pratibha B Hebbar
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
33
|
Horswill MA, Narayan M, Warejcka DJ, Cirillo LA, Twining SS. Epigenetic silencing of maspin expression occurs early in the conversion of keratocytes to fibroblasts. Exp Eye Res 2008; 86:586-600. [PMID: 18291368 DOI: 10.1016/j.exer.2008.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 12/10/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022]
Abstract
Maspin, a 42 kDa non-classical serpin (serine protease inhibitor) that controls cell migration and invasion, is mainly expressed by epithelial-derived cells but is also expressed in corneal stromal keratocytes. Upon culture of stromal keratocytes in the presence of FBS, maspin is down-regulated to nearly undetectable levels by passage two. DNA methylation is one of several processes that controls gene expression during cell differentiation, development, genetic imprinting, and carcinogenesis but has not been studied in corneal stromal cells. The purpose of this study was to determine whether DNA methylation of the maspin promoter and histone H3 dimethylation is involved in the mechanism of down-regulation of maspin synthesis in human corneal stromal fibroblasts and myofibroblasts. Human donor corneal stroma cells were immediately placed into serum-free defined medium or cultured in the presence of FBS and passed into serum-free medium or medium containing FBS or FGF-2 to induce the fibroblast phenotype or TGF-beta1 for the myofibroblast phenotype. These cell types are found in wounded corneas. The cells were used to prepare RNA for semi-quantitative or quantitative RT-PCR or to extract protein for Western analysis. In addition, P4 FBS cultured fibroblasts were treated with the DNA demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC), and the histone deacetylase inhibitor, trichostatin A (TSA). Cells with and without treatment were harvested and assayed for DNA methylation using sodium bisulfite sequencing. The methylation state of histone H3 associated with the maspin gene in the P4 fibroblast cells was determined using a ChIP assay. Freshly harvested corneal stromal cells expressed maspin but upon phenotypic differentiation, maspin mRNA and protein were dramatically down-regulated. Sodium bisulfite sequencing revealed that the maspin promoter in the freshly isolated stromal keratocytes was hypomethylated while both the P0 stromal cells and the P1 cells cultured in the presence of serum-free defined medium, FGF-2 and TGF-beta1 were hypermethylated. Down-regulation of maspin synthesis was also associated with histone H3 dimethylation at lysine 9. Both maspin mRNA and protein were re-expressed at low levels with 5-Aza-dC but not TSA treatment. Addition of TSA to 5-Aza-dC treated cells did not increase maspin expression. Treatment with 5-Aza-dC did not significantly alter demethylation of the maspin promoter but did demethylate histone H3. These results show maspin promoter hypermethylation and histone methylation occur with down-regulation of maspin synthesis in corneal stromal cells and suggest regulation of genes upon conversion of keratocytes to wound healing fibroblasts can involve promoter and histone methylation.
Collapse
Affiliation(s)
- Mark A Horswill
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
34
|
Arhondakis S, Clay O, Bernardi G. GC level and expression of human coding sequences. Biochem Biophys Res Commun 2008; 367:542-5. [PMID: 18177737 DOI: 10.1016/j.bbrc.2007.12.155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 12/21/2007] [Indexed: 11/29/2022]
Abstract
Several groups have addressed the issue of the influence of GC on expression levels in mammalian genes. In general, GC-rich genes appeared to be more expressed than GC-poor ones. Recently, expression levels of GC(3)-rich and GC(3)-poor versions of genes (GC(3) is the third codon position GC), inserted in vector plasmids, were compared in order to eliminate differences associated with their genomic context. Transfection experiments showed that GC(3)-rich genes were expressed more efficiently than their GC(3)-poor counterparts, indicating that GC(3) dramatically and intrinsically boosts expression efficiency. Here we show that, while the protocols used eliminated the original genomic context, they replaced it with the plasmid contexts whose compositional properties affected the results.
Collapse
Affiliation(s)
- Stilianos Arhondakis
- Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | |
Collapse
|
35
|
Tong W, Kulaeva OI, Clark DJ, Lutter LC. Topological analysis of plasmid chromatin from yeast and mammalian cells. J Mol Biol 2006; 361:813-22. [PMID: 16890953 DOI: 10.1016/j.jmb.2006.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/23/2006] [Accepted: 07/07/2006] [Indexed: 12/01/2022]
Abstract
Yeast has proven to be a powerful system for investigation of chromatin structure. However, the extent to which yeast chromatin can serve as a model for mammalian chromatin is limited by the significant number of differences that have been reported. To further investigate the structural relationship between the two chromatins, we have performed a DNA topological analysis of pRSSVO, a 5889 base-pair plasmid that can replicate in either yeast or mammalian cells. When grown in mammalian cells, pRSSVO contains an average of 33 negative supercoils, consistent with one nucleosome per 181 bp. This is close to the measured nucleosome repeat length of 190 bp. However, when grown in yeast cells, pRSSVO contains an average of only 23 negative supercoils, which is indicative of only one nucleosome per 256 bp. This is dramatically different from the measured nucleosome repeat length of 165 bp. To account for these observations, we suggest that yeast chromatin is composed of relatively short ordered arrays of nucleosomes with a repeat of 165 bp, separated by substantial gaps, possibly corresponding to regulatory regions.
Collapse
Affiliation(s)
- Wilbur Tong
- Molecular Biology Research Program, Henry Ford Hospital, Floor 5D, One Ford Place, Detroit, MI 48202-3450, USA
| | | | | | | |
Collapse
|
36
|
Bishop CL, Ramalho M, Nadkarni N, May Kong W, Higgins CF, Krauzewicz N. Role for centromeric heterochromatin and PML nuclear bodies in the cellular response to foreign DNA. Mol Cell Biol 2006; 26:2583-94. [PMID: 16537904 PMCID: PMC1430340 DOI: 10.1128/mcb.26.7.2583-2594.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear spatial positioning plays an important role in the epigenetic regulation of eukaryotic gene expression. Here we show a role for nuclear spatial positioning in regulating episomal transgenes that are delivered by virus-like particles (VLPs). VLPs mediate the delivery of plasmid DNA (pDNA) to cell nuclei but lack viral factors involved in initiating and regulating transcription. By tracking single fluorescently labeled VLPs, coupled with luciferase reporter gene assays, we found that VLPs transported pDNA to cell nuclei efficiently but transgenes were immediately silenced by the cell. An investigation of the nuclear location of fluorescent VLPs revealed that the pDNAs were positioned next to centromeric heterochromatin. The activation of transcription by providing viral factors or inhibiting histone deacetylase activity resulted in the localization to euchromatin regions. Further, the activation of transcription induced the recruitment of PML nuclear bodies (PML-NBs) to the VLPs. This association did not play a role in regulating transgene expression, but PML protein was necessary for the inhibition of transgene expression with alpha interferon (IFN-alpha). These results support a model whereby cells can prevent foreign gene expression at two levels: by positioning transgenes next to centromeric heterochromatin or, if that is overcome, via the type I IFN response facilitated by PML-NB recruitment.
Collapse
Affiliation(s)
- Cleo L Bishop
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Papworth M, Kolasinska P, Minczuk M. Designer zinc-finger proteins and their applications. Gene 2006; 366:27-38. [PMID: 16298089 DOI: 10.1016/j.gene.2005.09.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/18/2005] [Indexed: 10/25/2022]
Abstract
The Cys(2)His(2) zinc finger is one of the most common DNA-binding motifs in Eukaryota. A simple mode of DNA recognition by the Cys(2)His(2) zinc finger domain provides an ideal scaffold for designing proteins with novel sequence specificities. The ability to bind specifically to virtually any DNA sequence combined with the potential of fusing them with effector domains has led to the technology of engineering of chimeric DNA-modifying enzymes and transcription factors. This in turn has opened the possibility of using the engineered zinc finger-based factors as novel human therapeutics. One such synthetic factor-designer zinc finger transcription activator of the vascular endothelial growth factor A gene-has recently entered clinical trials to evaluate the ability of stimulating the growth of blood vessels in treating the peripheral arterial obstructive disease. This review concentrates on the aspects of natural Cys(2)His(2) zinc fingers evolution and fundamental steps in design of engineered zinc finger proteins. The applications of engineered zinc finger proteins are discussed in a context of the mechanism mediating their effect on the targeted DNA. Furthermore, the regulation of the expression of zinc finger proteins and their targeting to various cellular compartments and to chromatin and non-chromatin target templates are described. Also possible future applications of designer zinc finger proteins are discussed.
Collapse
Affiliation(s)
- Monika Papworth
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, UK.
| | | | | |
Collapse
|
38
|
Rincón-Arano H, Valadez-Graham V, Guerrero G, Escamilla-Del-Arenal M, Recillas-Targa F. YY1 and GATA-1 interaction modulate the chicken 3'-side alpha-globin enhancer activity. J Mol Biol 2005; 349:961-75. [PMID: 15913647 DOI: 10.1016/j.jmb.2005.04.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 11/21/2022]
Abstract
Studying the chicken alpha-globin domain as a model system of gene regulation, we have previously identified contiguous silencer-enhancer elements located on the 3'-side of the domain. To better characterize the enhancer we performed a systematic functional analysis to define its expression influence range and the ubiquitous and stage-specific transcriptional regulators interacting with this control element. In contrast to previous reports, we found that, in addition to a core element that includes three GATA-1 binding sites, the enhancer incorporates a 120 base-pair DNA fragment where EKLF, NF-E2 and a fourth GATA-1 factor could interact. Functional experiments demonstrate that the enhancer activity over the adult alpha(D) promoter is differentially regulated. We found that the transcriptional factor Ying Yang 1 (YY1) binds to the 120 base-pair DNA fragment and its effect over the enhancer activity is GATA-1-dependent. In addition, we characterize a novel physical interaction between GATA-1 and YY1 that influences the enhancer function. Experiments using a histone deacetylation inhibitor indicate that, in pre-erythroblasts, the enhancer down-regulation could be influenced by a closed chromatin conformation. Our observations show that the originally defined enhancer possesses a more complex composition than previously assumed. We propose that its activity is modulated through differential nuclear factor interactions and chromatin modifications at distinct erythroid stages.
Collapse
Affiliation(s)
- Héctor Rincón-Arano
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México D.F. 04510, México
| | | | | | | | | |
Collapse
|
39
|
Abstract
Mammalian cell nuclei exhibit discrete sites where specific proteins characteristically localize. PML nuclear bodies (PML NBs) (nuclear domain 10s (ND10s)) are the primary localization site for the promyelocytic leukemia (PML) protein and the SP100 autoantigen. The observations that some PML and SP100 isoforms can function as transcriptional regulators, that both the size and number of PML bodies increase in response to interferon treatment, and that many mammalian viruses encode proteins that mediate disruption of PML bodies suggest that these sites suppress viral infection, perhaps by repressing viral gene expression. We hypothesized that a component of PML NBs functions as a repressor of gene expression. To test this hypothesis, we characterized the effect of PML or SP100 isoforms on expression of transfected reporter genes. PML-I, PML-VI, and SP100A did not repress reporter gene expression. In contrast, SP100B repressed reporter gene expression, especially under conditions in which the reporter gene expression was elevated by a viral transactivator or addition of trichostatin A to the culture medium. The SP100B DNA binding domain was required for repression. SP100B had no detectable effect on the amount, methylation pattern, or topological form of plasmid DNA in the nuclei of transfected cells. The demonstrated repressive activity of SP100B supports the hypothesis that SP100B is a component of an innate immune response that represses expression of ectopic DNA.
Collapse
Affiliation(s)
- Kent W Wilcox
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
40
|
Stewart MD, Li J, Wong J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 2005; 25:2525-38. [PMID: 15767660 PMCID: PMC1061631 DOI: 10.1128/mcb.25.7.2525-2538.2005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H3 lysine 9 (H3-K9) methylation has been shown to correlate with transcriptional repression and serve as a specific binding site for heterochromatin protein 1 (HP1). In this study, we investigated the relationship between H3-K9 methylation, transcriptional repression, and HP1 recruitment by comparing the effects of tethering two H3-K9-specific histone methyltransferases, SUV39H1 and G9a, to chromatin on transcription and HP1 recruitment. Although both SUV39H1 and G9a induced H3-K9 methylation and repressed transcription, only SUV39H1 was able to recruit HP1 to chromatin. Targeting HP1 to chromatin required not only K9 methylation but also a direct protein-protein interaction between SUV39H1 and HP1. Targeting methyl-K9 or a HP1-interacting region of SUV39H1 alone to chromatin was not sufficient to recruit HP1. We also demonstrate that methyl-K9 can suppress transcription independently of HP1 through a mechanism involving histone deacetylation. In an effort to understand how H3-K9 methylation led to histone deacetylation in both H3 and H4, we found that H3-K9 methylation inhibited histone acetylation by p300 but not its association with chromatin. Collectively, these data indicate that H3-K9 methylation alone can suppress transcription but is insufficient for HP1 recruitment in the context of chromatin exemplifying the importance of chromatin-associated factors in reading the histone code.
Collapse
Affiliation(s)
- M David Stewart
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
41
|
Hacker DL, Derow E, Wurm FM. The CELO adenovirus Gam1 protein enhances transient and stable recombinant protein expression in Chinese hamster ovary cells. J Biotechnol 2005; 117:21-9. [PMID: 15831244 DOI: 10.1016/j.jbiotec.2005.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/21/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
The Gam1 protein of the avian CELO adenovirus activates transcription through inhibition of histone deacetylase 1 (HDAC1). We investigated the effect of Gam1 on both transient and stable transgene expression in Chinese hamster ovary (CHO) cells, one of the most commonly used mammalian hosts for the large-scale production of recombinant proteins. Transient expression of Gam1 increased reporter protein levels up to 4-fold in suspension cultures of CHO DG44 cells co-transfected with a reporter gene and up to 20-fold in recombinant CHO DG44-derived cell lines. The highest levels of activation were observed when the transgene was under the control of the human cytomegalovirus (HCMV) immediate early promoter/enhancer. Increases in recombinant protein expression in the presence of Gam1 were not accompanied by an enhancement of cell growth or viability. We conclude that Gam1 may serve as a useful genetic tool for increasing recombinant protein expression in CHO DG44 cells.
Collapse
Affiliation(s)
- David L Hacker
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Cellular Biotechnology, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
42
|
Stewart MD, Li J, Wong J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 2005. [PMID: 15767660 DOI: 10.1128/mcb.25.7.2525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Histone H3 lysine 9 (H3-K9) methylation has been shown to correlate with transcriptional repression and serve as a specific binding site for heterochromatin protein 1 (HP1). In this study, we investigated the relationship between H3-K9 methylation, transcriptional repression, and HP1 recruitment by comparing the effects of tethering two H3-K9-specific histone methyltransferases, SUV39H1 and G9a, to chromatin on transcription and HP1 recruitment. Although both SUV39H1 and G9a induced H3-K9 methylation and repressed transcription, only SUV39H1 was able to recruit HP1 to chromatin. Targeting HP1 to chromatin required not only K9 methylation but also a direct protein-protein interaction between SUV39H1 and HP1. Targeting methyl-K9 or a HP1-interacting region of SUV39H1 alone to chromatin was not sufficient to recruit HP1. We also demonstrate that methyl-K9 can suppress transcription independently of HP1 through a mechanism involving histone deacetylation. In an effort to understand how H3-K9 methylation led to histone deacetylation in both H3 and H4, we found that H3-K9 methylation inhibited histone acetylation by p300 but not its association with chromatin. Collectively, these data indicate that H3-K9 methylation alone can suppress transcription but is insufficient for HP1 recruitment in the context of chromatin exemplifying the importance of chromatin-associated factors in reading the histone code.
Collapse
Affiliation(s)
- M David Stewart
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
43
|
Young DA, Billingham O, Sampieri CL, Edwards DR, Clark IM. Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-β1 induced murine tissue inhibitor of metalloproteinases-1 gene expression. FEBS J 2005; 272:1912-26. [PMID: 15819885 DOI: 10.1111/j.1742-4658.2005.04622.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor beta1 (TGF-beta1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-beta1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-beta1-induced Timp-1 expression. The repression of TGF-beta1-induced Timp-1 by TSA was maximal at 5 ng.mL(-1), while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is > 500 ng x mL(-1) TSA. A further HDACi, valproic acid, did not block TGF-beta1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-beta1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (-59/-53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun-/- cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif.
Collapse
Affiliation(s)
- David A Young
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
44
|
Miao CH. A novel gene expression system: non-viral gene transfer for hemophilia as model systems. ADVANCES IN GENETICS 2005; 54:143-77. [PMID: 16096011 DOI: 10.1016/s0065-2660(05)54007-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is highly desirable to generate tissue-specific and persistently high-level transgene expression per genomic copy from gene therapy vectors. Such vectors can reduce the cost and preparation of the vectors and reduce possible host immune responses to the vector and potential toxicity. Many gene therapy vectors have failed to produce therapeutic levels of transgene because of inefficient promoters, loss of vector or gene expression from episomal vectors, or a silencing effect of integration sites on integrating vectors. Using in vivo screening of vectors incorporating many different combinations of gene regulatory sequences, liver-specific, high-expressing vectors to accommodate factor IX, factor VIII, and other genes for effective gene transfer have been established. Persistent and high levels of factor IX and factor VIII gene expression for treating hemophilia B and A, respectively, were achieved in mouse livers using hydrodynamics-based gene transfer of naked plasmid DNA incorporating these novel gene expression systems. Some other systems to prolong or stabilize the gene expression following gene transfer are also discussed.
Collapse
Affiliation(s)
- Carol H Miao
- Department of Pediatrics, University of Washington and Children's Hospital and Regional Medical Center, Seattle, Washington 98195, USA
| |
Collapse
|
45
|
Potent stimulation of gene expression by histone deacetylase inhibitors on transiently transfected DNA. Biochem Biophys Res Commun 2004; 324:348-54. [PMID: 15465025 DOI: 10.1016/j.bbrc.2004.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Indexed: 12/31/2022]
Abstract
Transcription activity of chromatin is associated with histone acetylation which is regulated by recruitment of histone acetyltransferases and deacetylases (HDAC) to specific chromatin regions. We have tested how expression of a transfected or stably introduced gene correlates with histone acetylation. Our results demonstrate that expression of transiently transfected green fluorescence protein (GFP) genes is significantly enhanced by HDAC inhibitors. Although HDAC treatment did not induce noticeable changes in the chromatin structure of genomic DNA, chromatin immunoprecipitation showed that more transiently transfected DNA is assembled into chromatin containing acetylated histones in HDAC inhibitor treated cells when compared to untreated cells. For stably integrated GFP, the expression response to HDAC inhibitors varies between independent stable cell lines. However, there was no difference in histone acetylation associated with the integrated transgene between HDAC inhibitor responsive and non-responsive cells. Furthermore, the overall enhancement of transgene expression by HDAC inhibitors was not as pronounced as in transiently transfected cells.
Collapse
|
46
|
Wang S, Zhu J. The hTERT gene is embedded in a nuclease-resistant chromatin domain. J Biol Chem 2004; 279:55401-10. [PMID: 15516693 DOI: 10.1074/jbc.m411352200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Normal human cells rarely undergo spontaneous immortalization. Given that ectopic expression of the human telomerase catalytic subunit hTERT leads to cellular immortalization, the endogenous hTERT gene is likely constitutively repressed. Hence, we have examined the chromatin structure of the native hTERT locus and the neighboring loci, CRR9 and Xtrp2, in normal human fibroblasts and a set of immortal lines. Using generalized DNase I sensitivity assays, we revealed that the entire hTERT gene was embedded in a chromatin domain that was as resistant to the nuclease as the well studied beta-globin loci in both telomerase-positive and -negative cells. This condensed domain was at least 100 kb in size and contained the intergenic region 5' to the hTERT gene and the downstream Xtrp2 locus. A transition from the nuclease-sensitive CRR9 locus to the condensed region appeared near the 3'-end of the CRR9 gene. hTERT transcription was associated with the appearance of a major DNase I-hypersensitive site positioned around the hTERT transcription start site and several minor hypersensitive sites. In telomerase-negative cells, the inhibition of histone deacetylases by trichostatin A led to the opening of this chromatin domain, accompanied by transcription from the hTERT gene but not the Xtrp2 gene. In contrast, the inhibition of protein synthesis by cycloheximide induced transcription from both the hTERT and Xtrp2 genes, indicating that histone deacetylases and labile factors coordinate to silence this chromosomal region. Taken together, our data suggest a novel mechanism of hTERT regulation at the chromatin level and have important implications for studying telomerase expression.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
47
|
Ferrari S, Simmen KC, Dusserre Y, Müller K, Fourel G, Gilson E, Mermod N. Chromatin domain boundaries delimited by a histone-binding protein in yeast. J Biol Chem 2004; 279:55520-30. [PMID: 15471882 DOI: 10.1074/jbc.m410346200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When located next to chromosomal elements such as telomeres, genes can be subjected to epigenetic silencing. In yeast, this is mediated by the propagation of the SIR proteins from telomeres toward more centromeric regions. Particular transcription factors can protect downstream genes from silencing when tethered between the gene and the telomere, and they may thus act as chromatin domain boundaries. Here we have studied one such transcription factor, CTF-1, that binds directly histone H3. A deletion mutagenesis localized the barrier activity to the CTF-1 histone-binding domain. A saturating point mutagenesis of this domain identified several amino acid substitutions that similarly inhibited the boundary and histone binding activities. Chromatin immunoprecipitation experiments indicated that the barrier protein efficiently prevents the spreading of SIR proteins, and that it separates domains of hypoacetylated and hyperacetylated histones. Together, these results suggest a mechanism by which proteins such as CTF-1 may interact directly with histone H3 to prevent the propagation of a silent chromatin structure, thereby defining boundaries of permissive and silent chromatin domains.
Collapse
Affiliation(s)
- Sélène Ferrari
- Institute of Biotechnology, Center for Biotechnology UNIL-EPFL, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
48
|
Johannessen M, Delghandi MP, Seternes OM, Johansen B, Moens U. Synergistic activation of CREB-mediated transcription by forskolin and phorbol ester requires PKC and depends on the glutamine-rich Q2 transactivation domain. Cell Signal 2004; 16:1187-99. [PMID: 15240013 DOI: 10.1016/j.cellsig.2004.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Accepted: 03/15/2004] [Indexed: 11/24/2022]
Abstract
Recruitment of a RNA polymerase II complex by the glutamine-rich Q2 domain of cAMP response element-binding protein (CREB) allows basal transcriptional activity, while recruitment of CBP/p300 through signal-induced phosphorylation of the kinase-inducible domain at serine-133 enhances CREB-dependent transcription. Here we demonstrate that co-administration of forskolin and phorbol ester TPA to NIH3T3 cells provoked a dose-dependent increase in phosphoserine-133. CREB- and Q2-dependent transcription, as well as transcription by other glutamine-rich transcription factors, but not by transcription factors lacking glutamine-rich regions, augmented synergistically in the presence of both stimuli. Synergistic activation was abograted by specific inhibition of protein kinase C (PKC), but not of PKA. Co-stimulation increased the basal activity of a minimal, CREB-independent promoter. Therefore, Q2, which directly interacts with the RNA polymerase II initiation complex, may transmit the increased basal promoter activity provoked by these stimuli to CREB, thereby contributing to synergistic activation of CREB-mediated transcription. This synergism may have important implications on glutamine-rich transcription factor-target genes.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Tromsø N-9037, Norway
| | | | | | | | | |
Collapse
|
49
|
Hacker DL, Bertschinger M, Baldi L, Wurm FM. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells. Gene 2004; 341:227-34. [PMID: 15474305 DOI: 10.1016/j.gene.2004.06.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 06/17/2004] [Accepted: 06/29/2004] [Indexed: 11/27/2022]
Abstract
Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.
Collapse
Affiliation(s)
- David L Hacker
- Laboratory of Cellular Biotechnology, Swiss Federal Institute of Technology Lausanne (EPFL), CH1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
50
|
Ishiguro K, Sartorelli AC. Activation of transiently transfected reporter genes in 3T3 Swiss cells by the inducers of differentiation/apoptosis - dimethylsulfoxide, hexamethylene bisacetamide and trichostatin A. ACTA ACUST UNITED AC 2004; 271:2379-90. [PMID: 15182353 DOI: 10.1111/j.1432-1033.2004.04157.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite decades of investigation, the primary site of action of the prototypical inducers of differentiation, dimethylsulfoxide and hexamethylene bisacetamide (HMBA), has not been delineated. During studies designed to analyze cis-acting elements responsible for induction of stage-specific globin genes, we discovered the capacity of HMBA and dimethylsulfoxide to enhance the expression of transiently transfected reporter genes derived from globin and nonglobin gene promoters, prominently in nonerythroid 3T3 Swiss cells. The action of HMBA and dimethylsulfoxide in the transient transfection system resembled that of the inhibitor of histone deacetylases (HDACs), trichostatin A (TSA), in that the three agents enhanced reporter gene expression (a) regardless of the promoter employed, (b) with similar kinetics and (c) with an increase in the steady-state level of reporter mRNA. Transiently transfected DNA was assembled rapidly into a chromatinized structure in 3T3 cells, suggesting that transcription of reporter genes was at least in part repressed by chromatin organization. Nuclear run-on analyses indicated that dimethylsulfoxide and HMBA enhanced transcriptional initiation of the reporter and p21/WAF1/Cip1 genes. In contrast, TSA produced negligible effects on nuclear run-on transcription of these genes. HMBA and dimethylsulfoxide did not change the acetylation, phosphorylation, or methylation status of histones and did not activate stably transfected genes. Despite these differences, the three agents modulated the expression of common sets of cellular genes and induced differentiation or apoptosis in intact cells. The findings imply that HMBA and dimethylsulfoxide modulate transcription by a mechanism independent of histone acetylation.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|