1
|
Fang M, Deibler SK, Nana AL, Vatsavayai SC, Banday S, Zhou Y, Almeida S, Weiss A, Brown RH, Seeley WW, Gao FB, Green MR. Loss of TDP-43 function contributes to genomic instability in amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1251228. [PMID: 37849894 PMCID: PMC10577185 DOI: 10.3389/fnins.2023.1251228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the cytoplasmic mislocalization and aggregation of the DNA/RNA-binding protein TDP-43, but how loss of nuclear TDP-43 function contributes to ALS and FTD pathogenesis remains largely unknown. Here, using large-scale RNAi screening, we identify TARDBP, which encodes TDP-43, as a gene whose loss-of-function results in elevated DNA mutation rate and genomic instability. Consistent with this finding, we observe increased DNA damage in induced pluripotent stem cells (iPSCs) and iPSC-derived post-mitotic neurons generated from ALS patients harboring TARDBP mutations. We find that the increase in DNA damage in ALS iPSC-derived neurons is due to defects in two major pathways for DNA double-strand break repair: non-homologous end joining and homologous recombination. Cells with defects in DNA repair are sensitive to DNA damaging agents and, accordingly, we find that ALS iPSC-derived neurons show a marked reduction in survival following treatment with a DNA damaging agent. Importantly, we find that increased DNA damage is also observed in neurons with nuclear TDP-43 depletion from ALS/FTD patient brain tissues. Collectively, our results demonstrate that ALS neurons with loss of nuclear TDP-43 function have elevated levels of DNA damage and contribute to the idea that genomic instability is a defining pathological feature of ALS/FTD patients with TDP-43 pathology.
Collapse
Affiliation(s)
- Minggang Fang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sara K. Deibler
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alissa L. Nana
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Sarat C. Vatsavayai
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - You Zhou
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - William W. Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Michael R. Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
2
|
MEN1 is a melanoma tumor suppressor that preserves genomic integrity by stimulating transcription of genes that promote homologous recombination-directed DNA repair. Mol Cell Biol 2013; 33:2635-47. [PMID: 23648481 DOI: 10.1128/mcb.00167-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple endocrine neoplasia type 1 is a familial cancer syndrome resulting from loss-of-function mutations in the MEN1 gene. We previously identified the tumor suppressor MEN1 as a gene required for oncogene-induced senescence in melanocytes, raising the possibility that MEN1 is a melanoma tumor suppressor. Here we show that MEN1 expression is lost in a high percentage of human melanomas and melanoma cell lines. We find that melanocytes depleted of MEN1 are deficient in homologous recombination (HR)-directed DNA repair, which is accompanied by increased nonhomologous end-joining activity. Following DNA damage, MEN1 levels increase as a result of phosphorylation by the DNA damage kinase ATM/ATR. Most importantly, we show that MEN1 functions by directly stimulating the transcription of several genes, including BRCA1, RAD51, and RAD51AP1, that encode proteins involved in HR. MEN1 and its coactivator, the mixed-lineage leukemia histone methyltransferase, are recruited to the BRCA1, RAD51, and RAD51AP1 promoters by estrogen receptor 1, resulting in increased histone H3-lysine 4 trimethylation and transcription. Collectively, our results indicate that MEN1 is a melanoma tumor suppressor that functions by stimulating the transcription of genes involved in HR-directed DNA repair.
Collapse
|
3
|
Bedoya F, Medveczky MM, Lund TC, Perl A, Horvath J, Jett SD, Medveczky PG. Identification of mitochondrial genome concatemers in AIDS-associated lymphomas and lymphoid cell lines. Leuk Res 2009; 33:1499-504. [PMID: 19362738 DOI: 10.1016/j.leukres.2009.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 12/24/2022]
Abstract
Since most oncogenic viruses persist as extrachromosomal covalently closed circular DNA (cccDNA) in tumor cells, we developed an assay to visualize and identify cccDNA in primary lymphomas. We identified concatemers of the mitochondrial genome in all samples analyzed, but not in normal lymphocytes. One AIDS-associated lymphoma (EL) was further studied in detail as its mitochondrial genome consisted of tandem head-to-tail duplications. Insertion of C-residues was noted near the origin of replication of EL mtDNA. EL cells responded weakly to Fas-apoptotic stimulus, displayed reduced mitochondrial activity and mass, and produced higher levels of reactive oxygen intermediates. Screening of several AIDS-associated lymphomas and established lymphoid cell lines also revealed the presence of mitochondrial genome concatemers consisting of interlinked monomer molecules. Taken together, our results suggest that formation of mtDNA concatemers is associated with oncogenic transformation in lymphoid cells.
Collapse
Affiliation(s)
- Felipe Bedoya
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | | | | | | | | | | | | |
Collapse
|
4
|
Shammas MA, Shmookler Reis RJ, Koley H, Batchu RB, Li C, Munshi NC. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood 2009; 113:2290-7. [PMID: 19050310 PMCID: PMC2652372 DOI: 10.1182/blood-2007-05-089193] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 04/20/2008] [Indexed: 11/20/2022] Open
Abstract
A prominent feature of most if not all cancers is a striking genetic instability, leading to ongoing accrual of mutational changes, some of which underlie tumor progression, including acquisition of invasiveness, drug resistance, and metastasis. Thus, the molecular basis for the generation of this genetic diversity in cancer cells has important implications in understanding cancer progression. Here we report that homologous recombination (HR) activity is elevated in multiple myeloma (MM) cells and leads to an increased rate of mutation and progressive accumulation of genetic variation over time. We demonstrate that the inhibition of HR activity in MM cells by small inhibitory RNA (siRNAs) targeting recombinase leads to significant reduction in the acquisition of new genetic changes in the genome and, conversely, the induction of HR activity leads to significant elevation in the number of new mutations over time and development of drug resistance in MM cells. These data identify dysregulated HR activity as a key mediator of DNA instability and progression of MM, with potential as a therapeutic target.
Collapse
Affiliation(s)
- Masood A Shammas
- Department of Medicine, VA Health Care System and Harvard Medical School Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
5
|
Joubert A, Zimmerman KM, Bencokova Z, Gastaldo J, Chavaudra N, Favaudon V, Arlett CF, Foray N. DNA double-strand break repair defects in syndromes associated with acute radiation response: at least two different assays to predict intrinsic radiosensitivity? Int J Radiat Biol 2008; 84:107-25. [PMID: 18246480 DOI: 10.1080/09553000701797039] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Human diseases associated with acute radiation responses are rare genetic disorders with common clinical and biological features including radiosensitivity, genomic instability, chromosomal aberrations, and frequently immunodeficiency. To determine what molecular assays are predictive of cellular radiosensitivity whatever the genes mutations, the existence of a quantitative correlation between cellular radiosensitivity and unrepaired DNA double-strand breaks (DSB) repair defects was examined in a collection of 40 human fibroblasts representing 8 different syndromes. MATERIALS AND METHODS A number of techniques such as pulsed-field gel electrophoresis, plasmid assay and immunofluorescence with antibodies against MRE11, MDC1, 53BP1 and phosphorylated forms of H2AX, DNA-PK were applied systematically. RESULTS AND CONCLUSIONS Survival fraction at 2 Gy was found to be inversely proportional to the amount of unrepaired DSB, whatever the genes mutations and the assay applied. However, no single assay discriminates the full range of human radiosensitivity. Particularly, nuclear foci formed by the phosphorylation of H2AX do not predict well moderate radiosensitivities. Our findings suggest the existence of an ATM-dependent interplay between the activation of DNA-PK and MRE11. A classification of diseases according their cellular radiosensitivity, their molecular response to radiation and the functional assays permitting their evaluation is proposed.
Collapse
Affiliation(s)
- Aurélie Joubert
- Inserm, U647, ID17, European Synchrotron Radiation Facility, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Joubert A, Foray N. Radiosensibilité intrinsèque et cassures double–brin de l'ADN dans les cellules humaines. Cancer Radiother 2007; 11:129-42. [PMID: 17321185 DOI: 10.1016/j.canrad.2007.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 01/11/2007] [Accepted: 01/19/2007] [Indexed: 01/11/2023]
Abstract
Among the large spectrum of DNA damage induced by radiation, DNA double-strand breaks (DSBs) are considered, to date, as the key-lesions responsible for the cell killing. However, although it was always intuitive to radiobiologists, such a conclusion has only been reached after technical developments and conceptual advances and remains consensual rather than demonstrated formally. In this article, we have reviewed the results that have lead to the conclusion that the assessment of successful DSB repair can be the basis of reliable assays predictive of the clinical response to radiotherapy and some chemotherapeutic treatments. We have discussed a number of technical artifacts, the biases due to the extrapolation of data obtained in yeast and rodent model systems to the human situation and the variety of phenotypes observed in human cells and in particular: 1) the most recent techniques developed, based on immunofluorescence, which have revolutionized our understanding of the molecular events occurring early after irradiation but have also raised the crucial questions about the choice of techniques to assess DSB repair and their specificity for different steps of the repair process; 2) While the homologous recombination repair pathway is predominant in yeasts, its importance in human cells appears less obvious, and raises the problem that the existence of randomized repair events may produce many more errors in human cells than in small genome organisms; 3) the impairment of DSB repair is observed in a plethora of genetic diseases, leading to radiosensitivity, immunodeficiency and sometimes cancer-proneness, but the low frequency and the pleiotropism of such diseases makes difficult the development of a single predictive assay. Therefore, although complete DSB repair appears to be crucial for cell survival, further research is still needed to provide innovative techniques fro measuring repair which can be successfully transferred to the clinic and used to ensure the avoidance of deleterious side-effects to cancer therapies.
Collapse
Affiliation(s)
- A Joubert
- Inserm U647, ID17, European Synchrotron Radiation Facility, 38043, Grenoble, France
| | | |
Collapse
|
7
|
Srivastava N, Raman MJ. Homologous recombination-mediated double-strand break repair in mouse testicular extracts and comparison with different germ cell stages. Cell Biochem Funct 2007; 25:75-86. [PMID: 16989005 DOI: 10.1002/cbf.1375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Homologous recombination (HR) is established as a significant contributor to double-strand break (DSB) repair in mammalian somatic cells; however, its role in mammalian germ cells has not been characterized, although being conservative in nature it is anticipated to be the major pathway in germ cells. The germ cell system has inherent limitations by which intact cell approaches are not feasible. The present study, therefore, investigates HR-mediated DSB repair in mouse germ cell extracts by using an in vitro plasmid recombination assay based on functional rescue of a neomycin (neo) gene. A significantly high-fold increase in neo+ (Kan(R)) colonies following incubation of two plasmid substrates (neo delta1 and neo delta2) with testicular extracts demonstrated the extracts' ability to catalyze intermolecular recombination. A significant enhancement in recombinants upon linearization of one of the plasmids suggested the existence of an HR-mediated DSB repair activity. Comparison of the activity at sequential developmental stages, spermatogonia, spermatocytes and spermatids revealed its presence at all the stages; spermatocyte being the most proficient stage. Further, restriction analysis of recombinant plasmids indicated the predominance of gene conversion in enriched spermatocytes (mostly pachytenes), in contrast to gonial and spermatid extracts that showed higher reciprocal exchange. In conclusion, this study demonstrates HR repair activity at all stages of male germ cells, suggesting an important role of HR-mediated DSB repair during mammalian spermatogenesis. Further, the observed preference of gene conversion over reciprocal exchange at spermatocyte stage correlates with the close association of gene conversion with the meiotic recombination program.
Collapse
Affiliation(s)
- Niloo Srivastava
- Cytogenetics Laboratory, Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
8
|
Carson A, Wang Z, Xiao X, Khan SA. A DNA recombination-based approach to eliminate papillomavirus infection. Gene Ther 2005; 12:534-40. [PMID: 15756291 DOI: 10.1038/sj.gt.3302447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
At present, no treatments exist that effectively target and eliminate papillomaviruses (PVs) from infected cells or prevent its replication. We are employing a strategy to prevent virus replication in PV-infected cells through the conditional expression of the herpes simplex virus type 1 thymidine kinase (TK) gene. Expression of TK in this system is expected to be triggered by a homologous recombination event between the endogenous PV genome and a nonexpressing TK gene cassette. Recombination between these two DNAs is expected to change the nonexpressing cassette into a form that expresses TK. Various constructs were generated to express the TK in the above manner. Transfection of cell lines with a TK nonexpressing plasmid did not result in TK production due to alternative splicing and polyadenylation site selection. However, cotransfection of cell lines with PV plasmids along with the above TK construct containing short segments of PV sequences resulted in a recombination event that led to TK expression as shown by Northern and Western blot analyses. We also developed a TK expression cassette utilizing an adeno-associated virus (AAV) vector. Delivery of the cassette by AAV to PV-infected cells resulted in TK expression, and ganciclovir treatment resulted in efficient killing of these cells.
Collapse
Affiliation(s)
- A Carson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
9
|
Raghavan SC, Raman MJ. Nonhomologous end joining of complementary and noncomplementary DNA termini in mouse testicular extracts. DNA Repair (Amst) 2004; 3:1297-310. [PMID: 15336625 DOI: 10.1016/j.dnarep.2004.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 11/24/2022]
Abstract
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
10
|
Donahue SL, Lundberg R, Saplis R, Campbell C. Deficient regulation of DNA double-strand break repair in Fanconi anemia fibroblasts. J Biol Chem 2003; 278:29487-95. [PMID: 12748186 DOI: 10.1074/jbc.m213251200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblasts from patients with Fanconi anemia (FA) display genomic instability, hypersensitivity to DNA cross-linking agents, and deficient DNA end joining. Fibroblasts from two FA patients of unidentified complementation group also had significantly increased cellular homologous recombination (HR) activity. Results described herein show that HR activity levels in patient-derived FA fibroblasts of groups A, C, and G were 10-fold greater than those seen in normal fibroblasts. In contrast, HR activity in group D2 fibroblasts was identical to that in normal cells. Western blot analysis revealed that the RAD51 protein was elevated 10-fold above normal levels in group A, C, and G fibroblasts, but was not altered in group D2 fibroblasts. HR activity levels in these former cells could be restored to near-normal levels by electroporation with anti-RAD51 antibody, whereas similar treatment of normal and complementation group D2 fibroblasts had no effect. These findings are consistent with a model in which FA proteins function to coordinate DNA double-strand break repair activity by regulating both recombinational and non-recombinational DNA repair. Interestingly, whereas positive regulation of DNA end joining requires the combined presence of all FA proteins thus far tested, suppression of HR, which is minimally dependent on the FANCA, FANCC, and FANCG proteins, does not require FANCD2.
Collapse
Affiliation(s)
- Sarah L Donahue
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
11
|
Yang Y, Seed B. Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol 2003; 21:447-51. [PMID: 12627171 DOI: 10.1038/nbt803] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 01/16/2003] [Indexed: 11/08/2022]
Abstract
Homologous recombination in Escherichia coli simplifies the generation of gene targeting constructs for transduction into mouse embryonic stem (ES) cells. Taking advantage of the extensive homology provided by intact bacterial artificial chromosomes (BACs), we have developed an efficient method for preparing targeted gene disruptions in ES cells. Correctly integrated clones were identified by a simple screening procedure based on chromosomal fluorescence in situ hybridization (FISH). To date, five mutant lines have been generated and bred to homozygosity by this approach.
Collapse
Affiliation(s)
- Yi Yang
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
12
|
Denning C, Dickinson P, Burl S, Wylie D, Fletcher J, Clark AJ. Gene targeting in primary fetal fibroblasts from sheep and pig. CLONING AND STEM CELLS 2002; 3:221-31. [PMID: 11945232 DOI: 10.1089/15362300152725945] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nuclear transfer offers a new cell-based route for introducing precise genetic modifications in a range of animal species. However, significant challenges, such as establishment of somatic gene targeting techniques, must be overcome before the technology can be applied routinely. In this report, we describe targeted deletion at the GGTA1 (alpha 1,3-galactosyl transferase) and PrP (prion protein) loci in primary fibroblasts from livestock. We place particular emphasis on the growth characteristics of the primary cell cultures, since these are key to determining success.
Collapse
Affiliation(s)
- C Denning
- Roslin Institute, Roslin, Midlothian, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Slebos RJ, Taylor JA. A novel host cell reactivation assay to assess homologous recombination capacity in human cancer cell lines. Biochem Biophys Res Commun 2001; 281:212-9. [PMID: 11178982 DOI: 10.1006/bbrc.2001.4335] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repair of DNA double-strand breaks (DSB) is essential for cell viability and genome stability. Homologous recombination repair plays an important role in DSB repair and impairment of this repair mechanism may lead to loss of genomic integrity, which is one of the hallmarks of cancer. Recent research has shown that the tumor suppressor genes p53 and BRCA1 and -2 are involved in the proper control of homologous recombination, suggesting a role of this type of repair in human cancer. We developed a novel assay based on recombination between two Green Fluorescent Protein (GFP) sequences in transiently transfected plasmid DNA. The plasmid construct contains an intact, emission-shifted, "blue" variant of GFP (BFP), with a 300 nucleotide stretch of homology to a nonfunctional copy of GFP. In the absence of homologous recombination only BFP is present, but homologous recombination can create a functional GFP. The homologous regions in the plasmid were constructed in both the direct and the inverted orientation of transcription to detect possible differences in the recombination mechanisms involved. A panel of human tumor cell lines was chosen on the basis of genetic background and chromosome integrity and tested for homologous recombination using this assay. The panel included cell lines with varying levels of karyotypic abnormalities, isogenic cell lines with normal and mutant p53, isogenic cell lines with or without DNA mismatch repair, BRCA1 and -2 mutant cell lines, and the lymphoma cell line DT40. With this assay, the observed differences between cell lines with the lowest and highest levels of recombination were about 100-fold. Increased levels of recombination were associated with mutant p53, whereas a low level of recombination was found in the BRCA1 mutant cell line. In the cell line HT1080TG, a mutagenized derivative of HT1080 with two mutant alleles of p53, high levels of recombination were found with the direct orientation but not with the inverted orientation plasmid. No difference in recombination was detected between two isogenic cell lines that only differed in DNA mismatch repair capability. We conclude that this assay can detect differences in homologous recombination capacity in cultured cell lines and that these differences follow the patterns that would be expected from the different genotypes of these cell lines. Future application in normal cells may be useful to identify genetic determinants controlling genomic integrity or to detect differences in DNA repair capacity in individuals.
Collapse
Affiliation(s)
- R J Slebos
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
14
|
Kadekoppala M, Cheresh P, Catron D, Ji DD, Deitsch K, Wellems TE, Seifert HS, Haldar K. Rapid recombination among transfected plasmids, chimeric episome formation and trans gene expression in Plasmodium falciparum. Mol Biochem Parasitol 2001; 112:211-8. [PMID: 11223128 DOI: 10.1016/s0166-6851(00)00368-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although recombination is known to be important to generating diversity in the human malaria parasite P. falciparum, the low efficiencies of transfection and the fact that integration of transfected DNA into chromosomes is observed only after long periods (typically 12 weeks or more) have made it difficult to genetically manipulate the blood stages of this major human pathogen. Here we show that co-transfection of a P. falciparum line with two plasmids, one expressing a green fluorescent protein (gfp) reporter and the other expressing a drug resistance marker (Tgdhfr-ts M23), allowed selection of a population in which about approximately 30% of the parasites produce GFP. In these GFP-producing parasites, the transfected plasmids had recombined into chimeric episomes as large as 20 kb and could be maintained under drug pressure for at least 16 weeks. Our data suggest that chimera formation occurs early (detected by 7--14 days) and that it involves homologous recombination favored by presence of the same P. falciparum 5'hrp3 UTR promoting transcription from each plasmid. This indicates the presence of high levels of homologous recombination activity in blood stage parasites that can be used to drive rapid recombination of newly introduced DNA, study mechanisms of recombination, and introduce genes for trans expression in P. falciparum.
Collapse
Affiliation(s)
- M Kadekoppala
- Department of Pathology, Northwestern University Medical School, 303 E. Chicago Ave., Chicago, IL 60611-3008, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
An oligonucleotide composed of a contiguous stretch of RNA and DNA residues has been developed to facilitate correction of single-base mutations of episomal and chromosomal targets in mammalian cells. We demonstrated that an RNA-DNA oligonucleotide (RDO) induced heritable correction of a point mutation in the tyrosinase gene at the level of genomic sequence, protein, and phenotype of albino mouse melanocytes and albino mouse skin. Such RDOs might hold promise as a therapeutic method for the treatment of skin diseases. However, the general application of RDO technology has been hampered by the absence of a standardized system to measure the gene conversion in a particular cell type in a rapid and reproducible manner. For this purpose, we established an in vitro system in which nuclear extracts from mammalian cells showed RDO-mediated gene correction of a shuttle vector containing a point mutation in the E. coli beta-galactosidase gene. This sensitive and convenient assay has been utilized to optimize the design of RDOs and to compare frequencies of gene conversion among different cell types. The general application of the RDO for site-specific gene correction or mutation would benefit from such mechanistic studies.
Collapse
Affiliation(s)
- O Igoucheva
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | |
Collapse
|
16
|
Igoucheva O, Peritz AE, Levy D, Yoon K. A sequence-specific gene correction by an RNA-DNA oligonucleotide in mammalian cells characterized by transfection and nuclear extract using a lacZ shuttle system. Gene Ther 1999; 6:1960-71. [PMID: 10637447 DOI: 10.1038/sj.gt.3301042] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The variability in gene conversion frequency by an RNA-DNA oligonucleotide (RDO) prompted us to develop a system as a means of measuring the conversion frequency rapidly and reproducibly. A shuttle vector was constructed to measure the frequency of targeted gene correction by RDO of the E. coli beta-galactosidase gene containing a single point mutation (G --> A), that resulted in inactivation of enzymatic activity. An RDO corrected the point mutation and restored the enzymatic activity, approximately 1%, determined by a histochemical staining in mammalian cells and by a color selection (blue or white) of bacteria transformed with Hirt DNA. In addition, we established an in vitro system capable of gene correction using nuclear extracts. CHO-K1 nuclear extracts corrected the point mutation approximately 0.1%, determined by bacterial transformation. Using the in vitro reaction, frequency of gene conversion in different cell types was measured. The embryonic fibroblasts from p53-/- mouse showed higher gene correction than that of the isogenic p53+/+ cells. Nuclear extracts from DT40 cells, which have a higher homologous recombination rate than any other mammalian cells exhibited 0.1-0.6% of gene correction. These results indicated that recombination may be rate-limiting in gene conversion by RDO in cells with competent mismatch repair activities. Utilizing transfection and in vitro reaction, we demonstrated that such a shuttle system might be useful in comparing the frequency of targeting among different cell types and to investigate the mechanism of gene conversion by RDO.
Collapse
Affiliation(s)
- O Igoucheva
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University and Jefferson Medical College, Philadelphia PA 19107, USA
| | | | | | | |
Collapse
|
17
|
Bertrand P, Akhmedov AT, Delacote F, Durrbach A, Lopez BS. Human POMp75 is identified as the pro-oncoprotein TLS/FUS: both POMp75 and POMp100 DNA homologous pairing activities are associated to cell proliferation. Oncogene 1999; 18:4515-21. [PMID: 10442642 DOI: 10.1038/sj.onc.1203048] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously developed an assay to measure DNA homologous pairing activities in crude extracts: The POM blot. In mammalian nuclear extracts, we detected two major DNA homologous pairing activities: POMp100 and POMp75. Here, we present the purification and identification of POMp75 as the pro-oncoprotein TLS/FUS. Because of the pro-oncogene status of TLS/FUS, we studied in addition, the relationships between cell proliferation and POM activities. We show that transformation of human fibroblasts by SV40 large T antigen results in a strong increase of both POMpl00 and TLS/POMp75 activities. Although detectable levels of both POMp100 and TLS/POMp75 are observed in non-immortalized fibroblasts or lymphocytes, fibroblasts at mid confluence or lymphocytes stimulated by phytohaemaglutinin, show higher levels of POM activities. Moreover, induction of differentiation of mouse F9 line by retinoic acid leads to the inhibition of both POMp100 and TLS/POMp75 activities. Comparison of POM activity of TLS/FUS with the amount of TLS protein detected by Western blot, suggests that the POM activity could be regulated by post-translation modification. Taken together, these results indicate that POMp100 and TLS/POMp75 activities are present in normal cells but are connected to cell proliferation. Possible relationship between cell proliferation, response to DNA damage and DNA homologous pairing activity of the pro-oncoprotein TLS/FUS are discussed.
Collapse
Affiliation(s)
- P Bertrand
- CEA, DSV, DRR, CNRS UMR 217, Fontenay aux Roses, France
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- L A Marcelino
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
19
|
Abstract
The ideal therapy for single gene disorders would be repair of the mutated disease genes. Homologous recombination is one of several cellular mechanisms for the repair of DNA damage. Recombination between exogenous DNA and homologous chromosomal loci (gene targeting) can be used to repair an endogenous gene, but the low efficiency of this process is a serious barrier to its therapeutic potential. Recent progress in the isolation and characterisation of mammalian genes and proteins involved in DNA recombination has raised the possibility that the cellular biochemistry of recombination can be manipulated to improve the efficiency of gene targeting. As an initial test of this approach, we have overexpressed the gene encoding hRAD51, a protein with homologous DNA pairing and strand exchange activities, in human cells and measured its effect on gene targeting. We report a two- to three-fold increase in gene targeting, and enhanced resistance to ionising radiation in hRAD51-overexpressing cells with no obvious detrimental effects. These observations provide valuable genetic evidence for the involvement of hRAD51 in both gene targeting and DNA repair in human cells. Our data also establish overexpression of recombination genes as a viable approach to improving gene targeting efficiencies.
Collapse
Affiliation(s)
- R J Yáñez
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, DuCane Road, London W12 0NN, UK
| | | |
Collapse
|
20
|
Rothkamm K, Löbrich M. Misrejoining of DNA double-strand breaks in primary and transformed human and rodent cells: a comparison between the HPRT region and other genomic locations. Mutat Res 1999; 433:193-205. [PMID: 10343652 DOI: 10.1016/s0921-8777(99)00008-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many studies of radiation response and mutagenesis have been carried out with transformed human or rodent cell lines. To study whether the transfer of results between different cellular systems is justified with regard to the repair of radiation-induced DNA double-strand breaks (DSBs), two assays that measure the joining of correct DSB ends and total rejoining in specific regions of the genome were applied to primary and cancer-derived human cells and a Chinese hamster cell line. The experimental procedure involves Southern hybridization of pulsed-field gel electrophoresis blots and quantitative analysis of specific restriction fragments detected by a single-copy probe. The yield of X-ray-induced DSBs was comparable in all cell lines analyzed, amounting to about 1 x 10(-2) breaks/Mbp/Gy. For joining correct DSB ends following an 80 Gy X-ray exposure all cell lines showed similar kinetics and the same final level of correctly rejoined breaks of about 50%. Analysis of all rejoining events revealed a considerable fraction of unrejoined DSBs (15-20%) after 24 h repair incubation in the tumor cell line, 5-10% unrejoined breaks in CHO cells and complete DSB rejoining in primary human fibroblasts. To study intragenomic heterogeneity of DSB repair, we analyzed the joining of correct and incorrect break ends in regions of different gene density and activity in human cells. A comparison of the region Xq26 spanning the hypoxanthine guanine phosphoribosyl transferase locus with the region 21q21 revealed identical characteristics for the induction and repair of DSBs, suggesting that there are no large variations between Giemsa-light and Giemsa-dark chromosomal bands.
Collapse
Affiliation(s)
- K Rothkamm
- Strahlenzentrum der Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
21
|
Thompson LH, Schild D. The contribution of homologous recombination in preserving genome integrity in mammalian cells. Biochimie 1999; 81:87-105. [PMID: 10214914 DOI: 10.1016/s0300-9084(99)80042-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Although it is clear that mammalian somatic cells possess the enzymatic machinery to perform homologous recombination of DNA molecules, the importance of this process in mitigating DNA damage has been uncertain. An initial genetic framework for studying homologous recombinational repair (HRR) has come from identifying relevant genes by homology or by their ability to correct mutants whose phenotypes are suggestive of recombinational defects. While yeast has been an invaluable guide, higher eukaryotes diverge in the details and complexity of HRR. For eliminating DSBs, HRR and end-joining pathways share the burden, with HRR contributing critically during S and G2 phases. It is likely that the removal of interstrand cross-links is absolutely dependent on efficient HRR, as suggested by the extraordinary sensitivity of the ercc1, xpf/ercc4, xrcc2, and xrcc3 mutants to cross-linking chemicals. Similarly, chromosome stability in untreated cells requires intact HRR, which may eliminate DSBs arising during DNA replication and thereby prevent chromosome aberrations. Complex regulation of HRR by cell cycle checkpoint and surveillance functions is suggested not only by direct interactions between human Rad51 and p53, c-Abl, and BRCA2, but also by very high recombination rates in p53-deficient cells.
Collapse
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
| | | |
Collapse
|
22
|
Santana E, Peritz AE, Iyer S, Uitto J, Yoon K. Different frequency of gene targeting events by the RNA-DNA oligonucleotide among epithelial cells. J Invest Dermatol 1998; 111:1172-7. [PMID: 9856835 DOI: 10.1046/j.1523-1747.1998.00403.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A unique hybrid oligonucleotide composed of both RNA and DNA has been shown to correct a point mutation in a site-specific and inheritable manner in extrachromosomal and chromosomal targets. In order to develop new gene therapeutics for skin, we tested two oligonucleotides that were shown to create a point mutation in alkaline phosphatase and beta-globin genes in several epithelial cell types. Highly transformed epithelial cells (HeLa) exhibited a conversion frequency of 5% by both RNA-DNA oligonucleotides. In comparison, other immortalized epithelial cells (HaCaT) or human primary keratinocytes did not show any detectable level of gene conversion by the restriction fragment length polymorphism analysis, indicating less than 1% conversion frequency. The concentration of the oligonucleotide in the nuclei of HeLa cells was similar to that of HaCaT or human primary keratinocytes measured by a radiolabeled or a fluorescein-conjugated oligonucleotide. Moreover, the RNA-DNA oligonucleotide exhibited a prolonged stability in the nucleus. Thus, neither uptake nor nuclear stability of the oligonucleotide appears to be a limiting factor in gene targeting events under our experimental conditions. These results indicate that the frequency of gene targeting varies among different cells, suggesting that cellular recombination and DNA repair activities may be important.
Collapse
Affiliation(s)
- E Santana
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
23
|
Padua RA, Baron KT, Thyagarajan B, Campbell C, Thayer SA. Reduced Ca2+ uptake by mitochondria in pyruvate dehydrogenase-deficient human diploid fibroblasts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C615-22. [PMID: 9530092 DOI: 10.1152/ajpcell.1998.274.3.c615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Physiological and pathological Ca2+ loads are thought to be taken up by mitochondria via a process dependent on aerobic metabolism. We sought to determine whether human diploid fibroblasts from a patient with an inherited defect in pyruvate dehydrogenase (PDH) exhibit a decreased ability to sequester cytosolic Ca2+ into mitochondria. Mobilization of Ca2+ stores with bradykinin (BK) increased the cytosolic Ca2+ concentration ([Ca2+]c) to comparable levels in control and PDH-deficient fibroblasts. In normal fibroblasts transfected with plasmid DNA encoding mitochondrion-targeted apoaequorin, BK elicited an increase in Ca2(+)-dependent aequorin luminescence corresponding to an increase in the mitochondrial Ca2+ concentration ([Ca2+]mt) of 2.0 +/- 0.2 microM. The mitochondrial uncoupling agent carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone blocked the BK-induced [Ca2+]mt increase, although it did not affect the [Ca2+]c transient. Basal [Ca2+]c and [Ca2+]mt in control and PDH-deficient cells were similar. However, confocal imaging of the potential-sensitive dye JC-1 indicated that the percentage of highly polarized mitochondria was reduced from 30 +/- 1% in normal cells to 19 +/- 2% in the PDH-deficient fibroblasts. BK-elicited [Ca2+]mt transients in PDH-deficient cells were reduced to 4% of control, indicating that PDH-deficient mitochondria have a decreased ability to take up cytosolic Ca2+. Thus cells with compromised aerobic metabolism have a reduced capacity to sequester Ca2+.
Collapse
Affiliation(s)
- R A Padua
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
24
|
Foray N, Arlett CF, Malaise EP. Radiation-induced DNA double-strand breaks and the radiosensitivity of human cells: a closer look. Biochimie 1997; 79:567-75. [PMID: 9466694 DOI: 10.1016/s0300-9084(97)82005-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A large number of reports suggest that DNA double-strand breaks (DSB) play a major role in the radiation-induced killing of mammalian cells. However, the arguments supporting the relationship between DSB and radiosensitivity are generally indirect. Furthermore, care must be taken to allow for the possible impact of the techniques and of the experimental protocols on the relationship between DSB and cell death. The recent data on DSB induction, repair and misrepair in human cell lines and their correlation with intrinsic radiosensitivity are reviewed.
Collapse
Affiliation(s)
- N Foray
- Laboratoire de Radiobiologie (URA-CNRS 1967) PR1-Institut Gustave-Roussy, Villejuif, France
| | | | | |
Collapse
|
25
|
Thyagarajan B, Campbell C. Elevated homologous recombination activity in fanconi anemia fibroblasts. J Biol Chem 1997; 272:23328-33. [PMID: 9287344 DOI: 10.1074/jbc.272.37.23328] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is widely believed that Fanconi anemia cells possess a reduced ability to repair inter-strand DNA cross-links. While the mechanism through which inter-strand DNA cross-links are removed from mammalian chromosomes is unknown, these lesions are repaired via homologous recombination in lower eukaryotes and bacteria. Based on the hypothesis that a similar mechanism of DNA repair functions in mammalian somatic cells, we measured homologous recombination activity in diploid fibroblasts from healthy donors, and Fanconi anemia patients. Somewhat surprisingly, homologous recombination levels in nuclear protein extracts prepared from Fanconi anemia cells were nearly 100-fold higher than in extracts prepared from control cells. We observed a similar increase in the activity of a 100-kDa homologous DNA pairing protein in extracts from Fanconi anemia cells. Transfection studies confirmed that plasmid homologous recombination levels in intact Fanconi anemia cells were substantially elevated, compared with control cells. These results suggest that inappropriately elevated levels of homologous recombination activity may contribute to the genomic instability and cancer predisposition that characterize Fanconi anemia.
Collapse
Affiliation(s)
- B Thyagarajan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|