1
|
Marsic T, Gundra SR, Wang Q, Aman R, Mahas A, Mahfouz M. Programmable site-specific DNA double-strand breaks via PNA-assisted prokaryotic Argonautes. Nucleic Acids Res 2023; 51:9491-9506. [PMID: 37560931 PMCID: PMC10516665 DOI: 10.1093/nar/gkad655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Programmable site-specific nucleases promise to unlock myriad applications in basic biology research, biotechnology and gene therapy. Gene-editing systems have revolutionized our ability to engineer genomes across diverse eukaryotic species. However, key challenges, including delivery, specificity and targeting organellar genomes, pose barriers to translational applications. Here, we use peptide nucleic acids (PNAs) to facilitate precise DNA strand invasion and unwinding, enabling prokaryotic Argonaute (pAgo) proteins to specifically bind displaced single-stranded DNA and introduce site-specific double-strand breaks (DSBs) independent of the target sequence. We named this technology PNA-assisted pAgo editing (PNP editing) and determined key parameters for designing PNP editors to efficiently generate programable site-specific DSBs. Our design allows the simultaneous use of multiple PNP editors to generate multiple site-specific DSBs, thereby informing design considerations for potential in vitro and in vivo applications, including genome editing.
Collapse
Affiliation(s)
- Tin Marsic
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sivakrishna Rao Gundra
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Qiaochu Wang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Volpi S, Cancelli U, Neri M, Corradini R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals (Basel) 2020; 14:14. [PMID: 33375595 PMCID: PMC7823687 DOI: 10.3390/ph14010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The number of applications of peptide nucleic acids (PNAs)-oligonucleotide analogs with a polyamide backbone-is continuously increasing in both in vitro and cellular systems and, parallel to this, delivery systems able to bring PNAs to their targets have been developed. This review is intended to give to the readers an overview on the available carriers for these oligonucleotide mimics, with a particular emphasis on newly developed multi-component- and multifunctional vehicles which boosted PNA research in recent years. The following approaches will be discussed: (a) conjugation with carrier molecules and peptides; (b) liposome formulations; (c) polymer nanoparticles; (d) inorganic porous nanoparticles; (e) carbon based nanocarriers; and (f) self-assembled and supramolecular systems. New therapeutic strategies enabled by the combination of PNA and proper delivery systems are discussed.
Collapse
Affiliation(s)
| | | | | | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (U.C.); (M.N.)
| |
Collapse
|
3
|
Malik S, Asmara B, Moscato Z, Mukker JK, Bahal R. Advances in Nanoparticle-based Delivery of Next Generation Peptide Nucleic Acids. Curr Pharm Des 2019; 24:5164-5174. [PMID: 30657037 DOI: 10.2174/1381612825666190117164901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Peptide nucleic acids (PNAs) belong to the next generation of synthetic nucleic acid analogues. Their high binding affinity and specificity towards the target DNA or RNA make them the reagent of choice for gene therapy-based applications. OBJECTIVE To review important gene therapy based applications of regular and chemically modified peptide nucleic acids in combination with nanotechnology. METHOD Selective research of the literature. RESULTS Poor intracellular delivery of PNAs has been a significant challenge. Among several delivery strategies explored till date, nanotechnology-based strategies hold immense potential. Recent studies have shown that advances in nanotechnology can be used to broaden the range of therapeutic applications of PNAs. In this review, we discussed significant advances made in nanoparticle-based on PLGA polymer, silicon, oxidized carbon and graphene oxide for the delivery of PNAs. CONCLUSION Nanoparticles delivered PNAs can be implied in diverse gene therapy based applications including gene editing as well as gene targeting (antisense) based strategies.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Brenda Asmara
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Zoe Moscato
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, United States
| | - Jatinder Kaur Mukker
- Translational Medicine & Clinical Pharmacology, Boehringer-Ingelheim Pharmaceutical, Inc. Ridgefield, CT, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Inagaki M, Uematsu R, Mizutani T, Unabara D, Araki Y, Sakamoto S, Kashida H, Nishijima M, Asanuma H, Inoue Y, Wada T. N-Benzoyl-protected Peptide Nucleic Acid (PNA) Monomers Expand the Range of Nucleobases Available for PNA-DNA Chimera. CHEM LETT 2019. [DOI: 10.1246/cl.181048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Masahito Inagaki
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Ryohei Uematsu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tatsuya Mizutani
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Daisuke Unabara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Seiji Sakamoto
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Masaki Nishijima
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yoshihisa Inoue
- Department of Applied Chemistry, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
5
|
Quijano E, Bahal R, Ricciardi A, Saltzman WM, Glazer PM. Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:583-598. [PMID: 29259523 PMCID: PMC5733847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since their invention in 1991, peptide nucleic acids (PNAs) have been used in a myriad of chemical and biological assays. More recently, peptide nucleic acids have also been demonstrated to hold great potential as therapeutic agents because of their physiological stability, affinity for target nucleic acids, and versatility. While recent modifications in their design have further improved their potency, their preclinical development has reached new heights due to their combination with recent advancements in drug delivery. This review focuses on recent advances in PNA therapeutic applications, in which chemical modifications are made to improve PNA function and nanoparticles are used to enhance PNA delivery.
Collapse
Affiliation(s)
- Elias Quijano
- Department of Genetics, Yale University, New Haven, CT
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Adele Ricciardi
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT
| |
Collapse
|
6
|
Obstruction of BRAF V600E transcription by complementary PNA oligomers as a means to inhibit BRAF-mutant melanoma growth. Cancer Gene Ther 2017; 24:401-408. [PMID: 28937091 DOI: 10.1038/cgt.2017.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/05/2017] [Indexed: 11/08/2022]
Abstract
Peptide nucleic acid (PNA) oligomers are DNA mimics, which are capable of binding gene sequences 1000-fold more avidly than complementary native DNA by strand invasion and effectively obstruct transcription. Irreversibly obstructing the transcription or replication of a gene sequence, such as BRAFV600E, offers a potential route to specifically target the cancer cell itself. We have employed PNA oligomers to target BRAFV600E in a sequence-specific complementary manner. These PNAs have been modified by appending configurationally stabilizing cationic peptides in order to improve their cellular delivery and target avidity. Our results indicate that exposure of the melanoma cell lines to a modified PNA-peptide conjugate complementary to BRAFV600E mutation sequence results in a concentration-dependent and time-dependent inhibition of cell growth that is specific for the BRAFV600E-mutant melanoma cell lines with inhibition of mRNA and protein expression. Xenograft mouse trials show increased tumor growth delay and necrosis with the BRAFV600E-complementary PNA-peptide conjugates as compared with the saline and scrambled PNA sequence controls. Similarly, quantitative measurement shows a 2.5-fold decrease in Ki67 and a 3-fold increase in terminal deoxynucleotidyl transferase dUTP nick end labeling expression with this approach. PNA-delivery peptide conjugates represent a novel way to target BRAFV600E and represent a new approach in targeting selective oncogenes that induce tumor growth.
Collapse
|
7
|
Fernandes Q. Therapeutic strategies in Sickle Cell Anemia: The past present and future. Life Sci 2017; 178:100-108. [PMID: 28435037 DOI: 10.1016/j.lfs.2017.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/15/2023]
Abstract
Sickle Cell Anemia (SCA) was one of the first hemoglobinopathies to be discovered. It is distinguished by the mutation-induced expression of a sickle cell variant of hemoglobin (HbS) that triggers erythrocytes to take a characteristic sickled conformation. The complex physiopathology of the disease and its associated clinical complications has initiated multi-disciplinary research within its field. This review attempts to lay emphasis on the evolution, current standpoint and future scope of therapeutic strategies in SCA.
Collapse
|
8
|
Gupta A, Bahal R, Gupta M, Glazer PM, Saltzman WM. Nanotechnology for delivery of peptide nucleic acids (PNAs). J Control Release 2016; 240:302-311. [PMID: 26776051 DOI: 10.1016/j.jconrel.2016.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/10/2015] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Over the past three decades, peptide nucleic acids have been employed in numerous chemical and biological applications. Peptide nucleic acids possess enormous potential because of their superior biophysical properties, compared to other oligonucleotide chemistries. However, for therapeutic applications, intracellular delivery of peptide nucleic acids remains a challenge. In this review, we summarize the progress that has been made in delivering peptide nucleic acids to intracellular targets. In addition, we emphasize recent nanoparticle-based strategies for efficient delivery of conventional and chemically-modified peptides nucleic acids.
Collapse
Affiliation(s)
- Anisha Gupta
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Raman Bahal
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Meera Gupta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Chemical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Bahal R, Gupta A, Glazer PM. Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Ellipilli S, vasudeva Murthy R, Ganesh KN. Perfluoroalkylchain conjugation as a new tactic for enhancing cell permeability of peptide nucleic acids (PNAs) via reducing the nanoparticle size. Chem Commun (Camb) 2015; 52:521-4. [PMID: 26535419 DOI: 10.1039/c5cc05342k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Perfluoro undecanoyl chain conjugated peptide nucleic acids (PNAs) show 2.5 to 3 fold higher cellular uptake efficiency in NIH 3T3 and HeLa cells compared to simple undecanoyl PNAs. Fluorination of PNAs leads to the formation of lower size (∼100-250 nm) nanoparticles compared to larger size (∼500 nm) nanoparticles from non-fluorinated PNAs, thereby improving the efficiency of cell penetration.
Collapse
Affiliation(s)
- Satheesh Ellipilli
- Chemical Biology Unit, Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
| | | | | |
Collapse
|
11
|
Kirillova Y, Boyarskaya N, Dezhenkov A, Tankevich M, Prokhorov I, Varizhuk A, Eremin S, Esipov D, Smirnov I, Pozmogova G. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding. PLoS One 2015; 10:e0140468. [PMID: 26469337 PMCID: PMC4607454 DOI: 10.1371/journal.pone.0140468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022] Open
Abstract
New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA.
Collapse
Affiliation(s)
- Yuliya Kirillova
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- * E-mail:
| | - Nataliya Boyarskaya
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Andrey Dezhenkov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Mariya Tankevich
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Ivan Prokhorov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Anna Varizhuk
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- Department of Structure-Functional Analysis of Biopolymers, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sergei Eremin
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Dmitry Esipov
- Department of Bioorganic Chemistry, Biology Faculty, Moscow State University, Moscow, Russia
| | - Igor Smirnov
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Galina Pozmogova
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
12
|
Bahal R, Quijano E, McNeer NA, Liu Y, Bhunia DC, Lopez-Giraldez F, Fields RJ, Saltzman WM, Ly DH, Glazer PM. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition. Curr Gene Ther 2015; 14:331-42. [PMID: 25174576 DOI: 10.2174/1566523214666140825154158] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 01/13/2023]
Abstract
Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peter M Glazer
- Yale School of Medicine, Dept. of Therapeutic Radiology, P.O. Box 208040, New Haven, Connecticut 06520-8040, USA.
| |
Collapse
|
13
|
Abstract
Photochemical internalization (PCI) is a method for releasing macromolecules from endosomal and lysosomal compartments. The PCI approach uses a photosensitizer that localizes to endosomal and lysosomal compartments, and a light source with appropriate light spectra for excitation of the photosensitizer. Upon photosensitizer excitation, endosomal and lysosomal membranes are destroyed, due to the formation of reactive oxygen species, followed by release of the endocytosed material. PCI has been demonstrated to enhance and control (site- and time-specific) delivery of various macromolecules such as viruses, proteins, chemotherapeutics, nucleic acid, and so on. In this Review we present past and current studies of PCI-controlled delivery of natural and artificial nucleic acids, such as peptide nucleic acids, siRNA molecules, mRNA molecules and plasmids. We also discuss critical aspects to further the possibilities for successful gene targeting in space and time.
Collapse
|
14
|
Gupta SK, Sur S, Prasad Ojha R, Tandon V. Influence of PNA containing 8-aza-7-deazaadenine on structure stability and binding affinity of PNA·DNA duplex: insights from thermodynamics, counter ion, hydration and molecular dynamics analysis. MOLECULAR BIOSYSTEMS 2013; 9:1958-71. [PMID: 23636232 DOI: 10.1039/c3mb25561a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper describes the synthesis of a novel 8-aza-7-deazapurin-2,6-diamine (DPP)-containing peptide nucleic acid (PNA) monomer and Boc protecting group-based oligomerization of PNA, replacing adenine (A) with DPP monomers in the PNA strand. The PNA oligomers were synthesized against the biologically relevant SV40 promoter region (2494-AATTTTTTTTATTTA-2508) of pEGFP-N3 plasmid. The DPP-PNA·DNA duplex showed enhanced stability as compared to normal duplex (A-PNA·DNA). The electronic distribution of DPP monomer suggested that DPP had better electron donor properties over 2,6-diamino purine. UV melting and thermodynamic analysis revealed that the PNA oligomer containing a diaminopyrazolo(3,4-d)pyrimidine moiety (DPP) stabilized the PNA·DNA hybrids compared to A-PNA·DNA. DPP-PNA·DNA duplex showed higher water activity (Δnw = 38.5) in comparison to A-PNA·DNA duplex (Δnw = 14.5). The 50 ns molecular dynamics simulations of PNA·DNA duplex containing DPP or unmodified nucleobase-A showed average H-bond distances in the DPP-dT base pair of 2.90 Å (OH-N bond) and 2.91 Å (NH-N bond), which were comparably shorter than in the A-dT base pair, in which the average distances were 3.18 Å (OH-N bond) and 2.97 Å (NH-N bond), and there was one additional H-bond in the DPP-dT base pair of around 2.98 Å (O2H-N2 bond), supporting the higher stability of DPP-PNA·DNA. The analysis of molecular dynamics simulation data showed that the system binding free energy increased at a rate of approximately -4.5 kcal mol(-1) per DPP base of the PNA·DNA duplex. In summary, increased thermal stability, stronger hydrogen bonding and more stable conformation in the DPP-PNA·DNA duplex make it a better candidate as antisense/antigene therapeutic agents.
Collapse
Affiliation(s)
- Sharad K Gupta
- Dr B. R. Ambedkar Center for Biomedical Research, Delhi, India.
| | | | | | | |
Collapse
|
15
|
Panyutin IG, Onyshchenko MI, Englund EA, Appella DH, Neumann RD. Targeting DNA G-quadruplex structures with peptide nucleic acids. Curr Pharm Des 2012; 18:1984-91. [PMID: 22376112 DOI: 10.2174/138161212799958440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022]
Abstract
Regulation of genetic functions based on targeting DNA or RNA sequences with complementary oligonucleotides is especially attractive in the post-genome era. Oligonucleotides can be rationally designed to bind their targets based on simple nucleic acid base pairing rules. However, the use of natural DNA and RNA oligonucleotides as targeting probes can cause numerous off-target effects. In addition, natural nucleic acids are prone to degradation in vivo by various nucleases. To address these problems, nucleic acid mimics such as peptide nucleic acids (PNA) have been developed. They are more stable, show less off-target effects, and, in general, have better binding affinity to their targets. However, their high affinity to DNA can reduce their sequence-specificity. The formation of alternative DNA secondary structures, such as the G-quadruplex, provides an extra level of specificity as targets for PNA oligomers. PNA probes can target the loops of G-quadruplex, invade the core by forming PNA-DNA guanine-tetrads, or bind to the open bases on the complementary cytosine-rich strand. Not only could the development of such G-quadruplex-specific probes allow regulation of gene expression, but it will also provide a means to clarify the biological roles G-quadruplex structures may possess.
Collapse
|
16
|
Mansilla-Soto J, Rivière I, Sadelain M. Genetic strategies for the treatment of sickle cell anaemia. Br J Haematol 2011; 154:715-27. [DOI: 10.1111/j.1365-2141.2011.08773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Joergensen M, Agerholm-Larsen B, Nielsen PE, Gehl J. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry. Oligonucleotides 2011; 21:29-37. [PMID: 21235293 DOI: 10.1089/oli.2010.0266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electroporation is potentially a very powerful technique for both in vitro cellular and in vivo drug delivery, particularly relating to oligonucleotides and their analogs for genetic therapy. Using a sensitive and quantitative HeLa cell luciferase RNA interference mRNA splice correction assay with a functional luciferase readout, we demonstrate that parameters such as peptide nucleic acid (PNA) charge and the method of electroporation have dramatic influence on the efficiency of productive delivery. In a suspended cell electroporation system (cuvettes), a positively charged PNA (+8) was most efficiently transferred, whereas charge neutral PNA was more effective in a microtiter plate electrotransfer system for monolayer cells. Surprisingly, a negatively charged (-23) PNA did not show appreciable activity in either system. Findings from the functional assay were corroborated by pulse parameter variations, polymerase chain reaction, and confocal microscopy. In conclusion, we have found that the charge of PNA and electroporation system combination greatly influences the transfer efficiency, thereby illustrating the complexity of the electroporation mechanism.
Collapse
Affiliation(s)
- Mette Joergensen
- Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | | | | | |
Collapse
|
18
|
Design of embedded chimeric peptide nucleic acids that efficiently enter and accurately reactivate gene expression in vivo. Proc Natl Acad Sci U S A 2010; 107:16846-51. [PMID: 20837550 DOI: 10.1073/pnas.0912896107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharmacological treatments designed to reactivate fetal γ-globin can lead to an effective and successful clinical outcome in patients with hemoglobinopathies. However, new approaches remain highly desired because such treatments are not equally effective for all patients, and toxicity issues remain. We have taken a systematic approach to develop an embedded chimeric peptide nucleic acid (PNA) that effectively enters the cell and the nucleus, binds to its target site at the human fetal γ-globin promoter, and reactivates this transcript in adult transgenic mouse bone marrow and human primary peripheral blood cells. In vitro and in vivo DNA-binding assays in conjunction with live-cell imaging have been used to establish and optimize chimeric PNA design parameters that lead to successful gene activation. Our final molecule contains a specific γ-promoter-binding PNA sequence embedded within two amino acid motifs: one leads to efficient cell/nuclear entry, and the other generates transcriptional reactivation of the target. These embedded PNAs overcome previous limitations and are generally applicable to the design of in vivo transcriptional activation reagents that can be directed to any promoter region of interest and are of direct relevance to clinical applications that would benefit from such a need.
Collapse
|
19
|
Ananthanawat C, Hoven VP, Vilaivan T, Su X. Surface plasmon resonance study of PNA interactions with double-stranded DNA. Biosens Bioelectron 2010; 26:1918-23. [PMID: 20580217 DOI: 10.1016/j.bios.2010.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 12/19/2022]
Abstract
Peptide nucleic acid (PNA) is a well known DNA analogue bearing a N-(2-aminoethyl)glycine backbone (aegPNA). This molecule is able to not only form a duplex with single stranded (ss) nucleic acids but also higher-order (i.e., three- and four-stranded) complexes with double-stranded (ds) DNA in a sequence specific manner. Here, the application of surface plasmon resonance (SPR) to study the binding of PNA to dsDNA is reported for the first time. SPR protocols were developed to verify the sequence rules and conditions for binding (pH and ionic strength) of homopyrimidine and homopurine aegPNAs to dsDNA, for which the solution phase behaviors are known, allowing a direct comparison. Then, using real-time SPR measurements, the hybridization efficiency, binding direction (antiparallel and parallel direction), sequence-dependent binding modes of the PNA to dsDNA (triplex formation and duplex invasion) and the binding kinetics associated with the binding mode were all ascertained. These SPR protocols were then further applied to study the dsDNA binding properties of a new conformationally rigid PNA bearing a D-prolyl-2-aminocyclopentanecarboxylic acid (ACPC) backbone (acpcPNA), which revealed that acpcPNA cannot form higher-order complexes with dsDNA through either triplex formation or duplex invasion. The SPR technique is thus shown to be a powerful technique for studying higher-order nucleic acid complexes. The binding behaviors of aegPNA obtained from the SPR analysis in the solid-liquid phase measurement correlate well with those in the literature derived from solution phase measurements.
Collapse
Affiliation(s)
- Cheeraporn Ananthanawat
- Program of Macromolecular Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
20
|
Jain AK, Bhattacharya S. Groove Binding Ligands for the Interaction with Parallel-Stranded ps-Duplex DNA and Triplex DNA. Bioconjug Chem 2010; 21:1389-403. [DOI: 10.1021/bc900247s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akash K. Jain
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
21
|
Ziehe M, Grossmann TN, Seitz O, Linscheid MW. New aspects in fragmentation of peptide nucleic acids: comparison of positive and negative ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1132-1138. [PMID: 19280610 DOI: 10.1002/rcm.3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of peptide nucleic acids (PNAs) is steadily increasing in biochemistry and diagnostics. So far, PNAs have mostly been investigated using cationic conditions in mass spectrometry. Furthermore, the use of fragmentation techniques developed for peptides and proteins like infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) has barely been examined. However, especially the fragmentation behavior of PNA oligomers in negative ion mode is of high importance, due to the ability to interact with nucleic acids which are almost exclusively analyzed in the negatively charged state. In the current study PNA fragmentations under cationic and anionic conditions were investigated and different fragmentation techniques like collision-induced dissociation (CID), IRMPD and ECD were applied. Especially when using CID and IRMPD, amide bonds were broken, whereas ECD resulted in the elimination of nucleobases. Differences were also observed between positive and negative ionization, while the sequence coverage for the negative ions was superior to positive ions. The fragmentation behavior using IRMPD led to almost complete sequence coverage. Additionally, in anions the interesting effect of multiple eliminations of HNCO was found.
Collapse
Affiliation(s)
- Matthias Ziehe
- Humboldt-Universitaet zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Xu XS, Hong X, Wang G. Induction of endogenous gamma-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J Hematol Oncol 2009; 2:15. [PMID: 19327156 PMCID: PMC2669152 DOI: 10.1186/1756-8722-2-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/27/2009] [Indexed: 12/22/2022] Open
Abstract
Human β-globin disorders are relatively common genetic diseases cause by mutations in the β-globin gene. Increasing the expression of the γ-globin gene has great benefits in reducing complications associated with these diseases. The Oct-1 transcription factor is involved in the transcriptional regulation of the γ-globin gene. The human γ-globin genes (both Aγ and Gγ-globin genes) carry three Oct-1 transcription factor consensus sequences within their promoter regions. We have studied the possibility of inducing γ-globin gene expression using decoy oligonucleotides that target the Oct-1 transcription factor consensus sequence. A double-stranded 22 bp decoy oligonucleotide containing the Oct-1 consensus sequence was synthesized. The results obtained from our in vitro binding assay revealed a strong competitive binding of the decoy oligonucleotide for the Oct-1 transcription factor. When K562 human erythroleukemia cells were treated with the Oct-1 decoy oligonucleotide, significant increases in the level of the γ-globin mRNA were observed. The results of our western blots further demonstrated significant increases of the fetal hemoglobin (HbF, α2γ2) in the Oct-1 decoy oligonucleotide-treated K562 cells. The results of our immunoprecipitation (IP) studies revealed that the treatment of K562 cells with the Oct-1 decoy oligonucleotide significantly reduced the level of the endogenous γ-globin gene promoter region DNA co-precipitated with the Oct-1 transcription factor. These results suggest that the decoy oligonucleotide designed for the Oct-1 transcription factor consensus sequence could induce expression of the endogenous γ-globin gene through competitive binding of the Oct-1 transcription factor, resulting in activation of the γ-globin genes. Therefore, disrupting the bindings of the Oct-1 transcriptional factors with the decoy oligonucleotide provides a novel approach for inducing expression of the γ-globin genes. It also provides an innovative strategy for the treatment of many disease conditions, including sickle cell anemia and β-thalassemia.
Collapse
Affiliation(s)
- Xiaoxin S Xu
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
23
|
Li JD, Chen M, Liu S, Zhang HB, Liu ZL. Synthesis and photo-activity of phenylazonaphthalene peptide nucleic acid monomers. CHINESE CHEM LETT 2008. [DOI: 10.1016/j.cclet.2008.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Kim KH, Nielsen PE, Glazer PM. Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids. Nucleic Acids Res 2007; 35:7604-13. [PMID: 17977869 PMCID: PMC2190703 DOI: 10.1093/nar/gkm666] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNA–pcPNA duplexes but can bind to complementary DNA sequences by Watson–Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA
| | | | | |
Collapse
|
25
|
Ge R, Heinonen JE, Svahn MG, Mohamed AJ, Lundin KE, Smith CIE. Zorro locked nucleic acid induces sequence-specific gene silencing. FASEB J 2007; 21:1902-14. [PMID: 17314142 DOI: 10.1096/fj.06-7225com] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Locked nucleic acids (LNAs) are synthetic analogs of nucleic acids that contain a bridging methylene carbon between the 2' and 4' positions of the ribose ring. In this study, we generated a novel sequence-specific antigene molecule "Zorro LNA", which simultaneously binds to both strands, and that induced effective and specific strand invasion into DNA duplexes and potent inhibition of gene transcription, also in a cellular context. By comparing the Zorro LNA with linear LNA as well as an optimized bisPNA (peptide nucleic acid) oligonucleotide directed against the same target sites, respectively, we found that the Zorro LNA construct was unique in its ability to arrest gene transcription in mammalian cells. To our knowledge, this is the first time that in mammalian cells, gene transcription was blocked by a nucleic acid analog in a sequence-specific way using low but saturated binding of a blocking agent. This offers a novel type of antigene drug that is easy to synthesize.
Collapse
Affiliation(s)
- Rongbin Ge
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Gene expression is regulated by a complex interplay between binding and the three-dimensional arrangement of transcription factors with RNA polymerase and DNA. Previous studies have supported a direct role for DNA bending and conformation in gene expression, which suggests that agents that induce bends in DNA might be able to control gene expression. To test this hypothesis, we examined the effect of triple-helix-forming oligonucleotide (TFO) bending agents on the transcription of luciferase in an in vitro transcriptional/translational system. We find that transcription is regulated only by a TFO that induces a bend in the DNA. Related TFOs that do not induce bends in DNA have no effect on transcription. Reporter expression can be increased by as much as 80 % or decreased by as much as 50 % depending on the phasing of the upstream bend relative to the promoter. We interpret the results as follows: when the bend is positioned such that the upstream DNA is curved toward the RNA polymerase on the same DNA face, transcription is enhanced. When the upstream DNA is curved away, transcription is attenuated. These results support the hypothesis that DNA-bending agents might have the capability to regulate gene expression, thereby opening up a previously undervalued avenue in research on the artificial control of gene expression.
Collapse
Affiliation(s)
- David Bednarski
- Eugene Applebaum College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
27
|
Bentin T, Hansen GI, Nielsen PE. Structural diversity of target-specific homopyrimidine peptide nucleic acid-dsDNA complexes. Nucleic Acids Res 2006; 34:5790-9. [PMID: 17053099 PMCID: PMC1635314 DOI: 10.1093/nar/gkl736] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Sequence-selective recognition of double-stranded (ds) DNA by homopyrimidine peptide nucleic acid (PNA) oligomers can occur by major groove triplex binding or by helix invasion via triplex P-loop formation. We have compared the binding of a decamer, a dodecamer and a pentadecamer thymine–cytosine homopyrimidine PNA oligomer to a sequence complementary homopurine target in duplex DNA using gel-shift and chemical probing analyses. We find that all three PNAs form stable triplex invasion complexes, and also conventional triplexes with the dsDNA target. Triplexes form with much faster kinetics than invasion complexes and prevail at lower PNA concentrations and at shorter incubation times. Furthermore, increasing the ionic strength strongly favour triplex formation over invasion as the latter is severely inhibited by cations. Whereas a single triplex invasion complex is formed with the decameric PNA, two structurally different target-specific invasion complexes were characterized for the dodecameric PNA and more than five for the pentadecameric PNA. Finally, it is shown that isolated triplex complexes can be converted to specific invasion complexes without dissociation of the Hoogsteen base-paired triplex PNA. These result demonstrate a clear example of a ‘triplex first’ mechanism for PNA helix invasion.
Collapse
Affiliation(s)
| | | | - Peter E. Nielsen
- To whom correspondence should be addressed. Tel: +45 35327762/61; Fax: +45 35396042;
| |
Collapse
|
28
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
29
|
Pellestor F, Paulasova P, Macek M, Hamamah S. [The peptide nucleic acids (PNAs): "high-tech" probes for genetic and molecular cytogenetic investigations]. Med Sci (Paris) 2005; 21:753-8. [PMID: 16115462 DOI: 10.1051/medsci/2005218-9753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The peptide nucleic acids (PNAs) constitute a remarkable new class of synthetic nucleic acids analogs, in which the sugar phosphate backbone is replaced by repeating N-(2-aminoethyl) glycine units linked by amine bonds and to which the nucleobases are fixed. This structure gives to PNAs the capacity to hybridize with high affinity and specificity to complementary RNA and DNA sequences, and a great resistance to nucleases and proteinases. Originally conceived as ligands for the study of double stranded DNA, the unique physico-chemical properties of PNAs have led to the development of a large variety of research and diagnostic assays, including antigene and antisense therapy and genome mapping. Several sensitive and robust PNA-dependent methods have been designed for modulating polymerase chain reactions, detecting genomic polymorphisms and mutations or capturing nucleic acids. Over the last few years, the use of PNAs has proven its powerful usefulness in cytogenetics for the rapid in situ identification of human chromosomes and the detection of aneuploidies. Recent studies have reported the successful use of chromosome-specific PNA probes on human lymphocytes, amniocytes, spermatozoa as well as on isolated oocytes and blastomeres. Muticolor PNA protocols have been described for the identification of several human chromosomes, indicating that PNAs could become a powerful tool for in situ chromosomal investigation.
Collapse
Affiliation(s)
- Franck Pellestor
- CNRS UPR 1142, Institut de Génétique Humaine, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
30
|
Smolina IV, Demidov VV, Soldatenkov VA, Chasovskikh SG, Frank-Kamenetskii MD. End invasion of peptide nucleic acids (PNAs) with mixed-base composition into linear DNA duplexes. Nucleic Acids Res 2005; 33:e146. [PMID: 16204449 PMCID: PMC1243805 DOI: 10.1093/nar/gni151] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peptide nucleic acid (PNA) is a synthetic DNA mimic with valuable properties and a rapidly growing scope of applications. With the exception of recently introduced pseudocomplementary PNAs, binding of common PNA oligomers to target sites located inside linear double-stranded DNAs (dsDNAs) is essentially restricted to homopurine-homopyrimidine sequence motifs, which significantly hampers some of the PNA applications. Here, we suggest an approach to bypass this limitation of common PNAs. We demonstrate that PNA with mixed composition of ordinary nucleobases is capable of sequence-specific targeting of complementary dsDNA sites if they are located at the very termini of DNA duplex. We then show that such targeting makes it possible to perform capturing of designated dsDNA fragments via the DNA-bound biotinylated PNA as well as to signal the presence of a specific dsDNA sequence, in the case a PNA beacon is employed. We also examine the PNA-DNA conjugate and prove that it can initiate the primer-extension reaction starting from the duplex DNA termini when a DNA polymerase with the strand-displacement ability is used. We thus conclude that recognition of duplex DNA by mixed-base PNAs via the end invasion has a promising potential for site-specific and sequence-unrestricted DNA manipulation and detection.
Collapse
Affiliation(s)
- Irina V Smolina
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
31
|
Nielsen PE, Frederiksen K, Behrens C. Extended target sequence specificity of PNA-minor-groove binder conjugates. Chembiochem 2005; 6:66-8. [PMID: 15593115 DOI: 10.1002/cbic.200400251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter E Nielsen
- Department of Medical Biochemistry and Genetics, University of Copenhagen, The Panum Institute, Blegdamsvej 3c, Copenhagen N 2200, Denmark.
| | | | | |
Collapse
|
32
|
Ziemba AJ, Zhilina ZV, Krotova-Khan Y, Stankova L, Ebbinghaus SW. Targeting and regulation of the HER-2/neu oncogene promoter with bis-peptide nucleic acids. Oligonucleotides 2005; 15:36-50. [PMID: 15788899 DOI: 10.1089/oli.2005.15.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antigene oligonucleotides have the potential to regulate gene expression through site-specific DNA binding. However, in vivo applications have been hindered by inefficient cellular uptake, degradation, and strand displacement. Peptide nucleic acids (PNAs) address several of these problems, as they are resistant to degradation and bind DNA with high affinity. We designed two cationic pyrimidine bis-PNAs (cpy-PNAs) to target the polypurine tract of the HER-2/neu promoter and compared them to an unmodified phosphodiester triplex-forming oligonucleotide (TFO1) and a TFO-nitrogen mustard conjugate (TFO2). PNA1 contains a + 2 charge and bound two adjacent 9-bp target sequences with high affinity and specificity, but only at low pH. PNA2 contains a +5 charge and bound one 11-bp target with high affinity up to pH 7.4, but with lower specificity. The PNA:DNA:PNA triplex formed by these cpy-bis-PNAs presented a stable barrier to DNA polymerase extension. The cpy-bis-PNAs and the TFO-alkylator conjugate prevented HER-2/neu transcription in a reporter gene assay (TFO2 = PNA1 > PNA2 >> TFO1). Both PNAs and TFOs were effective at binding the target sequence in naked genomic DNA, but only the TFO-alkylator (TFO2) and the more cationic PNA (PNA2) were detected at the endogenous HER-2/neu promoter in permeabilized cells. This work demonstrates the potential for preventing HER-2/neu gene expression with cpy-bis-PNAs in tumor cells.
Collapse
|
33
|
Therapeutic uses of peptide nucleic acids (PNA) in oncology. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Zelphati O, Felgner J, Wang Y, Liang X, Felgner P. Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Nielsen PE. The many faces of PNA. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Abstract
Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a single-stranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The D-loops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.
Collapse
Affiliation(s)
- Gan Wang
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Detroit, MI 48201, USA.
| | | |
Collapse
|
38
|
Abstract
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.
Collapse
Affiliation(s)
- Peter E Nielsen
- Center for Biomolecular Recognition, IMBG, The Panum Institute, University of Copenhagen, Blegdamsvej 3C, Copenhagen DK-2200N, Denmark.
| |
Collapse
|
39
|
Nagatsugi F, Sasaki S. Chemical tools for targeted mutagenesis of DNA based on triple helix formation. Biol Pharm Bull 2004; 27:463-7. [PMID: 15056848 DOI: 10.1248/bpb.27.463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of methods for targeted mutagenesis shows promise as an alternative form of gene therapy. Triple helix-forming oligonucleotides (TFOs) provide an attractive strategy for inducing mutations. Especially, alkylation of nucleobases with functionalized TFOs would have potential for site-directed mutation. Several studies have demonstrated that treatment of mammalian cells with TFOs can be exploited to introduce desired sequence changes and point mutations. This review summarizes targeted mutagenesis using reactive TFOs, including studies with photo reactive psolaren derivatives as well as a new reactive derivative recently developed by our group.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
40
|
Marin VL, Roy S, Armitage BA. Recent advances in the development of peptide nucleic acid as a gene-targeted drug. Expert Opin Biol Ther 2004; 4:337-48. [PMID: 15006728 DOI: 10.1517/14712598.4.3.337] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptide nucleic acid (PNA) is a non-ionic mimic of DNA that binds to complementary DNA and RNA sequences with high affinity and selectivity. Targeting of single-stranded RNA leads to antisense effects, whereas PNAs directed toward double-stranded DNA exhibit antigene properties. Recent advances in cell uptake and in antisense and antigene effects in biological systems are summarised in this review. In addition to traditional targets, namely genomic DNA and messenger RNA, applications for PNA as a bacteriocidal antibiotic, for regulating splice site selection and as a telomerase inhibitor are described.
Collapse
Affiliation(s)
- Violeta L Marin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA
| | | | | |
Collapse
|
41
|
Mearini G, Nielsen PE, Fackelmayer FO. Localization and dynamics of small circular DNA in live mammalian nuclei. Nucleic Acids Res 2004; 32:2642-51. [PMID: 15141035 PMCID: PMC419472 DOI: 10.1093/nar/gkh587] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While genomic DNA, packaged into chromatin, is known to be locally constrained but highly dynamic in the nuclei of living cells, little is known about the localization and dynamics of small circular DNA molecules that invade cells by virus infection, application of gene therapy vectors or experimental transfection. To address this point, we have created traceable model substrates by direct labeling of plasmid DNA with fluorescent peptide nucleic acids, and have investigated their fate after microinjection into living cells. Here, we report that foreign DNA rapidly undergoes interactions with intranuclear structural sites that strongly reduce its mobility and restrict the DNA to regions excluding nucleoli and nuclear bodies such as PML bodies. The labeled plasmids partially co-localize with SAF-A, a well characterized marker protein for the nuclear 'scaffold' or 'matrix', and are resistant towards extraction by detergent and, in part, elevated salt concentrations. We show that the localization and the low mobility of plasmids is independent of the plasmid sequence, and does not require the presence of either a scaffold attachment region (SAR) DNA element or a functional promoter.
Collapse
Affiliation(s)
- Giulia Mearini
- Department of Molecular Cell Biology, Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | |
Collapse
|
42
|
|
43
|
Abstract
Psoralen-conjugated triplex-forming oligonucleotides (pso-TFOs) can target photochemical adducts to specific DNA sequences. Here, we have used pso-TFOs to activate gene expression on a plasmid. We designed a pso-TFO adapter, consisting of a single-stranded TFO for targeting DNA, linked to a double-stranded hairpin segment that contains a hybrid ecdysone response element (E/GRE) enhancer for binding activated ecdysone receptors. When targeted to the 5' flanking region of a minimal promoter, this pso-TFO adapter increased the expression of a downstream reporter gene three- to four-fold. Gene activation, however, was independent of both the E/GRE hairpin of the adapter and ecdysone receptors, suggesting it was due to an intrinsic effect of triplex. Gene activation was dependent on psoralen photo-crosslinking. Gene activation by pso-TFOs in which the psoralen was linked to the TFO via a disulfide bond was similar before and after detachment of the TFO and its release from the triplex. These results indicate that psoralen photo-crosslinks play a prominent role in activation. Gene activation was undiminished in XPA, XPD and XPG human cell lines, indicating that activation was not dependent on the complete nucleotide excision repair (NER) pathway. Collectively, these results demonstrate that TFOs can be used to direct psoralen crosslinks adjacent to a gene as a way of activating gene expression.
Collapse
Affiliation(s)
- Jie Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Filipovska A, Eccles MR, Smith RAJ, Murphy MP. Delivery of antisense peptide nucleic acids (PNAs) to the cytosol by disulphide conjugation to a lipophilic cation. FEBS Lett 2004; 556:180-6. [PMID: 14706847 DOI: 10.1016/s0014-5793(03)01403-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptide nucleic acids (PNAs) are effective antisense reagents that bind specific mRNAs preventing their translation. However, PNAs cannot cross cell membranes, hampering delivery to cells. To overcome this problem we made PNAs membrane-permeant by conjugation to the lipophilic triphenylphosphonium (TPP) cation through a disulphide bond. The TPP cation led to efficient PNA uptake into the cytoplasm where the disulphide bond was reduced, releasing the antisense PNA to block expression of its target gene. This method of directing PNAs into cells is a significant improvement on current procedures and will facilitate in vitro and pharmacological applications of PNAs.
Collapse
Affiliation(s)
- Aleksandra Filipovska
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, CB2 2XY, Cambridge, UK
| | | | | | | |
Collapse
|
45
|
Sun JS, Hélène C. Oligonucleotides and derivatives as gene-specific control agents. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:489-505. [PMID: 14565225 DOI: 10.1081/ncn-120021950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The current achievement of genome sequence projects of a dozen eukaryote organisms (including human genome) and the development of functional genomics are providing the basic knowledge required to utilize gene-specific reagents for both basic understanding of cell physiology and therapeutical development. The field of chemical genomics has the ambitious goal of designing molecules that could act selectively on every single gene or gene product in a cell and in vivo. The progress in oligonucleotide-based approaches will be the topic of this review, however, other nucleic acid- and SELEX-based approaches as well as high sequence-specific low molecular weight DNA-specific ligands will also be discussed.
Collapse
Affiliation(s)
- Jian-Sheng Sun
- Laboratoire de Biophysique, USM0503 Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle, UMR8646 CNRS-MNHN, U565 INSERM, Paris, France.
| | | |
Collapse
|
46
|
Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31:6064-78. [PMID: 14576293 PMCID: PMC275457 DOI: 10.1093/nar/gkg815] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger proteins. These different types of designer molecules with their different principles of engineered sequence specificity are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
47
|
Transcriptional activation of human CREB gene promoter using bis-PNA (peptide nucleic acid). Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-2244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
|
50
|
|