1
|
Pals MJ, Lindberg A, Velema WA. Chemical strategies for antisense antibiotics. Chem Soc Rev 2024; 53:11303-11320. [PMID: 39436264 PMCID: PMC11495246 DOI: 10.1039/d4cs00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/23/2024]
Abstract
Antibacterial resistance is a severe threat to modern medicine and human health. To stay ahead of constantly-evolving bacteria we need to expand our arsenal of effective antibiotics. As such, antisense therapy is an attractive approach. The programmability allows to in principle target any RNA sequence within bacteria, enabling tremendous selectivity. In this Tutorial Review we provide guidelines for devising effective antibacterial antisense agents and offer a concise perspective for future research. We will review the chemical architectures of antibacterial antisense agents with a special focus on the delivery and target selection for successful antisense design. This Tutorial Review will strive to serve as an essential guide for antibacterial antisense technology development.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Alexander Lindberg
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Naganuma M, Ohoka N, Tsuji G, Inoue T, Naito M, Demizu Y. Structural Optimization of Decoy Oligonucleotide-Based PROTAC That Degrades the Estrogen Receptor. Bioconjug Chem 2023; 34:1780-1788. [PMID: 37736001 DOI: 10.1021/acs.bioconjchem.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) have attracted attention as a chemical method of protein knockdown via the ubiquitin-proteasome system. Some oligonucleotide-based PROTACs have recently been developed for disease-related proteins that do not have optimal small-molecule ligands such as transcription factors. We have previously developed the PROTAC LCL-ER(dec), which uses a decoy oligonucleotide as a target ligand for estrogen receptor α (ERα) as a model transcription factor. However, LCL-ER(dec) has a low intracellular stability because it comprises natural double-stranded DNA sequences. In the present study, we developed PROTACs containing chemically modified decoys to address this issue. Specifically, we introduced phosphorothioate modifications and hairpin structures into LCL-ER(dec). Among the newly designed PROTACs, LCL-ER(dec)-H46, with a T4 loop structure at the end of the decoy, showed long-term ERα degradation activity while acquiring enzyme tolerance. These findings suggest that the introduction of hairpin structures is a useful modification of oligonucleotides in decoy oligonucleotide-based PROTACs.
Collapse
Affiliation(s)
- Miyako Naganuma
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 236-0027, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 110-0033, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 236-0027, Japan
| |
Collapse
|
3
|
Platella C, Criscuolo A, Riccardi C, Gaglione R, Arciello A, Musumeci D, DellaGreca M, Montesarchio D. Exploring the Binding of Natural Compounds to Cancer-Related G-Quadruplex Structures: From 9,10-Dihydrophenanthrenes to Their Dimeric and Glucoside Derivatives. Int J Mol Sci 2023; 24:ijms24097765. [PMID: 37175474 PMCID: PMC10178421 DOI: 10.3390/ijms24097765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
In-depth studies on the interaction of natural compounds with cancer-related G-quadruplex structures have been undertaken only recently, despite their high potential as anticancer agents, especially due to their well-known and various bioactivities. In this frame, aiming at expanding the repertoire of natural compounds able to selectively recognize G-quadruplexes, and particularly focusing on phenanthrenoids, a mini-library including dimeric (1-3) and glucoside (4-5) analogues of 9,10-dihydrophenanthrenes, a related tetrahydropyrene glucoside (6) along with 9,10-dihydrophenanthrene 7 were investigated here by several biophysical techniques and molecular docking. Compounds 3 and 6 emerged as the most selective G-quadruplex ligands within the investigated series. These compounds proved to mainly target the grooves/flanking residues of the hybrid telomeric and parallel oncogenic G-quadruplex models exploiting hydrophobic, hydrogen bond and π-π interactions, without perturbing the main folds of the G-quadruplex structures. Notably, a binding preference was found for both ligands towards the hybrid telomeric G-quadruplex. Moreover, compounds 3 and 6 proved to be active on different human cancer cells in the low micromolar range. Overall, these compounds emerged as useful ligands able to target G-quadruplex structures, which are of interest as promising starting scaffolds for the design of analogues endowed with high and selective anticancer activity.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- Institute of Biostructures and Bioimages, CNR, 80134 Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- CINMPIS-Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
4
|
Selective Targeting of Cancer-Related G-Quadruplex Structures by the Natural Compound Dicentrine. Int J Mol Sci 2023; 24:ijms24044070. [PMID: 36835480 PMCID: PMC9959918 DOI: 10.3390/ijms24044070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Aiming to identify highly effective and selective G-quadruplex ligands as anticancer candidates, five natural compounds were investigated here, i.e., the alkaloids Canadine, D-Glaucine and Dicentrine, as well as the flavonoids Deguelin and Millettone, selected as analogs of compounds previously identified as promising G-quadruplex-targeting ligands. A preliminary screening with the G-quadruplex on the Controlled Pore Glass assay proved that, among the investigated compounds, Dicentrine is the most effective ligand of telomeric and oncogenic G-quadruplexes, also showing good G-quadruplex vs. duplex selectivity. In-depth studies in solution demonstrated the ability of Dicentrine to thermally stabilize telomeric and oncogenic G-quadruplexes without affecting the control duplex. Interestingly, it showed higher affinity for the investigated G-quadruplex structures over the control duplex (Kb~106 vs. 105 M-1), with some preference for the telomeric over the oncogenic G-quadruplex model. Molecular dynamics simulations indicated that Dicentrine preferentially binds the G-quadruplex groove or the outer G-tetrad for the telomeric and oncogenic G-quadruplexes, respectively. Finally, biological assays proved that Dicentrine is highly effective in promoting potent and selective anticancer activity by inducing cell cycle arrest through apoptosis, preferentially targeting G-quadruplex structures localized at telomeres. Taken together, these data validate Dicentrine as a putative anticancer candidate drug selectively targeting cancer-related G-quadruplex structures.
Collapse
|
5
|
Vaillant A. Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects. Viruses 2022; 14:v14092052. [PMID: 36146858 PMCID: PMC9502277 DOI: 10.3390/v14092052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Three types of oligonucleotide-based medicines are under clinical development for the treatment of chronic HBV infection. Antisense oligonucleotides (ASOs) and synthetic interfering RNA (siRNA) are designed to degrade HBV mRNA, and nucleic acid polymers (NAPs) stop the assembly and secretion of HBV subviral particles. Extensive clinical development of ASOs and siRNA for a variety of liver diseases has established a solid understanding of their pharmacodynamics, accumulation in different tissue types in the liver, pharmacological effects, off-target effects and how chemical modifications and delivery approaches affect these parameters. These effects are highly conserved for all ASO and siRNA used in human studies to date. The clinical assessment of several ASO and siRNA compounds in chronic HBV infection in recent years is complicated by the different delivery approaches used. Moreover, these assessments have not considered the large clinical database of ASO/siRNA function in other liver diseases and known off target effects in other viral infections. The goal of this review is to summarize the current understanding of ASO/siRNA/NAP pharmacology and integrate these concepts into current clinical results for these compounds in the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
6
|
Duschmalé J, Schäublin A, Funder E, Schmidt S, Kiełpiński ŁJ, Nymark H, Jensen K, Koch T, Duschmalé M, Koller E, Møller MR, Schadt S, Husser C, Brink A, Sewing S, Minz T, Wengel J, Bleicher K, Li M. Investigating discovery strategies and pharmacological properties of stereodefined phosphorodithioate LNA gapmers. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:176-188. [PMID: 35860384 PMCID: PMC9271985 DOI: 10.1016/j.omtn.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Duschmalé
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Adrian Schäublin
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erik Funder
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Steffen Schmidt
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Łukasz J. Kiełpiński
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Helle Nymark
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Klaus Jensen
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Troels Koch
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen A/S, Femtidsvej 3, 2970 Hørsholm, Denmark
| | - Martina Duschmalé
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erich Koller
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marianne Ravn Møller
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Simone Schadt
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Christophe Husser
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Andreas Brink
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Sabine Sewing
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Tanja Minz
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Konrad Bleicher
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Meiling Li
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
- Corresponding author Meiling Li, Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
| |
Collapse
|
7
|
Platella C, Capasso D, Riccardi C, Musumeci D, DellaGreca M, Montesarchio D. Natural compounds from Juncus plants interacting with telomeric and oncogene G-quadruplex structures as potential anticancer agents. Org Biomol Chem 2021; 19:9953-9965. [PMID: 34747958 DOI: 10.1039/d1ob01995c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aiming at discovering novel, putative anticancer drugs featuring low-to-null side effects, natural compounds isolated from Juncaceae were studied here for their ability to target G-quadruplex structures originating from cancer-related telomeric and oncogene DNA sequences. Particularly, various dihydrophenanthrene, benzocoumarin and dihydrodibenzoxepin derivatives were firstly screened by the affinity chromatography-based G4-CPG assay, and the compound with the highest affinity and selectivity for G-quadruplexes (named J10) was selected for further studies. Fluorescence spectroscopy and circular dichroism experiments corroborated its capability to selectively recognize and stabilize G-quadruplexes over duplex DNA, also showing a preference for parallel G-quadruplexes. Molecular docking proved that the selective G-quadruplex interactions over duplex interactions could be due to the ability of J10 to bind to the grooves of the telomeric and oncogene G-quadruplex structures. Finally, biological assays demonstrated that J10 induces significant antiproliferative effects on human leukemia cells, with no relevant effects on healthy human fibroblasts. Interestingly, J10 exerts its antiproliferative action on tumor cells by activating the apoptotic pathway.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Domenica Capasso
- CIRPEB, University of Naples Federico II, Naples, Italy.,CESTEV, University of Naples Federico II, Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy. .,Institute of Biostructures and Bioimaging (IBB) - CNR, Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| |
Collapse
|
8
|
Alieva R, Novikov R, Tashlitsky V, Arutyunyan A, Kopylov A, Zavyalova E. Bimodular thrombin aptamers with two types of non-covalent locks. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:559-577. [PMID: 33847237 DOI: 10.1080/15257770.2021.1910297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Aptamers are structured oligonucleotides that specifically bind their targets. Oligonucleotides can be assembled in large nanostructures via intermolecular duplexes or G-quadruplexes. Addition of aptamers can be used to create nanostructures that bind specifically certain targets. Here two types of self-assembling locks were used to create bimodular aptamer constructions. Well-known aptamer to thrombin was chosen as a model object. The assembly of duplex locks was more efficient at low concentrations. The functional activity of aptamer modules was nearly the same as in HD1. However, the affinity of bimodular aptamers with G-quadruplex locks to immobilized thrombin was 5-10 times higher.
Collapse
Affiliation(s)
- Rugiya Alieva
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Roman Novikov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russian Federation
| | - Vadim Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander Arutyunyan
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexey Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
9
|
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders. Med Res Rev 2020; 41:2656-2688. [PMID: 32656818 DOI: 10.1002/med.21706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Movement disorders are a group of neurological conditions characterized by abnormalities of movement and posture. They are broadly divided into akinetic and hyperkinetic syndromes. Until now, no effective symptomatic or disease-modifying therapies have been available. However, since many of these disorders are monogenic or have some well-defined genetic component, they represent strong candidates for antisense oligonucleotide (ASO) therapies. ASO therapies are based on the use of short synthetic single-stranded ASOs that bind to disease-related target RNAs via Watson-Crick base-pairing and pleiotropically modulate their function. With information arising from the RNA sequence alone, it is possible to design ASOs that not only alter the expression levels but also the splicing defects of any protein, far exceeding the intervention repertoire of traditional small molecule approaches. Following the regulatory approval of ASO therapies for spinal muscular atrophy and Duchenne muscular dystrophy in 2016, there has been tremendous momentum in testing such therapies for other neurological disorders. This review article initially focuses on the chemical modifications aimed at improving ASO effectiveness, the mechanisms by which ASOs can interfere with RNA function, delivery systems and pharmacokinetics, and the common set of toxicities associated with their application. It, then, describes the pathophysiology and the latest information on preclinical and clinical trials utilizing ASOs for the treatment of Parkinson's disease, Huntington's disease, and ataxias 1, 2, 3, and 7. It concludes with issues that require special attention to realize the full potential of ASO-based therapies.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
10
|
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart JC, Nobre RJ, Pereira de Almeida L. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020; 143:407-429. [PMID: 31738395 DOI: 10.1093/brain/awz328] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.
Collapse
Affiliation(s)
- Ana C Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês M Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Sónia P Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Amato J, Platella C, Iachettini S, Zizza P, Musumeci D, Cosconati S, Pagano A, Novellino E, Biroccio A, Randazzo A, Pagano B, Montesarchio D. Tailoring a lead-like compound targeting multiple G-quadruplex structures. Eur J Med Chem 2018; 163:295-306. [PMID: 30529547 DOI: 10.1016/j.ejmech.2018.11.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/30/2018] [Accepted: 11/23/2018] [Indexed: 11/27/2022]
Abstract
A focused library of analogs of a lead-like G-quadruplex (G4) targeting compound (4), sharing a furobenzoxazine naphthoquinone core and differing for the pendant groups on the N-atom of the oxazine ring, has been here analyzed with the aim of developing more potent and selective ligands. These molecules have been tested vs. topologically different G4s by the G4-CPG assay, an affinity chromatography-based method for screening putative G4 ligands. The obtained results showed that all these compounds were able to bind several G4 structures, both telomeric and extra-telomeric, thus behaving as multi-target ligands, and two of them fully discriminated G4 vs. duplex DNA. Biological assays proved that almost all the compounds produced effective DNA damage, showing marked antiproliferative effects on tumor cells in the low μM range. Combined analysis of the G4-CPG binding assays and biological data led us to focus on compound S4-5, proved to be less cytotoxic than the parent compound 4 on normal cells. An in-depth biophysical characterization of the binding of S4-5 to different G4s showed that the here identified ligand has higher affinity for the G4s and higher ability to discriminate G4 vs. duplex DNA than 4. Molecular docking studies, in agreement with the NMR data, suggest that S4-5 interacts with the accessible grooves of the target G4 structures, giving clues for its increased G4 vs. duplex selectivity.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | - Alessia Pagano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
12
|
Musumeci D, Amato J, Zizza P, Platella C, Cosconati S, Cingolani C, Biroccio A, Novellino E, Randazzo A, Giancola C, Pagano B, Montesarchio D. Tandem application of ligand-based virtual screening and G4-OAS assay to identify novel G-quadruplex-targeting chemotypes. Biochim Biophys Acta Gen Subj 2017; 1861:1341-1352. [PMID: 28130159 DOI: 10.1016/j.bbagen.2017.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND G-quadruplex (G4) structures are key elements in the regulation of cancer cell proliferation and their targeting is deemed to be a promising strategy in anticancer therapy. METHODS A tandem application of ligand-based virtual screening (VS) calculations together with the experimental G-quadruplex on Oligo Affinity Support (G4-OAS) assay was employed to discover novel G4-targeting compounds. The interaction of the selected compounds with the investigated G4 in solution was analysed through a series of biophysical techniques and their biological activity investigated by immunofluorescence and MTT assays. RESULTS A focused library of 60 small molecules, designed as putative G4 groove binders, was identified through the VS. The G4-OAS experimental screening led to the selection of 7 ligands effectively interacting with the G4-forming human telomeric DNA. Evaluation of the biological activity of the selected compounds showed that 3 ligands of this sub-library induced a marked telomere-localized DNA damage response in human tumour cells. CONCLUSIONS The combined application of virtual and experimental screening tools proved to be a successful strategy to identify new bioactive chemotypes able to target the telomeric G4 DNA. These compounds may represent useful leads for the development of more potent and selective G4 ligands. GENERAL SIGNIFICANCE Expanding the repertoire of the available G4-targeting chemotypes with improved physico-chemical features, in particular aiming at the discovery of novel, selective G4 telomeric ligands, can help in developing effective anti-cancer drugs with fewer side effects. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | | | - Chiara Cingolani
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy.
| |
Collapse
|
13
|
Maegawa Y, Mochizuki S, Miyamoto N, Sakurai K. Gene silencing using a conjugate comprising Tat peptide and antisense oligonucleotide with phosphorothioate backbones. Bioorg Med Chem Lett 2016; 26:1276-8. [PMID: 26774656 DOI: 10.1016/j.bmcl.2016.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 01/06/2023]
Abstract
Antisense oligonucleotides (ASOs) have a great therapeutic potential for the modulation of gene expression because of the high specificity. The major obstacles for clinical application are enzymatic degradation and low uptake into cells in vivo. In this study, we prepared the conjugate comprising Tat peptide and ASO with phosphorothioate linkages in a simple manner; azide alkyne Huisgen cycloaddition using a copper catalyst. The obtained conjugate showed a high stability in serum, compared with the conjugate with phosphodiester linkages. The conjugates with antisense for c-myb that is transcriptional factor concerning cell growth inhibited the cell proliferation in a dose dependent manner sequence-specifically. These findings suggest Tat-mediated ASOs delivery is useful for the treatment of various diseases.
Collapse
Affiliation(s)
- Yoshiya Maegawa
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Noriko Miyamoto
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan; CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.
| |
Collapse
|
14
|
Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87:90-103. [PMID: 25797014 DOI: 10.1016/j.addr.2015.03.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.
Collapse
|
15
|
Izanloo C. Investigation of changes in the arrangement of water molecules and salt ions surrounding different atoms of the DNA molecule during the melting process: a molecular dynamics simulation study. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A molecular dynamics simulation was performed on a B-DNA duplex (CGCGAATTGCGC) at different temperatures. The DNA was immerged in a saltwater medium with 1 mol/L NaCl concentration. The arrangements of water molecules and cations around the different atoms of DNA on the melting pathway were investigated. Almost for all atoms of the DNA by double helix → single-stranded transition, the water molecules released from the DNA duplex and cations were close to single-stranded DNA, but this behavior was not clearly seen at melting temperatures. Therefore, release of water molecules and cations approaching the DNA by the increase of temperature does not have any effect on the sharpness of the transition curve. Most of the water molecules and cations were found to be around the negatively charged phosphate oxygen atoms. The number of water molecules released from the first shell hydration upon melting in the minor groove was higher than in the major groove, and intrusion of cations into the minor groove after melting was higher than into the major groove. The hydrations of imino protons were different from each other and were dependent on DNA bases.
Collapse
Affiliation(s)
- C. Izanloo
- Department of Chemistry, Bojnord Branch, Islamic Azad University, Bojnord, Iran
| |
Collapse
|
16
|
Guga P, Koziołkiewicz M. Phosphorothioate nucleotides and oligonucleotides - recent progress in synthesis and application. Chem Biodivers 2012; 8:1642-81. [PMID: 21922655 DOI: 10.1002/cbdv.201100130] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, PL-90-363 Łódź.
| | | |
Collapse
|
17
|
Izanloo C, Parsafar GA, Abroshan H, Akbarzadeh H. Denaturation of Drew-Dickerson DNA in a high salt concentration medium: Molecular dynamics simulations. J Comput Chem 2011; 32:3354-61. [DOI: 10.1002/jcc.21908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/09/2011] [Accepted: 07/15/2011] [Indexed: 11/09/2022]
|
18
|
|
19
|
Rodriguez JM, Elías F, Fló J, López RA, Zorzopulos J, Montaner AD. Immunostimulatory PyNTTTTGT oligodeoxynucleotides: structural properties and refinement of the active motif. Oligonucleotides 2006; 16:275-85. [PMID: 16978090 DOI: 10.1089/oli.2006.16.275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is well known that synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotides within a given context stimulate B lymphocytes and plasmacytoid dendritic cells (PDCs) of the vertebrate immune system. We have reported that B lymphocyte and PDC stimulation in humans could also be efficiently achieved by using non-CpG ODNs bearing the immunostimulatory sequence (motif) PyNTTTTGT, wherein Py is C or T and N is any deoxyribonucleotide. We are now reporting a series of studies that gives further precision regarding the composition of this immunostimulatory motif. The analysis of hundreds of ODNs led us to the conclusion that the motif for optimal CpG-independent immune stimulation can be represented by a sequence of the following general formula: PyN(T/A)(T/C/G)(T/C/G)(T/G)GT, wherein Py is C or T and N is any deoxyribonucleotide and wherein at least two of the positions represented within parentheses are Ts. Requirements for optimal ODN activity are as follows: (1) at least one of the versions of the general motif must be located near the central portion of the ODN; and (2) the ODN must be 20 or more nucleotides long. PyN(T/A)(T/C/G)(T/C/G)(T/G)GT ODNs are active in a phosphorothioate or in a phosphodiester backbone. In a phosphodiester backbone a canonical motif is strongly required whereas in a phosphorothioate backbone specificity is, within certain limits, less strict. On the other hand, PyN(T/A)(T/C/G)(T/C/G)(T/G)GT oligonucleotides are inactive as a double chain or as a modified (phosphorothioate or hydroxyl-methyl modified) or unmodified RNA backbone.
Collapse
|
20
|
Chworos A, Arnaud P, Zakrzewska K, Guga P, Pratviel G, Stec W, Meunier B. Comparison of the cleavage profiles of oligonucleotide duplexes with or without phosphorothioate linkages by using a chemical nuclease probe. J Biol Inorg Chem 2004; 9:374-84. [PMID: 15034771 DOI: 10.1007/s00775-004-0538-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/03/2004] [Indexed: 10/26/2022]
Abstract
A manganese porphyrin complex, Mn-TMPyP, associated with KHSO(5) is a chemical nuclease able to selectively recognize the minor groove of three consecutive AT base pairs of DNA and to mediate very precise cleavage chemistry at that particular site. This specific recognition and cleavage were used to probe the accessibility of the minor groove of DNA duplexes composed of one phosphodiester strand and one phosphorothioate strand. The cleavage of 5'-GCAAAAGC/5'-GCTTTTGC duplexes by Mn-TMPyP/KHSO(5) was monitored by HPLC coupled to electrospray mass analysis. Each single strand was synthesized with all-phosphate, all- Rp-phosphorothioate and all- Sp-phosphorothioate internucleotide bonds. We found that the manganese porphyrin was able to recognize its favorite (AT)(3)-box binding site within the heteroduplexes, as in the case of natural DNA. Molecular modeling studies on the interactions of the reactive porphyrin manganese-oxo species with both types of duplexes confirmed the experimental data.
Collapse
Affiliation(s)
- A Chworos
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 cedex 4, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Suzumura KI, Yoshinari K, Tanaka Y, Takagi Y, Kasai Y, Warashina M, Kuwabara T, Orita M, Taira K. A reappraisal, based on (31)P NMR, of the direct coordination of a metal ion with the phosphoryl oxygen at the cleavage site of a hammerhead ribozyme. J Am Chem Soc 2002; 124:8230-6. [PMID: 12105900 DOI: 10.1021/ja0202098] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been generally accepted, on the basis of kinetic studies with phosphorothioate-containing substrates and analyses by NMR spectroscopy, that a divalent metal ion interacts directly with the pro-Rp oxygen at the cleavage site in reactions catalyzed by hammerhead ribozymes. However, results of our recent kinetic studies (Zhou, D.-M.; Kumar, P. K. R.; Zhang. L. H.; Taira, K. J. Am. Chem. Soc. 1996, 118, 8969-8970. Yoshinari, K.; Taira, K. Nucleic Acids Res. 2000, 28, 1730-1742) demonstrated that a Cd(2+) ion does not interact with the sulfur atom at the Rp position of the scissile phosphate (P1.1) in the ground state or in the transition state. Therefore, in the present study, we attempted to determine by (31)P NMR spectroscopy whether a Cd(2+) ion binds to the P1.1 phosphorothioate at the cleavage site in solution. In the case of the R32-S11S (ribozyme-substrate) complex, neither the Rp- nor the Sp-phosphorothioate signal from the S11S substrate at the cleavage site was perturbed (the change was less than 0.1 ppm) upon the addition of Cd(2+) ions (19 equiv) at pH 5.9 and 8.5. By contrast, we detected the significant perturbation of the P9 phosphorothioate signal from another known metal-binding site (the A9/G10.1 metal-binding motif). The Rp-phosphorothioate signal from A9/G10.1 was shifted by about 10 ppm in the higher field direction upon the addition of Cd(2+) ions. These observations support the results of our kinetic analysis and indicate that a Cd(2+) ion interacts with the sulfur atom of the phosphorothioate at the A9/G10.1 site (P9) but that a Cd(2+) ion does not interact with the sulfur atom at the Rp- or at the Sp-position of the scissile phosphate (P1.1) in the ground state.
Collapse
Affiliation(s)
- Ken-ichi Suzumura
- Yamanouchi Pharmaceutical Co. Ltd., 21 Miyukigaoka, Tsukuba Science City 305-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Suzumura K, Warashina M, Yoshinari K, Tanaka Y, Kuwabara T, Orita M, Taira K. Significant change in the structure of a ribozyme upon introduction of a phosphorothioate linkage at P9: NMR reveals a conformational fluctuation in the core region of a hammerhead ribozyme. FEBS Lett 2000; 473:106-12. [PMID: 10802069 DOI: 10.1016/s0014-5793(00)01499-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A modified hammerhead ribozyme (R32S) with a phosphorothioate linkage between G(8) and A(9), a site that is considered to play a crucial role in catalysis, was examined by high-resolution 1H and (31)P nuclear magnetic resonance (NMR) spectroscopy. Signals due to imino protons that corresponded to stems were observed, but the anticipated signals due to imino protons adjacent to the phosphorothioate linkage were not detected and the (31)P signal due to the phosphorothioate linkage was also absent irrespective of the presence or absence of the substrate. (31)P NMR is known to reflect backbone mobility, and thus the absence of signals indicated that the introduction of sulfur at P9 had increased the mobility of the backbone near the phosphorothioate linkage. The addition of metal ions did not regenerate the signals that had disappeared, a result that implied that the structure of the core region of the hammerhead ribozyme had fluctuated even in the presence of metal ions. Furthermore, kinetic analysis suggested that most of the R32S-substrate complexes generated in the absence of Mg(2+) ions were still in an inactive form and that Mg(2+) ions induced a further conformational change that converted such complexes to an activated state. Finally, according to available NMR studies, signals due to the imino protons of the central core region that includes the P9 metal binding site were broadened or not observed, suggesting that this catalytically important region might be intrinsically flexible. Our present analysis revealed a significant change in the structure of the ribozyme upon the introduction of the single phosphorothioate linkage at P9 that is in general considered to be a conservative modification.
Collapse
Affiliation(s)
- K Suzumura
- Yamanouchi Pharmaceutical Co. Ltd., 21 Miyukigaoka, Tsukuba Science City, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Hartmann B, Bertrand H, Fermandjian S. Sequence effects on energetic and structural properties of phosphorothioate DNA: a molecular modelling study. Nucleic Acids Res 1999; 27:3342-7. [PMID: 10454642 PMCID: PMC148568 DOI: 10.1093/nar/27.16.3342] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphorothioate (PS) oligonucleotides constitute a new class of potent drugs, resulting from the replacement of one anionic oxygen of the phosphodiester backbone by one sulphur atom. This replacement confers chirality to the phosphorus atom (PSS or PSR) and alters the energetic, structural and biological properties of B-DNA. These properties were assessed by molecular mechanics calculations on a set of regular sequences, d(YR)8.d(YR)8 and d(RR)8.d(YY)8 (R, purine; Y, pyrimidine). Results indicated: (i) destabilisation of both the PS(R)and the PSS oligomers, the loss of total energy being mainly due to a variation in the electrostatic term; (ii) an additional chirality effect, due to van der Waals and backbone angle energies, larger for PSS oligomers than for PSR oligomers; (iii) a clear sequence effect on stability, particularly from the base immediately preceding the PS group. Even though the PS group alters the stability of oligomers, it does not significantly modify the conformation. Altogether, our molecular modelling data parallel the available experimental data. Our results reveal that sequence effects on the energetic properties of PS oligomers are local and additive. Therefore, studies of the set of the 10 unique double-stranded modified dinucleotide steps included in regular oligomers could be used to predict the behaviour of any double-stranded PS-DNA.
Collapse
Affiliation(s)
- B Hartmann
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, UPR CNRS 9080, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
24
|
Furrer P, Billeci TM, Donati A, Kojima C, Karwowski B, Sierzchala A, Stec W, James TL. Structural effect of complete [Rp]-phosphorothioate and phosphorodithioate substitutions in the DNA strand of a model antisense inhibitor-target RNA complex. J Mol Biol 1999; 285:1609-22. [PMID: 9917400 DOI: 10.1006/jmbi.1998.2305] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemically modified DNA oligonucleotides have been crucial to the success of antisense therapeutics. Although such modifications are ubiquitous in the clinic, high-resolution structural studies of pharmaceutically relevant derivatives have been limited to only a few molecules. We have completed a high-resolution NMR structural study of three DNA.RNA hybrids with the sequence d(CCTATAATCC). r(GGAUUAUAGG). All hybrids contain an unmodified RNA strand, whereas the DNA strand of each hybrid contains one of three different sugar-phosphate backbone linkages at each nucleotide: (1) phosphate, (2) [Rp]-phosphorothioate, or (3) phosphorodithioate. The UV and NMR melting profiles revealed that the normal hybrid is more stable than the [Rp]-phosphorothioate, which in turn is more stable than the phosphorodithioate. Homonuclear two-dimensional nuclear Overhauser effect spectroscopy and double quantum-filtered correlation spectroscopy afforded nearly complete non-labile proton assignments. The three molecules show nearly equivalent chemical shifts, with the exception of H3' protons, which are shifted downfield in a manner that appears correlated with the degree of sulfur substitution at phosphate. All three hybrids exhibit unusually broad linewidths for deoxyribose protons H2' and H2".Distance restraints were calculated from NOE cross-peak intensities via a complete relaxation matrix approach using the program RANDMARDI. Detailed comparison of interproton distances from each hybrid indicates that the three molecules share a common structure, with neither strand in canonical A or B form. Correlation of R factors, calculated using the program CORMA with DNA H2'-base and H3'-base distances, revealed a relative increase in the population of B-type sugar conformations for deoxyriboses in the A+T-rich center of the hybrid sequence. It is widely known that the activity of enzymes which act upon DNA.RNA hybrid substrates (e.g. ribonuclease H) is impacted when the hybrids contain phosphorothioate or phosphorodithioate substitutions. The structural similarity of the three hybrids examined here suggests that factors other than global structure may mediate the activity of these enzymes.
Collapse
Affiliation(s)
- P Furrer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94143-0446, USA
| | | | | | | | | | | | | | | |
Collapse
|