1
|
Broniarek I, Niewiadomska D, Sobczak K. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1874. [PMID: 39523485 DOI: 10.1002/wrna.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Repeat expansion disorders (REDs) encompass over 50 inherited neurological disorders and are characterized by the expansion of short tandem nucleotide repeats beyond a specific repeat length. Particularly intriguing among these are multiple fragile X-associated disorders (FXds), which arise from an expansion of CGG repeats in the 5' untranslated region of the FMR1 gene. Despite arising from repeat expansions in the same gene, the clinical manifestations of FXds vary widely, encompassing developmental delays, parkinsonism, dementia, and an increased risk of infertility. FXds also exhibit molecular mechanisms observed in other REDs, that is, gene- and protein-loss-of-function and RNA- and protein-gain-of-function. The heterogeneity of phenotypes and pathomechanisms in FXds results from the different lengths of the CGG tract. As the number of repeats increases, the structures formed by RNA and DNA fragments containing CGG repeats change significantly, contributing to the diversity of FXd phenotypes and mechanisms. In this review, we discuss the role of RNA and DNA structures formed by expanded CGG repeats in driving FXd pathogenesis and how the genetic instability of CGG repeats is mediated by the complex interplay between transcription, DNA replication, and repair. We also discuss therapeutic strategies, including small molecules, antisense oligonucleotides, and CRISPR-Cas systems, that target toxic RNA and DNA involved in the development of FXds.
Collapse
Affiliation(s)
- Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Lee HG, Imaichi S, Kraeutler E, Aguilar R, Lee YW, Sheridan SD, Lee JT. Site-specific R-loops induce CGG repeat contraction and fragile X gene reactivation. Cell 2023; 186:2593-2609.e18. [PMID: 37209683 PMCID: PMC11505655 DOI: 10.1016/j.cell.2023.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/15/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.
Collapse
Affiliation(s)
- Hun-Goo Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Sachiko Imaichi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth Kraeutler
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Rodrigo Aguilar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Yong-Woo Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Steven D Sheridan
- Center for Quantitative Health Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02114, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
4
|
Casas-Delucchi CS, Daza-Martin M, Williams SL, Coster G. The mechanism of replication stalling and recovery within repetitive DNA. Nat Commun 2022; 13:3953. [PMID: 35853874 PMCID: PMC9296464 DOI: 10.1038/s41467-022-31657-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate chromosomal DNA replication is essential to maintain genomic stability. Genetic evidence suggests that certain repetitive sequences impair replication, yet the underlying mechanism is poorly defined. Replication could be directly inhibited by the DNA template or indirectly, for example by DNA-bound proteins. Here, we reconstitute replication of mono-, di- and trinucleotide repeats in vitro using eukaryotic replisomes assembled from purified proteins. We find that structure-prone repeats are sufficient to impair replication. Whilst template unwinding is unaffected, leading strand synthesis is inhibited, leading to fork uncoupling. Synthesis through hairpin-forming repeats is rescued by replisome-intrinsic mechanisms, whereas synthesis of quadruplex-forming repeats requires an extrinsic accessory helicase. DNA-induced fork stalling is mechanistically similar to that induced by leading strand DNA lesions, highlighting structure-prone repeats as an important potential source of replication stress. Thus, we propose that our understanding of the cellular response to replication stress may also be applied to DNA-induced replication stalling.
Collapse
Affiliation(s)
- Corella S Casas-Delucchi
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Manuel Daza-Martin
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Sophie L Williams
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Gideon Coster
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
5
|
Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J, Hong D. The polyG diseases: a new disease entity. Acta Neuropathol Commun 2022; 10:79. [PMID: 35642014 PMCID: PMC9153130 DOI: 10.1186/s40478-022-01383-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Recently, inspired by the similar clinical and pathological features shared with fragile X-associated tremor/ataxia syndrome (FXTAS), abnormal expansion of CGG repeats in the 5' untranslated region has been found in neuronal intranuclear inclusion disease (NIID), oculopharyngeal myopathy with leukoencephalopathy (OPML), and oculopharyngodistal myopathy (OPDMs). Although the upstream open reading frame has not been elucidated in OPML and OPDMs, polyglycine (polyG) translated by expanded CGG repeats is reported to be as a primary pathogenesis in FXTAS and NIID. Collectively, these findings indicate a new disease entity, the polyG diseases. In this review, we state the common clinical manifestations, pathological features, mechanisms, and potential therapies in these diseases, and provide preliminary opinions about future research in polyG diseases.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China. .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China. .,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Nakayama Y, Adachi K, Shioda N, Maeta S, Nanba E, Kugoh H. Establishment of FXS-A9 panel with a single human X chromosome from fragile X syndrome-associated individual. Exp Cell Res 2020; 398:112419. [PMID: 33296661 DOI: 10.1016/j.yexcr.2020.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome (FXS) is the most common inheritable form of intellectual disability. FMR1, the gene responsible for FXS, is located on human chromosome Xq27.3 and contains a stretch of CGG trinucleotide repeats in its 5' untranslated region. FXS is caused by CGG repeats that expand beyond 200, resulting in FMR1 silencing via promoter hypermethylation. The molecular mechanism underlying CGG repeat expansion, a fundamental cause of FXS, remains poorly understood, partly due to a lack of experimental systems. Accumulated evidence indicates that the large chromosomal region flanking a CGG repeat is critical for repeat dynamics. In the present study, we isolated and introduced whole human X chromosomes from healthy, FXS premutation carriers, or FXS patients who carried disease condition-associated CGG repeat lengths, into mouse A9 cells via microcell-mediated chromosome transfer. The CGG repeat length-associated methylation status and human FMR1 expression in these monochromosomal hybrid cells mimicked those in humans. Thus, this set of A9 cells containing CGG repeats from three different origins (FXS-A9 panel) may provide a valuable resource for investigating a series of genetic and epigenetic CGG repeat dynamics during FXS pathogenesis.
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Radioisotope Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kaori Adachi
- Division of Genomic Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Nofirifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shoya Maeta
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Eiji Nanba
- Office for Research Strategy, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
7
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
8
|
Repeat Instability in the Fragile X-Related Disorders: Lessons from a Mouse Model. Brain Sci 2019; 9:brainsci9030052. [PMID: 30832215 PMCID: PMC6468611 DOI: 10.3390/brainsci9030052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.
Collapse
|
9
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Thys RG, Wang YH. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene. J Biol Chem 2015; 290:28953-62. [PMID: 26463209 PMCID: PMC4661408 DOI: 10.1074/jbc.m115.660324] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 01/27/2023] Open
Abstract
DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease.
Collapse
Affiliation(s)
- Ryan Griffin Thys
- From the Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Yuh-Hwa Wang
- From the Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
11
|
Sawaya S, Boocock J, Black MA, Gemmell NJ. Exploring possible DNA structures in real-time polymerase kinetics using Pacific Biosciences sequencer data. BMC Bioinformatics 2015; 16:21. [PMID: 25626999 PMCID: PMC4384361 DOI: 10.1186/s12859-014-0449-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/30/2014] [Indexed: 12/01/2022] Open
Abstract
Background Pausing of DNA polymerase can indicate the presence of a DNA structure that differs from the canonical double-helix. Here we detail a method to investigate how polymerase pausing in the Pacific Biosciences sequencer reads can be related to DNA sequences. The Pacific Biosciences sequencer uses optics to view a polymerase and its interaction with a single DNA molecule in real-time, offering a unique way to detect potential alternative DNA structures. Results We have developed a new way to examine polymerase kinetics data and relate it to the DNA sequence by using a wavelet transform of read information from the sequencer. We use this method to examine how polymerase kinetics are related to nucleotide base composition. We then examine tandem repeat sequences known for their ability to form different DNA structures: (CGG)n and (CG)n repeats which can, respectively, form G-quadruplex DNA and Z-DNA. We find pausing around the (CGG)n repeat that may indicate the presence of G-quadruplexes in some of the sequencer reads. The (CG)n repeat does not appear to cause polymerase pausing, but its kinetics signature nevertheless suggests the possibility that alternative nucleotide conformations may sometimes be present. Conclusion We discuss the implications of using our method to discover DNA sequences capable of forming alternative structures. The analyses presented here can be reproduced on any Pacific Biosciences kinetics data for any DNA pattern of interest using an R package that we have made publicly available.
Collapse
Affiliation(s)
- Sterling Sawaya
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA. .,Department of Anatomy, and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand.
| | - James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Neil J Gemmell
- Department of Anatomy, and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
12
|
Abstract
DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.
Collapse
Affiliation(s)
- Ravi R Iyer
- Teva Branded Pharmaceutical Products R&D, Inc., West Chester, Pennsylvania 19380;
| | | | | | | |
Collapse
|
13
|
Rangasamy S, D’Mello SR, Narayanan V. Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics 2013; 10:742-56. [PMID: 24104594 PMCID: PMC3805864 DOI: 10.1007/s13311-013-0227-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epigenetic marks are modifications of DNA and histones. They are considered to be permanent within a single cell during development, and are heritable across cell division. Programming of neurons through epigenetic mechanisms is believed to be critical in neural development. Disruption or alteration in this process causes an array of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Recent studies have provided evidence for an altered epigenetic landscape in ASDs and demonstrated the central role of epigenetic mechanisms in their pathogenesis. Many of the genes linked to the ASDs encode proteins that are involved in transcriptional regulation and chromatin remodeling. In this review we highlight selected neurodevelopmental disorders in which epigenetic dysregulation plays an important role. These include Rett syndrome, fragile X syndrome, Prader-Willi syndrome, Angelman syndrome, and Kabuki syndrome. For each of these disorders, we discuss how advances in our understanding of epigenetic mechanisms may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Sampathkumar Rangasamy
- />Developmental Neurogenetics Laboratory, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | | | - Vinodh Narayanan
- />Developmental Neurogenetics Laboratory, Barrow Neurological Institute, Phoenix, AZ 85013 USA
- />Developmental Neurogenetic Laboratory, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| |
Collapse
|
14
|
Entezam A, Lokanga AR, Le W, Hoffman G, Usdin K. Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model. Hum Mutat 2010; 31:611-6. [PMID: 20213777 DOI: 10.1002/humu.21237] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tandem repeat expansion is responsible for the Repeat Expansion Diseases, a group of human genetic disorders that includes Fragile X syndrome (FXS). FXS results from expansion of a premutation (PM) allele having 55-200 CGG.CCG-repeats in the 5' UTR of the FMR1 gene. The mechanism of expansion is unknown. We have treated FX PM mice with potassium bromate (KBrO(3)), a potent DNA oxidizing agent. We then monitored the germline and somatic expansion frequency in the progeny of these animals. We show here that KBrO(3) increased both the level of 8-oxoG in the oocytes of treated animals and the germline expansion frequency. Our data thus suggest that oxidative damage may be a factor that could affect expansion risk in humans.
Collapse
Affiliation(s)
- Ali Entezam
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Ludwig AL, Raske C, Tassone F, Garcia-Arocena D, Hershey JW, Hagerman PJ. Translation of the FMR1 mRNA is not influenced by AGG interruptions. Nucleic Acids Res 2009; 37:6896-904. [PMID: 19752155 PMCID: PMC2777427 DOI: 10.1093/nar/gkp713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The fragile X mental retardation 1 (FMR1) gene contains a CGG-repeat element within its 5′ untranslated region (5′UTR) which, for alleles with more than ∼40 repeats, increasingly affects both transcription (up-regulation) and translation (inhibition) of the repeat-containing RNA with increasing CGG-repeat length. Translational inhibition is thought to be due to impaired ribosomal scanning through the CGG-repeat region, which is postulated to form highly stable secondary/tertiary structure. One striking difference between alleles in the premutation range (55–200 CGG repeats) and those in the normal range (<∼40 repeats) is the reduced number/absence of ‘expansion stabilizing’ AGG interruptions in the larger alleles. Such interruptions, which generally occur every 9–11 repeats in normal alleles, are thought to disrupt the extended CGG-repeat hairpin structure, thus facilitating translational initiation. To test this hypothesis, we have measured the translational efficiency of CGG-repeat mRNAs with 0–2 AGG interruptions, both in vitro (rabbit reticulocyte lysates) and in cell culture (HEK-293 cells). We demonstrate that the AGG interruptions have no detectable influence on translational efficiency in either a cell-free system or cell culture, indicating that any AGG-repeat-induced alterations in secondary/tertiary structure, if present, do not involve the rate-limiting step(s) in translational initiation.
Collapse
Affiliation(s)
- Anna L Ludwig
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, 4303 Tupper Hall, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The fragile X syndrome results from expansions as well as deletions of the repeating CGG.CCG DNA sequence in the 5'-untranslated region of the FMR1 gene on the X chromosome. The relative frequency of disease cases promoted by these two types of mutations cannot be ascertained at present because the routine clinical assay monitors only expansions. At least 30 articles have been reviewed that document the involvement of deletions of part or all of the CGG.CCG repeats along with varying extents of DNA flanking regions as well as very small mutations including single base pair changes. Studies of deletion mutants of CGG.CCG tracts in Escherichia coli plasmids revealed a similar spectrum of mutagenic products. The triplet repeat tract in a non-B conformation is the mutagen, not the sequence per se in the right-handed B helix. Hence, molecular investigations in a simple model organism may generate useful initial information toward therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA.
| |
Collapse
|
17
|
McMurray CT. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair (Amst) 2008; 7:1121-34. [PMID: 18472310 DOI: 10.1016/j.dnarep.2008.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integrity. In this review, we consider two cases in which active MMR leads to mutation or to cell death. There may be similar mechanisms by which uncoupling of normal MMR recognition from downstream repair allows triplet expansions underlying human neurodegenerative disease, or cell death in response to chemical lesion.
Collapse
Affiliation(s)
- Cynthia T McMurray
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Abstract
Unstable repeats are associated with various types of cancer and have been implicated in more than 40 neurodegenerative disorders. Trinucleotide repeats are located in non-coding and coding regions of the genome. Studies of bacteria, yeast, mice and man have helped to unravel some features of the mechanism of trinucleotide expansion. Looped DNA structures comprising trinucleotide repeats are processed during replication and/or repair to generate deletions or expansions. Most in vivo data are consistent with a model in which expansion and deletion occur by different mechanisms. In mammals, microsatellite instability is complex and appears to be influenced by genetic, epigenetic and developmental factors.
Collapse
|
19
|
Pollard LM, Bourn RL, Bidichandani SI. Repair of DNA double-strand breaks within the (GAA*TTC)n sequence results in frequent deletion of the triplet-repeat sequence. Nucleic Acids Res 2008; 36:489-500. [PMID: 18045804 PMCID: PMC2241870 DOI: 10.1093/nar/gkm1066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia is caused by an expanded (GAA*TTC)n sequence, which is unstable during intergenerational transmission and in most patient tissues, where it frequently undergoes large deletions. We investigated the effect of DSB repair on instability of the (GAA*TTC)n sequence. Linear plasmids were transformed into Escherichia coli so that each colony represented an individual DSB repair event. Repair of a DSB within the repeat resulted in a dramatic increase in deletions compared with circular templates, but DSB repair outside the repeat tract did not affect instability. Repair-mediated deletions were independent of the orientation and length of the repeat, the location of the break within the repeat or the RecA status of the strain. Repair at the center of the repeat resulted in deletion of approximately half of the repeat tract, and repair at an off-center location produced deletions that were equivalent in length to the shorter of the two repeats flanking the DSB. This is consistent with a single-strand annealing mechanism of DSB repair, and implicates erroneous DSB repair as a mechanism for genetic instability of the (GAA*TTC)n sequence. Our data contrast significantly with DSB repair within (CTG*CAG)n repeats, indicating that repair-mediated instability is dependent on the sequence of the triplet repeat.
Collapse
Affiliation(s)
- Laura M. Pollard
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecka L. Bourn
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Entezam A, Usdin K. ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice. Nucleic Acids Res 2007; 36:1050-6. [PMID: 18160412 PMCID: PMC2241920 DOI: 10.1093/nar/gkm1136] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X mental retardation syndrome is a repeat expansion disease caused by expansion of a CGG.CCG-repeat tract in the 5' UTR of the FMR1 gene. In humans, small expansions occur more frequently on paternal transmission while large expansions are exclusively maternal in origin. It has been suggested that expansion is the result of aberrant DNA replication, repair or recombination. To distinguish amongst these possibilities we crossed mice containing 120 CGG.CCG-repeats in the 5' UTR of the mouse Fmr1 gene to mice with mutations in ATR, a protein important in the cellular response to stalled replication forks and bulky DNA lesions. We show here that ATR heterozygosity results in increased expansion rates of maternally, but not paternally, transmitted alleles. In addition, age-related somatic expansions occurred in mice of both genders that were not seen in ATR wild-type animals. Some ATR-sensitive expansion occurs in postmitotic cells including haploid gametes suggesting that aberrant DNA repair is responsible. Our data suggest that two mechanisms of repeat expansion exist that may explain the small and large expansions seen in humans. In addition, our data provide an explanation for the maternal bias of large expansions in humans and the lower incidence of these expansions in mice.
Collapse
Affiliation(s)
- Ali Entezam
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
21
|
Kosmider B, Wells RD. Fragile X repeats are potent inducers of complex, multiple site rearrangements in flanking sequences in Escherichia coli. DNA Repair (Amst) 2007; 6:1850-63. [PMID: 17851139 DOI: 10.1016/j.dnarep.2007.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 06/27/2007] [Accepted: 07/12/2007] [Indexed: 01/02/2023]
Abstract
(CGG.CCG)n repeats induce the formation of complex, multiple site rearrangements and/or gross deletions in flanking DNA sequences in Escherichia coli plasmids. DNA sequence analyses of mutant clones revealed the influence of (a) the length (24, 44 or 73 repeats), (b) the orientation of the CGG.CCG region relative to the unidirectional origin, and (c) its transcription status. Complex rearrangements had occurred in the mutant clones since some products contained deletions, inversions and insertions and some products had only gross deletions. Furthermore, the CGG.CCG repeats repeatedly induced, up to 22 times, the formation of identical (to the bp) mutagenic products indicating the powerful nature of the complex processes involved. Also, the mutations were bidirectional from the CGG.CCG tract. The healed junctions had CG-rich microhomologies of 1-6bp, CG-rich regions and putative cruciforms and slipped structures. Hence, the fragile X syndrome mutagenic spectrum has been found, at least in part, in our model system.
Collapse
Affiliation(s)
- Beata Kosmider
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
22
|
Pollard LM, Chutake YK, Rindler PM, Bidichandani SI. Deficiency of RecA-dependent RecFOR and RecBCD pathways causes increased instability of the (GAA*TTC)n sequence when GAA is the lagging strand template. Nucleic Acids Res 2007; 35:6884-94. [PMID: 17932052 PMCID: PMC2175318 DOI: 10.1093/nar/gkm810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 11/13/2022] Open
Abstract
The most common mutation in Friedreich ataxia is an expanded (GAA*TTC)n sequence, which is highly unstable in human somatic cells and in the germline. The mechanisms responsible for this genetic instability are poorly understood. We previously showed that cloned (GAA*TTC)n sequences replicated in Escherichia coli are more unstable when GAA is the lagging strand template, suggesting erroneous lagging strand synthesis as the likely mechanism for the genetic instability. Here we show that the increase in genetic instability when GAA serves as the lagging strand template is seen in RecA-deficient but not RecA-proficient strains. We also found the same orientation-dependent increase in instability in a RecA+ temperature-sensitive E. coli SSB mutant strain (ssb-1). Since stalling of replication is known to occur within the (GAA*TTC)n sequence when GAA is the lagging strand template, we hypothesized that genetic stability of the (GAA*TTC)n sequence may require efficient RecA-dependent recombinational restart of stalled replication forks. Consistent with this hypothesis, we noted significantly increased instability when GAA was the lagging strand template in strains that were deficient in components of the RecFOR and RecBCD pathways. Our data implicate defective processing of stalled replication forks as a mechanism for genetic instability of the (GAA*TTC)n sequence.
Collapse
Affiliation(s)
- Laura M. Pollard
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yogesh K. Chutake
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul M. Rindler
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Gray SJ, Gerhardt J, Doerfler W, Small LE, Fanning E. An origin of DNA replication in the promoter region of the human fragile X mental retardation (FMR1) gene. Mol Cell Biol 2006; 27:426-37. [PMID: 17101793 PMCID: PMC1800797 DOI: 10.1128/mcb.01382-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.
Collapse
Affiliation(s)
- Steven J Gray
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, , Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | |
Collapse
|
24
|
Kosmider B, Wells RD. Double-strand breaks in the myotonic dystrophy type 1 and the fragile X syndrome triplet repeat sequences induce different types of mutations in DNA flanking sequences in Escherichia coli. Nucleic Acids Res 2006; 34:5369-82. [PMID: 17012280 PMCID: PMC1636463 DOI: 10.1093/nar/gkl612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The putative role of double-strand breaks (DSBs) created in vitro by restriction enzyme cleavage in or near CGG*CCG or CTG*CAG repeat tracts on their genetic instabilities, both within the repeats and in their flanking sequences, was investigated in an Escherichia coli plasmid system. DSBs at TRS junctions with the vector generated a large number of mutagenic events in flanking sequences whereas DSBs within the repeats elicited no similar products. A substantial enhancement in the number of mutants was caused by transcription of the repeats and by the absence of recombination functions (recA-, recBC-). Surprisingly, DNA sequence analyses on mutant clones revealed the presence of only single deletions of 0.4-1.6 kb including the TRS and the flanking sequence from plasmids originally containing (CGG*CCG)43 but single, double and multiple deletions as well as insertions were found for plasmids originally containing (CTG*CAG)n (where n = 43 or 70). Non-B DNA structures (slipped structures with loops, cruciforms, triplexes and tetraplexes) as well as microhomologies are postulated to participate in the recombination and/or repair processes.
Collapse
Affiliation(s)
| | - Robert D. Wells
- To whom correspondence should be addressed. Tel: +1 713 677 7651; Fax: +1 713 677 7689;
| |
Collapse
|
25
|
Nichol Edamura K, Leonard MR, Pearson CE. Role of replication and CpG methylation in fragile X syndrome CGG deletions in primate cells. Am J Hum Genet 2005; 76:302-11. [PMID: 15625623 PMCID: PMC1196375 DOI: 10.1086/427928] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 12/08/2004] [Indexed: 01/22/2023] Open
Abstract
Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation.
Collapse
Affiliation(s)
- Kerrie Nichol Edamura
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, and Program of Molecular and Medical Genetics, University of Toronto, Toronto
| | - Michelle R. Leonard
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, and Program of Molecular and Medical Genetics, University of Toronto, Toronto
| | - Christopher E. Pearson
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, and Program of Molecular and Medical Genetics, University of Toronto, Toronto
| |
Collapse
|
26
|
Pollard LM, Sharma R, Gómez M, Shah S, Delatycki MB, Pianese L, Monticelli A, Keats BJB, Bidichandani SI. Replication-mediated instability of the GAA triplet repeat mutation in Friedreich ataxia. Nucleic Acids Res 2004; 32:5962-71. [PMID: 15534367 PMCID: PMC528813 DOI: 10.1093/nar/gkh933] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/22/2004] [Accepted: 10/22/2004] [Indexed: 11/14/2022] Open
Abstract
Friedreich ataxia is caused by the expansion of a polymorphic and unstable GAA triplet repeat in the FRDA gene, but the mechanisms for its instability are poorly understood. Replication of (GAA*TTC)n sequences (9-105 triplets) in plasmids propagated in Escherichia coli displayed length- and orientation-dependent instability. There were small length variations upon replication in both orientations, but large contractions were frequently observed when GAA was the lagging strand template. DNA replication was also significantly slower in this orientation. To evaluate the physiological relevance of our findings, we analyzed peripheral leukocytes from human subjects carrying repeats of similar length (8-107 triplets). Analysis of 9400 somatic FRDA molecules using small-pool PCR revealed a similar mutational spectrum, including large contractions. The threshold length for the initiation of somatic instability in vivo was between 40 and 44 triplets, corresponding to the length of a eukaryotic Okazaki fragment. Consistent with the stabilization of premutation alleles during germline transmission, we also found that instability of somatic cells in vivo and repeats propagated in E.coli were abrogated by (GAGGAA)n hexanucleotide interruptions. Our data demonstrate that the GAA triplet repeat mutation in Friedreich ataxia is destabilized, frequently undergoing large contractions, during DNA replication.
Collapse
Affiliation(s)
- Laura M Pollard
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mochmann LH, Wells RD. Transcription influences the types of deletion and expansion products in an orientation-dependent manner from GAC*GTC repeats. Nucleic Acids Res 2004; 32:4469-79. [PMID: 15317871 PMCID: PMC516059 DOI: 10.1093/nar/gkh787] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genetic instability of (GAC*GTC)n (where n = 6-74) was investigated in an Escherichia coli-based plasmid system. Prior work implicated the instability of a (GAC*GTC)5 tract in the cartilage oligomeric matrix protein (COMP) gene to the 4, 6 or 7mers in the etiology of pseudoachondroplasia and multiple epiphyseal dysplasia. The effects of triplet repeat length and orientation were studied after multiple replication cycles in vivo. A transcribed plasmid containing (GAC*GTC)49 repeats led to large deletions (>3 repeats) after propagation in E.coli; however, if transcription was silenced by the LacI(Q) repressor, small expansions and deletions (<3 repeats) predominated the mutation spectra. In contrast, propagation of similar length but opposing orientation (GTC*GAC)53 containing plasmid led to small instabilities that were unaffected by the repression of transcription. Thus, by inhibiting transcription, the genetic instability of (GAC*GTC)49 repeats did not significantly differ from the opposing orientation, (GTC*GAC)53. We postulate that small instabilities of GAC*GTC repeats are achieved through replicative slippage, whereas large deletion events are found when GAC*GTC repeats are transcribed. Herein, we report the first genetic study on GAC*GTC repeat instability describing two types of mutational patterns that can be partitioned by transcription modulation. Along with prior biophysical data, these results lay the initial groundwork for understanding the genetic processes responsible for triplet repeat mutations in the COMP gene.
Collapse
Affiliation(s)
- Liliana H Mochmann
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA
| | | |
Collapse
|
28
|
Liu Y, Bambara RA. Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion. J Biol Chem 2003; 278:13728-39. [PMID: 12554738 DOI: 10.1074/jbc.m212061200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Flap endonuclease 1 (FEN1), involved in the joining of Okazaki fragments, has been proposed to restrain DNA repeat sequence expansion, a process associated with aging and disease. Here we analyze properties of human FEN1 having mutations at two conserved glycines (G66S and G242D) causing defects in nuclease activity. Introduction of these mutants into yeast led to sequence expansions. Reconstituting triplet repeat expansion in vitro, we previously found that DNA ligase I promotes expansion, but FEN1 prevents the ligation that forms expanded products. Here we show that among the intermediates that could generate sequence expansion, a bubble is necessary for ligation to produce the expansion product. Severe exonuclease defects in the mutant FEN1 suggested that the inability to degrade bubbles exonucleolytically leads to expansion. However, even wild type FEN1 exonuclease cannot compete with DNA ligase I to degrade a bubble structure before it can be ligated. Instead, we propose that FEN1 suppresses sequence expansion by degrading flaps that equilibrate with bubbles, thereby reducing bubble concentration. In this way FEN1 employs endonuclease rather than exonuclease to prevent expansions. A model is presented describing the roles of DNA structure, DNA ligase I, and FEN1 in sequence expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
29
|
Chandler SP, Kansagra P, Hirst MC. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect. BMC Mol Biol 2003; 4:3. [PMID: 12659659 PMCID: PMC153536 DOI: 10.1186/1471-2199-4-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 03/21/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Expansion of an unstable (CGG)n repeat to over 200 triplets within the promoter region of the human FMR1 gene leads to extensive local methylation and transcription silencing, resulting in the loss of FMRP protein and the development of the clinical features of fragile X syndrome. The causative link between (CGG)n expansion, methylation and gene silencing is unknown, although gene silencing is associated with extensive changes to local chromatin architecture. RESULTS In order to determine the direct effects of increased repeat length on gene transcription in a chromatin context, we have examined the influence of FMR1 (CGG)n repeats upon transcription from the HSV thymidine kinase promoter in the Xenopus laevis oocyte. We observe a reduction in mRNA production directly associated with increasing repeat length, with a 90% reduction in mRNA production from arrays over 100 repeats in length. Using a kinetic approach, we show that this transcriptional repression is concomitant with chromatin maturation and, using in vitro transcription, we show that chromatin formation is a fundamental part of the repressive pathway mediated by (CGG)n repeats. Using Trichostatin A, a histone deacetylase inhibitor, we show reactivation of the silenced promoter. CONCLUSIONS Thus, isolated fragile X associated (CGG)n repeat arrays can exert a modifying and transcriptionally repressive influence over adjacent promoters and this repressive phenomenon is, in part, mediated by histone deacetylation.
Collapse
Affiliation(s)
- Simon P Chandler
- Sangamo BioSciences, 501 Canal Blvd. Ste A100, Point Richmond Tech Center II, Richmond, CA 94804, USA
- formerly at Lab. Epigenetics & Chromatin, Institute of Biomolecular & Biomedical Sciences, St. Michaels Bldg, University of Portsmouth, Southsea, Hampshire, PO1 2DT, UK
| | - Pushpa Kansagra
- Genome Instability Group, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Mark C Hirst
- Genome Instability Group, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
30
|
Abstract
Fragile X syndrome is one of the most common forms of inherited mental retardation. In most cases the disease is caused by the methylation-induced transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene that occurs as a result of the expansion of a CGG repeat in the gene's 5'UTR and leads to the loss of protein product fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein that associates with translating polyribosomes as part of a large messenger ribonucleoprotein (mRNP) and modulates the translation of its RNA ligands. Pathological studies from the brains of patients and from Fmr1 knockout mice show abnormal dendritic spines implicating FMRP in synapse formation and function. Evidence from both in vitro and in vivo neuronal studies indicates that FMRP is located at the synapse and the loss of FMRP alters synaptic plasticity. As synaptic plasticity has been implicated in learning and memory, analysis of synapse abnormalities in patients and Fmr1 knockout mice should prove useful in studying the pathogenesis of fragile X syndrome and understanding learning and cognition in general. If an appreciable portion of the total variance (in IQ) is due to sex linked genes, it is of more importance that a boy should have a clever mother than a clever father. Hogben 1932 (quoted in Lehrke 1974)
Collapse
Affiliation(s)
- William T O'Donnell
- Howard Hughes Medical Institute and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
31
|
Cheung I, Schertzer M, Rose A, Lansdorp PM. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat Genet 2002; 31:405-9. [PMID: 12101400 DOI: 10.1038/ng928] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic integrity is crucial to normal cell function, and mutations in genes required for DNA replication and repair underlie various forms of genetic instability and disease, including cancer. One structural feature of intact genomes is runs of homopolymeric dC/dG. Here we describe an unusual mutator phenotype in Caenorhabditis elegans characterized by deletions that start around the 3' end of polyguanine tracts and terminate at variable positions 5' from such tracts. We observed deletions throughout genomic DNA in about half of polyguanine tracts examined, especially those containing 22 or more consecutive guanine nucleotides. The mutator phenotype results from disruption of the predicted gene F33H2.1, which encodes a protein with characteristics of a DEAH helicase and which we have named dog-1 (for deletions of guanine-rich DNA). Nematodes mutated in dog-1 showed germline as well as somatic deletions in genes containing polyguanine tracts, such as vab-1. We propose that DOG-1 is required to resolve the secondary structures of guanine-rich DNA that occasionally form during lagging-strand DNA synthesis.
Collapse
Affiliation(s)
- Iris Cheung
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
32
|
Nichol K, Pearson CE. CpG methylation modifies the genetic stability of cloned repeat sequences. Genome Res 2002; 12:1246-56. [PMID: 12176932 PMCID: PMC186631 DOI: 10.1101/gr.74502] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The genetic stability of tandemly repeated DNAs is affected by repeat sequence, tract length, tract purity, and replication direction. Alterations in DNA methylation status are thought to influence many processes of mutagenesis. By use of bacterial and primate cell systems, we have determined the effect of CpG methylation on the genetic stability of cloned di-, tri-, penta- and minisatellite repeated DNA sequences. Depending on the repeat sequence, methylation can significantly enhance or reduce its genetic stability. This effect was evident when repeat tracts were replicated from either direction. Unexpectedly, methylation of adjacent sequences altered the stability of contiguous repeat sequences void of methylatable sites. Of the seven repeat sequences investigated, methylation stabilized five, destabilized one, and had no effect on another. Thus, although methylation generally stabilized repeat tracts, its influence depended on the sequence of the repeat. The current results lend support to the notion that the biological consequences of CpG methylation may be affected through local alterations of DNA structure as well as through direct protein-DNA interactions. In vivo CpG methylation in bacteria may have technical applications for the isolation and stable propagation of DNA sequences that have been recalcitrant to isolation and/or analyses because of their extreme instability.
Collapse
Affiliation(s)
- Kerrie Nichol
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
33
|
Hashem VI, Klysik EA, Rosche WA, Sinden RR. Instability of repeated DNAs during transformation in Escherichia coli. Mutat Res 2002; 502:39-46. [PMID: 11996970 DOI: 10.1016/s0027-5107(02)00027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Escherichia coli has provided an important model system for understanding the molecular basis for genetic instabilities associated with repeated DNA. Changes in triplet repeat length during growth following transformation in E. coli have been used as a measure of repeat instability. However, very little is known about the molecular and biological changes that may occur on transformation. Since only a small proportion of viable cells become competent, uncertainty exists regarding the nature of these transformed cells. To establish whether the process of transformation can be inherently mutagenic for certain DNA sequences, we used a genetic assay in E. coli to compare the frequency of genetic instabilities associated with transformation with those occurring in plasmid maintained in E. coli. Our results indicate that, for certain DNA sequences, bacterial transformation can be highly mutagenic. The deletion frequency of a 106 bp perfect inverted repeat is increased by as much as a factor of 2 x 10(5) following transformation. The high frequency of instability was not observed when cells stably harboring plasmid were rendered competent. Thus, the process of transformation was required to observe the instability. Instabilities of (CAG).(CTG) repeats are also dramatically elevated upon transformation. The magnitude of the instability is dependent on the nature and length of the repeat. Differences in the methylation status of plasmid used for transformation and the methylation and restriction/modification systems present in the bacterial strain used must also be considered in repeat instability measurements. Moreover, different E. coli genetic backgrounds show different levels of instability during transformation.
Collapse
Affiliation(s)
- Vera I Hashem
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030-3303, USA
| | | | | | | |
Collapse
|
34
|
Kovtun IV, Goellner G, McMurray CT. Structural features of trinucleotide repeats associated with DNA expansion. Biochem Cell Biol 2001. [DOI: 10.1139/o01-101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of DNA expansion is not well understood. Recent evidence from genetic, in vivo, and in vitro studies has suggested a link between the formation of alternative DNA secondary structures by trinucleotide repeat tracts and their propensity to undergo expansion. This review will focus on structural features and the mechanism of expansion relevant to human disease.Key words: expansion, hairpin, trinucleotide repeat, polymerase slippage, recombination, repair.
Collapse
|
35
|
Rolfsmeier ML, Dixon MJ, Pessoa-Brandão L, Pelletier R, Miret JJ, Lahue RS. Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae. Genetics 2001; 157:1569-79. [PMID: 11290713 PMCID: PMC1461582 DOI: 10.1093/genetics/157.4.1569] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming ability is thought to promote instability by inhibiting DNA repair. To understand these cis-elements further, TNR expansions and contractions were monitored by yeast genetic assays. A threshold of approximately 15--17 repeats was observed for CTG expansions and contractions, indicating that thresholds function in organisms besides humans. Mutants lacking the flap endonuclease Rad27p showed little change in the expansion threshold, suggesting that this element is not altered by the presence or absence of flap processing. CNG or GNC sequences yielded frequent mutations, whereas A-T rich sequences were substantially more stable. This sequence analysis further supports a hairpin-mediated mechanism of TNR instability. Expansions and contractions occurred at comparable rates for CTG tract lengths between 15 and 25 repeats, indicating that expansions can comprise a significant fraction of mutations in yeast. These results indicate that several unique cis-elements of human TNR instability are functional in yeast.
Collapse
Affiliation(s)
- M L Rolfsmeier
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bowater RP, Wells RD. The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:159-202. [PMID: 11051764 DOI: 10.1016/s0079-6603(00)66029-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expansions of specific DNA triplet repeats are the cause of an increasing number of hereditary neurological disorders in humans. In some diseases, such as Huntington's and several spinocerebellar ataxias, the repetitive DNA sequences are translated into long tracts of the same amino acid (usually glutamine), which alters interactions with cellular constituents and leads to the development of disease. For other disorders, including common genetic disorders such as myotonic dystrophy and fragile X syndrome, the DNA repeat is located in noncoding regions of transcribed sequences and disease is probably caused by altered gene expression. In studies in lower organisms, mammalian cells, and transgenic mice, high frequencies of length changes (increases and decreases) occur in long DNA triplet repeats. These observations are similar to other types of repetitive DNA sequences, which also undergo frequent length changes at genomic loci. A variety of processes acting on DNA influence the genetic stability of DNA triplet repeats, including replication, recombination, repair, and transcription. It is not yet known how these different multienzyme systems interact to produce the genetic mutation of expanded repeats. In vitro studies have identified that DNA triplet repeats can adopt several unusual DNA structures, including hairpins, triplexes, quadruplexes, slipped structures, and highly flexible and writhed helices. The formation of stable unusual structures within the cell is likely to disturb DNA metabolism and be a critical intermediate in the molecular mechanism(s) leading to genetic instabilities of DNA repeats and, hence, to disease pathogenesis.
Collapse
Affiliation(s)
- R P Bowater
- Molecular Biology Sector, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
37
|
Pluciennik A, Iyer RR, Parniewski P, Wells RD. Tandem duplication. A novel type of triplet repeat instability. J Biol Chem 2000; 275:28386-97. [PMID: 10877999 DOI: 10.1074/jbc.m000154200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Triplet repeat sequence (TRS) inserts containing (CTG.CAG)(n) (17-175 units in length) were tandemly duplicated when propagated in plasmids in Escherichia coli. The products of this novel type of TRS genetic instability are tracts of as many as 34 multiple units, which contain the entire TRS as well as 129 base pairs of nonrepetitive flanking sequence. The duplication process required the presence of two or more TRS-containing units. Close proximity (170 base pairs) of the TRS to the R6K gamma origin of replication of the pUTminiTn5Cm-derived constructs stimulated the tandem duplication process. These events are proposed to occur due to secondary structure formation, stalling of DNA synthesis, and slippage-mediated misalignment of the complementary strands relative to each other during DNA replication. This mechanism may account for the TRS-associated duplications in protein kinase and metalloprotease genes in neuroblastomas and melanomas, as well as the massive repeat expansions in type II triplet repeat neurological diseases.
Collapse
Affiliation(s)
- A Pluciennik
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University, Texas Medical Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
38
|
Burman RW, Anoe KS, Popovich BW. Fragile X full mutations are more similar in siblings than in unrelated patients: further evidence for a familial factor in CGG repeat dynamics. Genet Med 2000; 2:242-8. [PMID: 11252709 DOI: 10.1097/00125817-200007000-00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We sought to compare patterns of full mutation repeat-length variability in the peripheral blood DNA of patients with fragile X syndrome to determine whether siblings possess mutation patterns more similar than those of unrelated patients. METHODS Mutation patterns were visualized by Southern blot analysis and captured digitally with a phosphor imager. Novel comparison strategies based on overlapping profile plots and calculation of weighted mean CGG repeat values were used to assess mutation pattern similarity. RESULTS Within the population that we analyzed of 56 patients with full mutation, mutation patterns were found to be more similar in siblings than in unrelated patients. CONCLUSION These results indicate that repeat-length variability may be generated in a nonrandom manner and that familial factors influence this process.
Collapse
Affiliation(s)
- R W Burman
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
39
|
Genç B, Müller-Hartmann H, Zeschnigk M, Deissler H, Schmitz B, Majewski F, von Gontard A, Doerfler W. Methylation mosaicism of 5'-(CGG)(n)-3' repeats in fragile X, premutation and normal individuals. Nucleic Acids Res 2000; 28:2141-52. [PMID: 10773084 PMCID: PMC105369 DOI: 10.1093/nar/28.10.2141] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X syndrome (FRAXA) is characterized at the molecular level by an expansion of a naturally occurring 5'-(CGG)(n)-3' repeat in the promoter and 5'-untranslated region (5'-UTR) of the fragile X mental retardation (FMR1) gene on human chromosome Xq27.3. When expanded, this region is usually hypermethylated. Inactivation of the FMR1 promoter and absence of the FMR1 protein are the likely cause of the syndrome. By using the bisulfite protocol of the genomic sequencing method, we have determined the methylation patterns in this region on single chromosomes of healthy individuals and of selected premutation carriers and FRAXA patients. In control experiments with unmethylated or M- Sss I-premethylated DNAs, this protocol has been ascertained to reliably detect all cytidines or 5-methylcytidines as unmethylated or methylated nucleotides, respectively. Analyses of the DNA from FRAXA patients reveal considerable variability in the lengths of the 5'-(CGG)(n)-3' repeats and in the levels of methylation in the repeat and the 5'-UTR. In one patient (OEl) with high repeat length hetero-geneity ( n = 15 to >200), shorter repeats (n = 20-80) were methylated or unmethylated, longer repeats ( n = 100-150) were often completely methylated, but one repeat with n = 160 proved to be completely unmethylated. This type of methylation mosaicism was observed in several FRAXA patients. In healthy females, methylated 5'-CG-3' sequences were found in some repeats and 5'-UTRs, as expected for the sequences from one of the X chromosomes. The natural FMR1 promoter is methylation sensitive, as demonstrated by the loss of activity in transfection experiments using the unmethylated or M- Sss I-premethylated FMR1 promoter fused to the luciferase gene as an activity indicator.
Collapse
Affiliation(s)
- B Genç
- Institute of Genetics, University of Cologne, D-50931 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Iyer RR, Pluciennik A, Rosche WA, Sinden RR, Wells RD. DNA polymerase III proofreading mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli. J Biol Chem 2000; 275:2174-84. [PMID: 10636923 DOI: 10.1074/jbc.275.3.2174] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The influence of mutations in the 3' to 5' exonucleolytic proofreading epsilon-subunit of Escherichia coli DNA polymerase III on the genetic instabilities of the CGG.CCG and the CTG.CAG repeats that cause human hereditary neurological diseases was investigated. The dnaQ49(ts) and the mutD5 mutations destabilize the CGG.CCG repeats. The distributions of the deletion products indicate that slipped structures containing a small number of repeats in the loop mediate the deletion process. The CTG.CAG repeats were destabilized by the dnaQ49(ts) mutation by a process mediated by long hairpin loop structures (>/=5 repeats). The mutD5 mutator strain stabilized the (CTG.CAG)(175) tract, which contained two interruptions. Since the mutD5 mutator strain has a saturated mismatch repair system, the stabilization is probably an indirect effect of the nonfunctional mismatch repair system in these strains. Shorter uninterrupted tracts expand readily in the mutD5 strain, presumably due to the greater stability of long CTG.CAG tracts (>100 repeats) in this strain. When parallel studies were conducted in minimal medium, where the mutD5 strain is defective in exonucleolytic proofreading but has a functional MMR system, both CTG.CAG and CGG.CCG repeats were destabilized, showing that the proofreading activity is essential for maintaining the integrity of TRS tracts. Thus, we conclude that the expansion and deletion of triplet repeats are enhanced by mutations that reduce the fidelity of replication.
Collapse
Affiliation(s)
- R R Iyer
- Institute of Biosciences and Technology, Texas A & M University, Department of Biochemistry and Biophysics, Texas Medical Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
41
|
Burman RW, Popovich BW, Jacky PB, Turker MS. Fully expanded FMR1 CGG repeats exhibit a length- and differentiation-dependent instability in cell hybrids that is independent of DNA methylation. Hum Mol Genet 1999; 8:2293-302. [PMID: 10545610 DOI: 10.1093/hmg/8.12.2293] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The fragile X syndrome is characterized at the molecular level by expansion and methylation of a CGG trinucleotide repeat located within the FMR1 locus. The tissues of most full mutation carriers are mosaic for repeat size, but these mutational patterns tend to be well conserved when comparing multiple tissues within an individual. Moreover, full mutation alleles are stable in cultured fibroblasts. These observations have been used to suggest that fragile X CGG repeat instability normally is limited to a period during early embryogenesis. DNA methylation of the repeat region is also believed to occur during early development, and some experimental evidence indicates that this modification may stabilize the repeats. To study the behavior of full mutation alleles in mitotic cells, we generated human-mouse somatic cell hybrids that carry both methylated and unmethylated full mutation FMR1 alleles. We observed considerable repeat instability and analyzed repeat dynamics in the hybrids as a function of DNA methylation, repeat length and cellular differentiation. Our results indicate that although DNA methylation does correlate with stability in primary human fibroblasts, it does not do so in the cell hybrids. Instead, repeat stability in the hybrids is dependent on repeat length, except in an undifferentiated cellular background where large alleles are maintained with a high degree of stability. This stability is lost when the cells undergo differentiation. These results indicate that the determinants of CGG repeat stability are more complex than generally believed, and suggest an unexpected role for cellular differentiation in this process.
Collapse
Affiliation(s)
- R W Burman
- Department of Molecular and Medical Genetics,Oregon Health Sciences University, Portland 97201, USA
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- G Neri
- Istituto di Genetica Medica Facoltà di Medicina e Chirurgia A. Gemelli Università Cattolica del Sacro Cuore Roma, Italy.
| | | |
Collapse
|
43
|
White PJ, Borts RH, Hirst MC. Stability of the human fragile X (CGG)(n) triplet repeat array in Saccharomyces cerevisiae deficient in aspects of DNA metabolism. Mol Cell Biol 1999; 19:5675-84. [PMID: 10409756 PMCID: PMC84419 DOI: 10.1128/mcb.19.8.5675] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expanded trinucleotide repeats underlie a growing number of human diseases. The human FMR1 (CGG)(n) array can exhibit genetic instability characterized by progressive expansion over several generations leading to gene silencing and the development of the fragile X syndrome. While expansion is dependent upon the length of uninterrupted (CGG)(n), instability occurs in a limited germ line and early developmental window, suggesting that lineage-specific expression of other factors determines the cellular environment permissive for expansion. To identify these factors, we have established normal- and premutation-length human FMR1 (CGG)(n) arrays in the yeast Saccharomyces cerevisiae and assessed the frequency of length changes greater than 5 triplets in cells deficient in various DNA repair and replication functions. In contrast to previous studies with Escherichia coli, we observed a low frequency of orientation-dependent large expansions in arrays carrying long uninterrupted (CGG)(n) arrays in a wild-type background. This frequency was unaffected by deletion of several DNA mismatch repair genes or deletion of the EXO1 and DIN7 genes and was not enhanced through meiosis in a wild-type background. Array contraction occurred in an orientation-dependent manner in most mutant backgrounds, but loss of the Sgs1p resulted in a generalized increase in array stability in both orientations. In contrast, FMR1 arrays had a 10-fold-elevated frequency of expansion in a rad27 background, providing evidence for a role in lagging-strand Okazaki fragment processing in (CGG)(n) triplet repeat expansion.
Collapse
Affiliation(s)
- P J White
- Fragile X Group, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | | | | |
Collapse
|
44
|
Iyer RR, Wells RD. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication. J Biol Chem 1999; 274:3865-77. [PMID: 9920942 DOI: 10.1074/jbc.274.6.3865] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expansions and deletions of triplet repeat sequences that cause human hereditary neurological diseases were previously suggested to be mediated by the formation of DNA hairpins on the lagging strand during replication. The replication properties of CTG.CAG, CGG.CCG, and TTC.GAA repeats were studied in Escherichia coli using an in vivo phagemid system as a model for continuous leading strand synthesis. The repeats were substantially deleted when the CTG, CGG, and GAA repeats were the templates for rolling circle replication from the f1 phage origin. The deletions may be mediated by hairpins formed by these repeat tracts. The distributions of the deletion products of the CTG.CAG and CGG.CCG tracts indicated that hairpins of discrete sizes mediate deletions during complementary strand synthesis. Deletions during rolling circle synthesis are caused by larger hairpins of specific sizes. Thus, most deletion products were of defined lengths, suggesting a preference for specific hairpin intermediates. Small expansions of the CTG.CAG and CGG.CCG repeats were also observed, presumably due to the formation of CTG and CGG hairpins on the nascent complementary strand. Since rolling circle replication has been established in vitro as a model for leading strand synthesis, we conclude that triplet repeat instability can also occur on the leading strand of DNA replication.
Collapse
Affiliation(s)
- R R Iyer
- Center for Genome Research, Institute of Biosciences and Technology, Texas A & M University, Department of Biochemistry and Biophysics, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | |
Collapse
|