1
|
Wakabayashi Y, Shimono A, Terauchi Y, Zeng C, Hamada M, Semba K, Watanabe S, Ishikawa K. Identification of a novel RNA transcript TISPL upregulated by stressors that stimulate ATF4. Gene 2024; 917:148464. [PMID: 38615981 DOI: 10.1016/j.gene.2024.148464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Cells sense, respond, and adapt to environmental conditions that cause stress. In a previous study using HeLa cells, we isolated reporter cells responding to the endoplasmic reticulum (ER) stress inducers, thapsigargin and tunicamycin, using a highly sensitive promoter trap vector system. Splinkerette PCR and 5' rapid amplification of cDNA ends (5' RACE) identified a novel transcript that is upregulated by ER stress. Its endogenous expression increased approximately 10-fold in response to thapsigargin and tunicamycin within 1 h, but was down-regulated after 4 h. Because the transcript starts from an intron of a long noncoding RNA known as LINC-PINT, we designated the newly identified transcript TISPL (transcript induced by stressors from LINC-PINTlocus). TISPL was also expressed under several other stress conditions. It was particularly increased > 10-fold upon glucose starvation and 7-fold by arsenite exposure. Furthermore, in silico analyses, including a ChIP-atlas search, revealed that there is an ATF4-binding region with a c/ebp-Atf response element (CARE) downstream of the transcription start site of TISPL. Based on these results, we hypothesized that TISPL may be induced by the phospho-eIF2α and ATF4- axis of the integrated stress response pathway, which is known to be activated by the stress conditions listed above. As expected, knockout of ATF4 abolished the stress-induced upregulation of TISPL. Our results indicate that TISPL may be a useful biomarker for detecting stress conditions that activate ATF4. Our highly sensitive trap vector system proved beneficial in discovering new biomarkers.
Collapse
Affiliation(s)
- Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Aika Shimono
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuki Terauchi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Chao Zeng
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-4-32 Aomi, Koto-ku, Tokyo 135-8073, Japan.
| |
Collapse
|
2
|
Kasahara Y, Tamamura S, Hiyama G, Takagi M, Nakamichi K, Doi Y, Semba K, Watanabe S, Ishikawa K. Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells. Int J Mol Sci 2023; 24:13863. [PMID: 37762164 PMCID: PMC10530646 DOI: 10.3390/ijms241813863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
We have developed a highly sensitive promoter trap vector system using transposons to generate reporter cells with high efficiency. Using an EGFP/luciferase reporter cell clone responsive to forskolin, which is thought to activate adenylate cyclase, isolated from human chronic myelogenous leukemia cell line K562, we found several compounds unexpectedly caused reporter responses. These included tyrosine kinase inhibitors such as dasatinib and cerdulatinib, which were seemingly unrelated to the forskolin-reactive pathway. To investigate whether any other clones of forskolin-responsive cells would show the same response, nine additional forskolin-responsive clones, each with a unique integration site, were generated and quantitatively evaluated by luciferase assay. The results showed that each clone represented different response patterns to the reactive compounds. Also, it became clear that each of the reactive compounds could be profiled as a unique pattern by the 10 reporter clones. When other TKIs, mainly bcr-abl inhibitors, were evaluated using a more focused set of five reporter clones, they also showed unique profiling. Among them, dasatinib and bosutinib, and imatinib and bafetinib showed homologous profiling. The tyrosine kinase inhibitors mentioned above are approved as anticancer agents, and the system could be used for similarity evaluation, efficacy prediction, etc., in the development of new anticancer agents.
Collapse
Affiliation(s)
- Yamato Kasahara
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Sakura Tamamura
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan;
| | - Gen Hiyama
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Motoki Takagi
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Kazuya Nakamichi
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Yuta Doi
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan;
| |
Collapse
|
3
|
Han HJ, Kim DH, Baik JY. A splinkerette PCR-based genome walking technique for the identification of transgene integration sites in CHO cells. J Biotechnol 2023:S0168-1656(23)00105-0. [PMID: 37257509 DOI: 10.1016/j.jbiotec.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/02/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Identification of recombinant gene integrations sites in the Chinese hamster ovary (CHO) cell genome is increasingly important to assure monoclonality. While next-generation sequencing (NGS) is commonly used for the gene integration site analysis, it is a time-consuming and costly technique as it analyzes the entire genome. Hence, simple, easy, and inexpensive methods to analyze transgene insertion sites are necessary. To selectively capture the integration site of transgene in the CHO genome, we applied splinkerette-PCR (spPCR). SpPCR is an adaptor ligation-based method using splinkerette adaptors that have a stable hairpin loop. Restriction enzymes with high frequencies in the CHO genome were chosen using a Python script and used for the in vitro spPCR assay development. After testing on two CHO housekeeping genes with known loci, the spPCR-based genome walking technique was successfully applied to recombinant CHO cells to identify the transgene integration site. Finally, the comparison with NGS methods exhibited that the time and cost required for the analysis can be substantially reduced. Taken together, the established technique would aid the stable cell line development process by providing a rapid and cost-effective method for transgene integration site analysis.
Collapse
Affiliation(s)
- Hye-Jin Han
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea
| | - Dae Hoon Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea
| | - Jong Youn Baik
- Department of Biological Sciences and Bioengineering, Inha University, Incheon22212, Republic of Korea.
| |
Collapse
|
4
|
Rubin BE, Diamond S, Cress BF, Crits-Christoph A, Lou YC, Borges AL, Shivram H, He C, Xu M, Zhou Z, Smith SJ, Rovinsky R, Smock DCJ, Tang K, Owens TK, Krishnappa N, Sachdeva R, Barrangou R, Deutschbauer AM, Banfield JF, Doudna JA. Species- and site-specific genome editing in complex bacterial communities. Nat Microbiol 2022; 7:34-47. [PMID: 34873292 PMCID: PMC9261505 DOI: 10.1038/s41564-021-01014-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Understanding microbial gene functions relies on the application of experimental genetics in cultured microorganisms. However, the vast majority of bacteria and archaea remain uncultured, precluding the application of traditional genetic methods to these organisms and their interactions. Here, we characterize and validate a generalizable strategy for editing the genomes of specific organisms in microbial communities. We apply environmental transformation sequencing (ET-seq), in which nontargeted transposon insertions are mapped and quantified following delivery to a microbial community, to identify genetically tractable constituents. Next, DNA-editing all-in-one RNA-guided CRISPR-Cas transposase (DART) systems for targeted DNA insertion into organisms identified as tractable by ET-seq are used to enable organism- and locus-specific genetic manipulation in a community context. Using a combination of ET-seq and DART in soil and infant gut microbiota, we conduct species- and site-specific edits in several bacteria, measure gene fitness in a nonmodel bacterium and enrich targeted species. These tools enable editing of microbial communities for understanding and control.
Collapse
Affiliation(s)
- Benjamin E Rubin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Spencer Diamond
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Yue Clare Lou
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Haridha Shivram
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Christine He
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Michael Xu
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Zeyi Zhou
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Sara J Smith
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rachel Rovinsky
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dylan C J Smock
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kimberly Tang
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Trenton K Owens
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| |
Collapse
|
5
|
Dawes JC, Uren AG. Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Front Immunol 2021; 12:670280. [PMID: 34484175 PMCID: PMC8414522 DOI: 10.3389/fimmu.2021.670280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has identified dozens of mutations with a putative role in lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell neoplasms is complicated by the volume of mutations worthy of investigation and by the complex ways that multiple mutations arising from different stages of B cell development can cooperate. Forward and reverse genetic strategies in mice can provide complementary validation of human driver genes and in some cases comparative genomics of these models with human tumors has directed the identification of new drivers in human malignancies. We review a collection of forward genetic screens performed using insertional mutagenesis, chemical mutagenesis and exome sequencing and discuss how the high coverage of subclonal mutations in insertional mutagenesis screens can identify cooperating mutations at rates not possible using human tumor genomes. We also compare a set of independently conducted screens from Pax5 mutant mice that converge upon a common set of mutations observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joanna C Dawes
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anthony G Uren
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Establishment of reporter cells that respond to glucocorticoids by a transposon-mediated promoter-trapping system. Eur J Pharm Sci 2021; 162:105819. [PMID: 33775826 DOI: 10.1016/j.ejps.2021.105819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 11/19/2022]
Abstract
Previously, we had established a highly sensitive trap vector system for the efficient isolation of reporter cells for a certain condition of interest. In this study, we used this system to screen reporter cells that express the luciferase and enhanced green fluorescent protein genes in response to dexamethasone, a glucocorticoid receptor agonist to facilitate glucocorticoid signaling research. In total, 10 clones were isolated. The insertion sites of the trap vector were analyzed using 5' rapid amplification of cDNA ends (5' RACE), whereupon LPIN1, PKP2, and FKBP5 were identified as genes that were upregulated by the dexamethasone treatment. Specifically, PKP2 has not previously been focused as a gene that responds to glucocorticoids. The PKP2 mRNA was analyzed and induction of the endogenous gene was confirmed by real-time polymerase chain reaction. Given that PKP2 does not appear to have a consensus glucocorticoid response element (GRE) sequence, this reporter clone could supplement the current GRE-based reporter systems that are prevalently used. Because different clones showed different responses to glucocorticoids, these clones should provide more information than analysis with a single reporter clone. This paper demonstrates that the previously developed trap vector technology can contribute to the rapid construction of drug evaluation systems.
Collapse
|
7
|
Billingsley PF, George KI, Eappen AG, Harrell RA, Alford R, Li T, Chakravarty S, Sim BKL, Hoffman SL, O'Brochta DA. Transient knockdown of Anopheles stephensi LRIM1 using RNAi increases Plasmodium falciparum sporozoite salivary gland infections. Malar J 2021; 20:284. [PMID: 34174879 PMCID: PMC8235909 DOI: 10.1186/s12936-021-03818-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.
Collapse
Affiliation(s)
- Peter F Billingsley
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Kasim I George
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Qiagen Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Abraham G Eappen
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Robert A Harrell
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Alford
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Protein Potential, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| |
Collapse
|
8
|
Abundant Small Protein ICARUS Inside the Cell Wall of Stress-Resistant Ascospores of Talaromyces macrosporus Suggests a Novel Mechanism of Constitutive Dormancy. J Fungi (Basel) 2021; 7:jof7030216. [PMID: 33802751 PMCID: PMC8002430 DOI: 10.3390/jof7030216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Ascospores of Talaromyces.macrosporus belong to the most stress resistant eukaryotic cells and show a constitutive dormancy, i.e., no germination occurs in the presence of rich growth medium. Only an extreme trigger as very high temperature or pressure is able to evoke synchronized germination. In this study, several changes within the thick cell wall of these cells are observed after a heat treatment: (i.) a change in its structure as shown with EPR and X-ray diffraction; (ii.) a release of an abundant protein into the supernatant, which is proportional to the extent of heat activation; (iii.) a change in the permeability of the cell wall as judged by fluorescence studies in which staining of the interior of the cell wall correlates with germination of individual ascospores. The gene encoding the protein, dubbed ICARUS, was studied in detail and was expressed under growth conditions that showed intense ascomata (fruit body) and ascospore formation. It encodes a small 7–14 kD protein. Blast search exhibits that different Talaromyces species show a similar sequence, indicating that the protein also occurs in other species of the genus. Deletion strains show delayed ascomata formation, release of pigments into the growth medium, higher permeability of the cell wall and a markedly shorter heat activation needed for activation. Further, wild type ascospores are more heat-resistant. All these observations suggest that the protein plays a role in dormancy and is related to the structure and permeability of the ascospore cell wall. However, more research on this topic is needed to study constitutive dormancy in other fungal species that form stress-resistant ascospores.
Collapse
|
9
|
Simple innovative adaptor to improve genome walking with convenient PCR. J Genet Eng Biotechnol 2020; 18:64. [PMID: 33083895 PMCID: PMC7575660 DOI: 10.1186/s43141-020-00082-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Various polymerase chain reaction (PCR)-based methods have been applied for the development of genome walking (GW) technique. These methods which could be based on the application of restriction enzymes or primers have various efficiencies to identify the unknown nucleotide sequences. The present study was conducted to design a new innovative double-strand adaptor using MAP30 gene sequence of Momordica charantia plant as a model to improve genome walking with convenient PCR. RESULTS The adaptor was designed using multiple restriction sites of Hind III, BamH I, EcoR I, and Bgl II enzymes with no restriction site in a known sequence of the MAP30 gene. In addition, no modification was required to add phosphate, amine, or other groups to the adaptor, since restriction enzyme digestion of double-strand adaptor provided the 5' phosphate group. Here, preparation of the phosphate group in the genomic DNA of the plant digestion with restriction enzymes was performed followed by ligation with digested adaptor containing 5' phosphate group. CONCLUSION PCR was done to amplify the unknown sequence using MAP30 gene-specific primer and adaptor primer. Results confirmed the ability of the technique for successful identification of the sequence. Consequently, a newly designed adaptor in the developed technique reduced the time and cost of the method compared to the conventional genome walking; also, cloning and culturing of bacterial steps could be eliminated.
Collapse
|
10
|
Alquezar‐Planas DE, Löber U, Cui P, Quedenau C, Chen W, Greenwood AD. DNA sonication inverse PCR for genome scale analysis of uncharacterized flanking sequences. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David E. Alquezar‐Planas
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Australian Museum Research InstituteAustralian Museum Sydney NSW Australia
| | - Ulrike Löber
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- The Berlin Center for Genomics in Biodiversity Research Berlin Germany
- Experimental and Clinical Research Center A Cooperation of Charité – Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine Berlin Germany
| | - Pin Cui
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Claudia Quedenau
- Genomics Max Delbrück Center for Molecular Medicine Berlin Germany
| | - Wei Chen
- Berlin Institute for Medical Systems BiologyMax‐Delbrück Center for Molecular Medicine Berlin Germany
| | - Alex D. Greenwood
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Department of Veterinary Medicine Freie Universität Berlin Berlin Germany
| |
Collapse
|
11
|
Genome-wide piggyBac transposon-based mutagenesis and quantitative insertion-site analysis in haploid Candida species. Nat Protoc 2020; 15:2705-2727. [PMID: 32681154 DOI: 10.1038/s41596-020-0351-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/30/2020] [Indexed: 11/08/2022]
Abstract
Invasive fungal infections caused by Candida species are life threatening with high mortality, posing a severe public health threat. New technologies for rapid, genome-wide identification of virulence genes and therapeutic targets are urgently needed. Our recent engineering of a piggyBac (PB) transposon-mediated mutagenesis system in haploid Candida albicans provides a powerful discovery tool, which we anticipate should be adaptable to other haploid Candida species. In this protocol, we use haploid C. albicans as an example to present an improved version of the mutagenesis system and provide a detailed description of the protocol for constructing high-quality mutant libraries. We also describe a method for quantitative PB insertion site sequencing, PBISeq. The PBISeq library preparation procedure exploits tagmentation to quickly and efficiently construct sequencing libraries. Finally, we present a pipeline to analyze PB insertion sites in a de novo assembled genome of our engineered haploid C. albicans strain. The entire protocol takes ~7 d from transposition induction to having a final library ready for sequencing. This protocol is highly efficient and less labor intensive than alternative approaches and significantly accelerates genetic studies of Candida.
Collapse
|
12
|
Schempp FM, Hofmann KE, Mi J, Kirchner F, Meffert A, Schewe H, Schrader J, Buchhaupt M. Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations. Appl Microbiol Biotechnol 2020; 104:5519-5533. [PMID: 32296906 PMCID: PMC7275096 DOI: 10.1007/s00253-020-10566-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Monoterpenoids are widely used in industrial applications, e.g. as active ingredients in pharmaceuticals, in flavor and fragrance compositions, and in agriculture. Severe toxic effects are known for some monoterpenoids making them challenging compounds for biotechnological production processes. Some strains of the bacterium Pseudomonas putida show an inherent extraordinarily high tolerance towards solvents including monoterpenoids. An understanding of the underlying factors can help to create suitable strains for monoterpenoids de novo production or conversion. In addition, knowledge about tolerance mechanisms could allow a deeper insight into how bacteria can oppose monoterpenoid containing drugs, like tea tree oil. Within this work, the resistance mechanisms of P. putida GS1 were investigated using selected monoterpenoid-hypertolerant mutants. Most of the mutations were found in efflux pump promoter regions or associated transcription factors. Surprisingly, while for the tested monoterpenoid alcohols, ketone, and ether high efflux pump expression increased monoterpenoid tolerance, it reduced the tolerance against geranic acid. However, an increase of geranic acid tolerance could be gained by a mutation in an efflux pump component. It was also found that increased monoterpenoid tolerance can counteract efficient biotransformation ability, indicating the need for a fine-tuned and knowledge-based tolerance improvement for production strain development.Key points• Altered monoterpenoid tolerance mainly related to altered activity of efflux pumps.• Increased tolerance to geranic acid surprisingly caused by decreased export activity. • Reduction of export activity can be beneficial for biotechnological conversions.
Collapse
Affiliation(s)
- Florence Miramella Schempp
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.,Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Katharina Elisabeth Hofmann
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jia Mi
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Ferdinand Kirchner
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Annika Meffert
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Hendrik Schewe
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jens Schrader
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Markus Buchhaupt
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Lyall R, Schlebusch SA, Proctor J, Prag M, Hussey SG, Ingle RA, Illing N. Vegetative desiccation tolerance in the resurrection plant Xerophyta humilis has not evolved through reactivation of the seed canonical LAFL regulatory network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1349-1367. [PMID: 31680354 PMCID: PMC7187197 DOI: 10.1111/tpj.14596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/25/2023]
Abstract
It has been hypothesised that vegetative desiccation tolerance in resurrection plants evolved via reactivation of the canonical LAFL (i.e. LEC1, ABI3, FUS3 and LEC2) transcription factor (TF) network that activates the expression of genes during the maturation of orthodox seeds leading to desiccation tolerance of the plant embryo in most angiosperms. There is little direct evidence to support this, however, and the transcriptional changes that occur during seed maturation in resurrection plants have not previously been studied. Here we performed de novo transcriptome assembly for Xerophyta humilis, and analysed gene expression during seed maturation and vegetative desiccation. Our results indicate that differential expression of a set of 4205 genes is common to maturing seeds and desiccating leaves. This shared set of genes is enriched for gene ontology terms related to abiotic stress, including water stress and abscisic acid signalling, and includes many genes that are seed-specific in Arabidopsis thaliana and targets of ABI3. However, while we observed upregulation of orthologues of the canonical LAFL TFs and ABI5 during seed maturation, similar to what is seen in A. thaliana, this did not occur during desiccation of leaf tissue. Thus, reactivation of components of the seed desiccation program in X. humilis vegetative tissues likely involves alternative transcriptional regulators.
Collapse
Affiliation(s)
- Rafe Lyall
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Stephen A. Schlebusch
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Jessica Proctor
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Mayur Prag
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
| | - Robert A. Ingle
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Nicola Illing
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| |
Collapse
|
14
|
Sonnabend MS, Klein K, Beier S, Angelov A, Kluj R, Mayer C, Groß C, Hofmeister K, Beuttner A, Willmann M, Peter S, Oberhettinger P, Schmidt A, Autenrieth IB, Schütz M, Bohn E. Identification of Drug Resistance Determinants in a Clinical Isolate of Pseudomonas aeruginosa by High-Density Transposon Mutagenesis. Antimicrob Agents Chemother 2020; 64:e01771-19. [PMID: 31818817 PMCID: PMC7038268 DOI: 10.1128/aac.01771-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
With the aim to identify potential new targets to restore antimicrobial susceptibility of multidrug-resistant (MDR) Pseudomonas aeruginosa isolates, we generated a high-density transposon (Tn) insertion mutant library in an MDR P. aeruginosa bloodstream isolate (isolate ID40). The depletion of Tn insertion mutants upon exposure to cefepime or meropenem was measured in order to determine the common resistome for these clinically important antipseudomonal β-lactam antibiotics. The approach was validated by clean deletions of genes involved in peptidoglycan synthesis/recycling, such as the genes for the lytic transglycosylase MltG, the murein (Mur) endopeptidase MepM1, the MurNAc/GlcNAc kinase AmgK, and the uncharacterized protein YgfB, all of which were identified in our screen as playing a decisive role in survival after treatment with cefepime or meropenem. We found that the antibiotic resistance of P. aeruginosa can be overcome by targeting usually nonessential genes that turn essential in the presence of therapeutic concentrations of antibiotics. For all validated genes, we demonstrated that their deletion leads to the reduction of ampC expression, resulting in a significant decrease in β-lactamase activity, and consequently, these mutants partly or completely lost resistance against cephalosporins, carbapenems, and acylaminopenicillins. In summary, the determined resistome may comprise promising targets for the development of drugs that may be used to restore sensitivity to existing antibiotics, specifically in MDR strains of P. aeruginosa.
Collapse
Affiliation(s)
- Michael S Sonnabend
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Kristina Klein
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Sina Beier
- Center for Bioinformatics (ZBIT), Universität Tübingen, Tübingen, Germany
| | - Angel Angelov
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Robert Kluj
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Department of Biology, Microbiology & Biotechnology, Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Department of Biology, Microbiology & Biotechnology, Universität Tübingen, Tübingen, Germany
| | - Caspar Groß
- Institut für Medizinische Genetik und Angewandte Genomik, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Kathrin Hofmeister
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Antonia Beuttner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Matthias Willmann
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Silke Peter
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Philipp Oberhettinger
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Annika Schmidt
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Dawes JC, Webster P, Iadarola B, Garcia-Diaz C, Dore M, Bolt BJ, Dewchand H, Dharmalingam G, McLatchie AP, Kaczor J, Caceres JJ, Paccanaro A, Game L, Parrinello S, Uren AG. LUMI-PCR: an Illumina platform ligation-mediated PCR protocol for integration site cloning, provides molecular quantitation of integration sites. Mob DNA 2020; 11:7. [PMID: 32042315 PMCID: PMC7001329 DOI: 10.1186/s13100-020-0201-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ligation-mediated PCR protocols have diverse uses including the identification of integration sites of insertional mutagens, integrating vectors and naturally occurring mobile genetic elements. For approaches that employ NGS sequencing, the relative abundance of integrations within a complex mixture is typically determined through the use of read counts or unique fragment lengths from a ligation of sheared DNA; however, these estimates may be skewed by PCR amplification biases and saturation of sequencing coverage. RESULTS Here we describe a modification of our previous splinkerette based ligation-mediated PCR using a novel Illumina-compatible adapter design that prevents amplification of non-target DNA and incorporates unique molecular identifiers. This design reduces the number of PCR cycles required and improves relative quantitation of integration abundance for saturating sequencing coverage. By inverting the forked adapter strands from a standard orientation, the integration-genome junction can be sequenced without affecting the sequence diversity required for cluster generation on the flow cell. Replicate libraries of murine leukemia virus-infected spleen samples yielded highly reproducible quantitation of clonal integrations as well as a deep coverage of subclonal integrations. A dilution series of DNAs bearing integrations of MuLV or piggyBac transposon shows linearity of the quantitation over a range of concentrations. CONCLUSIONS Merging ligation and library generation steps can reduce total PCR amplification cycles without sacrificing coverage or fidelity. The protocol is robust enough for use in a 96 well format using an automated liquid handler and we include programs for use of a Beckman Biomek liquid handling workstation. We also include an informatics pipeline that maps reads, builds integration contigs and quantitates integration abundance using both fragment lengths and unique molecular identifiers. Suggestions for optimizing the protocol to other target DNA sequences are included. The reproducible distinction of clonal and subclonal integration sites from each other allows for analysis of populations of cells undergoing selection, such as those found in insertional mutagenesis screens.
Collapse
Affiliation(s)
- Joanna C. Dawes
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Philip Webster
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Barbara Iadarola
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD, London, UK
| | - Marian Dore
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Bruce J. Bolt
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Hamlata Dewchand
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | | | - Jakub Kaczor
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Juan J. Caceres
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, London, UK
| | - Alberto Paccanaro
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, London, UK
| | - Laurence Game
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD, London, UK
| | - Anthony G. Uren
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
16
|
Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA, Wang CH, Huang CW, Kang YN, Chang HY, Li LL, Chang KP, Shih YH, Lin CH, Kwan SY, Tsai JW. Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 2018; 9:2498. [PMID: 29950674 PMCID: PMC6021418 DOI: 10.1038/s41467-018-04880-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in genes involved in the production, migration, or differentiation of cortical neurons often lead to malformations of cortical development (MCDs). However, many genetic mutations involved in MCD pathogenesis remain unidentified. Here we developed a genetic screening paradigm based on transposon-mediated somatic mutagenesis by in utero electroporation and the inability of mutant neuronal precursors to migrate to the cortex and identified 33 candidate MCD genes. Consistent with the screen, several genes have already been implicated in neural development and disorders. Functional disruption of the candidate genes by RNAi or CRISPR/Cas9 causes altered neuronal distributions that resemble human cortical dysplasia. To verify potential clinical relevance of these candidate genes, we analyzed somatic mutations in brain tissue from patients with focal cortical dysplasia and found that mutations are enriched in these candidate genes. These results demonstrate that this approach is able to identify potential mouse genes involved in cortical development and MCD pathogenesis. Cortical malformations have a variety of causes. Here the authors use transposon mutagenesis to insert mutations into neural stem cells in the developing mouse cortex to screen for new candidate genes for cortical malformation, and validate some targets in human brain tissue.
Collapse
Affiliation(s)
- I-Ling Lu
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chien Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Hung Chen
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jia-Ping Pan
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan.,Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 112, Taiwan
| | - Jia-Shing Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-An Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chun-Hung Wang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-Ning Kang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Yun Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lei-Li Li
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Kai-Ping Chang
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Yang-Hsin Shih
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Chi-Hung Lin
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 112, Taiwan. .,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
17
|
Ishikawa K, Kobayashi Y, Wakabayashi Y, Watanabe S, Semba K. A highly sensitive trap vector system for isolating reporter cells and identification of responsive genes. Biol Methods Protoc 2018; 3:bpy003. [PMID: 32161797 PMCID: PMC6994077 DOI: 10.1093/biomethods/bpy003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/18/2018] [Indexed: 01/03/2023] Open
Abstract
We devised a versatile vector system for efficient isolation of reporter cells responding to a certain condition of interest. This system combines nontoxic GAL4-UAS and piggyBac transposon systems, allowing application to mammalian cells and improved expression of a fluorescent reporter protein for cell sorting. Case studies under conditions of c-MYC gene induction or endoplasmic reticulum (ER) stress with thapsigargin on mouse or human cell lines confirmed easy and efficient isolation of responsive reporter cells. Sequence analyses of the integrated loci of the thapsigargin-responsive clones identified responsive genes including BiP and OSBPL9. OSBPL9 is a novel ER stress-responsive gene and we confirmed that endogenous mRNA expression of OSBPL9 is upregulated by thapsigargin, and is repressed by IRE1α inhibitors, 4μ8C and toyocamycin, but not significantly by a PERK inhibitor, GSK2656157. These results demonstrate that this approach can be used to discover novel genes regulated by any stimuli without the need for microarray analysis, and that it can concomitantly produce reporter cells without identification of stimuli-responsive promoter/enhancer elements. Therefore, this system has a variety of benefits for basic and clinical research.
Collapse
Affiliation(s)
- Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Yuta Kobayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.,Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
18
|
BRE/BRCC45 regulates CDC25A stability by recruiting USP7 in response to DNA damage. Nat Commun 2018; 9:537. [PMID: 29416040 PMCID: PMC5803202 DOI: 10.1038/s41467-018-03020-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
BRCA2 is essential for maintaining genomic integrity. BRCA2-deficient primary cells are either not viable or exhibit severe proliferation defects. Yet, BRCA2 deficiency contributes to tumorigenesis. It is believed that mutations in genes such as TRP53 allow BRCA2 heterozygous cells to overcome growth arrest when they undergo loss of heterozygosity. Here, we report the use of an insertional mutagenesis screen to identify a role for BRE (Brain and Reproductive organ Expressed, also known as BRCC45), known to be a part of the BRCA1-DNA damage sensing complex, in the survival of BRCA2-deficient mouse ES cells. Cell viability by BRE overexpression is mediated by deregulation of CDC25A phosphatase, a key cell cycle regulator and an oncogene. We show that BRE facilitates deubiquitylation of CDC25A by recruiting ubiquitin-specific-processing protease 7 (USP7) in the presence of DNA damage. Additionally, we uncovered the role of CDC25A in BRCA-mediated tumorigenesis, which can have implications in cancer treatment. Loss of BRCA2 leads to cancer formation. Here, the authors use an insertional mutagenesis approach and identify a multiprotein complex consisting of BRE, USP7 and CDC25A that can support the survival of BRCA2-deficient cells.
Collapse
|
19
|
West NW, Golenberg EM. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. THE NEW PHYTOLOGIST 2018; 217:1322-1334. [PMID: 29226967 DOI: 10.1111/nph.14919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/20/2017] [Indexed: 05/20/2023]
Abstract
While unisexual flowers have evolved repeatedly throughout angiosperm families, the actual identification of sex-determining genes has been elusive, and their regulation within populations remains largely undefined. Here, we tested the mechanism of the feminization pathway in cultivated spinach (Spinacia oleracea), and investigated how this pathway may regulate alternative sexual development. We tested the effect of gibberellic acid (GA) on sex determination through exogenous applications of GA and inhibitors of GA synthesis and proteasome activity. GA concentrations in multiple tissues were estimated by enzyme-linked immunosorbent assay analysis. Gene function was investigated and pathway analysis was performed through virus-induced gene silencing. Relative gene expression levels were estimated by quantitative reverse transcription-polymerase chain reaction. Inhibition of GA production and proteasome activity feminized male flowers. However, there was no difference in GA content in tissues between males and females. We characterized a single DELLA family transcription factor gene (GIBBERELLIC ACID INSENSITIVE (SpGAI)) and observed inflorescence expression in females two-fold higher than in males. Reduction of SpGAI expression in females to male levels phenocopied exogenous GA application with respect to flower development. These results implicate SpGAI as the feminizing factor in spinach, and suggest that the feminizing pathway is epistatic to the masculinizing pathway. We present a unified model for alternative sexual development and discuss the implications for established theory.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Edward M Golenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
20
|
Structural and spatial chromatin features at developmental gene loci in human pluripotent stem cells. Nat Commun 2017; 8:1616. [PMID: 29158493 PMCID: PMC5696376 DOI: 10.1038/s41467-017-01679-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023] Open
Abstract
Higher-order chromatin organization controls transcriptional programs that govern cell properties and functions. In order for pluripotent stem cells (PSCs) to appropriately respond to differentiation signals, developmental gene loci should be structurally and spatially regulated to be readily available for immediate transcription, even though these genes are hardly expressed in PSCs. Here, we show that both chromatin interaction profiles and nuclear positions at developmental gene loci differ between human somatic cells and hPSCs, and that changes in the chromatin interactions are closely related to the nuclear repositioning. Moreover, we also demonstrate that developmental gene loci, which have bivalent histone modifications, tend to colocalize in PSCs. Furthermore, this colocalization requires PRC1, PRC2, and TrxG complexes, which are essential regulatory factors for the maintenance of transcriptionally poised developmental genes. Our results indicate that higher-order chromatin regulation may be an integral part of the differentiation capacity that defines pluripotency.
Collapse
|
21
|
CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus-insect cell system. Proc Natl Acad Sci U S A 2017; 114:9068-9073. [PMID: 28784806 DOI: 10.1073/pnas.1705836114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The baculovirus-insect cell system (BICS) has been widely used to produce many different recombinant proteins for basic research and is being used to produce several biologics approved for use in human or veterinary medicine. Early BICS were technically complex and constrained by the relatively primordial nature of insect cell protein glycosylation pathways. Since then, recombination has been used to modify baculovirus vectors-which has simplified the system-and transform insect cells, which has enhanced its protein glycosylation capabilities. Now, CRISPR-Cas9 tools for site-specific genome editing are needed to facilitate further improvements in the BICS. Thus, in this study, we used various insect U6 promoters to construct CRISPR-Cas9 vectors and assessed their utility for site-specific genome editing in two insect cell lines commonly used as hosts in the BICS. We demonstrate the use of CRISPR-Cas9 to edit an endogenous insect cell gene and alter protein glycosylation in the BICS.
Collapse
|
22
|
Trap Seq: An RNA Sequencing-Based Pipeline for the Identification of Gene-Trap Insertions in Mammalian Cells. J Mol Biol 2017; 429:2780-2789. [PMID: 28782559 DOI: 10.1016/j.jmb.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
Abstract
The development of haploid mammalian cell lines, coupled to next-generation sequencing, has recently facilitated forward genetic screenings in mammals. For mutagenesis, retrovirus- or transposon-based gene traps are frequently used. Current methods to map gene-trap insertions are based on inverse or splinkerette PCR, which despite their efficacy are prone to artifacts and do not provide information on expression of the targeted gene. Here, we describe a new RNA sequencing-based method (TrapSeq) to map gene-trap insertions. By recognizing chimeric mRNAs containing gene-trap sequences spliced to an exon, our method identifies insertions that lead to productive trapping. When applied to individual mutant clones, our method provides a fast and cost-effective way that not only identifies the insertion site but also reveals its impact on the expression of the trapped gene. As proof of principle, we conducted two independent screenings for resistance against 6-thioguanine and an ATR inhibitor, which identified mutations known to provide resistance to these reagents and revealed ECT2 as a novel determinant for the sensitivity to ATR inhibition.
Collapse
|
23
|
A Recessive Genetic Screen for Components of the RNA Interference Pathway Performed in Mouse Embryonic Stem Cells. Methods Mol Biol 2017. [PMID: 28674805 DOI: 10.1007/978-1-4939-7108-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several key components of the RNA interference (RNAi) pathway were identified in genetic screens performed in non-mammalian model organisms. To identify components of the mammalian RNAi pathway, we developed a recessive genetic screen in mouse embryonic stem (ES) cells. Recessive genetic screens are feasible in ES cells that are Bloom-syndrome protein deficient (Blm-deficient). We constructed a reporter cell line in Blm-deficient ES cells to isolate RNAi mutants using a simple drug selection scheme. This chapter describes how we used retroviral gene-traps to mutagenize the reporter cell line and select for RNAi mutants. Putative RNAi mutants were confirmed using a separate functional assay. The location of the gene-trap was then identified using molecular techniques such as splinkerette PCR. Our screening strategy successfully isolated several mutant clones of Argonaute 2, a vital component of the RNAi pathway.
Collapse
|
24
|
Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci Rep 2017; 7:43613. [PMID: 28252665 PMCID: PMC5333637 DOI: 10.1038/srep43613] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
DNA transposons and retroviruses are versatile tools in functional genomics and gene therapy. To facilitate their application, we conducted a genome-wide insertion site profiling of the piggyBac (PB), Tol2 and Sleeping Beauty (SB) transposons and the murine leukemia virus (MLV) in mouse embryonic stem cells (ESCs). PB and MLV preferred highly expressed genes, whereas Tol2 and SB preferred weakly expressed genes. However, correlations with DNase I hypersensitive sites were different for all vectors, indicating that chromatin accessibility is not the sole determinant. Therefore, we analysed various chromatin states. PB and MLV highly correlated with Cohesin, Mediator and ESC-specific transcription factors. Notably, CTCF sites were correlated with PB but not with MLV, suggesting MLV prefers smaller promoter-enhancer loops, whereas PB insertion encompasses larger chromatin loops termed topologically associating domains. Tol2 also correlated with Cohesin and CTCF. However, correlations with ESC-specific transcription factors were weaker, suggesting that Tol2 prefers transcriptionally weak chromatin loops. Consistently, Tol2 insertions were associated with bivalent histone modifications characteristic of silent and inducible loci. SB showed minimum preference to all chromatin states, suggesting the least adverse effect on adjacent genes. These results will be useful for vector selection for various applications.
Collapse
Affiliation(s)
- Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keiko Akagi
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | - Ryo Misawa
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
25
|
Friedrich MJ, Rad L, Bronner IF, Strong A, Wang W, Weber J, Mayho M, Ponstingl H, Engleitner T, Grove C, Pfaus A, Saur D, Cadiñanos J, Quail MA, Vassiliou GS, Liu P, Bradley A, Rad R. Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat Protoc 2017; 12:289-309. [PMID: 28079877 DOI: 10.1038/nprot.2016.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposon-mediated forward genetics screening in mice has emerged as a powerful tool for cancer gene discovery. It pinpoints cancer drivers that are difficult to find with other approaches, thus complementing the sequencing-based census of human cancer genes. We describe here a large series of mouse lines for insertional mutagenesis that are compatible with two transposon systems, PiggyBac and Sleeping Beauty, and give guidance on the use of different engineered transposon variants for constitutive or tissue-specific cancer gene discovery screening. We also describe a method for semiquantitative transposon insertion site sequencing (QiSeq). The QiSeq library preparation protocol exploits acoustic DNA fragmentation to reduce bias inherent to widely used restriction-digestion-based approaches for ligation-mediated insertion site amplification. Extensive multiplexing in combination with next-generation sequencing allows affordable ultra-deep transposon insertion site recovery in high-throughput formats within 1 week. Finally, we describe principles of data analysis and interpretation for obtaining insights into cancer gene function and genetic tumor evolution.
Collapse
Affiliation(s)
| | - Lena Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Iraad F Bronner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Wei Wang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Julia Weber
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Matthew Mayho
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Thomas Engleitner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carolyn Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Anja Pfaus
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juan Cadiñanos
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK.,Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
26
|
Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, Page AJ, Langridge GC, Quail MA, Keane JA, Parkhill J. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016; 32:1109-11. [PMID: 26794317 PMCID: PMC4896371 DOI: 10.1093/bioinformatics/btw022] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/13/2016] [Indexed: 12/05/2022] Open
Abstract
Summary: Transposon insertion sequencing is a high-throughput technique for assaying large libraries of otherwise isogenic transposon mutants providing insight into gene essentiality, gene function and genetic interactions. We previously developed the Transposon Directed Insertion Sequencing (TraDIS) protocol for this purpose, which utilizes shearing of genomic DNA followed by specific PCR amplification of transposon-containing fragments and Illumina sequencing. Here we describe an optimized high-yield library preparation and sequencing protocol for TraDIS experiments and a novel software pipeline for analysis of the resulting data. The Bio-Tradis analysis pipeline is implemented as an extensible Perl library which can either be used as is, or as a basis for the development of more advanced analysis tools. This article can serve as a general reference for the application of the TraDIS methodology. Availability and implementation: The optimized sequencing protocol is included as supplementary information. The Bio-Tradis analysis pipeline is available under a GPL license at https://github.com/sanger-pathogens/Bio-Tradis Contact:parkhill@sanger.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lars Barquist
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and Institute for Molecular Infection Biology, University of Würzburg, Würzburg D-97080, Germany
| | - Matthew Mayho
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | - Carla Cummins
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | - Amy K Cain
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | | | - Andrew J Page
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | - Gemma C Langridge
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | - Michael A Quail
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| | | | - Julian Parkhill
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK and
| |
Collapse
|
27
|
Matsuzaki K, Borel V, Adelman CA, Schindler D, Boulton SJ. FANCJ suppresses microsatellite instability and lymphomagenesis independent of the Fanconi anemia pathway. Genes Dev 2015; 29:2532-46. [PMID: 26637282 PMCID: PMC4699383 DOI: 10.1101/gad.272740.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/13/2015] [Indexed: 12/28/2022]
Abstract
Microsatellites are short tandem repeat sequences that are highly prone to expansion/contraction due to their propensity to form non-B-form DNA structures, which hinder DNA polymerases and provoke template slippage. Although error correction by mismatch repair plays a key role in preventing microsatellite instability (MSI), which is a hallmark of Lynch syndrome, activities must also exist that unwind secondary structures to facilitate replication fidelity. Here, we report that Fancj helicase-deficient mice, while phenotypically resembling Fanconi anemia (FA), are also hypersensitive to replication inhibitors and predisposed to lymphoma. Whereas metabolism of G4-DNA structures is largely unaffected in Fancj(-/-) mice, high levels of spontaneous MSI occur, which is exacerbated by replication inhibition. In contrast, MSI is not observed in Fancd2(-/-) mice but is prevalent in human FA-J patients. Together, these data implicate FANCJ as a key factor required to counteract MSI, which is functionally distinct from its role in the FA pathway.
Collapse
Affiliation(s)
- Kenichiro Matsuzaki
- DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom
| | - Valerie Borel
- DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom
| | - Carrie A Adelman
- DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Wurzburg, 97074 Wurzburg, Germany
| | - Simon J Boulton
- DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom
| |
Collapse
|
28
|
Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes. G3-GENES GENOMES GENETICS 2015; 5:2903-11. [PMID: 26438296 PMCID: PMC4683661 DOI: 10.1534/g3.115.021709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying "natural" alleles in the human population is to engineer "artificial" alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis.
Collapse
|
29
|
Esher SK, Granek JA, Alspaugh JA. Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genet Biol 2015; 82:9-21. [PMID: 26112692 DOI: 10.1016/j.fgb.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
Random insertional mutagenesis screens are important tools in microbial genetics studies. Investigators in fungal systems have used the plant pathogen Agrobacterium tumefaciens to create tagged, random mutations for genetic screens in their fungal species of interest through a unique process of trans-kingdom cellular transconjugation. However, identifying the locations of insertion has traditionally required tedious PCR-based methods, limiting the effective throughput of this system. We have developed an efficient genomic sequencing and analysis method (AIM-Seq) to facilitate identification of randomly generated genomic insertions in microorganisms. AIM-Seq combines batch sampling, whole genome sequencing, and a novel bioinformatics pipeline, AIM-HII, to rapidly identify sites of genomic insertion. We have specifically applied this technique to Agrobacterium-mediated transconjugation in the human fungal pathogen Cryptococcus neoformans. With this approach, we have screened a library of C. neoformans cell wall mutants, selecting twenty-seven mutants of interest for analysis by AIM-Seq. We identified thirty-five putative genomic insertions in known and previously unknown regulators of cell wall processes in this pathogenic fungus. We confirmed the relevance of a subset of these by creating independent mutant strains and analyzing resulting cell wall phenotypes. Through our sequence-based analysis of these mutations, we observed "typical" insertions of the Agrobacterium transfer DNA as well as atypical insertion events, including large deletions and chromosomal rearrangements. Initially applied to C. neoformans, this mutant analysis tool can be applied to a wide range of experimental systems and methods of mutagenesis, facilitating future microbial genetic screens.
Collapse
Affiliation(s)
- Shannon K Esher
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joshua A Granek
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Bioinformatics and Biostatistics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for the Genomics of Microbial Systems, Duke University School of Medicine, Durham, NC 27710, USA.
| | - J Andrew Alspaugh
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
30
|
LaFave MC, Varshney GK, Burgess SM. GeIST: a pipeline for mapping integrated DNA elements. Bioinformatics 2015; 31:3219-21. [PMID: 26049161 DOI: 10.1093/bioinformatics/btv350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED There are several experimental contexts in which it is important to identify DNA integration sites, such as insertional mutagenesis screens, gene and enhancer trap applications, and gene therapy. We previously developed an assay to identify millions of integrations in multiplexed barcoded samples at base-pair resolution. The sheer amount of data produced by this approach makes the mapping of individual sites non-trivial without bioinformatics support. This article presents the Genomic Integration Site Tracker (GeIST), a command-line pipeline designed to map the integration sites produced by this assay and identify the samples from which they came. GeIST version 2.1.0, a more adaptable version of our original pipeline, can identify integrations of murine leukemia virus, adeno-associated virus, Tol2 transposons or Ac/Ds transposons, and can be adapted for other inserted elements. It has been tested on experimental data for each of these delivery vectors and fine-tuned to account for sequencing and cloning artifacts. AVAILABILITY AND IMPLEMENTATION GeIST uses a combination of Bash shell scripting and Perl. GeIST is available at http://research.nhgri.nih.gov/software/GeIST/. CONTACT burgess@mail.nih.gov.
Collapse
Affiliation(s)
- Matthew C LaFave
- Translational and Functional Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-8004, USA
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-8004, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-8004, USA
| |
Collapse
|
31
|
piggyBac transposon-based insertional mutagenesis in mouse haploid embryonic stem cells. Methods Mol Biol 2015; 1239:15-28. [PMID: 25408399 DOI: 10.1007/978-1-4939-1862-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forward genetic screening is a powerful non-hypothesis-driven approach to unveil the molecular mechanisms and pathways underlying phenotypes of interest. In this approach, a genome-wide mutant library is first generated and then screened for a phenotype of interest. Subsequently, genes responsible for the phenotype are identified. There have been a number of successful screens in yeasts, Caenorhabditis elegans and Drosophila. These model organisms all allow loss-of-function mutants to be generated easily on a genome-wide scale: yeasts have a haploid stage in their reproductive cycles and the latter two organisms have short generation times, allowing mutations to be systematically bred to homozygosity. However, in mammals, the diploid genome and long generation time have always hampered rapid and efficient production of homozygous mutant cells and animals. The recent discovery of several haploid mammalian cell lines promises to revolutionize recessive genetic screens in mammalian cells. In this protocol, we describe an overview of insertional mutagenesis, focusing on DNA transposons, and provide a method for an efficient generation of genome-wide mutant libraries using mouse haploid embryonic stem cells.
Collapse
|
32
|
Development and validation of a new high-throughput method to investigate the clonality of HTLV-1-infected cells based on provirus integration sites. Genome Med 2014; 6:46. [PMID: 25028597 PMCID: PMC4097847 DOI: 10.1186/gm568] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/20/2014] [Indexed: 02/07/2023] Open
Abstract
Transformation and clonal proliferation of T-cells infected with human T-cell leukemia virus type-I (HTLV-1) cause adult T-cell leukemia. We took advantage of next-generation sequencing technology to develop and internally validate a new methodology for isolating integration sites and estimating the number of cells in each HTLV-1-infected clone (clone size). Initial analysis was performed with DNA samples from infected individuals. We then used appropriate controls with known integration sites and clonality status to confirm the accuracy of our system, which indeed had the least errors among the currently available techniques. Results suggest potential clinical and biological applications of the new method.
Collapse
|
33
|
Zhao L, Ng ET, Koopman P. ApiggyBactransposon- and gateway-enhanced system for efficient BAC transgenesis. Dev Dyn 2014; 243:1086-94. [DOI: 10.1002/dvdy.24153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 11/07/2022] Open
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Ee Ting Ng
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Peter Koopman
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
34
|
Sokol M, Wabl M, Ruiz IR, Pedersen FS. Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors. Retrovirology 2014; 11:36. [PMID: 24886479 PMCID: PMC4098794 DOI: 10.1186/1742-4690-11-36] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/28/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. RESULTS We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. CONCLUSIONS We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
Collapse
Affiliation(s)
- Martin Sokol
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Irene Rius Ruiz
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
35
|
Identification of the genomic insertion site of Pmel-1 TCR α and β transgenes by next-generation sequencing. PLoS One 2014; 9:e96650. [PMID: 24827921 PMCID: PMC4020793 DOI: 10.1371/journal.pone.0096650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
The pmel-1 T cell receptor transgenic mouse has been extensively employed as an ideal model system to study the mechanisms of tumor immunology, CD8+ T cell differentiation, autoimmunity and adoptive immunotherapy. The ‘zygosity’ of the transgene affects the transgene expression levels and may compromise optimal breeding scheme design. However, the integration sites for the pmel-1 mouse have remained uncharacterized. This is also true for many other commonly used transgenic mice created before the modern era of rapid and inexpensive next-generation sequencing. Here, we show that whole genome sequencing can be used to determine the exact pmel-1 genomic integration site, even with relatively ‘shallow’ (8X) coverage. The results were used to develop a validated polymerase chain reaction-based genotyping assay. For the first time, we provide a quick and convenient polymerase chain reaction method to determine the dosage of pmel-1 transgene for this freely and publically available mouse resource. We also demonstrate that next-generation sequencing provides a feasible approach for mapping foreign DNA integration sites, even when information of the original vector sequences is only partially known.
Collapse
|
36
|
Abstract
The influence of local chromatin context on gene expression can be explored by integrating a transcription reporter at different locations in the genome as a sensor. Here we provide a detailed protocol for analyzing thousands of reporters integrated in parallel (TRIP) at a genome-wide level. TRIP is based on tagging each reporter with a unique barcode, which is used for independent reporter expression analysis and integration site mapping. Compared with previous methods for studying position effects, TRIP offers a 100-1,000-fold higher throughput in a faster and less-labor-intensive manner. The entire experimental protocol takes ∼42 d to complete, with high-throughput sequencing and data analysis requiring an additional ∼11 d. TRIP was developed by using transcription reporters in mouse embryonic stem (mES) cells, but because of its flexibility the method can be used to probe the influence of chromatin context on a variety of molecular processes in any transfectable cell line.
Collapse
|
37
|
Beard BC, Adair JE, Trobridge GD, Kiem HP. High-throughput genomic mapping of vector integration sites in gene therapy studies. Methods Mol Biol 2014; 1185:321-44. [PMID: 25062639 DOI: 10.1007/978-1-4939-1133-2_22] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene therapy has enormous potential to treat a variety of infectious and genetic diseases. To date hundreds of patients worldwide have received hematopoietic cell products that have been gene-modified with retrovirus vectors carrying therapeutic transgenes, and many patients have been cured or demonstrated disease stabilization as a result (Adair et al., Sci Transl Med 4:133ra57, 2012; Biffi et al., Science 341:1233158, 2013; Aiuti et al., Science 341:1233151, 2013; Fischer et al., Gene 525:170-173, 2013). Unfortunately, for some patients the provirus integration dysregulated the expression of nearby genes leading to clonal outgrowth and, in some cases, cancer. Thus, the unwanted side effect of insertional mutagenesis has become a major concern for retrovirus gene therapy. The careful study of retrovirus integration sites (RIS) and the contribution of individual gene-modified clones to hematopoietic repopulating cells is of crucial importance for all gene therapy studies. Supporting this, the US Food and Drug Administration (FDA) has mandated the careful monitoring of RIS in all clinical trials of gene therapy. An invaluable method was developed: linear amplification mediated-polymerase chain reaction (LAM-PCR) capable of analyzing in vitro and complex in vivo samples, capturing valuable genomic information directly flanking the site of provirus integration. Linking this method and similar methods to high-throughput sequencing has now made possible an unprecedented understanding of the integration profile of various retrovirus vectors, and allows for sensitive monitoring of their safety. It also allows for a detailed comparison of improved safety-enhanced gene therapy vectors. An important readout of safety is the relative contribution of individual gene-modified repopulating clones. One limitation of LAM-PCR is that the ability to capture the relative contribution of individual clones is compromised because of the initial linear PCR common to all current methods. Here, we describe an improved protocol developed for efficient capture, sequencing, and analysis of RIS that preserves gene-modified clonal contribution information. We also discuss methods to assess dominant/overrepresented gene-modified clones in preclinical and clinical models.
Collapse
Affiliation(s)
- Brian C Beard
- Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | |
Collapse
|
38
|
Large-scale mapping of transposable element insertion sites using digital encoding of sample identity. Genetics 2013; 196:615-23. [PMID: 24374352 DOI: 10.1534/genetics.113.159483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Determining the genomic locations of transposable elements is a common experimental goal. When mapping large collections of transposon insertions, individualized amplification and sequencing is both time consuming and costly. We describe an approach in which large numbers of insertion lines can be simultaneously mapped in a single DNA sequencing reaction by using digital error-correcting codes to encode line identity in a unique set of barcoded pools.
Collapse
|
39
|
Ranzani M, Annunziato S, Adams DJ, Montini E. Cancer gene discovery: exploiting insertional mutagenesis. Mol Cancer Res 2013; 11:1141-58. [PMID: 23928056 DOI: 10.1158/1541-7786.mcr-13-0244] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insertional mutagenesis has been used as a functional forward genetics screen for the identification of novel genes involved in the pathogenesis of human cancers. Different insertional mutagens have been successfully used to reveal new cancer genes. For example, retroviruses are integrating viruses with the capacity to induce the deregulation of genes in the neighborhood of the insertion site. Retroviruses have been used for more than 30 years to identify cancer genes in the hematopoietic system and mammary gland. Similarly, another tool that has revolutionized cancer gene discovery is the cut-and-paste transposons. These DNA elements have been engineered to contain strong promoters and stop cassettes that may function to perturb gene expression upon integration proximal to genes. In addition, complex mouse models characterized by tissue-restricted activity of transposons have been developed to identify oncogenes and tumor suppressor genes that control the development of a wide range of solid tumor types, extending beyond those tissues accessible using retrovirus-based approaches. Most recently, lentiviral vectors have appeared on the scene for use in cancer gene screens. Lentiviral vectors are replication-defective integrating vectors that have the advantage of being able to infect nondividing cells, in a wide range of cell types and tissues. In this review, we describe the various insertional mutagens focusing on their advantages/limitations, and we discuss the new and promising tools that will improve the insertional mutagenesis screens of the future.
Collapse
Affiliation(s)
- Marco Ranzani
- San Raffaele-Telethon Institute for Gene Therapy, via Olgettina 58, 20132, Milan, Italy.
| | | | | | | |
Collapse
|
40
|
Chen BR, Li Y, Eisenstatt JR, Runge KW. Identification of a lifespan extending mutation in the Schizosaccharomyces pombe cyclin gene clg1+ by direct selection of long-lived mutants. PLoS One 2013; 8:e69084. [PMID: 23874875 PMCID: PMC3711543 DOI: 10.1371/journal.pone.0069084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 06/12/2013] [Indexed: 11/30/2022] Open
Abstract
Model organisms such as budding yeast, worms and flies have proven instrumental
in the discovery of genetic determinants of aging, and the fission yeast
Schizosaccharomyces
pombe is a promising new system for these
studies. We devised an approach to directly select for long-lived
S.
pombe mutants from a random DNA insertion
library. Each insertion mutation bears a unique sequence tag called a bar code
that allows one to determine the proportion of an individual mutant in a culture
containing thousands of different mutants. Aging these mutants in culture
allowed identification of a long-lived mutant bearing an insertion mutation in
the cyclin gene clg1+. Clg1p, like
Pas1p, physically associates with the cyclin-dependent kinase Pef1p. We
identified a third Pef1p cyclin, Psl1p, and found that only loss of Clg1p or
Pef1p extended lifespan. Genetic and co-immunoprecipitation results indicate
that Pef1p controls lifespan through the downstream protein kinase Cek1p. While
Pef1p is conserved as Pho85p in Saccharomyces
cerevisiae, and as cdk5 in humans, genome-wide
searches for lifespan regulators in S. cerevisiae have
never identified Pho85p. Thus, the S. pombe system
can be used to identify novel, evolutionarily conserved lifespan extending
mutations, and our results suggest a potential role for mammalian cdk5 as a
lifespan regulator.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Department of Molecular Genetics, Cleveland Clinic Lerner College of
Medicine at Case Western Reserve University, Cleveland, Ohio,
USA
- Department of Genetics and Genome Sciences, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
- Department of Biochemistry, Case Western Reserve University School of
Medicine, Cleveland, Ohio, United States of America
| | - Yanhui Li
- Department of Molecular Genetics, Cleveland Clinic Lerner College of
Medicine at Case Western Reserve University, Cleveland, Ohio,
USA
- Department of Genetics and Genome Sciences, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
| | - Jessica R. Eisenstatt
- Department of Molecular Genetics, Cleveland Clinic Lerner College of
Medicine at Case Western Reserve University, Cleveland, Ohio,
USA
- Department of Biochemistry, Case Western Reserve University School of
Medicine, Cleveland, Ohio, United States of America
| | - Kurt W. Runge
- Department of Molecular Genetics, Cleveland Clinic Lerner College of
Medicine at Case Western Reserve University, Cleveland, Ohio,
USA
- Department of Genetics and Genome Sciences, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
- * E-mail:
| |
Collapse
|
41
|
The development of APE-PCR for the cloning of genomic insertion sites of DNA elements. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0214-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Viñuelas J, Kaneko G, Coulon A, Vallin E, Morin V, Mejia-Pous C, Kupiec JJ, Beslon G, Gandrillon O. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts. BMC Biol 2013; 11:15. [PMID: 23442824 PMCID: PMC3635915 DOI: 10.1186/1741-7007-11-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. RESULTS For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. CONCLUSIONS In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.
Collapse
Affiliation(s)
- José Viñuelas
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| | - Gaël Kaneko
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
- Université de Lyon, INSA-Lyon, INRIA, Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), CNRS UMR5205, F-69621 Lyon, France
| | - Antoine Coulon
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elodie Vallin
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| | - Valérie Morin
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| | - Camila Mejia-Pous
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| | | | - Guillaume Beslon
- Université de Lyon, INSA-Lyon, INRIA, Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), CNRS UMR5205, F-69621 Lyon, France
| | - Olivier Gandrillon
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| |
Collapse
|
43
|
Varshney GK, Lu J, Gildea DE, Huang H, Pei W, Yang Z, Huang SC, Schoenfeld D, Pho NH, Casero D, Hirase T, Mosbrook-Davis D, Zhang S, Jao LE, Zhang B, Woods IG, Zimmerman S, Schier AF, Wolfsberg TG, Pellegrini M, Burgess SM, Lin S. A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Res 2013; 23:727-35. [PMID: 23382537 PMCID: PMC3613589 DOI: 10.1101/gr.151464.112] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the completion of the zebrafish genome sequencing project, it becomes possible to analyze the function of zebrafish genes in a systematic way. The first step in such an analysis is to inactivate each protein-coding gene by targeted or random mutation. Here we describe a streamlined pipeline using proviral insertions coupled with high-throughput sequencing and mapping technologies to widely mutagenize genes in the zebrafish genome. We also report the first 6144 mutagenized and archived F1's predicted to carry up to 3776 mutations in annotated genes. Using in vitro fertilization, we have rescued and characterized ∼0.5% of the predicted mutations, showing mutation efficacy and a variety of phenotypes relevant to both developmental processes and human genetic diseases. Mutagenized fish lines are being made freely available to the public through the Zebrafish International Resource Center. These fish lines establish an important milestone for zebrafish genetics research and should greatly facilitate systematic functional studies of the vertebrate genome.
Collapse
Affiliation(s)
- Gaurav K Varshney
- Developmental Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
We describe here protocols for isolating genes in maize using Dissociation (Ds) transposons marked with a green fluorescent protein (GFP) transgene. The introduced marker enables the phenotypic scoring of the nonautonomous element and the anchoring of unique primers on the element to facilitate the isolation of the adjacent DNA by PCR. Transposons such as Ds transpose preferentially to sites closely linked to the Ds-launching platform. Based on this transposition behavior, a genetic resource is being created to mobilize a modified Ds element from different starting sites in the genome. Enough transgenic lines are being generated to cover most of the maize genome, allowing the targeted tagging of most genes from a Ds-launching platform located nearby.
Collapse
|
45
|
Urbański DF, Małolepszy A, Stougaard J, Andersen SU. High-throughput and targeted genotyping of Lotus japonicus LORE1 insertion mutants. Methods Mol Biol 2013; 1069:119-46. [PMID: 23996313 DOI: 10.1007/978-1-62703-613-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Lotus Retrotransposon 1 (LORE1) is used for genome-wide mutagenesis of the model legume Lotus japonicus. Characterization of the LORE1 insertion sites in individual mutant lines is critical for development and use of the resource. Here we present guidelines for use of the LORE1 reverse genetics resource and provide detailed protocols for insertion site identification and validation. For high-throughput identification of insertions in up to 9,216 pooled lines, the FSTpoolit protocol takes advantage of Splinkerette adapters, molecular barcoding, 2D pooling, Illumina sequencing, and automated data analysis using the freely available FSTpoolit software. Complementing the high-throughput approach, we describe a simplified sequence-specific amplification polymorphism (SSAP) protocol well suited for quick identification of insertion sites in a limited number of lines. Both the FSTpoolit and simplified SSAP protocols are generally applicable to insertion site identification in any insertional mutagenesis setup.
Collapse
Affiliation(s)
- Dorian Fabian Urbański
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
46
|
Digestion-ligation-amplification (DLA): a simple genome walking method to amplify unknown sequences flanking mutator (Mu) transposons and thereby facilitate gene cloning. Methods Mol Biol 2013; 1057:167-76. [PMID: 23918428 DOI: 10.1007/978-1-62703-568-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Digestion-ligation-amplification (DLA), a novel PCR-based genome walking method, was developed to amplify unknown sequences flanking known sequences of interest. DLA specifically overcomes the problems associated with amplifying genomic sequences flanking high copy number transposons in large genomes. Two DLA-based strategies, MuClone and DLA-454, were developed to isolate Mu-tagged alleles. MuClone allows for the amplification of DNA flanking subsets of the numerous Mu transposons in the genome using unique three-nucleotide tags at the 3'-ends of primers, simplifying the identification of flanking sequences that co-segregate with mutant phenotypes caused by Mu insertions. DLA-454, which combines DLA with 454 pyrosequencing, permits the efficient amplification and sequencing of Mu flanking regions in a high-throughput manner.
Collapse
|
47
|
Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi. G3-GENES GENOMES GENETICS 2012; 2:1305-15. [PMID: 23173082 PMCID: PMC3484661 DOI: 10.1534/g3.112.003582] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022]
Abstract
Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with a single Minos element containing the piggyBac-transposase gene under the regulatory control of the hsp70 promoter from Drosophila melanogaster. Enhancer detection depended upon the efficient remobilization of piggyBac-Gal4 transposons, which contain the yeast transcription factor gene Gal4 under the regulatory control of a basal promoter. Gal4 expression was detected through the expression of the fluorescent protein gene tdTomato under the regulatory control of a promoter with Gal4-binding UAS elements. From five genetic screens for larval- and adult-specific enhancers, 314 progeny were recovered from 24,250 total progeny (1.3%) with unique patterns of tdTomato expression arising from the influence of an enhancer. The frequency of piggyBac remobilization and enhancer detection was 2.5- to 3-fold higher in female germ lines compared with male germ lines. A small collection of enhancer-trap lines are described in which Gal4 expression occurred in adult female salivary glands, midgut, and fat body, either singly or in combination. These three tissues play critical roles during the infection of Anopheles stephensi by malaria-causing Plasmodium parasites. This system and the lines generated using it will be valuable resources to ongoing mosquito functional genomics efforts.
Collapse
|
48
|
Viñuelas J, Kaneko G, Coulon A, Beslon G, Gandrillon O. Towards experimental manipulation of stochasticity in gene expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:44-53. [DOI: 10.1016/j.pbiomolbio.2012.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 01/17/2023]
|
49
|
Chen BR, Hale DC, Ciolek PJ, Runge KW. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe. BMC Genomics 2012; 13:161. [PMID: 22554201 PMCID: PMC3418178 DOI: 10.1186/1471-2164-13-161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Department of Genetics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
50
|
Mayasari NI, Mukougawa K, Shigeoka T, Kawakami K, Kawaichi M, Ishida Y. Mixture of differentially tagged Tol2 transposons accelerates conditional disruption of a broad spectrum of genes in mouse embryonic stem cells. Nucleic Acids Res 2012; 40:e97. [PMID: 22447447 PMCID: PMC3401447 DOI: 10.1093/nar/gks262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the insertional mutagenesis techniques used in the current international knockout mouse project (KOMP) on the inactivation of all mouse genes in embryonic stem (ES) cells, random gene trapping has been playing a major role. Gene-targeting experiments have also been performed to individually and conditionally knockout the remaining ‘difficult-to-trap’ genes. Here, we show that transcriptionally silent genes in ES cells are severely underrepresented among the randomly trapped genes in KOMP. Our conditional poly(A)-trapping vector with a common retroviral backbone also has a strong bias to be integrated into constitutively transcribed genome loci. Most importantly, conditional gene disruption could not be successfully accomplished by using the retrovirus vector because of the frequent development of intra-vector deletions/rearrangements. We found that one of the cut and paste-type DNA transposons, Tol2, can serve as an ideal platform for gene-trap vectors that ensures identification and conditional disruption of a broad spectrum of genes in ES cells. We also solved a long-standing problem associated with multiple vector integration into the genome of a single cell by incorporating a mixture of differentially tagged Tol2 transposons. We believe our strategy indicates a straightforward approach to mass-production of conditionally disrupted alleles for genes in the target cells.
Collapse
Affiliation(s)
- N Ika Mayasari
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|