1
|
Howlader H, Suzol SH, Blanco K, Martin‐Rafa L, Laverde EE, Liu Y, Wnuk SF. Purine Nucleosides with a Reactive (
β
‐Iodovinyl)sulfone or a (
β
‐Keto)sulfone Group at the C8 Position and Their Polymerase‐Catalyzed Incorporation into DNA. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hasan Howlader
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Sazzad H. Suzol
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Kevin Blanco
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Lilian Martin‐Rafa
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Eduardo E. Laverde
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Yuan Liu
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
- Biomolecular Sciences Institute Florida International University Miami Florida 33199 U.S.A
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| |
Collapse
|
2
|
Akula HK, Bae S, Pradhan P, Yang L, Zajc B, Lakshman MK. Diversely C8-functionalized adenine nucleosides via their underexplored carboxaldehydes. Chem Commun (Camb) 2022; 58:1744-1747. [PMID: 35029254 DOI: 10.1039/d1cc06686b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potentially versatile N-unprotected 8-formyl derivatives of adenosine and 2'-deoxyadenosine are highly underexploited for C8 modifications of these nucleosides. Only in situ formation of 8-formyladenosine is known and a single application of an N-benzoyl derivative has been reported. On the other hand, 8-formyl-2'-deoxyadenosine and its applications remain unknown. Herein, we report straightforward, scalable syntheses of both N-unprotected 8-formyladenine nucleoside derivatives, and demonstrate broad diversification at the C8 position by hydroxymethylation, azidation, CuAAC ligation, reductive amination, as well as olefination and fluoroolefination with modified Julia and a Horner-Wadsworth-Emmons reagents.
Collapse
Affiliation(s)
- Hari K Akula
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Suyeal Bae
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Padmanava Pradhan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Lijia Yang
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Barbara Zajc
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA. .,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA. .,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
3
|
Wang Y, Ng N, Liu E, Lam CH, Perrin DM. Systematic study of constraints imposed by modified nucleoside triphosphates with protein-like side chains for use in in vitro selection. Org Biomol Chem 2018; 15:610-618. [PMID: 27942671 DOI: 10.1039/c6ob02335e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Successful selection of modified DNAzymes depends on the potential for modified nucleoside triphosphates (dNTPs) to replace their unmodified counterparts in enzyme catalyzed primer extension reactions and, once incorporated, to serve as template bases for information transfer prior to PCR amplification. To date, the most densely modified DNAzymes have been selected from three modified dNTPs: 8-histaminyl-deoxyadenosine (dAimTP), 5-guanidinoallyl-deoxyuridine (dUgaTP), and 5-aminoallyl-deoxycytidine (dCaaTP) to provide several RNA-cleaving DNAzymes with greatly enhanced rate constants compared to unmodified counterparts. Here we report biophysical and enzymatic properties of these three modified nucleosides in the context of specific oligonucleotide sequences to understand how these three modified nucleobases function in combinatorial selection. The base-pairing abilities of oligonucleotides bearing one or three modified nucleosides were investigated by thermal denaturation studies and as templates for enzymatic polymerization with both modified and unmodified dNTPs. While we address certain shortcomings in the use of modified dNTPs, we also provide key evidence of faithful incorporation and enzymatic read-out, which strongly supports their continued use in in vitro selection.
Collapse
Affiliation(s)
- Yajun Wang
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Nicole Ng
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Erkai Liu
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Curtis H Lam
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| |
Collapse
|
4
|
Hybridization Properties of RNA Containing 8-Methoxyguanosine and 8-Benzyloxyguanosine. PLoS One 2015; 10:e0137674. [PMID: 26353054 PMCID: PMC4564172 DOI: 10.1371/journal.pone.0137674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Modified nucleobase analogues can serve as powerful tools for changing physicochemical and biological properties of DNA or RNA. Guanosine derivatives containing bulky substituents at 8 position are known to adopt syn conformation of N-glycoside bond. On the contrary, in RNA the anti conformation is predominant in Watson-Crick base pairing. In this paper two 8-substituted guanosine derivatives, 8-methoxyguanosine and 8-benzyloxyguanosine, were synthesized and incorporated into oligoribonucleotides to investigate their influence on the thermodynamic stability of RNA duplexes. The methoxy and benzyloxy substituents are electron-donating groups, decreasing the rate of depurination in the monomers, as confirmed by N-glycoside bond stability assessments. Thermodynamic stability studies indicated that substitution of guanosine by 8-methoxy- or 8-benzyloxyguanosine significantly decreased the thermodynamic stability of RNA duplexes. Moreover, the presence of 8-substituted guanosine derivatives decreased mismatch discrimination. Circular dichroism spectra of modified RNA duplexes exhibited patterns typical for A-RNA geometry.
Collapse
|
5
|
Aso T, Saito K, Suzuki A, Saito Y. Synthesis and photophysical properties of pyrene-labeled 3-deaza-2'-deoxyadenosines comprising a non-π-conjugated linker: fluorescence quenching-based oligodeoxynucleotide probes for thymine identification. Org Biomol Chem 2015; 13:10540-7. [PMID: 26338764 DOI: 10.1039/c5ob01605c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrene-labeled 3-deaza-2'-deoxyadenosine comprising a non-π-conjugated linker (py3z)A (1) was synthesized and its photophysical properties were investigated. Oligodeoxynucleotide (ODN) probes containing (py3z)A (1) exhibited remarkable fluorescence quenching only when the opposite base of the complementary strand was the perfectly matched thymine. Such fluorescence quenching-based ODN probes exhibited excellent on-off switching properties, making them useful tools for single nucleotide polymorphism (SNP) genotyping and for the identification of target genes and structural studies of nucleic acids.
Collapse
Affiliation(s)
- Tatsuya Aso
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan.
| | | | | | | |
Collapse
|
6
|
Lawson CP, Dierckx A, Miannay FA, Wellner E, Wilhelmsson LM, Grøtli M. Synthesis and photophysical characterisation of new fluorescent triazole adenine analogues. Org Biomol Chem 2015; 12:5158-67. [PMID: 24912077 DOI: 10.1039/c4ob00904e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nucleic acid base analogues are powerful probes of DNA structure. Here we describe the synthesis and photo-physical characterisation of a series of 2-(4-amino-5-(1H-1,2,3-triazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl) and 2-(4-amino-3-(1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl) analogues via Sonogashira cross-coupling and [3 + 2]-cycloaddition reactions as the key steps in the synthesis. Compounds with a nitrogen atom in position 8 showed an approximately ten-fold increase in quantum yield and decreased Stokes shift compared to analogues with a carbon atom in position 8. Furthermore, the analogues containing nitrogen in the 8-position showed a more red-shifted and structured absorption as opposed to those which have a carbon incorporated in the same position. Compared to the previously characterised C8-triazole modified adenine, the emissive potential was significantly lower (tenfold or more) for this new family of triazoles-adenine compounds. However, three of the compounds have photophysical properties which will make them interesting to monitor inside DNA.
Collapse
Affiliation(s)
- Christopher P Lawson
- Department of Chemistry, Medicinal Chemistry, University of Gothenburg, S-41296 Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
7
|
Kaura M, Kumar P, Hrdlicka PJ. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers. J Org Chem 2014; 79:6256-68. [PMID: 24933409 DOI: 10.1021/jo500994c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho , Moscow, Idaho 83844-2343, United States
| | | | | |
Collapse
|
8
|
Suzuki A, Kimura K, Ishioroshi S, Saito I, Nemoto N, Saito Y. Synthesis of solvatofluorochromic 7-arylethynylated 7-deaza-2′-deoxyadenosine derivatives: application to the design of environmentally sensitive fluorescent probes forming stable DNA duplexes. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Sharma P, Manderville RA, Wetmore SD. Modeling the conformational preference of the carbon-bonded covalent adduct formed upon exposure of 2'-deoxyguanosine to ochratoxin A. Chem Res Toxicol 2013; 26:803-16. [PMID: 23560542 DOI: 10.1021/tx4000864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The conformational flexibility of the C8-linked guanine adduct formed from attachment of ochratoxin A (OTA) was analyzed using a systematic computational approach and models ranging from the nucleobase to the adducted DNA helix. A focus was placed on the influence of the C8-modification of 2'-deoxyguanosine (dG) on the preferred relative arrangement of the nucleobase and the C8-substituent and, more importantly, the anti/syn conformational preference with respect to the glycosidic bond. Although OTA is twisted with respect to the base in the nucleobase model, addition of the deoxyribose sugar induces a further twist and restricts rotation about the C-C linkage due to close contacts between OTA and the sugar. The nucleoside model preferentially adpots a syn orientation (by 10-20 kJ mol(-1) depending on the OTA conformation) due to the presence of an O5'-H···N3 interaction. However, when this hydrogen bond is eliminated, which better mimics the DNA environment, a small (<5 kJ mol(-1)) anti/syn energy difference is predicted. Inclusion of the 5'-monophosphate group leads to an up to 20 kJ mol(-1) preference for the syn (nucleotide) conformation due to stabilizing base-phosphate interactions involving the amino group of guanine. Nevertheless, MD simulations and free energy analysis predict that both syn- and anti-conformations of OTB-dG are equally stable in helices when paired opposite cytosine. These results indicate that the adduct will likely adopt a syn conformation in an isolated nucleoside and nucleotide, while a mixture of syn and anti conformations will be observed in DNA duplexes. Since the syn conformation could stabilize base mismatches upon DNA replication or Z-DNA structures with varied biological outcomes, future computational and experimental work should elucidate the consequences of the conformational preference of this potentially harmful DNA lesion.
Collapse
Affiliation(s)
- Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | | | | |
Collapse
|
10
|
Ghanty U, Fostvedt E, Valenzuela R, Beal PA, Burrows CJ. Promiscuous 8-alkoxyadenosines in the guide strand of an siRNA: modulation of silencing efficacy and off-pathway protein binding. J Am Chem Soc 2012; 134:17643-52. [PMID: 23030736 DOI: 10.1021/ja307102g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
8-Alkoxyadenosines have the potential to exist in anti or syn conformations around the glycosidic bond when paired opposite to U or G in the complementary strands, thereby placing the sterically demanding 8-alkoxy groups in the major or minor groove, respectively, of duplex RNA. These modified bases were used as "base switches" in the guide strands of an siRNA to prevent off-pathway protein binding during delivery via placement of the alkoxy group in the minor groove, while maintaining significant RNAi efficacy by orienting the alkoxy group in the major groove. 8-Alkoxyadenosine phosphoramidites were synthesized and incorporated into the guide strand of caspase 2 siRNA at four different positions: two in the seed region, one at the cleavage junction, and another nearer to the 3'-end of the guide strand. Thermal stabilities of the corresponding siRNA duplexes showed that U is preferred over G as the base-pairing partner in the complementary strand. When compared to the unmodified positive control siRNAs, singly modified siRNAs knocked down the target mRNA efficiently and with little or no loss of efficacy. Doubly modified siRNAs were found to be less effective and lose their efficacy at low nanomolar concentrations. SiRNAs singly modified at positions 6 and 10 of the guide strand were found to be effective in blocking binding to the RNA-dependent protein kinase PKR, a cytoplasmic dsRNA-binding protein implicated in sequence-independent off-target effects.
Collapse
Affiliation(s)
- Uday Ghanty
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | | | |
Collapse
|
11
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
12
|
Dierckx A, Miannay FA, Ben Gaied N, Preus S, Björck M, Brown T, Wilhelmsson LM. Quadracyclic adenine: a non-perturbing fluorescent adenine analogue. Chemistry 2012; 18:5987-97. [PMID: 22437923 DOI: 10.1002/chem.201103419] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/26/2022]
Abstract
Fluorescent-base analogues (FBAs) comprise a group of increasingly important molecules for the investigation of nucleic acid structure and dynamics as well as of interactions between nucleic acids and other molecules. Here, we report on the synthesis, detailed spectroscopic characterisation and base-pairing properties of a new environment-sensitive fluorescent adenine analogue, quadracyclic adenine (qA). After developing an efficient route of synthesis for the phosphoramidite of qA it was incorporated into DNA in high yield by using standard solid-phase synthesis procedures. In DNA qA serves as an adenine analogue that preserves the B-form and, in contrast to most currently available FBAs, maintains or even increases the stability of the duplex. We demonstrate that, unlike fluorescent adenine analogues, such as the most commonly used one, 2-aminopurine, and the recently developed triazole adenine, qA shows highly specific base-pairing with thymine. Moreover, qA has an absorption band outside the absorption of the natural nucleobases (>300 nm) and can thus be selectively excited. Upon excitation the qA monomer displays a fluorescence quantum yield of 6.8 % with an emission maximum at 456 nm. More importantly, upon incorporation into DNA the fluorescence of qA is significantly less quenched than most FBAs. This results in quantum yields that in some sequences reach values that are up to fourfold higher than maximum values reported for 2-aminopurine. To facilitate future utilisation of qA in biochemical and biophysical studies we investigated its fluorescence properties in greater detail and resolved its absorption band outside the DNA absorption region into distinct transition dipole moments. In conclusion, the unique combination of properties of qA make it a promising alternative to current fluorescent adenine analogues for future detailed studies of nucleic acid-containing systems.
Collapse
Affiliation(s)
- Anke Dierckx
- Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Szombati Z, Baerns S, Marx A, Meier C. Synthesis of C8-arylamine-modified 2'-deoxyadenosine phosphoramidites and their site-specific incorporation into oligonucleotides. Chembiochem 2012; 13:700-12. [PMID: 22378348 DOI: 10.1002/cbic.201100573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 01/24/2023]
Abstract
Adducts of C8-(N-acetyl)-arylamines and 2'-deoxyadenosine were synthesised by palladium-catalysed C--N cross-coupling chemistry. These 2'-dA adducts were converted into the corresponding 3'-phosphoramidites and site-specifically incorporated into DNA oligonucleotides, which were characterised by mass spectrometry, UV thermal-stability assays and circular dichroism. These modified oligonucleotides were also used in EcoRI restriction assays and in primer-extension studies with three different DNA polymerases. The incorporation of the 2'-dA lesion close to the EcoRI restriction site dramatically reduced the susceptibility of the DNA strand to cleavage; this indicates a significant local distortion of the DNA double helix. The incorporation of the acetylated C8-2'-dA-phosphoramidites into 20-mer oligonucleotides failed, however, because the N-acetyl group was lost during the deprotection process. Instead the corresponding C8-NH-2'-dA-modified oligonucleotides were obtained. The effect of the C8-NH-arylamine-dA lesion on the replication by DNA polymerases was clearly dependent both on the polymerase used and on the arylamine-dA damage.
Collapse
Affiliation(s)
- Zita Szombati
- Organic Chemistry, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | | | |
Collapse
|
14
|
Hamm ML, Crowley KA, Ghio M, Del Giorno L, Gustafson MA, Kindler KE, Ligon CW, Lindell MAM, McFadden EJ, Siekavizza-Robles C, Summers MR. Importance of the C2, N7, and C8 positions to the mutagenic potential of 8-Oxo-2'-deoxyguanosine with two A family polymerases. Biochemistry 2011; 50:10713-23. [PMID: 22081979 DOI: 10.1021/bi201383c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
8-Oxo-2'-deoxyguanosine (OdG) is a prominent DNA lesion produced from the reaction of 2'-deoxyguanosine (dG) with reactive oxygen species. While dG directs the insertion of only dCTP during replication, OdG can direct the insertion of either dCTP or dATP, allowing for the production of dG → dT transversions. When replicated by Klenow fragment-exo (KF-exo), OdG preferentially directs the incorporation of dCTP over dATP, thus decreasing its mutagenic potential. However, when replicated by a highly related polymerase, the large fragment of polymerase I from Bacillus stearothermophilus (BF), dATP incorporation is preferred, and a higher mutagenic potential results. To gain insight into the reasons for this opposite preference and the effects of the C2, N7, and C8 positions on OdG mutagenicity, single-nucleotide insertions of dCTP and/or dATP opposite dG, OdG, and seven of their analogues were examined by steady state kinetics with both KF-exo and BF. Results from these studies suggest that the two enzymes behave similarly and are both sensitive not only to steric and electronic changes within the imidazole ring during both dCTP and dATP incorporation but also to the presence of the C2-exocyclic amine during dATP incorporation. The difference in incorporation preference opposite OdG appears to be due to a somewhat increased sensitivity to structural perturbations during dCTP incorporation with BF. Single-nucleotide extensions past the resulting base pairs were also studied and were not only similar between the two enzymes but also consistent with published ternary crystallographic studies with BF. These results are analyzed in the context of previous biochemical and structural studies, as well as stability studies with the resulting base pairs.
Collapse
Affiliation(s)
- Michelle L Hamm
- Department of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Millen AL, Kamenz BL, Leavens FMV, Manderville RA, Wetmore SD. Conformational flexibility of C8-phenoxylguanine adducts in deoxydinucleoside monophosphates. J Phys Chem B 2011; 115:12993-3002. [PMID: 21942470 DOI: 10.1021/jp2057332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
M06-2X/6-31G(d,p) is used to calculate the structure of all natural deoxydinucleoside monophosphates with G in the 5' or 3' position, the anti or syn conformation, and each natural (A, C, G, T) base in the corresponding flanking position. When the ortho or para C8-phenoxyl-2'-deoxyguanosine (C8-phenoxyl-dG) adduct replaces G in each model, there is little change in the relative base-base orientation or backbone conformation. However, the orientation of the C8-phenoxyl group can be characterized according to the position (5' versus 3'), conformation (anti versus syn), and isomer (ortho versus para) of damage. Although the degree of coplanarity between the phenoxyl ring and G base in the ortho adduct is highly affected by the sequence since the hydroxyl group can interact with neighboring bases, the para adduct generally does not exhibit discrete interactions with flanking bases. For both adducts, steric clashes between the phenoxyl group and the backbone or flanking base destabilize the anti conformation preferred by the natural nucleotide and thereby result in a clear preference for the syn conformation regardless of the sequence or position. This contrasts the conclusions drawn from smaller (nucleoside, nucleotide) models previously used in the literature, which stresses the importance of using models that address the steric constraints present due to the surrounding environment. Since replication errors for other C8-dG bulky adducts have been linked to a preference for the syn conformation, our findings provide insight into the possible mutagenicity of phenolic adducts.
Collapse
Affiliation(s)
- Andrea L Millen
- Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | | | |
Collapse
|
16
|
Dierckx A, Dinér P, El-Sagheer AH, Kumar JD, Brown T, Grøtli M, Wilhelmsson LM. Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA. Nucleic Acids Res 2011; 39:4513-24. [PMID: 21278417 PMCID: PMC3105426 DOI: 10.1093/nar/gkr010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To increase the diversity of fluorescent base analogues with improved properties, we here present the straightforward click-chemistry-based synthesis of a novel fluorescent adenine-analogue triazole adenine (AT) and its photophysical characterization inside DNA. AT shows promising properties compared to the widely used adenine analogue 2-aminopurine. Quantum yields reach >20% and >5% in single- and double-stranded DNA, respectively, and show dependence on neighbouring bases. Moreover, AT shows only a minor destabilization of DNA duplexes, comparable to 2-aminopurine, and circular dichroism investigations suggest that AT only causes minimal structural perturbations to normal B-DNA. Furthermore, we find that AT shows favourable base-pairing properties with thymine and more surprisingly also with normal adenine. In conclusion, AT shows strong potential as a new fluorescent adenine analogue for monitoring changes within its microenvironment in DNA.
Collapse
Affiliation(s)
- Anke Dierckx
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, University of Gothenburg, S-41296 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Millen AL, Churchill CDM, Manderville RA, Wetmore SD. Effect of Watson−Crick and Hoogsteen Base Pairing on the Conformational Stability of C8-Phenoxyl-2′-deoxyguanosine Adducts. J Phys Chem B 2010; 114:12995-3004. [DOI: 10.1021/jp105817p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Cassandra D. M. Churchill
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A. Manderville
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
18
|
Millen AL, Manderville RA, Wetmore SD. Conformational Flexibility of C8-Phenoxyl-2′-deoxyguanosine Nucleotide Adducts. J Phys Chem B 2010; 114:4373-82. [DOI: 10.1021/jp911993f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A. Manderville
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
19
|
Abou-Elkhair RAI, Dixon DW, Netzel TL. Synthesis and Electrochemical Evaluation of Conjugates between 2′-Deoxyadenosine and Modified Anthraquinone: Probes for Hole-Transfer Studies in DNA. J Org Chem 2009; 74:4712-9. [DOI: 10.1021/jo900306g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dabney W. Dixon
- Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, Georgia 30302-4098
| | - Thomas L. Netzel
- Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, Georgia 30302-4098
| |
Collapse
|
20
|
Millen AL, McLaughlin CK, Sun KM, Manderville RA, Wetmore SD. Computational and Experimental Evidence for the Structural Preference of Phenolic C-8 Purine Adducts. J Phys Chem A 2008; 112:3742-53. [DOI: 10.1021/jp712058a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and the Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Christopher K. McLaughlin
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and the Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Kewen M. Sun
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and the Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A. Manderville
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and the Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, and the Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
21
|
Taniguchi Y, Kool ET. Nonpolar isosteres of damaged DNA bases: effective mimicry of mutagenic properties of 8-oxopurines. J Am Chem Soc 2007; 129:8836-44. [PMID: 17592846 DOI: 10.1021/ja071970q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A substantial fraction of mutations that arise in the cell comes from oxidative damage to DNA bases. Oxidation of purine bases at the 8-position, yielding 8-oxo-G and 8-oxo-A, results in conformational changes (from anti to syn) that cause miscoding during DNA replication. Here we describe the synthesis and biophysical and biochemical properties of low-polarity shape mimics of 8-oxopurines, and we report that these new analogues exhibit remarkable mimicry of the mutagenic properties of the natural damaged bases. A 2-chloro-4-fluoroindole nucleoside (1) was designed as an isosteric analogue of 8-oxo-dG, and a 2-chloro-4-methylbenzimidazole nucleoside (2) as a mimic of 8-oxo-dA. The nucleosides were prepared by reaction of the parent heterocycles with Hoffer's chlorodeoxyribose derivative. Structural studies of the free nucleosides 1 and 2 revealed that both bases are oriented syn, thus mimicking the conformation of the oxopurine nucleosides. Suitably protected phosphoramidite derivatives were prepared for incorporation into synthetic DNAs, to be used as probes of DNA damage responses, and 5'-triphosphate derivatives (3 and 4) were synthesized as analogues of damaged nucleotides in the cellular nucleotide pool. Base pairing studies in 12-mer duplexes showed that 1 and 2 have low affinity for polar pairing partners, consistent with previous nonpolar DNA base analogues. However, both compounds pair with small but significant selectivity for purine partners, consistent with the idea that the syn purine geometry leads to pyrimidine-like shapes. Steady-state kinetics studies of 1 and 2 were carried out with the Klenow fragment of Escherichia coli DNA Pol I (exo-) in single-nucleotide insertions. In the DNA template, the analogues successfully mimicked the mutagenic behavior of oxopurines, with 1 being paired selectively with adenine and 2 pairing selectively with guanine. The compounds showed similar mutagenic behavior as nucleoside triphosphate analogues, being preferentially inserted opposite mutagenic purine partners. The results suggest that much of the mutagenicity of oxopurines arises from their shapes in the syn conformation rather than from electrostatic and hydrogen-bonding effects. The new analogues are expected to be generally useful as mechanistic probes of cellular responses to DNA damage.
Collapse
Affiliation(s)
- Yosuke Taniguchi
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
22
|
Reddy MR, Shibata N, Kondo Y, Nakamura S, Toru T. Design, Synthesis, and Spectroscopic Investigation of Zinc Dodecakis(trifluoroethoxy)phthalocyanines Conjugated with Deoxyribonucleosides. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200603590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Reddy MR, Shibata N, Kondo Y, Nakamura S, Toru T. Design, Synthesis, and Spectroscopic Investigation of Zinc Dodecakis(trifluoroethoxy)phthalocyanines Conjugated with Deoxyribonucleosides. Angew Chem Int Ed Engl 2006; 45:8163-6. [PMID: 17096445 DOI: 10.1002/anie.200603590] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mamidi Ramesh Reddy
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
24
|
Randazzo A, Esposito V, Galeone A, Varra M, Virgilio A, Mayol L. Synthesis and structural study of quadruplex structures containing 2'-deoxy-8-methyladenosine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:539-43. [PMID: 16247986 DOI: 10.1081/ncn-200061802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The synthesis and preliminary structural studies of ODNs A8MeGGGT and TA8MeGGGT, where A8Me represents 2'-deoxy-8-methyladenosine, are reported.
Collapse
Affiliation(s)
- Antonio Randazzo
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Virgilio A, Esposito V, Randazzo A, Mayol L, Galeone A. Effects of 8-methyl-2'-deoxyadenosine incorporation into quadruplex forming oligodeoxyribonucleotides. Bioorg Med Chem 2005; 13:1037-44. [PMID: 15670911 DOI: 10.1016/j.bmc.2004.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 11/19/2004] [Indexed: 10/26/2022]
Abstract
In this paper we report the synthesis and the structural characterization of two modified oligodeoxyribonucleotides (ODNs), namely d(A8MeGGGT) and d(TA8MeGGGT), where A8Me represents a 8-methyl-2'-deoxyadenosine. Both ODNs have been studied by 1H NMR, CD spectroscopy and molecular modelling and shown to form fourfolds symmetric G-quadruplex structures, with all strands parallel and equivalent to each other. The complexes are characterized by thermal stabilities comparable to that of their natural counterparts. NOE patterns involving 8-methyl group in A8Me residues allowed us to define the main structural features at the 5'-end of the complexes. Particularly, inter- and intrastrand NOEs show a syn-orientation and a symmetrical arrangement of A8Me bases stacking on the adjacent G-tetrad.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
26
|
Abou-Elkhair RAI, Netzel TL. Synthesis of two 8-[(anthraquinone-2-yl)-linked]-2'-deoxyadenosine 3'-benzyl hydrogen phosphates for studies of photoinduced hole transport in DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:85-110. [PMID: 15822616 DOI: 10.1081/ncn-51894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The challenge in working with anthraquinone-2'-deoxyadenosine (AQ-dA) conjugates is that they are insoluble in water and only sparingly soluble in most organic solvents. However, water-soluble AQ-dA conjugates with short linkers are required for study of their electrochemical and intramolecular electron transfer properties in this solvent prior to their use in laser kinetics investigations of photoinduced hole (cation) transport in DNA. This article first describes the synthesis of a water-soluble, ethynyl-linked AQ-dA conjugate, 8-[(anthraquinone-2-yl)ethynyl]-2'-deoxyadenosine 3'-benzyl hydrogen phosphate, based on initial formation of a 5'-O-(4,4'-dimethoxytrityl) (5'-O-DMTr) intermediate. Because intended H2 over Pd/C reduction of the ethynyl linker in 5'-O-DMTr-protected 2'-deoxyadenosines cleaves the DMTr protecting group and precipitates multiple side products, this work also describes the synthesis of an ethylenyl-linked AQ-dA conjugate, 8-[2-(anthraquinone-2-yl)ethyl]-2'-deoxyadenosine 3'-benzyl hydrogen phosphate, starting with a 5'-O-tert-butyldiphenylsilyl protecting group.
Collapse
|
27
|
Oka N, Greenberg MM. The effect of the 2-amino group of 7,8-dihydro-8-oxo-2'-deoxyguanosine on translesion synthesis and duplex stability. Nucleic Acids Res 2005; 33:1637-43. [PMID: 15778433 PMCID: PMC1067523 DOI: 10.1093/nar/gki305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Replication of DNA containing 7,8-dihydro-8-oxo-2′-deoxyguanosine (OxodG) gives rise to G → T transversions. The syn-isomer of the lesion directs misincorporation of 2′-deoxyadenosine (dA) opposite it. We investigated the role of the 2-amino substituent on duplex thermal stability and in replication using 7,8-dihydro-8-oxo-2′-deoxyinosine (OxodI). Oligonucleotides containing OxodI at defined sites were chemically synthesized via solid phase synthesis. Translesion incorporation opposite OxodI was compared with 7,8-dihydro-8-oxo-2′-deoxyguanosine (OxodG), 2′-deoxyinosine (dI) and 2′-deoxyguanosine (dG) in otherwise identical templates. The Klenow exo− fragment of Escherichia coli DNA polymerase I incorporated 2′-deoxyadenosine (dA) six times more frequently than 2′-deoxycytidine (dC) opposite OxodI. Preferential translesion incorporation of dA was unique to OxodI. UV-melting experiments revealed that DNA containing OxodI opposite dA is more stable than when the modified nucleotide is opposed by dC. These data suggest that while duplex DNA accommodates the 2-amino group in syn-OxodG, this substituent is thermally destabilizing and does not provide a kinetic inducement for replication by Klenow exo−.
Collapse
Affiliation(s)
| | - Marc M. Greenberg
- To whom correspondence should be addressed. Tel: +1 410 516 8095; Fax: +1 410 516 7044;
| |
Collapse
|
28
|
Gaied NB, Glasser N, Ramalanjaona N, Beltz H, Wolff P, Marquet R, Burger A, Mély Y. 8-vinyl-deoxyadenosine, an alternative fluorescent nucleoside analog to 2'-deoxyribosyl-2-aminopurine with improved properties. Nucleic Acids Res 2005; 33:1031-9. [PMID: 15718302 PMCID: PMC549415 DOI: 10.1093/nar/gki253] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We report here the synthesis and the spectroscopic characterization of 8-vinyl-deoxyadenosine (8vdA), a new fluorescent analog of deoxyadenosine. 8vdA was found to absorb and emit in the same wavelength range as 2′-deoxyribosyl-2-aminopurine (2AP), the most frequently used fluorescent nucleoside analog. Though the quantum yield of 8vdA is similar to that of 2AP, its molar absorption coefficient is about twice, enabling a more sensitive detection. Moreover, the fluorescence of 8vdA was found to be sensitive to temperature and solvent but not to pH (around neutrality) or coupling to phosphate groups. Though 8vdA is base sensitive and susceptible to depurination, the corresponding phosphoramidite was successfully prepared and incorporated in oligonucleotides of the type d(CGT TTT XNX TTT TGC) where N = 8vdA and X = A, T or C. The 8vdA-labeled oligonucleotides gave more stable duplexes than the corresponding 2AP-labeled sequences when X = A or T, indicating that 8vdA is less perturbing than 2AP and probably adopts an anti conformation to preserve the Watson–Crick H-bonding. In addition, the quantum yield of 8vdA is significantly higher than 2AP in all tested oligonucleotides in both their single strand and duplex states. The steady-state and time-resolved fluorescence parameters of 8vdA and 2AP were found to depend similarly on the nature of their flanking residues and on base pairing, suggesting that their photophysics are governed by similar mechanisms. Taken together, our data suggest that 8vdA is a non perturbing nucleoside analog that may be used with improved sensitivity for the same applications as 2AP.
Collapse
Affiliation(s)
| | - Nicole Glasser
- Laboratoire de Pharmacologie et Physico-chimie des interactions cellulaires et moléculaires, UMR 7034 du CNRS, Faculté de Pharmacie, Université Louis Pasteur74 Route du Rhin, BP 24, 67401 Illkirch cedex, France
| | - Nick Ramalanjaona
- Laboratoire de Pharmacologie et Physico-chimie des interactions cellulaires et moléculaires, UMR 7034 du CNRS, Faculté de Pharmacie, Université Louis Pasteur74 Route du Rhin, BP 24, 67401 Illkirch cedex, France
| | - Hervé Beltz
- Laboratoire de Pharmacologie et Physico-chimie des interactions cellulaires et moléculaires, UMR 7034 du CNRS, Faculté de Pharmacie, Université Louis Pasteur74 Route du Rhin, BP 24, 67401 Illkirch cedex, France
| | - Philippe Wolff
- Laboratoire de Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, UPR 9002 du CNRS conventionnée à l'Université Louis Pasteur15 rue René Descartes, 67084 Strasbourg cedex, France
| | - Roland Marquet
- Laboratoire de Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, UPR 9002 du CNRS conventionnée à l'Université Louis Pasteur15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | - Yves Mély
- Laboratoire de Pharmacologie et Physico-chimie des interactions cellulaires et moléculaires, UMR 7034 du CNRS, Faculté de Pharmacie, Université Louis Pasteur74 Route du Rhin, BP 24, 67401 Illkirch cedex, France
- To whom correspondence should be addressed. Tel: +33 3 90 24 42 63; Fax: +33 3 90 24 43 12;
| |
Collapse
|
29
|
Kamiya H, Yakushiji H, Dugué L, Tanimoto M, Pochet S, Nakabeppu Y, Harashima H. Probing the substrate recognition mechanism of the human MTH1 protein by nucleotide analogs. J Mol Biol 2004; 336:843-50. [PMID: 15095864 DOI: 10.1016/j.jmb.2003.12.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/12/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
To examine the substrate recognition mechanism of the human MTH1 protein, which hydrolyzes 2-hydroxy-dATP, 8-hydroxy-dATP, and 8-hydroxy-dGTP, ten nucleotide analogs (8-bromo-dATP, 8-bromo-dGTP, deoxyisoinosine triphosphate, 8-hydroxy-dITP, 2-aminopurine-deoxyriboside triphosphate, 2-amino-dATP, deoxyxanthosine triphosphate, deoxyoxanosine triphosphate, dITP, and dUTP) were incubated with the MTH1 protein. Of these, the former five nucleotides were hydrolyzed with various efficiencies. The fact that the syn-oriented brominated nucleotides were hydrolyzed suggests that the MTH1 protein binds to deoxynucleotides adopting the syn-conformation. However, 8-hydroxy-dITP, which lacks the 2-amino group of 8-hydroxy-dGTP, was degraded with tenfold less efficiency as compared with 8-hydroxy-dGTP. In addition, deoxyisoinosine triphosphate, lacking the 6-amino group of 2-hydroxy-dATP, was hydrolyzed as efficiently as 8-hydroxy-dGTP, but less efficiently than 2-hydroxy-dATP. These results clarify the effects of the anti/syn conformation and the functional groups on the 2 and 6 positions of the purine ring on the recognition by the human MTH1 protein.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen LS, Sheppard TL. Synthesis and hybridization properties of RNA containing 8-chloroadenosine. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2003; 21:599-617. [PMID: 12484453 DOI: 10.1081/ncn-120015071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
8-Chloroadenosine (8-Cl-Ado) has shown potential as a chemotherapeutic agent for the treatment of multiple myeloma and certain leukemias. 8-Cl-Ado treatment leads to a decrease in global RNA levels and incorporation of the analog into cellular RNA in malignant cells. To investigate the effects of 8-Cl-Ado modifications on RNA structure and function, an 8-Cl-Ado phosphoramidite and controlled-pore glass support were synthesized and used to introduce 8-Cl-Ado at internal and 3'- terminal positions, respectively. RNA oligonucleotides containing 8-chloroadenine (8-Cl-A) residues were synthesized and hybridized with complementary RNA strands. Circular dichroism spectroscopy of the resulting RNA duplexes revealed that the modified nucleobase does not perturb the overall A-form helix geometry. The thermal stabilities of 8-Cl-Ado modified duplexes were determined by UV thermal denaturation analysis and were compared with analogous natural duplexes containing standard and mismatched base pairs. The 8-Cl-Ado modification destabilizes RNA duplexes by approximately 5 kcal/mole, approximately as much as a U:U mismatched base pair. The duplex destabilization of 8-Cl-A may result from perturbation of Watson-Crick base pairing induced by conformational preferences of 8-halogenated nucleosides.
Collapse
Affiliation(s)
- Lisa S Chen
- Department of Chemistry, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | |
Collapse
|
31
|
Chen LS, Bahr MH, Sheppard TL. Effects of 8-chlorodeoxyadenosine on DNA synthesis by the Klenow fragment of DNA polymerase I. Bioorg Med Chem Lett 2003; 13:1509-12. [PMID: 12699743 DOI: 10.1016/s0960-894x(03)00204-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
8-chloro-2'-deoxyadenosine (8-Cl-dAdo) was incorporated into synthetic DNA oligonucleotides to determine its effects on DNA synthesis by the 3'-5' exonuclease-free Klenow fragment of Escherichia coli DNA Polymerase I (KF-). Single nucleotide insertion experiments were used to determine the coding potential of 8-Cl-dAdo in a DNA template. KF- inserted TTP opposite 8-Cl-dAdo in the template, but with decreased efficiency relative to natural deoxyadenosine. Running-start primer extensions with KF- resulted in polymerase pausing at 8-Cl-dAdo template sites during DNA synthesis. The 2'-deoxyribonucleoside triphosphate analogue, 8-Cl-dATP, was incorporated opposite thymidine (T) approximately two-fold less efficiently than dATP.
Collapse
Affiliation(s)
- Lisa S Chen
- Department of Chemistry, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | |
Collapse
|
32
|
Fàbrega C, Macías MJ, Eritja R. Synthesis and properties of oligonucleotides containing 8-bromo-2'-deoxyguanosine. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:251-60. [PMID: 11393401 DOI: 10.1081/ncn-100002085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The preparation of oligonucleotides containing 8-bromo-2'-deoxyguanosine is described. Substitution of G by 8-bromoguanine on an alternating CG decamer stabilizes the Z-form in such a way that the B-form was not observed. Melting temperatures showed that duplexes in which 8-bromo-2'-deoxyguanosine paired with natural bases were much less stable.
Collapse
Affiliation(s)
- C Fàbrega
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
33
|
Catalanotti B, Galeone A, Gomez-Paloma L, Mayol L, Pepe A. 2'-Deoxy-8-(propyn-1-yl)adenosine-containing oligonucleotides: effects on stability of duplex and quadruplex structures. Bioorg Med Chem Lett 2000; 10:2005-9. [PMID: 10987437 DOI: 10.1016/s0960-894x(00)00381-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
2'-Deoxy-8-(propyn-1-yl)adenosine has been incorporated in synthetic oligodeoxyribonucleotides and its influence on thermal stability of duplex and quadruplex structures investigated by UV, CD and 1H NMR. The obtained results seem to indicate that the presence of the modified base negatively affects the stability of double stranded DNA whereas remarkably increases the stability of parallel quadruplex structures.
Collapse
Affiliation(s)
- B Catalanotti
- Dip. di Chimica delle Sostanze Naturali, Univ. di Napoli Federico II, Italy
| | | | | | | | | |
Collapse
|
34
|
Abstract
Nucleic acid-derived drugs exhibit both chemical and physical instability. This mini-review focuses on the prevalent hydrolytic and oxidative pathways of chemical degradation as they are affected by various endogenous (primary structure, chemical modifications in bases, sugars and phosphate residues) and exogenous (pH, buffer concentration, metal cation presence, oxygen presence) factors.
Collapse
Affiliation(s)
- D Pogocki
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
35
|
Luyten I, Herdewijn P. Hybridization properties of base-modified oligonucleotides within the double and triple helix motif. Eur J Med Chem 1998. [DOI: 10.1016/s0223-5234(98)80016-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|