1
|
Wang P, Mao Y, Su Y, Wang J. Comparative analysis of transcriptomic data shows the effects of multiple evolutionary selection processes on codon usage in Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. BMC Genomics 2021; 22:781. [PMID: 34717552 PMCID: PMC8557549 DOI: 10.1186/s12864-021-08106-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kuruma shrimp, a major commercial shrimp species in the world, has two cryptic or sibling species, Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. Codon usage analysis would contribute to our understanding of the genetic and evolutionary characteristics of the two Marsupenaeus species. In this study, we analyzed codon usage and related indices using coding sequences (CDSs) from RNA-seq data. RESULTS Using CodonW 1.4.2 software, we performed the codon bias analysis of transcriptomes obtained from hepatopancreas tissues, which indicated weak codon bias. Almost all parameters had similar correlations for both species. The gene expression level (FPKM) was negatively correlated with A/T3s. We determined 12 and 14 optimal codons for M. japonicus and M. pulchricaudatus, respectively, and all optimal codons have a C/G-ending. The two Marsupenaeus species had different usage frequencies of codon pairs, which contributed to further analysis of transcriptional differences between them. Orthologous genes that underwent positive selection (ω > 1) had a higher correlation coefficient than that of experienced purifying selection (ω < 1). Parity Rule 2 (PR2) and effective number of codons (ENc) plot analysis showed that the codon usage patterns of both species were influenced by both mutations and selection. Moreover, the average observed ENc value was lower than the expected value for both species, suggesting that factors other than GC may play roles in these phenomena. The results of multispecies clustering based on codon preference were consistent with traditional classification. CONCLUSIONS This study provides a relatively comprehensive understanding of the correlations among codon usage bias, gene expression, and selection pressures of CDSs for M. japonicus and M. pulchricaudatus. The genetic evolution was driven by mutations and selection pressure. Moreover, the results point out new insights into the specificities and evolutionary characteristics of the two Marsupenaeus species.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
2
|
Barbhuiya RI, Uddin A, Chakraborty S. Codon usage pattern and its influencing factors for mitochondrial CO genes among different classes of Arthropoda. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:313-326. [PMID: 32755341 DOI: 10.1080/24701394.2020.1800661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Analysis of codon usage bias (CUB) is very much important in perceiving the knowledge of molecular biology, the discovery of a new gene, designing of transgenes and evolution of gene. In this study, we analyzed compositional features and codon usage of MT-CO (COI, COII and COIII) genes among the classes of Arthropoda to explore the pattern of CUB as no research work was reported yet. Nucleotide composition analysis in CO genes suggested that the genes were AT-rich in all the four classes of Arthropoda. CUB was low in all the classes of Arthropoda for MT-CO genes as revealed from a high effective number of codons (ENC). We also found that the evolutionary forces namely mutation pressure and natural selection were the key influencing factors in CUB among MT-CO genes as revealed by correlation analysis between overall nucleotide composition and nucleotide composition at the 3rd codon position. Correspondence analysis suggested that the pattern of CUB was different among the classes of Arthropoda. Further, it was revealed from the neutrality plot that natural selection had a dominant role while mutation pressure exhibited a minor role in structuring the pattern of codon usage in all the classes of Arthropoda across COI, COII and COIII genes.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, M. H. C. M. Science College, Hailakandi, India
| | | |
Collapse
|
3
|
Deb B, Uddin A, Chakraborty S. Codon usage pattern and its influencing factors in different genomes of hepadnaviruses. Arch Virol 2020; 165:557-570. [PMID: 32036428 PMCID: PMC7086886 DOI: 10.1007/s00705-020-04533-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Abstract
Codon usage bias (CUB) arises from the preference for a codon over codons for the same amino acid. The major factors contributing to CUB are evolutionary forces, compositional properties, gene expression, and protein properties. The present analysis was performed to investigate the compositional properties and the extent of CUB across the genomes of members of the family Hepadnaviridae, as previously no work using bioinformatic tools has been reported. The viral genes were found to be AT rich with low CUB. Analysis of relative synonymous codon usage (RSCU) was used to identify overrepresented and underrepresented codons for each amino acid. Correlation analysis of overall nucleotide composition and its composition at the third codon position suggested that mutation pressure might influence the CUB. A highly significant correlation was observed between GC12 and GC3 (r = 0.910, p < 0.01), indicating that directional mutation affected all three codon positions across the genome. Translational selection (P2) and mutational responsive index (MRI) values of genes suggested that mutation plays a more important role than translational selection in members of the family Hepadnaviridae.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India.
| |
Collapse
|
4
|
Barbhuiya RI, Uddin A, Chakraborty S. Compositional properties and codon usage pattern of mitochondrial ATP gene in different classes of Arthropoda. Genetica 2019; 147:231-248. [PMID: 31152294 DOI: 10.1007/s10709-019-00067-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Codon usage bias (CUB) is defined as the usage of synonymous codons unequally for an amino acid in a gene transcript. It is influenced by both mutation pressure and natural selection and is a species-specific property. In our current study, we used bioinformatic methods to investigate the coding sequences of mitochondrial adenosine triphosphate gene (MT-ATP) in different classes of arthropoda to know the codon usage pattern of the gene as no work was described earlier. The analysis of compositional properties suggested that the gene is AT rich. The effective number of codons revealed the CUB of both ATP6 and ATP8 gene was moderate. Heat map showed that the codons ending with AT were negatively associated with GC3 while the codons ending with GC were positively associated with GC3 in all the classes of arthropoda. Correspondence study revealed that the pattern of codon usage of ATP6 and ATP8 genes differed across classes. Neutrality plot suggested the codon usage bias of these two genes in phylum arthropoda was influenced by both mutation pressure and natural selection.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Science College, Algapur, Hailakandi, Assam, 788150, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
5
|
Biswas R, Panja AS, Bandopadhyay R. In Silico Analyses of Burial Codon Bias Among the Species of Dipterocarpaceae Through Molecular and Phylogenetic Data. Evol Bioinform Online 2019; 15:1176934319834888. [PMID: 31223230 PMCID: PMC6563522 DOI: 10.1177/1176934319834888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 11/15/2022] Open
Abstract
Introduction: DNA barcode, a molecular marker, is used to distinguish among the closely
related species, and it can be applied across a broad range of taxa to
understand ecology and evolution. MaturaseK gene (matK) and
rubisco bisphosphate carboxylase/oxygenase form I gene
(rbcL) of the chloroplast are highly conserved in a
plant system, which are used as core barcode. This present endeavor entails
the comprehensive examination of the under threat plant species based on
success of discrimination on DNA barcode under selection pressure. Result: The family Dipterocarpaceae comprising of 15 genera is under threat due to
some factors, namely, deforestation, habitat alteration, poor seed, pollen
dispersal, etc. Species of this family was grouped into 6 clusters for
matK and 5 clusters and 2 sub-clusters for
rbcL in the phylogenetic tree by using neighbor-joining
method. Cluster I to cluster VI of matK and cluster I to
cluster V of rbcL genes were analyzed by various codon and
substitution bias tools. Mutational pressure guided the codon bias which was
favored by the avoidance of higher GC content and significant negative
correlation between GC12 and GC3 (in sub-cluster I of cluster I
[0.03 < P], cluster I
[0.00001 < P], and cluster II
[0.01 < P] of rbcL, and cluster IV
[0.013 < P] of matK). After
refining the results, it could be speculated that the lower null expectation
values (R = 0.5 or <0.5) were less divergent from the
evolutionary perspective. Apart from that, the higher null expectation
values (R = >0.85) also showed the same result, which
possibly could be due to the negative impact of very high and low transition
rate than transversion. Conclusion: Through the analysis of inter-generic, inter/intra-specific variation and
phylogenetic data, it was found that both selection and mutation played an
important role in synonymous codon choice in these genes, but they acted
inconsistently on the genes, both matK and
rbcL. In vitro stable proteins of both
matK and rbcL were selected through
natural selection rather than mutational selection. matK
gene had higher individual discrimination and barcode success compared with
rbcL. These discriminatory approaches may describe the
problem related to the extinction of plant species. Hence, it becomes very
imperative to identify and detect the under threat plant species in
advance.
Collapse
Affiliation(s)
- Raju Biswas
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Bardhaman, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, India
| | - Rajib Bandopadhyay
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Bardhaman, India
| |
Collapse
|
6
|
Engineering Pseudochelin Production in Myxococcus xanthus. Appl Environ Microbiol 2018; 84:AEM.01789-18. [PMID: 30217842 DOI: 10.1128/aem.01789-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
Myxobacteria utilize the catechol natural products myxochelin A and B in order to maintain their iron homeostasis. Recently, the production of these siderophores, along with a new myxochelin derivative named pseudochelin A, was reported for the marine bacterium Pseudoalteromonas piscicida S2040. The latter derivative features a characteristic imidazoline moiety, which was proposed to originate from an intramolecular condensation reaction of the β-aminoethyl amide group in myxochelin B. To identify the enzyme catalyzing this conversion, we compared the myxochelin regulons of two myxobacterial strains that produce solely myxochelin A and B with those of P. piscicida S2040. This approach revealed a gene exclusive to the myxochelin regulon in P. piscicida S2040, coding for an enzyme of the amidohydrolase superfamily. To prove that this enzyme is indeed responsible for the postulated conversion, the reaction was reconstituted in vitro using a hexahistidine-tagged recombinant protein made in Escherichia coli, with myxochelin B as the substrate. To test the production of pseudochelin A under in vivo conditions, the amidohydrolase gene was cloned into the myxobacterial plasmid pZJY156 and placed under the control of a copper-inducible promoter. The resulting vector was introduced into the myxobacterium Myxococcus xanthus DSM 16526, a native producer of myxochelin A and B. Following induction with copper, the myxobacterial expression strain was found to synthesize small quantities of pseudochelin A. Replacement of the copper-inducible promoter with the constitutive pilA promoter led to increased production levels in M. xanthus, which facilitated the isolation and subsequent structural verification of the heterologously produced compound.IMPORTANCE In this study, an enzyme for imidazoline formation in pseudochelin biosynthesis was identified. Evidence for the involvement of this enzyme in the postulated reaction was obtained after in vitro reconstitution. Furthermore, the function of this enzyme was demonstrated in vivo by transferring the corresponding gene into the bacterium Myxococcus xanthus, which thereby became a producer of pseudochelin A. In addition to clarifying the molecular basis of imidazoline formation in siderophore biosynthesis, we describe the heterologous expression of a gene in a myxobacterium without chromosomal integration. Due to its metabolic proficiency, M. xanthus represents an interesting alternative to established host systems for the reconstitution and manipulation of biosynthetic pathways. Since the plasmid used in this study is easily adaptable for the expression of other enzymes as well, we expand the conventional expression strategy for myxobacteria, which is based on the integration of biosynthetic genes into the host genome.
Collapse
|
7
|
Mazumder GA, Uddin A, Chakraborty S. Codon usage pattern of complex III gene of respiratory chain among platyhelminths. INFECTION GENETICS AND EVOLUTION 2018; 57:128-137. [DOI: 10.1016/j.meegid.2017.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/30/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
|
8
|
Deb B, Uddin A, Mazumder GA, Chakraborty S. Analysis of codon usage pattern of mitochondrial protein-coding genes in different hookworms. Mol Biochem Parasitol 2018; 219:24-32. [DOI: 10.1016/j.molbiopara.2017.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
9
|
Huang X, Xu J, Chen L, Wang Y, Gu X, Peng X, Yang G. Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps. BMC Genomics 2017; 18:308. [PMID: 28427327 PMCID: PMC5397707 DOI: 10.1186/s12864-017-3704-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/12/2017] [Indexed: 12/04/2022] Open
Abstract
Background Codon usage bias (CUB) is an important evolutionary feature in genomes that has been widely observed in many organisms. However, the synonymous codon usage pattern in the genome of T. multiceps remains to be clarified. In this study, we analyzed the codon usage of T. multiceps based on the transcriptome data to reveal the constraint factors and to gain an improved understanding of the mechanisms that shape synonymous CUB. Results Analysis of a total of 8,620 annotated mRNA sequences from T. multiceps indicated only a weak codon bias, with mean GC and GC3 content values of 49.29% and 51.43%, respectively. Our analysis indicated that nucleotide composition, mutational pressure, natural selection, gene expression level, amino acids with grand average of hydropathicity (GRAVY) and aromaticity (Aromo) and the effective selection of amino-acids all contributed to the codon usage in T. multiceps. Among these factors, natural selection was implicated as the major factor affecting the codon usage variation in T. multiceps. The codon usage of ribosome genes was affected mainly by mutations, while the essential genes were affected mainly by selection. In addition, 21codons were identified as “optimal codons”. Overall, the optimal codons were GC-rich (GC:AU, 41:22), and ended with G or C (except CGU). Furthermore, different degrees of variation in codon usage were found between T. multiceps and Escherichia coli, yeast, Homo sapiens. However, little difference was found between T. multiceps and Taenia pisiformis. Conclusions In this study, the codon usage pattern of T. multiceps was analyzed systematically and factors affected CUB were also identified. This is the first study of codon biology in T. multiceps. Understanding the codon usage pattern in T. multiceps can be helpful for the discovery of new genes, molecular genetic engineering and evolutionary studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3704-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing Huang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Chengdu Agricultural College, Chengdu, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Chen
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yu Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuerong Peng
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Shamriz S, Ofoghi H. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng Rev 2017; 32:92-106. [PMID: 28359189 DOI: 10.1080/02648725.2017.1307673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.
Collapse
Affiliation(s)
- Shabnam Shamriz
- a Department of Biotechnology , Iranian Research Organization for Science and Technology , Tehran , Iran
| | - Hamideh Ofoghi
- a Department of Biotechnology , Iranian Research Organization for Science and Technology , Tehran , Iran
| |
Collapse
|
11
|
Choudhury MN, Uddin A, Chakraborty S. Nucleotide composition and codon usage bias of SRY gene. Andrologia 2017; 50. [PMID: 28124482 DOI: 10.1111/and.12787] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2016] [Indexed: 11/27/2022] Open
Abstract
The SRY gene is present within the sex-determining region of the Y chromosome which is responsible for maleness in mammals. The nonuniform usage of synonymous codons in the mRNA transcript for encoding a particular amino acid is the codon usage bias (CUB). Analysis of codon usage pattern is important to understand the genetic and molecular organisation of a gene. It also helps in heterologous gene expression, design of primer and synthetic gene. However, the analysis of codon usage bias of SRY gene was not yet studied. We have used bioinformatic tools to analyse codon usage bias of SRY gene across mammals. Codon bias index (CBI) indicated that the overall extent of codon usage bias was weak. The relative synonymous codon usage (RSCU) analysis suggested that most frequently used codons had an A or C at the third codon position. Compositional constraint played an important role in codon usage pattern as evident from correspondence analysis (CA). Significant correlation among nucleotides constraints indicated that both mutation pressure and natural selection affect the codon usage pattern. Neutrality plot suggested that natural selection might play a major role, while mutation pressure might play a minor role in codon usage pattern in SRY gene in different species of mammals.
Collapse
Affiliation(s)
- M N Choudhury
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - A Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, India
| | - S Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, India
| |
Collapse
|
12
|
Yang X, Ma X, Luo X, Ling H, Zhang X, Cai X. Codon Usage Bias and Determining Forces in Taenia solium Genome. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:689-97. [PMID: 26797435 PMCID: PMC4725240 DOI: 10.3347/kjp.2015.53.6.689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 11/23/2022]
Abstract
The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.
Collapse
Affiliation(s)
- Xing Yang
- College of Veterinary Medicine, Jilin University, Changchun, 130000, P. R. China ; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| | - Xusheng Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| | - Xuenong Luo
- College of Veterinary Medicine, Jilin University, Changchun, 130000, P. R. China
| | - Houjun Ling
- College of Veterinary Medicine, Jilin University, Changchun, 130000, P. R. China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130000, P. R. China
| | - Xuepeng Cai
- College of Veterinary Medicine, Jilin University, Changchun, 130000, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| |
Collapse
|
13
|
Yang X, Luo X, Cai X. Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset. Parasit Vectors 2014; 7:527. [PMID: 25440955 PMCID: PMC4268816 DOI: 10.1186/s13071-014-0527-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 11/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Codon usage bias is an important evolutionary feature in a genome and has been widely documented in many genomes. Analysis of codon usage bias has significance for mRNA translation, design of transgenes, new gene discovery, and studies of molecular biology and evolution, etc. However, the information about synonymous codon usage pattern of T. saginata genome remains unclear. T. saginata is a food-borne zoonotic cestode which infects approximataely 50 million humans worldwide, and causes significant health problems to the host and considerable socio-economic losses as a consequence. In this study, synonymous codon usage in T. saginata were examined. METHODS Total RNA was isolated from T. saginata cysticerci and 91,487 unigenes were generated using Illumina sequencing technology. After filtering, the final sequence collection containing 11,399 CDSs was used for our analysis. RESULTS Neutrality analysis showed that the T. saginata had a wide GC3 distribution and a significant correlation was observed between GC12 and GC3. NC-plot showed most of genes on or close to the expected curve, but only a few points with low-ENC values were below it, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified twenty-three optimal codons in the T. saginata genome, all of which were ended with a G or C residue. These results suggest that mutational and selection forces are probably driving factors of codon usage bias in T. saginata genome. Meanwhile, other factors such as protein length, gene expression, GC content of genes, the hydropathicity of each protein also influence codon usage. CONCLUSIONS Here, we systematically analyzed the codon usage pattern and identified factors shaping in codon usage bias in T. saginata. Currently, no complete nuclear genome is available for codon usage analysis at the genome level in T. saginata. This is the first report to investigate codon biology in T. sagninata. Such information does not only bring about a new perspective for understanding the mechanisms of biased usage of synonymous codons but also provide useful clues for molecular genetic engineering and evolutionary studies.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China. .,College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China.
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China. .,College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
14
|
BioWord: a sequence manipulation suite for Microsoft Word. BMC Bioinformatics 2012; 13:124. [PMID: 22676326 PMCID: PMC3546851 DOI: 10.1186/1471-2105-13-124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022] Open
Abstract
Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.
Collapse
|
15
|
Nelson G, Kozlova-Zwinderman O, Collis AJ, Knight MR, Fincham JRS, Stanger CP, Renwick A, Hessing JGM, Punt PJ, van den Hondel CAMJJ, Read ND. Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol Microbiol 2004; 52:1437-50. [PMID: 15165245 DOI: 10.1111/j.1365-2958.2004.04066.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Calcium signalling is little understood in filamentous fungi largely because easy and routine methods for calcium measurement in living hyphae have previously been unavailable. We have developed the recombinant aequorin method for this purpose. High levels of aequorin expression were obtained in Neurospora crassa, Aspergillus niger and Aspergillus awamori by codon optimization of the aequorin gene. Three external stimuli (mechanical perturbation, hypo-osmotic shock and high external calcium) were found transiently to increase [Ca(2+)](c). Each of the calcium signatures associated with these physico-chemical treatments was unique, suggesting the involvement of three distinct calcium-mediated signal transduction pathways. The fungal calcium channel blocker KP4 inhibited the [Ca(2+)](c) responses to hypo-osmotic shock and high external calcium, but not to mechanical perturbation. The divalent cation chelator BAPTA inhibited [Ca(2+)](c) responses to mechanical perturbation and hypo-osmotic shock. The calcium agonists A23187 and cyclopiazonic acid increased [Ca(2+)](c) levels.
Collapse
Affiliation(s)
- G Nelson
- Fungal Cell Biology Group, Institute of Cell and Molecular Biology, University of Edinburgh, Rutherford Building, Edinburgh EH9 3JH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pan S, Gulati R, Mueske CS, Witt TA, Lerman A, Burnett JC, Simari RD. Gene transfer of a novel vasoactive natriuretic peptide stimulates cGMP and lowers blood pressure in mice. Am J Physiol Heart Circ Physiol 2004; 286:H2213-8. [PMID: 14962842 DOI: 10.1152/ajpheart.00465.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendroaspis natriuretic peptide (DNP) is a recently described peptide produced by Dendroaspis angusticeps with structural and functional similarities to mammalian natriuretic peptides. These similarities suggest a potential role for DNP in cardiovascular therapeutics. To determine the physiological effects of chronic delivery of DNP, a gene transfer approach using first generation adenoviral vectors was utilized. Although the gene for DNP has not been cloned in any species, the peptide sequence in the snake is known. Preferred mammalian codons for snake DNP were cloned downstream of either the leader sequence (referred to as pBDNP-1) or prepropeptide sequence of human brain natriuretic peptide (BNP) cDNA (referred to as pBDNP-2). Transfections with pBDNP-1 or pBDNP-2 resulted in expected forms of chimeric DNP (cDNP) in cell lysates and conditioned media. Functional studies demonstrated the ability of both forms of cDNP within conditioned media to stimulate cGMP production in human vascular smooth muscle cells (hVSMC). Expressed cDNP inhibited hVSMC proliferation and stimulated vasorelaxation in a similar fashion. To investigate the chronic physiological effects of administration of cDNP, an adenoviral vector expressing cDNP (Ad-BDNP) was generated. Intravenous delivery of Ad-BDNP in mice resulted in dose-dependent systemic expression of cDNP. The highest level of expression was associated with consistent elevation of its presumed second messenger (cGMP) for 21 days but with transient lowering of systolic blood pressure in normotensive mice. This study demonstrates the biological features of the expression of the xenogenic peptide DNP.
Collapse
Affiliation(s)
- Shuchong Pan
- Division of Cardiovascular Diseases and Internal Medicine, College of Medicine, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Guanine plus cytosine (GC) content ranges broadly among bacterial genomes. In this study, we explore the use of a Brownian-motion model for the evolution of GC content over time. This model assumes that GC content varies over time in a continuous and homogeneous manner. Using this model and a maximum-likelihood approach, we analyzed the evolution of GC content across several bacterial phylogenies. Using three independent tests, we found that the observed divergence in GC content was consistent with a homogeneous Brownian-motion model. For example, similar rates of GC content evolution were inferred in several different bacterial subclades, indicating that there is relatively little rate heterogeneity in GC content evolution over broad evolutionary time scales. We thus argue that the homogeneous Brownian-motion model provides a good working model for GC content evolution. We then use this model to determine the overall rate of GC content evolution among eubacteria. We also determine the time frame over which GC content remains similar in related taxa, using a flexible definition for "similarity" in GC content so that, depending on the context, more or less stringent criteria may be applied. Our results have implications for models of sequence evolution, including those used for phylogenetic reconstruction and for inferring unusual changes in GC content.
Collapse
Affiliation(s)
- Eric Haywood-Farmer
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada
| | | |
Collapse
|
18
|
|
19
|
Kawabe A, Miyashita NT. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 2003; 78:343-52. [PMID: 14676425 DOI: 10.1266/ggs.78.343] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Codon usage in nuclear genes of four monocot and three dicot species was analyzed to find general patterns in codon choice of plant species. Codon bias was correlated with GC content at the third codon position. GC contents were higher in monocot species than in dicot species at all codon positions. The high GC contents of monocot species might be the result of relatively strong mutational bias that occurred in the lineage of the Poaceae species. In both dicot and monocot species, the effective number of codons (ENCs) for most genes was similar to that for the expected ENCs based on the GC content at the third codon positions. G and C ending codons were detected as the "preferred" codons in monocot species, as in Drosophila. Also, many "preferred" codons are the same in dicot species. Pyrimidine (C and T) is used more frequently than purine (G and A) in four-fold degenerate codon groups.
Collapse
Affiliation(s)
- Akira Kawabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Japan.
| | | |
Collapse
|
20
|
Ishida M, Oshima T, Yutani K. Overexpression in Escherichia coli of the AT-rich trpA and trpB genes from the hyperthermophilic archaeon Pyrococcus furiosus. FEMS Microbiol Lett 2002; 216:179-83. [PMID: 12435500 DOI: 10.1111/j.1574-6968.2002.tb11433.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Expression of AT-rich genes from microorganisms such as archaea is often inefficient in Escherichia coli. The trpA and trpB genes encoding the tryptophan synthase subunits were cloned from the hyperthermophilic archaeon Pyrococcus furiosus. No apparent difference in codon bias was found between the genes. However, using a conventional cloning vector having the lac promoter, the trpB gene was expressed poorly in E. coli, whereas the trpA gene was overexpressed. The expression of the trpB gene was remarkably enhanced (>12-fold) by the introduction of an overlapping leader open reading frame. The expression of the trpA gene was also improved ( approximately 1.5-fold). This approach may be useful for overexpressing various kinds of AT-rich genes.
Collapse
Affiliation(s)
- Masami Ishida
- Laboratory of Marine Biochemistry, Tokyo University of Fisheries, Konan 4, Minato-ku, Tokyo 108-8477, Japan.
| | | | | |
Collapse
|
21
|
Díaz E, Ferrández A, Prieto MA, García JL. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 2001; 65:523-69, table of contents. [PMID: 11729263 PMCID: PMC99040 DOI: 10.1128/mmbr.65.4.523-569.2001] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- E Díaz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Beckers G, Nolden L, Burkovski A. Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2961-70. [PMID: 11700347 DOI: 10.1099/00221287-147-11-2961] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Corynebacterium glutamicum gltB and gltD genes, encoding the large (alpha) and small (beta) subunit of glutamate synthase (GOGAT), were investigated in this study. Using RT-PCR, a common transcript of gltB and gltD was shown. Reporter gene assays and Northern hybridization experiments revealed that transcription of this operon depends on nitrogen starvation. The expression of gltBD is under control of the global repressor protein AmtR as demonstrated by gel shift experiments and analysis of gltB transcription in an amtR deletion strain. In contrast to other bacteria, in C. glutamicum GOGAT plays no pivotal role; e.g. gltB and gltD inactivation did not result in growth defects when cells were grown in standard minimal medium and only a slight increase in the doubling time of the corresponding mutant strains was observed in the presence of limiting amounts of ammonia or urea. Additionally, mutant analyses revealed that GOGAT has no essential function in glutamate production by C. glutamicum.
Collapse
Affiliation(s)
- G Beckers
- Institut für Biochemie der Universität zu Köln, Zülpicher-Str. 47, D-50674 Köln, Germany
| | | | | |
Collapse
|
23
|
Hancock JM, Worthey EA, Santibáñez-Koref MF. A Role for Selection in Regulating the Evolutionary Emergence of Disease-Causing and Other Coding CAG Repeats in Humans and Mice. Mol Biol Evol 2001; 18:1014-23. [PMID: 11371590 DOI: 10.1093/oxfordjournals.molbev.a003873] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolutionary expansion of CAG repeats in human triplet expansion disease genes is intriguing because of their deleterious phenotype. In the past, this expansion has been suggested to reflect a broad genomewide expansion of repeats, which would imply that mutational and evolutionary processes acting on repeats differ between species. Here, we tested this hypothesis by analyzing repeat- and flanking-sequence evolution in 28 repeat-containing genes that had been sequenced in humans and mice and by considering overall lengths and distributions of CAG repeats in the two species. We found no evidence that these repeats were longer in humans than in mice. We also found no evidence for preferential accumulation of CAG repeats in the human genome relative to mice from an analysis of the lengths of repeats identified in sequence databases. We then investigated whether sequence properties, such as base and amino acid composition and base substitution rates, showed any relationship to repeat evolution. We found that repeat-containing genes were enriched in certain amino acids, presumably as the result of selection, but that this did not reflect underlying biases in base composition. We also found that regions near repeats showed higher nonsynonymous substitution rates than the remainder of the gene and lower nonsynonymous rates in genes that contained a repeat in both the human and the mouse. Higher rates of nonsynonymous mutation in the neighborhood of repeats presumably reflect weaker purifying selection acting in these regions of the proteins, while the very low rate of nonsynonymous mutation in proteins containing a CAG repeat in both species presumably reflects a high level of purifying selection. Based on these observations, we propose that the mutational processes giving rise to polyglutamine repeats in human and murine proteins do not differ. Instead, we propose that the evolution of polyglutamine repeats in proteins results from an interplay between mutational processes and selection.
Collapse
Affiliation(s)
- J M Hancock
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, England.
| | | | | |
Collapse
|
24
|
Lichtinger T, Riess FG, Burkovski A, Engelbrecht F, Hesse D, Kratzin HD, Krämer R, Benz R. The low-molecular-mass subunit of the cell wall channel of the Gram-positive Corynebacterium glutamicum. Immunological localization, cloning and sequencing of its gene porA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:462-9. [PMID: 11168383 DOI: 10.1046/j.1432-1033.2001.01913.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 5-kDa protein PorA of the Gram-positive bacterium Corynebacterium glutamicum is the subunit of the cell wall channel. Antibodies raised against PorA specifically detected the protein on the cell surface. PorA was sequenced using Edman degradation and a gas phase sequencer. The primary sequence was used to create degenerate oligonucleotide primers. The gene of the channel-forming protein and its flanking regions were obtained by PCR followed by inverse PCR. The gene porA comprises 138 bp and encodes a 45-amino-acid-long acidic polypeptide with an excess of four negatively charged amino acids in agreement with the high cation selectivity of the PorA cell wall channel. PorA does not contain an N-terminal extension. A ribosomal-binding site was recognized 6 bp before the start codon ATG of porA. It codes for the smallest subunit of a membrane channel known so far and for the first cell wall channel protein of a corynebacterium. Southern blots demonstrated that only the chromosomes of corynebacteria contain homologous sequences to porA; no hybridization could be detected with DNA from other mycolata.
Collapse
Affiliation(s)
- T Lichtinger
- Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nolden L, Beckers G, Möckel B, Pfefferle W, Nampoothiri KM, Krämera R, Burkovskia A. Urease of Corynebacterium glutamicum: organization of corresponding genes and investigation of activity. FEMS Microbiol Lett 2000; 189:305-10. [PMID: 10930756 DOI: 10.1111/j.1574-6968.2000.tb09248.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Corynebacterium glutamicum genes encoding urease were isolated and sequenced. While ureA, ureB and ureC are encoding structural subunits of urease, ureE, ureF, ureG and ureD are encoding accessory proteins. As deduced from DNA sequence analyses, the ure genes are transcriptionally coupled, this was proven by RT-PCR at least for ureABC. Gene disruption experiments revealed that both structural (UreC) and accessory proteins (UreD) are indispensable for urease activity and growth on urea. Urease activity was determined in different Corynebacterium species after growth in various media. While the regulation patterns observed revealed species-specific differences, in general urease activity is induced upon nitrogen starvation. As in mycobacteria, in corynebacteria urease activity was highest in a pathogenic species and might also play a role in host-pathogen interaction.
Collapse
Affiliation(s)
- L Nolden
- Institut für Biochemie, Universität zu Kon, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Perrone CA, Myster SH, Bower R, O'Toole ET, Porter ME. Insights into the structural organization of the I1 inner arm dynein from a domain analysis of the 1beta dynein heavy chain. Mol Biol Cell 2000; 11:2297-313. [PMID: 10888669 PMCID: PMC14920 DOI: 10.1091/mbc.11.7.2297] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To identify domains in the dynein heavy chain (Dhc) required for the assembly of an inner arm dynein, we characterized a new motility mutant (ida2-6) obtained by insertional mutagenesis. ida2-6 axonemes lack the polypeptides associated with the I1 inner arm complex. Recovery of genomic DNA flanking the mutation indicates that the defects are caused by plasmid insertion into the Dhc10 transcription unit, which encodes the 1beta Dhc of the I1 complex. Transformation with Dhc10 constructs encoding <20% of the Dhc can partially rescue the motility defects by reassembly of an I1 complex containing an N-terminal 1beta Dhc fragment and a full-length 1alpha Dhc. Electron microscopic analysis reveals the location of the missing 1beta Dhc motor domain within the axoneme structure. These observations, together with recent studies on the 1alpha Dhc, identify a Dhc domain required for complex assembly and further demonstrate that the intermediate and light chains are associated with the stem regions of the Dhcs in a distinct structural location. The positioning of these subunits within the I1 structure has significant implications for the pathways that target the assembly of the I1 complex into the axoneme and modify the activity of the I1 dynein during flagellar motility.
Collapse
Affiliation(s)
- C A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
27
|
Takeo S, Kokaze A, Ng CS, Mizuchi D, Watanabe JI, Tanabe K, Kojima S, Kita K. Succinate dehydrogenase in Plasmodium falciparum mitochondria: molecular characterization of the SDHA and SDHB genes for the catalytic subunits, the flavoprotein (Fp) and iron-sulfur (Ip) subunits. Mol Biochem Parasitol 2000; 107:191-205. [PMID: 10779596 DOI: 10.1016/s0166-6851(00)00185-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondria of malaria parasites generate a membrane potential through an electron transport system that is a possible target of primaquine and a new anti-malarial drug, atovaquone. However, little information is available for conclusive understanding of the respiratory chain in Plasmodium mitochondria. In the present study, we cloned and characterized from Plasmodium falciparum the genes for the catalytic subunits, SDHA for the flavoprotein (Fp) and SDHB for iron-sulfur protein (Ip), of succinate-ubiquinone oxidoreductase (complex II), which is a marker enzyme for mitochondria and links the TCA cycle and respiratory chain directly. Each of the two genes contains a single open reading frame (ORF), which are located on different chromosomes, 1860 nucleotides on chromosome 10 for SDHA and 963 nucleotides on chromosome 12 for SDHB. The expression of these genes in asynchronous erythrocytic stage cells was confirmed by observation of 3.3 and 2.4 kb transcripts from the SDHA and SDHB genes, respectively. The SDHA and SDHB genes encode proteins of 620 (Fp) and 321 (Ip) amino acids with molecular masses of 69.2 and 37.8 kDa, respectively. A mitochondrial presequence essential for the import of mitochondrial proteins encoded by nuclear DNA, as well as almost all the conserved amino acids indispensable for substrate binding and the catalytic reaction were found in these peptides, indicating the functional importance of this enzyme in the parasite. Interestingly, a P. falciparum-specific insertion and a unicellular organism-specific deletion were found in the amino acid sequence of Fp. This is the first report of the primary structure of the protozoan succinate dehydrogenase.
Collapse
Affiliation(s)
- S Takeo
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wilson RL, White DW, Harty JT. Transient expression of bacterial gene fragments in eukaryotic cells: implications for CD8(+) T cell epitope analysis. J Immunol Methods 2000; 234:137-47. [PMID: 10669778 DOI: 10.1016/s0022-1759(99)00221-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CD8(+) T cells are potent effectors of acquired immunity against some viruses and intracellular bacterial pathogens. Antigens recognized by CD8(+) T cells are small, 8-9 amino acid peptides derived from proteins produced by the pathogen. These peptides are presented by MHC class I molecules on the surface of the infected cell. When characterizing the CD8(+) T cell response to a bacterial or viral pathogen, it is often necessary to express an antigenic protein in a eukaryotic host cell that is capable of processing and presenting peptide epitopes to antigen-specific CD8(+) T cells. We describe a system designed to transiently express bacterial polypeptides and MHC class I molecules in eukaryotic cells. Recognition of these peptide-MHC complexes stimulates TNF production by antigen-specific CD8(+) T cell lines. This system should be useful for analysis of CD8(+) T cell epitope-containing bacterial gene fragments when expression of the entire bacterial protein is detrimental to the eukaryotic cell, or when overexpression of the bacterial gene is detrimental to the bacterial cloning strain. Furthermore, this system can be used for the rapid mapping of CD8(+) T cell epitopes within a protein.
Collapse
Affiliation(s)
- R L Wilson
- Department of Microbiology, University of Iowa, 3-512 Bowen Science Building, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
29
|
Adema CM, Léonard PM, DeJong RJ, Day HL, Edwards DJ, Burgett G, Hertel LA, Loker ES. Analysis of messages expressed by Echinostoma paraensei miracidia and sporocysts, obtained by random EST sequencing. J Parasitol 2000; 86:60-5. [PMID: 10701565 DOI: 10.1645/0022-3395(2000)086[0060:aomebe]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A lambdaZAP Express cDNA library was constructed with mRNA obtained from immature miracidia within eggs, hatched miracidia, and sporocysts of Echinostoma paraensei. This cDNA library was amplified and 213 expressed sequence tag (EST) sequences (averaging 466 nucleotides in length) were obtained. The mean percentage of unresolved bases within the EST sequences was 0.4%, ranging from 0 to 4.6%. The 213 ESTs represent 151 unique messages. BLAST (version 2.0.8) analysis disclosed that 64 unique E. paraensei messages (42.4%) had significant similarities (BLAST score < or =e-5), at deduced amino acid or nucleotide levels, with known sequences in the nonredundant GenBank databases or the dbEST database (NCBI). The remainder, 57.6% of the unique EST-encoded messages, scored nonsignificant hits. Most of the E. paraensei messages that could be assigned a cellular role based on sequence similarities were involved in gene/protein expression. Several ESTs scored highest similarities with sequences obtained from trematode species. A total of 22,560 nucleotides present in open reading frames from ESTs that aligned with known sequences was used to determine codon usage for E. paraensei. Analysis of a subset of eight ESTs that contained full-length open reading frames did not reveal a bias in codon usage. Also, EST sequences were found to contain 3' untranslated regions with an average length of 69.9 +/- 88.4 nucleotides (n = 46). The EST sequences were submitted to GenBank/dbEST, adding to the 51 available Echinostoma-derived sequences, to provide reference information for both phylogenetic analysis and study of general trematode biology.
Collapse
Affiliation(s)
- C M Adema
- Department of Biology, University of New Mexico, Albuquerque 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
D'Onofrio G, Jabbari K, Musto H, Bernardi G. The correlation of protein hydropathy with the base composition of coding sequences. Gene 1999; 238:3-14. [PMID: 10570978 DOI: 10.1016/s0378-1119(99)00257-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The "universal correlation" (D'Onofrio, G., Bernardi, G., 1992. A universal compositional correlation among codon positions. Gene 110, 81-88.) that holds between <GC3> and <GC1> or <GC2> (<GC> values are the average values of the coding sequences of each genome analyzed) at both the inter- and intra-genomic level, was re-analyzed on a vastly larger dataset. The results showed a slight, but significant, difference in the <GC3> vs. <GC1> correlations exhibited by prokaryotes and eukaryotes. This finding prompted an analysis of the correlation between <GC3> and the amino acid frequencies in the encoded proteins, which has shown that positive correlations exist between <GC3> values of coding sequences and the hydropathy of the corresponding proteins. These correlations are due to the fact that hydrophobic and amphypathic amino acids increase, whereas hydrophilic amino acids decrease with increasing <GC3> values. Hydropathy values of prokaryotic proteins are systematically higher than those of eukaryotes, but the slopes of the regression lines are identical. The lower hydrophobicity of eukaryotic proteins is due to differences in the amino acid composition. In particular, the twofold higher cysteine (and disulfide bond) level of eukaryotic proteins compared to prokaryotic proteins most probably compensates for their lower hydrophobicity. This supports the viewpoint that hydrophobicity plays a structural and functional role as far as protein stability is concerned.
Collapse
Affiliation(s)
- G D'Onofrio
- Laboratorio di Evoluzione Molecolare, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | | | | |
Collapse
|
31
|
Niederweis M, Ehrt S, Heinz C, Klöcker U, Karosi S, Swiderek KM, Riley LW, Benz R. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 1999; 33:933-45. [PMID: 10476028 DOI: 10.1046/j.1365-2958.1999.01472.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Porins form channels in the mycolic acid layer of mycobacteria and thereby control access of hydrophilic molecules to the cell. We purified a 100 kDa protein from Mycobacterium smegmatis and demonstrated its channel-forming activity by reconstitution in planar lipid bilayers. The mspA gene encodes a mature protein of 184 amino acids and an N-terminal signal sequence. MALDI mass spectrometry of the purified porin revealed a mass of 19 406 Da, in agreement with the predicted mass of mature MspA. Dissociation of the porin by boiling in 80% dimethyl sulphoxide yielded the MspA monomer, which did not form channels any more. Escherichia coli cells expressing the mspA gene produced the MspA monomer and a 100 kDa protein, which had the same channel-forming activity as whole-cell extracts of M. smegmatis with organic solvents. These proteins were specifically detected by a polyclonal antiserum that was raised to purified MspA of M. smegmatis. These results demonstrate that the mspA gene encodes a protein of M. smegmatis, which assembles to an extremely stable oligomer with high channel-forming activity. Database searches did not reveal significant similarities to any other known protein. Southern blots showed that the chromosomes of fast-growing mycobacterial species contain homologous sequences to mspA, whereas no hybridization could be detected with DNA from slow growing mycobacteria. These results suggest that MspA is the prototype of a new class of channel-forming proteins.
Collapse
Affiliation(s)
- M Niederweis
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. THE PLANT CELL 1999; 11:1769-1784. [PMID: 10488242 PMCID: PMC144304 DOI: 10.1105/tpc.11.9.1769] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity."
Collapse
Affiliation(s)
- CM Vicient
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. THE PLANT CELL 1999; 11:1769-1784. [PMID: 10488242 DOI: 10.2307/3871053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity."
Collapse
Affiliation(s)
- CM Vicient
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Myster SH, Knott JA, Wysocki KM, O'Toole E, Porter ME. Domains in the 1alpha dynein heavy chain required for inner arm assembly and flagellar motility in Chlamydomonas. J Cell Biol 1999; 146:801-18. [PMID: 10459015 PMCID: PMC2156140 DOI: 10.1083/jcb.146.4.801] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 07/20/1999] [Indexed: 11/22/2022] Open
Abstract
Flagellar motility is generated by the activity of multiple dynein motors, but the specific role of each dynein heavy chain (Dhc) is largely unknown, and the mechanism by which the different Dhcs are targeted to their unique locations is also poorly understood. We report here the complete nucleotide sequence of the Chlamydomonas Dhc1 gene and the corresponding deduced amino acid sequence of the 1alpha Dhc of the I1 inner dynein arm. The 1alpha Dhc is similar to other axonemal Dhcs, but two additional phosphate binding motifs (P-loops) have been identified in the NH(2)- and COOH-terminal regions. Because mutations in Dhc1 result in motility defects and loss of the I1 inner arm, a series of Dhc1 transgenes were used to rescue the mutant phenotypes. Motile cotransformants that express either full-length or truncated 1alpha Dhcs were recovered. The truncated 1alpha Dhc fragments lacked the dynein motor domain, but still assembled with the 1beta Dhc and other I1 subunits into partially functional complexes at the correct axoneme location. Analysis of the transformants has identified the site of the 1alpha motor domain in the I1 structure and further revealed the role of the 1alpha Dhc in flagellar motility and phototactic behavior.
Collapse
Affiliation(s)
- Steven H. Myster
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Julie A. Knott
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Katrina M. Wysocki
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Eileen O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309-0347
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
35
|
Soubrier F, Cameron B, Manse B, Somarriba S, Dubertret C, Jaslin G, Jung G, Caer CL, Dang D, Mouvault JM, Scherman D, Mayaux JF, Crouzet J. pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther 1999; 6:1482-8. [PMID: 10467373 DOI: 10.1038/sj.gt.3300968] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A totally redesigned host/vector system with improved properties in terms of safety has been developed. The pCOR plasmids are narrow-host range plasmid vectors for nonviral gene therapy. These plasmids contain a conditional origin of replication and must be propagated in a specifically engineered E. coli host strain, greatly reducing the potential for propagation in the environment or in treated patients. The pCOR backbone has several features that increase safety in terms of dissemination and selection: (1) the origin of replication requires a plasmid-specific initiator protein, pi protein, encoded by the pir gene limiting its host range to bacterial strains that produce this trans-acting protein; (2) the plasmid's selectable marker is not an antibiotic resistance gene but a gene encoding a bacterial suppressor tRNA. Optimized E. coli hosts supporting pCOR replication and selection were constructed. High yields of supercoiled pCOR monomers were obtained (100 mg/l) through fed-batch fermentation. pCOR vectors carrying the luciferase reporter gene gave high levels of luciferase activity when injected into murine skeletal muscle.
Collapse
Affiliation(s)
- F Soubrier
- Rhône-Poulenc Rorer, Centre de Recherche de Vitry Alfortville, 13 Quai J Guesde, 94403 Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dixon DP, Cole DJ, Edwards R. Dimerisation of maize glutathione transferases in recombinant bacteria. PLANT MOLECULAR BIOLOGY 1999; 40:997-1008. [PMID: 10527424 DOI: 10.1023/a:1006257305725] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two cDNAs encoding novel type III maize (Zea mays) GST subunits, ZmGST VI and ZmGST VII, have been cloned in addition to the previously described ZmGST V. Together with the type I GSTs ZmGST I and ZmGST III, these subunits were expressed in Escherichia coli, both individually and in tandem combinations using a customised pET vector. The GST dimers formed were then characterised. When type I GSTs were co-expressed only the respective homodimers were formed rather than the ZmGST I-III heterodimer. The failure to form this heterodimer, together with the negligible herbicide-detoxifying activity associated with recombinant ZmGST III-III, suggests that the identity of herbicide-detoxifying isoenzymes described in maize as being composed of ZmGST III subunits requires re-evaluation. In contrast, co-expression of the type III GSTs ZmGST V and ZmGST VI resulted in the formation of ZmGST V-V, ZmGST VI-VI and ZmGST V-VI dimers in the ratio 1:1:2 as predicted for random subunit association. ZmGST V-VI had kinetic characteristics intermediate between those of the two homodimers, indicating that the subunits were catalytically independent of one another. Co-expression of ZmGST V and ZmGST VII resulted in the formation of ZmGST V-VII and this isoenzyme was subsequently identified in maize plants. Attempts to dimerise type I GST subunits with type III GST subunits proved unsuccessful. These results demonstrate the utility of co-expressing recombinant GSTs to explore the potential of subunit-subunit associations and to help unravel the complexity of homodimeric and heterodimeric GSTs in plants.
Collapse
Affiliation(s)
- D P Dixon
- Department of Biological Sciences, University of Durham, UK
| | | | | |
Collapse
|
37
|
Ishikawa J, Hotta K. FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 1999; 174:251-3. [PMID: 10339816 DOI: 10.1111/j.1574-6968.1999.tb13576.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
FramePlot is a web-based tool for predicting protein-coding regions in bacterial DNA with a high G + C content, such as Streptomyces. The graphical output provides for easy distinction of protein-coding regions from non-coding regions. The plot is a clickable map. Clicking on an ORF provides not only the nucleotide sequence but also its deduced amino acid sequence. These sequences can then be compared to the NCBI sequence database over the Internet. The program is freely available for academic purposes at http://www.nih.go.jp/jun/cgi-bin/frameplot.pl.
Collapse
Affiliation(s)
- J Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo, Japan.
| | | |
Collapse
|
38
|
Porter ME, Bower R, Knott JA, Byrd P, Dentler W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 1999; 10:693-712. [PMID: 10069812 PMCID: PMC25196 DOI: 10.1091/mbc.10.3.693] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A second cytoplasmic dynein heavy chain (cDhc) has recently been identified in several organisms, and its expression pattern is consistent with a possible role in axoneme assembly. We have used a genetic approach to ask whether cDhc1b is involved in flagellar assembly in Chlamydomonas. Using a modified PCR protocol, we recovered two cDhc sequences distinct from the axonemal Dhc sequences identified previously. cDhc1a is closely related to the major cytoplasmic Dhc, whereas cDhc1b is closely related to the minor cDhc isoform identified in sea urchins, Caenorhabditis elegans, and Tetrahymena. The Chlamydomonas cDhc1b transcript is a low-abundance mRNA whose expression is enhanced by deflagellation. To determine its role in flagellar assembly, we screened a collection of stumpy flagellar (stf) mutants generated by insertional mutagenesis and identified two strains in which portions of the cDhc1b gene have been deleted. The two mutants assemble short flagellar stumps (<1-2 micrometer) filled with aberrant microtubules, raft-like particles, and other amorphous material. The results indicate that cDhc1b is involved in the transport of components required for flagellar assembly in Chlamydomonas.
Collapse
Affiliation(s)
- M E Porter
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
39
|
Kagawa M, Murakoshi N, Nishikawa Y, Matsumoto G, Kurata Y, Mizobata T, Kawata Y, Nagai J. Purification and cloning of a thermostable manganese catalase from a thermophilic bacterium. Arch Biochem Biophys 1999; 362:346-55. [PMID: 9989945 DOI: 10.1006/abbi.1998.1041] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have purified a heat-stable catalase from a thermophilic bacterium, Thermus species strain YS 8-13. The enzyme was purified 160-fold from crude cellular extracts and possessed a specific activity of 8000 units/mg at 65 degrees C. The purified enzyme displayed the highest activity at pH 7 to 10 and temperatures around 85 degrees C. The catalase was determined to be a manganese catalase, based on results from atomic absorption spectra and inhibition experiments using sodium azide. The enzyme was composed of six identical subunits of molecular weight 36,000. Amino acid sequences determined from the purified protein were used to design oligonucleotide primers, which were in turn used to clone the coding gene. The nucleotide sequence of a 1.4-kb fragment of Thermus sp. YS 8-13 genomic DNA containing a 909-bp open reading frame was determined. The gene encoded a 302-residue polypeptide of deduced molecular weight 33,303. The deduced amino acid sequence displayed a region-specific homology with the sequences of the manganese catalase from a mesophilic organism, Lactobacillus plantarum.
Collapse
Affiliation(s)
- M Kagawa
- Faculty of Engineering, Tottori University, Koyama-Minami, Tottori, 680-8552, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Santos MA, Cheesman C, Costa V, Moradas-Ferreira P, Tuite MF. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol Microbiol 1999; 31:937-47. [PMID: 10048036 DOI: 10.1046/j.1365-2958.1999.01233.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several species of the genus Candida decode the standard leucine CUG codon as serine. This and other deviations from the standard genetic code in both nuclear and mitochondrial genomes invalidate the notion that the genetic code is frozen and universal and prompt the questions 'why alternative genetic codes evolved and, more importantly, how can an organism survive a genetic code change?' To address these two questions, we have attempted to reconstruct the early stages of Candida albicans CUG reassignment in the closely related yeast Saccharomyces cerevisiae. These studies suggest that this genetic code change was driven by selection using a molecular mechanism that requires CUG ambiguity. Such codon ambiguity induced a significant decrease in fitness, indicating that CUG reassignment can only be selected if it introduces an evolutionary edge to counteract the negative impact of ambiguity. We have shown that CUG ambiguity induces the expression of a novel set of stress proteins and triggers the general stress response, which, in turn, creates a competitive edge under stress conditions. In addition, CUG ambiguity in S. cerevisiae induces the expression of a number of novel phenotypes that mimic the natural resistance to stress characteristic of C. albicans. The identification of an evolutionary advantage created by CUG ambiguity is the first experimental evidence for a genetic code change driven by selection and suggests a novel role for codon reassignment in the adaptation to new ecological niches.
Collapse
Affiliation(s)
- M A Santos
- Research School of Biosciences, University of Kent, Canterbury, UK.
| | | | | | | | | |
Collapse
|
41
|
Wilquet V, Van de Casteele M. The role of the codon first letter in the relationship between genomic GC content and protein amino acid composition. Res Microbiol 1999; 150:21-32. [PMID: 10096131 DOI: 10.1016/s0923-2508(99)80043-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of the statistical distribution of amino acid compositions within 22 protein families shows that a GC bias generally affects proteins with a variety of functions from the extreme thermophile Thermus. This results in evident enrichment in amino acids of the group L, V, A, P, R and G and underrepresentation of amino acids of the group I, M, F, S, T, C and W. The strong amino acid composition biases noted in Thermus proteins are not related to thermoadaptation; they were also found in mesophilic homologues encoded by GC-rich genes. The results of a comparative analysis on large samples of translated sequences from 30 organisms, representing the three major kingdoms of life and including extremophiles, indicate a universal correlation between the usage of particular amino acids and the genomic GC content. It is concluded that the codon first letter plays a dominant role in translating the genomic GC signature into protein amino acid composition and sequences.
Collapse
Affiliation(s)
- V Wilquet
- Laboratoire de Microbiologie, Université Libre de Bruxelles (ULB), Belgium
| | | |
Collapse
|
42
|
Ikeda K, Miyasaka H. Compilation of mRNA sequences surrounding the AUG translation initiation codon in the green alga Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 1998; 62:2457-9. [PMID: 9972275 DOI: 10.1271/bbb.62.2457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sequences of 118 mRNAs of the green alga Chlamydomonas reinhardtii in the GenBank data base were compiled to examine the consensus sequence surrounding the AUG translation initiation codon. The consensus sequence for C. reinhardtii was found to be gc(A/C)A(A/C)(A/C) AUGGC. The AUG context of chloroplast proteins (nuclear coded) and non-chloroplast proteins were compared by a separate compilation, and some distinctive features in AUG context of chloroplast proteins were found.
Collapse
Affiliation(s)
- K Ikeda
- Kansai Environmental Engineering Center Co. Ltd, Osaka, Japan
| | | |
Collapse
|
43
|
Uchijima M, Yoshida A, Nagata T, Koide Y. Optimization of Codon Usage of Plasmid DNA Vaccine Is Required for the Effective MHC Class I-Restricted T Cell Responses Against an Intracellular Bacterium. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In an attempt to study codon usage effects of DNA vaccines on the induction of MHC class I-restricted T cell responses against an intracellular bacterium, Listeria monocytogenes, we designed two plasmid DNA vaccines encoding an H-2Kd-restricted epitope of listeriolysin O (LLO) of L. monocytogenes, LLO 91–99. One DNA vaccine, p91wt, carries the wild-type DNA sequence encoding LLO 91–99, and the other one, p91mam, possesses the altered DNA sequence in which the codon usage was optimized for murine system. Our read-through analyses with LLO 91–99/luciferase fusion genes confirmed that the optimized 91mam DNA sequence showed extremely higher translation efficiency than the wild-type sequence in murine cells. Consistent with this, i.m. injections of p91mam, but not of p91wt, into BALB/c mice were capable of inducing specific CTL- and IFN-γ-producing CD8+ T cells able to confer partial protection against listerial challenge. Taken together, these observations suggest that optimization of codon should be taken into consideration in the construction of DNA vaccines against nonviral pathogens.
Collapse
Affiliation(s)
- Masato Uchijima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsushi Yoshida
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshi Nagata
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukio Koide
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
44
|
Ferrández A, Miñambres B, García B, Olivera ER, Luengo JM, García JL, Díaz E. Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 1998; 273:25974-86. [PMID: 9748275 DOI: 10.1074/jbc.273.40.25974] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The paa cluster of Escherichia coli W involved in the aerobic catabolism of phenylacetic acid (PA) has been cloned and sequenced. It was shown to map at min 31.0 of the chromosome at the right end of the mao region responsible for the transformation of 2-phenylethylamine into PA. The 14 paa genes are organized in three transcription units: paaZ and paaABCDEFGHIJK, encoding catabolic genes; and paaXY, containing the paaX regulatory gene. The paaK gene codes for a phenylacetyl-CoA ligase that catalyzes the activation of PA to phenylacetyl-CoA (PA-CoA). The paaABCDE gene products, which may constitute a multicomponent oxygenase, are involved in PA-CoA hydroxylation. The PaaZ protein appears to catalyze the third enzymatic step, with the paaFGHIJ gene products, which show significant similarity to fatty acid beta-oxidation enzymes, likely involved in further mineralization to Krebs cycle intermediates. Three promoters, Pz, Pa, and Px, driven the expression of genes paaZ, paaABCDEFGHIJK, and paaX, respectively, have been identified. The Pa promoter is negatively controlled by the paaX gene product. As PA-CoA is the true inducer, PaaX becomes the first regulator of an aromatic catabolic pathway that responds to a CoA derivative. The aerobic catabolism of PA in E. coli represents a novel hybrid pathway that could be a widespread way of PA catabolism in bacteria.
Collapse
Affiliation(s)
- A Ferrández
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Nakamura Y, Tabata S. Codon-anticodon assignment and detection of codon usage trends in seven microbial genomes. MICROBIAL & COMPARATIVE GENOMICS 1998; 2:299-312. [PMID: 9689228 DOI: 10.1089/omi.1.1997.2.299] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have assigned codon-anticodon recognition patterns for the whole set of transfer RNAs of Haemophilus influenzae Rd, Methanococcus jannaschii, and Synechocystis sp. PCC6803 using sequence information derived from the complete genome sequence of these organisms and have tabulated them along with those previously reported for Escherichia coli, Mycoplasma genitalium, Mycoplasma pneumoniae, and Saccharomyces cerevisiae. Using the resulting codon-anticodon tables, the bias in codon usage of genes encoding the entire protein and ribosomal protein complement of each of the seven microbial genomes was analyzed. Then, the codon adaptation index (CAIrp) for each protein gene was calculated using the codon usage preference of the ribosomal protein genes of the corresponding organism. Of the seven genomes examined, six showed CAIrp scores that roughly coincided with the expected level of gene expression. The result demonstrates that CAIrp analysis may be useful for prediction of the expression level of unknown genes when all or at least considerable portions of the genome sequence are available.
Collapse
Affiliation(s)
- Y Nakamura
- Kazusa DNA Research Institute, Chiba, Japan
| | | |
Collapse
|
46
|
Burke SA, Lo SL, Krzycki JA. Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine. J Bacteriol 1998; 180:3432-40. [PMID: 9642198 PMCID: PMC107300 DOI: 10.1128/jb.180.13.3432-3440.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 04/06/1998] [Indexed: 02/07/2023] Open
Abstract
Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen.
Collapse
Affiliation(s)
- S A Burke
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
47
|
Da Lage JL, Renard E, Chartois F, Lemeunier F, Cariou ML. Amyrel, a paralogous gene of the amylase gene family in Drosophila melanogaster and the Sophophora subgenus. Proc Natl Acad Sci U S A 1998; 95:6848-53. [PMID: 9618501 PMCID: PMC22658 DOI: 10.1073/pnas.95.12.6848] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe a gene from Drosophila melanogaster related to the alpha-amylase gene Amy. This gene, which exists as a single copy, was named Amyrel. It is strikingly divergent from Amy because the amino acid divergence is 40%. The coding sequence is interrupted by a short intron at position 655, which is unusual in amylase genes. Amyrel has also been cloned in Drosophila ananassae, Drosophila pseudoobscura, and Drosophila subobscura and is likely to be present throughout the Sophophora subgenus, but, to our knowledge, it has not been detected outside. Unexpectedly, there is a strong conservation of 5' and 3' flanking regions between Amyrel genes from different species, which is not the case for Amy and which suggests that selection acts on these regions. In contrast to the Amy genes, Amyrel is transcribed in larvae of D. melanogaster but not in adults. However, the protein has not been detected yet. Amyrel evolves about twice as fast as Amy in the several species studied. We suggest that this gene could result from a duplication of Amy followed by accelerated and selected divergence toward a new adaptation.
Collapse
Affiliation(s)
- J L Da Lage
- Populations, Génétique et Evolution, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette cedex, France.
| | | | | | | | | |
Collapse
|
48
|
Díaz E, Ferrández A, García JL. Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J Bacteriol 1998; 180:2915-23. [PMID: 9603882 PMCID: PMC107259 DOI: 10.1128/jb.180.11.2915-2923.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have identified, cloned, and sequenced the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid (PP) in Escherichia coli K-12. This cluster maps at min 57.5 of the chromosome and is composed of five catabolic genes arranged as a putative operon (hcaA1A2CBD) and two additional genes transcribed in the opposite direction that encode a potential permease (hcaT) and a regulator (hcaR). Sequence comparisons revealed that while hcaA1A2CD genes encode the four subunits of the 3-phenylpropionate dioxygenase, the hcaB gene codes for the corresponding cis-dihydrodiol dehydrogenase. This type of catabolic module is homologous to those encoding class IIB dioxygenases and becomes the first example of such a catabolic cluster in E. coli. The inducible expression of the hca genes requires the presence of the hcaR gene product, which acts as a transcriptional activator and shows significant sequence similarity to members of the LysR family of regulators. Interestingly, the HcaA1A2CD and HcaB enzymes are able to oxidize not only PP to 3-(2,3-dihydroxyphenyl)propionate (DHPP) but also cinnamic acid (CI) to its corresponding 2, 3-dihydroxy derivative. Further catabolism of DHPP requires the mhp-encoded meta fission pathway for the mineralization of 3-hydroxyphenylpropionate (3HPP) (A. Ferrández, J. L. García, and E. Díaz, J. Bacteriol. 179:2573-2581, 1997). Expression in Salmonella typhimurium of the mhp genes alone or in combination with the hca cluster allowed the growth of the recombinant bacteria in 3-hydroxycinnamic acid (3HCI) and CI, respectively. Thus, the convergent mhp- and hca-encoded pathways are also functional in S. typhimurium, and they are responsible for the catabolism of different phenylpropanoid compounds (3HPP, 3HCI, PP, and CI) widely available in nature.
Collapse
Affiliation(s)
- E Díaz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | | | | |
Collapse
|
49
|
Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 1998; 26:1628-35. [PMID: 9512532 PMCID: PMC147464 DOI: 10.1093/nar/26.7.1628] [Citation(s) in RCA: 513] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe a new primer design strategy for PCR amplification of unknown targets that are related to multiply-aligned protein sequences. Each primer consists of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3-4 highly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to template molecules. During later rounds of amplification, the non-degenerate clamp permits stable annealing to product molecules. We demonstrate the practical utility of this hybrid primer method by detection of diverse reverse transcriptase-like genes in a human genome, and by detection of C5DNA methyltransferase homologs in various plant DNAs. In each case, amplified products were sufficiently pure to be cloned without gel fractionation. This COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) strategy has been implemented as a computer program that is accessible over the World Wide Web (http://blocks.fhcrc.org/codehop.html) and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences.
Collapse
Affiliation(s)
- T M Rose
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
50
|
Muñoz R, García E, López R. Evidence for horizontal transfer from Streptococcus to Escherichia coli of the kfiD gene encoding the K5-specific UDP-glucose dehydrogenase. J Mol Evol 1998; 46:432-6. [PMID: 9541537 DOI: 10.1007/pl00006322] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Capsular polysaccharides are important virulence factors both in Gram-positive and Gram-negative bacteria. A similar cluster organization of the genes involved in the synthesis of bacterial exopolysaccharides has been postulated in both cases, suggesting that these clusters evolved by module assembly. Horizontal gene transfer has been postulated to explain the polymorphism found in these cellular polymers. The cap1 K and cap3A genes coding for the pneumococcal type 1 and type 3 UDP-glucose dehydrogenases, respectively, have been compared with other UDP-sugar dehydrogenases. We have observed that the evolutionary distance between Cap1K and Cap3A is approximately equal to that found between Cap1K (or Cap3A) and other UDP-GlcDH of families evolutionarily distant like KfiD, the dehydrogenase from Escherichia coli K5. On the basis of comparisons of G + C content, patterns of synonymous and nonsynonymous substitutions, dinucleotide frequencies, and codon usage bias, we conclude that the kfiD gene has been introduced into E. coli from an exogenous source, probably from a streptococcal species.
Collapse
Affiliation(s)
- R Muñoz
- Departamento de Microbiología Molecular, CSIC, Madrid, Spain
| | | | | |
Collapse
|