1
|
Cantarella S, Vezzoli M, Carnevali D, Morselli M, Zemke N, Montanini B, Daussy CF, Wodrich H, Teichmann M, Pellegrini M, Berk A, Dieci G, Ferrari R. Adenovirus small E1A directs activation of Alu transcription at YAP/TEAD- and AP-1-bound enhancers through interactions with the EP400 chromatin remodeler. Nucleic Acids Res 2024; 52:9481-9500. [PMID: 39011896 PMCID: PMC11381368 DOI: 10.1093/nar/gkae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Alu retrotransposons, which form the largest family of mobile DNA elements in the human genome, have recently come to attention as a potential source of regulatory novelties, most notably by participating in enhancer function. Even though Alu transcription by RNA polymerase III is subjected to tight epigenetic silencing, their expression has long been known to increase in response to various types of stress, including viral infection. Here we show that, in primary human fibroblasts, adenovirus small e1a triggered derepression of hundreds of individual Alus by promoting TFIIIB recruitment by Alu-bound TFIIIC. Epigenome profiling revealed an e1a-induced decrease of H3K27 acetylation and increase of H3K4 monomethylation at derepressed Alus, making them resemble poised enhancers. The enhancer nature of e1a-targeted Alus was confirmed by the enrichment, in their upstream regions, of the EP300/CBP acetyltransferase, EP400 chromatin remodeler and YAP1 and FOS transcription factors. The physical interaction of e1a with EP400 was critical for Alu derepression, which was abrogated upon EP400 ablation. Our data suggest that e1a targets a subset of enhancer Alus whose transcriptional activation, which requires EP400 and is mediated by the e1a-EP400 interaction, may participate in the manipulation of enhancer activity by adenoviruses.
Collapse
Affiliation(s)
- Simona Cantarella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Davide Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Morselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Nathan R Zemke
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Barbara Montanini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Coralie F Daussy
- Bordeaux University, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Harald Wodrich
- Bordeaux University, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Martin Teichmann
- Bordeaux University, Inserm U 1312, Bordeaux Institute of Oncology, 33076 Bordeaux, France
| | - Matteo Pellegrini
- Department of Molecular Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnold J Berk
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Baar T, Dümcke S, Gressel S, Schwalb B, Dilthey A, Cramer P, Tresch A. RNA transcription and degradation of Alu retrotransposons depends on sequence features and evolutionary history. G3 GENES|GENOMES|GENETICS 2022; 12:6543614. [PMID: 35253846 PMCID: PMC9073682 DOI: 10.1093/g3journal/jkac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Alu elements are one of the most successful groups of RNA retrotransposons and make up 11% of the human genome with over 1 million individual loci. They are linked to genetic defects, increases in sequence diversity, and influence transcriptional activity. Still, their RNA metabolism is poorly understood yet. It is even unclear whether Alu elements are mostly transcribed by RNA Polymerase II or III. We have conducted a transcription shutoff experiment by α-amanitin and metabolic RNA labeling by 4-thiouridine combined with RNA fragmentation (TT-seq) and RNA-seq to shed further light on the origin and life cycle of Alu transcripts. We find that Alu RNAs are more stable than previously thought and seem to originate in part from RNA Polymerase II activity, as previous reports suggest. Their expression however seems to be independent of the transcriptional activity of adjacent genes. Furthermore, we have developed a novel statistical test for detecting the expression of quantitative trait loci in Alu elements that relies on the de Bruijn graph representation of all Alu sequences. It controls for both statistical significance and biological relevance using a tuned k-mer representation, discovering influential sequence features missed by regular motif search. In addition, we discover several point mutations using a generalized linear model, and motifs of interest, which also match transcription factor-binding motifs.
Collapse
Affiliation(s)
- Till Baar
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne 50937, Germany
| | | | - Saskia Gressel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Alexander Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Achim Tresch
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne 50937, Germany
- CECAD, University of Cologne, Cologne 50931, Germany
- Center for Data and Simulation Science, University of Cologne, Cologne 50923, Germany
| |
Collapse
|
3
|
Viswanathan R, Cheruba E, Cheow LF. DNA Analysis by Restriction Enzyme (DARE) enables concurrent genomic and epigenomic characterization of single cells. Nucleic Acids Res 2019; 47:e122. [PMID: 31418018 PMCID: PMC6821369 DOI: 10.1093/nar/gkz717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Genome-wide profiling of copy number alterations and DNA methylation in single cells could enable detailed investigation into the genomic and epigenomic heterogeneity of complex cell populations. However, current methods to do this require complex sample processing and cleanup steps, lack consistency, or are biased in their genomic representation. Here, we describe a novel single-tube enzymatic method, DNA Analysis by Restriction Enzyme (DARE), to perform deterministic whole genome amplification while preserving DNA methylation information. This method was evaluated on low amounts of DNA and single cells, and provides accurate copy number aberration calling and representative DNA methylation measurement across the whole genome. Single-cell DARE is an attractive and scalable approach for concurrent genomic and epigenomic characterization of cells in a heterogeneous population.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117583, Singapore
| | - Elsie Cheruba
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117583, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
4
|
Tang SJ. Potential Role of Phase Separation of Repetitive DNA in Chromosomal Organization. Genes (Basel) 2017; 8:genes8100279. [PMID: 29057826 PMCID: PMC5664129 DOI: 10.3390/genes8100279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023] Open
Abstract
The basic principles of chromosomal organization in eukaryotic cells remain elusive. Current mainstream research efforts largely concentrate on searching for critical packaging proteins involved in organizing chromosomes. I have taken a different perspective, by considering the role of genomic information in chromatins. In particular, I put forward the concept that repetitive DNA elements are key chromosomal packaging modules, and their intrinsic property of homology-based interaction can drive chromatin folding. Many repetitive DNA families have high copy numbers and clustered distribution patterns in the linear genomes. These features may facilitate the interactions among members in the same repeat families. In this paper, the potential liquid–liquid phase transition of repetitive DNAs that is induced by their extensive interaction in chromosomes will be considered. I propose that the interaction among repetitive DNAs may lead to phase separation of interacting repetitive DNAs from bulk chromatins. Phase separation of repetitive DNA may provide a physical mechanism that drives rapid massive changes of chromosomal conformation.
Collapse
Affiliation(s)
- Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
5
|
Tang SJ. The R-Operon: A Model of Repetitive DNA-Organized Transcriptional Compartmentation of Eukaryotic Chromosomes for Coordinated Gene Expression. Genes (Basel) 2016; 7:genes7040016. [PMID: 27110825 PMCID: PMC4846846 DOI: 10.3390/genes7040016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/20/2016] [Accepted: 04/05/2016] [Indexed: 11/29/2022] Open
Abstract
In eukaryotic genomes, it is essential to coordinate the activity of genes that function together to fulfill the same biological processes. Genomic organization likely plays a key role in coordinating transcription of different genes. However, little is known about how co-regulated genes are organized in the cell nucleus and how the chromosomal organization facilitates the co-regulation of different genes. I propose that eukaryotic genomes are organized into repeat assembly (RA)-based structural domains (“R-operons”) in the nuclear space. R-operons result from the interaction of homologous DNA repeats. In an R-operon, genes in different loci of the linear genome are brought into spatial vicinity and co-regulated by the same pool of transcription factors. This type of large-scale chromosomal organization may provide a mechanism for functional compartmentation of chromosomes to facilitate the transcriptional coordination of gene expression.
Collapse
Affiliation(s)
- Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
6
|
Klajic J, Busato F, Edvardsen H, Touleimat N, Fleischer T, Bukholm I, Børresen-Dale AL, Lønning PE, Tost J, Kristensen VN. DNA methylation status of key cell-cycle regulators such as CDKNA2/p16 and CCNA1 correlates with treatment response to doxorubicin and 5-fluorouracil in locally advanced breast tumors. Clin Cancer Res 2014; 20:6357-66. [PMID: 25294903 DOI: 10.1158/1078-0432.ccr-14-0297] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore alterations in gene promoter methylation as a potential cause of acquired drug resistance to doxorubicin or combined treatment with 5-fluorouracil and mitomycin C in human breast cancers. EXPERIMENTAL DESIGN Paired tumor samples from locally advanced breast cancer patients treated with doxorubicin and 5-fluorouracil-mitomycin C were used in the genome-wide DNA methylation analysis as discovery cohort. An enlarged cohort from the same two prospective studies as those in the discovery cohort was used as a validation set in pyrosequencing analysis. RESULTS A total of 469 genes were differentially methylated after treatment with doxorubicin and revealed a significant association with canonical pathways enriched for immune cell response and cell-cycle regulating genes including CDKN2A, CCND2, CCNA1, which were also associated to treatment response. Treatment with FUMI resulted in 343 differentially methylated genes representing canonical pathways such as retinoate biosynthesis, gαi signaling, and LXR/RXR activation. Despite the clearly different genes and pathways involved in the metabolism and therapeutic effect of both drugs, 46 genes were differentially methylated before and after treatment with both doxorubicin and FUMI. DNA methylation profiles in genes such as BRCA1, FOXC1, and IGFBP3, and most notably repetitive elements like ALU and LINE1, were associated with TP53 mutations status. CONCLUSION We identified and validated key cell-cycle regulators differentially methylated before and after neoadjuvant chemotherapy such as CDKN2A and CCNA1 and reported that methylation patterns of these genes may be potential predictive markers to anthracycline/mitomycine sensitivity.
Collapse
Affiliation(s)
- Jovana Klajic
- Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway. K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Hege Edvardsen
- Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway
| | - Nizar Touleimat
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Thomas Fleischer
- K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway
| | - Ida Bukholm
- Department of Surgery, Akerhus University Hospital, Oslo, Norway. Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Anne-Lise Børresen-Dale
- K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway
| | - Per Eystein Lønning
- Section of Oncology, Institute of Clinical Science, University of Bergen, Bergen, Norway. Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Vessela N Kristensen
- Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway. K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway.
| |
Collapse
|
7
|
Berger A, Ivanova E, Gareau C, Scherrer A, Mazroui R, Strub K. Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA. Nucleic Acids Res 2014; 42:11203-17. [PMID: 25200073 PMCID: PMC4176187 DOI: 10.1093/nar/gku822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stress granules (SGs) are formed in response to stress, contain mRNAs, 40S ribosomal subunits, initiation factors, RNA-binding and signaling proteins, and promote cell survival. Our study describes a novel function of the protein heterodimer SRP9/14 and Alu RNA in SG formation and disassembly. In human cells, SRP9/14 exists assembled into SRP, bound to Alu RNA and as a free protein. SRP9/14, but not SRP, localizes to SGs following arsenite or hippuristanol treatment. Depletion of the protein decreases SG size and the number of SG-positive cells. Localization and function of SRP9/14 in SGs depend primarily on its ability to bind directly to the 40S subunit. Binding of SRP9/14 to 40S and Alu RNA is mutually exclusive indicating that the protein alone is bound to 40S in SGs and that Alu RNA might competitively regulate 40S binding. Indeed, by changing the effective Alu RNA concentration in the cell or by expressing an Alu RNA binding-defective protein we were able to influence SG formation and disassembly. Our findings suggest a model in which SRP9/14 binding to 40S promotes SG formation whereas the increase in cytoplasmic Alu RNA following stress promotes disassembly of SGs by disengaging SRP9/14 from 40S.
Collapse
Affiliation(s)
- A Berger
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - E Ivanova
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - C Gareau
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - A Scherrer
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - R Mazroui
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - K Strub
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
8
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
9
|
p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci U S A 2012; 110:E89-98. [PMID: 23236145 DOI: 10.1073/pnas.1216922110] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large parts of mammalian genomes are transcriptionally inactive and enriched with various classes of interspersed and tandem repeats. Here we show that the tumor suppressor protein p53 cooperates with DNA methylation to maintain silencing of a large portion of the mouse genome. Massive transcription of major classes of short, interspersed nuclear elements (SINEs) B1 and B2, both strands of near-centromeric satellite DNAs consisting of tandem repeats, and multiple species of noncoding RNAs was observed in p53-deficient but not in p53 wild-type mouse fibroblasts treated with the DNA demethylating agent 5-aza-2'-deoxycytidine. The abundance of these transcripts exceeded the level of β-actin mRNA by more than 150-fold. Accumulation of these transcripts, which are capable of forming double-stranded RNA (dsRNA), was accompanied by a strong, endogenous, apoptosis-inducing type I IFN response. This phenomenon, which we named "TRAIN" (for "transcription of repeats activates interferon"), was observed in spontaneous tumors in two models of cancer-prone mice, presumably reflecting naturally occurring DNA hypomethylation and p53 inactivation in cancer. These observations suggest that p53 and IFN cooperate to prevent accumulation of cells with activated repeats and provide a plausible explanation for the deregulation of IFN function frequently seen in tumors. Overall, this work reveals roles for p53 and IFN that are key for genetic stability and therefore relevant to both tumorigenesis and the evolution of species.
Collapse
|
10
|
Roy-Engel AM. LINEs, SINEs and other retroelements: do birds of a feather flock together? Front Biosci (Landmark Ed) 2012; 17:1345-61. [PMID: 22201808 DOI: 10.2741/3991] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mobile elements account for almost half of the mass of the human genome. Only the retroelements from the non-LTR (long terminal repeat) retrotransposon family, which include the LINE-1 (L1) and its non-autonomous partners, are currently active and contributing to new insertions. Although these elements seem to share the same basic amplification mechanism, the activity and success of the different types of retroelements varies. For example, Alu-induced mutagenesis is responsible for the majority of the documented instances of human disease induced by insertion of retroelements. Using copy number in mammals as an indicator, some SINEs have been vastly more successful than other retroelements, such as the retropseudogenes and even L1, likely due to differences in post-insertion selection and ability to overcome cellular controls. SINE and LINE integration can be differentially influenced by cellular factors, indicating some differences between in their amplification mechanisms. We focus on the known aspects of this group of retroelements and highlight their similarities and differences that may significantly influence their biological impact.
Collapse
Affiliation(s)
- Astrid M Roy-Engel
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, SL-66 1430 Tulane Ave., New Orleans, LA 70112.
| |
Collapse
|
11
|
Chromatin Organization by Repetitive Elements (CORE): A Genomic Principle for the Higher-Order Structure of Chromosomes. Genes (Basel) 2011; 2:502-15. [PMID: 24710208 PMCID: PMC3927610 DOI: 10.3390/genes2030502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 12/01/2022] Open
Abstract
Eukaryotic genomes contain a large amount of DNA repeats (also known as repetitive DNA, repetitive elements, and repetitive sequences). Here, I propose a role of repetitive DNA in the formation of higher-order structures of chromosomes. The central idea of this theory is that chromatin regions with repetitive sequences pair with regions harboring homologous repeats and that such somatic repeat pairing (RP) assembles repetitive DNA chromatin into compact chromosomal domains that specify chromatin folding in a site-directed manner. According to this theory, DNA repeats are not randomly distributed in the genome. Instead, they form a core framework that coordinates the architecture of chromosomes. In contrast to the viewpoint that DNA repeats are genomic ‘junk’, this theory advocates that repetitive sequences are chromatin organizer modules that determine chromatin-chromatin contact points within chromosomes. This novel concept, if correct, would suggest that DNA repeats in the linear genome encode a blueprint for higher-order chromosomal organization.
Collapse
|
12
|
RNA polymerase III transcription control elements: themes and variations. Gene 2011; 493:185-94. [PMID: 21712079 DOI: 10.1016/j.gene.2011.06.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022]
Abstract
Eukaryotic genomes are punctuated by a multitude of tiny genetic elements, that share the property of being recognized and transcribed by the RNA polymerase (Pol) III machinery to produce a variety of small, abundant non-protein-coding (nc) RNAs (tRNAs, 5S rRNA, U6 snRNA and many others). The highly selective, efficient and localized action of Pol III at its minute genomic targets is made possible by a handful of cis-acting regulatory elements, located within the transcribed region (where they are bound by the multisubunit assembly factor TFIIIC) and/or upstream of the transcription start site. Most of them participate directly or indirectly in the ultimate recruitment of TFIIIB, a key multiprotein initiation factor able to direct, once assembled, multiple transcription cycles by Pol III. But the peculiar efficiency and selectivity of Pol III transcription also depends on its ability to recognize very simple and precisely positioned termination signals. Studies in the last few years have significantly expanded the set of known Pol III-associated loci in genomes and, concomitantly, have revealed unexpected features of Pol III cis-regulatory elements in terms of variety, function, genomic location and potential contribution to transcriptome complexity. Here we review, in a historical perspective, well established and newly acquired knowledge about Pol III transcription control elements, with the aim of providing a useful reference for future studies of the Pol III system, which we anticipate will be numerous and intriguing for years to come.
Collapse
|
13
|
Sensitive measurement of unmethylated repeat DNA sequences by end-specific PCR. Biotechniques 2011; 49:xiii-xvii. [PMID: 20964632 DOI: 10.2144/000113494] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We describe a new method that is well-suited for the determination of the methylation level of repetitive sequences such as human Alu elements. We have applied the method to the analysis of cell and tissue DNAs and expect it to have wide utility in studies of DNA methylation in cancer and other disease states, in monitoring response to epigenetic cancer therapies and in epidemiological studies. Only 1 ng DNA is needed for a duplex, one-tube real-time PCR in which methylation level and the amount of input DNA are concurrently measured. The relative cutting by the methylation-sensitive enzyme BstUI is compared with that of the methylation-insensitive enzyme DraI to give a measure of DNA methylation. The method depends upon the use of 5'-tailed, 3'-blocked oligonucleotides called facilitator oligonucleotides (Foligos). Only cut DNAs with specific matching sequences at their 3' ends can copy the tails of the Foligos and thus become tagged and available for subsequent PCR. Both the tagging and PCR are carried out by the same enzyme, Taq DNA polymerase. Because amplification only occurs if suitable ends have been generated in the target DNA, we have called this method end-specific PCR (ESPCR). ESPCR avoids the bisulfite treatment step that is usually required to measure methylation.
Collapse
|
14
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
15
|
Banzon V, Ibanez V, Vaitkus K, Ruiz MA, Peterson K, DeSimone J, Lavelle D. siDNMT1 increases γ-globin expression in chemical inducer of dimerization (CID)-dependent mouse βYAC bone marrow cells and in baboon erythroid progenitor cell cultures. Exp Hematol 2010; 39:26-36.e1. [PMID: 20974210 DOI: 10.1016/j.exphem.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/24/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023]
Abstract
OBJECTIVE These studies were performed to test the hypothesis that DNMT1 is required for maintenance of DNA methylation and repression of the γ-globin gene in adult-stage erythroid cells. MATERIALS AND METHODS DNMT1 levels were reduced by nucleofection of small interfering RNA targeting DNMT1 in chemical inducer of dimerization-dependent multipotential mouse bone marrow cells containing the human β-globin gene locus in the context of a yeast artificial chromosome and in primary cultures of erythroid progenitor cells derived from CD34(+) baboon bone marrow cells. The effect of reduced DNMT1 levels on globin gene expression was measured by real-time polymerase chain reaction and the effect on globin chain synthesis in primary erythroid progenitor cell cultures was determined by biosynthetic radiolabeling of globin chains followed by high-performance liquid chromatography analysis. The effect on DNA methylation was determined by bisulfite sequence analysis. RESULTS Reduced DNMT1 levels in cells treated with siDNMT1 were associated with increased expression of γ-globin messenger RNA, an increased γ/γ+β chain ratio in cultured erythroid progenitors, and decreased DNA methylation of the γ-globin promoter. Similar effects were observed in cells treated with decitabine, a pharmacological inhibitor of DNA methyltransferase inhibitor. CONCLUSIONS DNMT1 is required to maintain DNA methylation of the γ-globin gene promoter and repress γ-globin gene expression in adult-stage erythroid cells.
Collapse
Affiliation(s)
- Virryan Banzon
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Gu TJ, Yi X, Zhao XW, Zhao Y, Yin JQ. Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 2009; 10:563. [PMID: 19943974 PMCID: PMC3087558 DOI: 10.1186/1471-2164-10-563] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/30/2009] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Despite many studies on the biogenesis, molecular structure and biological functions of microRNAs, little is known about the transcriptional regulatory mechanisms controlling the spatiotemporal expression pattern of human miRNA gene loci. Several lines of experimental results have indicated that both polymerase II (Pol-II) and polymerase III (Pol-III) may be involved in transcribing miRNAs. Here, we assessed the genomic evidence for Alu-directed transcriptional regulation of some novel miRNA genes in humans. Our data demonstrate that the expression of these Alu-related miRNAs may be modulated by Pol-III. RESULTS We present a comprehensive exploration of the Alu-directed transcriptional regulation of some new miRNAs. Using a new computational approach, a variety of Alu-related sequences from multiple sources were pooled and filtered to obtain a subset containing Alu elements and characterized miRNA genes for which there is clear evidence of full-length transcription (embedded in EST). We systematically demonstrated that 73 miRNAs including five known ones may be transcribed by Pol-III through Alu or MIR. Among the new miRNAs, 33 were determined by high-throughput Solexa sequencing. Real-time TaqMan PCR and Northern blotting verified that three newly identified miRNAs could be induced to co-express with their upstream Alu transcripts by heat shock or cycloheximide. CONCLUSION Through genomic analysis, Solexa sequencing and experimental validation, we have identified candidate sequences for Alu-related miRNAs, and have found that the transcription of these miRNAs could be governed by Pol-III. Thus, this study may elucidate the mechanisms by which the expression of a class of small RNAs may be regulated by their upstream repeat elements.
Collapse
Affiliation(s)
- Tong J Gu
- National Laboratory of Biomacromolecules, Center for Computing and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, PR China.
| | | | | | | | | |
Collapse
|
17
|
Bortolin-Cavaillé ML, Dance M, Weber M, Cavaillé J. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 2009; 37:3464-73. [PMID: 19339516 PMCID: PMC2691840 DOI: 10.1093/nar/gkp205] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are tiny RNA molecules that play important regulatory roles in a broad range of developmental, physiological or pathological processes. Despite recent progress in our understanding of miRNA processing and biological functions, little is known about the regulatory mechanisms that control their expression at the transcriptional level. C19MC is the largest human microRNA gene cluster discovered to date. This 100-kb long cluster consists of 46 tandemly repeated, primate-specific pre-miRNA genes that are flanked by Alu elements (Alus) and embedded within a ∼400- to 700-nt long repeated unit. It has been proposed that C19MC miRNA genes are transcribed by RNA polymerase III (Pol-III) initiating from A and B boxes embedded in upstream Alu repeats. Here, we show that C19MC miRNAs are intron-encoded and processed by the DGCR8-Drosha (Microprocessor) complex from a previously unidentified, non-protein-coding Pol-II (and not Pol-III) transcript which is mainly, if not exclusively, expressed in the placenta.
Collapse
Affiliation(s)
- Marie-Line Bortolin-Cavaillé
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote and CNRS, LBME, F-31000 Toulouse, France
| | | | | | | |
Collapse
|
18
|
Nikitina TV, Tishchenko LI. Expression of short interspersed elements and genes transcribed by RNA polymerase III in the regulation of cell processes. Mol Biol 2008. [DOI: 10.1134/s0026893308040018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Lerat E, Sémon M. Influence of the transposable element neighborhood on human gene expression in normal and tumor tissues. Gene 2007; 396:303-11. [PMID: 17490832 DOI: 10.1016/j.gene.2007.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/16/2007] [Accepted: 04/02/2007] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are genomic sequences able to replicate themselves, and to move from one chromosomal position to another within the genome. Many TEs contain their own regulatory regions, which means that they may influence the expression of neighboring genes. TEs may also be activated and transcribed in various cancers. We therefore tested whether gene expression in normal and tumor tissues is influenced by the neighboring TEs. To do this, we associated all human genes to the nearest TEs. We analyzed the expression of these genes in normal and tumor tissues using SAGE and EST data, and related this to the presence and type of TEs in their vicinity. We confirmed that TEs tend to be located in antisense orientation relative to their hosting genes. We found that the average number of tissues where a gene is expressed varies depending on the type of TEs located near the gene, and that the difference in expression level between normal and tumor tissues is greatest for genes that host SINE elements. This deregulation increases with the number of SINE copies in the gene vicinity. This suggests that SINE elements might contribute to the cascade of gene deregulation in cancer cells.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918, Villeurbanne F-69622, France.
| | | |
Collapse
|
20
|
Hagan CR, Rudin CM. DNA cleavage and Trp53 differentially affect SINE transcription. Genes Chromosomes Cancer 2007; 46:248-60. [PMID: 17171681 PMCID: PMC3715058 DOI: 10.1002/gcc.20406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Among the cellular responses observed following treatment with DNA-damaging agents is the activation of Short Interspersed Elements (SINEs; retrotransposable genetic elements that comprise over 10% of the human genome). By placing a human SINE (the Alu element) into murine cells, we have previously shown that DNA-damaging agents such as etoposide can induce both upregulation of SINE transcript levels and SINE retrotransposition. A similarly cytotoxic (but not genotoxic) exposure to vincristine was not associated with SINE activation. Here we demonstrate that multiple other genotoxic exposures are associated with upregulation of SINE transcript levels. By comparing the effects of similarly cytotoxic doses of the topoisomerase II inhibitors etoposide and merbarone, we confirm that DNA strand breakage is specifically associated with SINE induction. By evaluating transcription rate and RNA stability, we demonstrate that SINE induction by genotoxic exposure is associated with transcriptional induction and not with transcript stabilization. Finally we demonstrate that SINE induction by genotoxic stress is mediated by a Trp53-independent pathway, and in fact that Trp53 plays an inhibitory role in attenuating the transcriptional induction of SINE elements following exposure to a genotoxic agent. Together these data support a model in which initial DNA damage can trigger genomic instability due to SINE activation, a response which may be amplified in cancer cells lacking functional TP53.
Collapse
Affiliation(s)
- Christy R. Hagan
- Committee on Cancer Biology and Department of Medicine, University of Chicago, Chicago, IL
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Charles M. Rudin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
- Correspondence to: Charles M. Rudin, M.D., Ph.D., Associate Professor of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Cancer Research Building II, Rm. 544, 1550 Orleans Street, Baltimore, MD 21231-1000.
| |
Collapse
|
21
|
Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution. BMC Genomics 2007; 8:23. [PMID: 17239240 PMCID: PMC1785376 DOI: 10.1186/1471-2164-8-23] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 01/19/2007] [Indexed: 11/11/2022] Open
Abstract
Background Nuclear receptors are hormone-regulated transcription factors whose signaling controls numerous aspects of development and physiology. Many receptors recognize DNA hormone response elements formed by direct repeats of RGKTCA motifs separated by 1 to 5 bp (DR1-DR5). Although many known such response elements are conserved in the mouse and human genomes, it is unclear to which extent transcriptional regulation by nuclear receptors has evolved specifically in primates. Results We have mapped the positions of all consensus DR-type hormone response elements in the human genome, and found that DR2 motifs, recognized by retinoic acid receptors (RARs), are heavily overrepresented (108,582 elements). 90% of these are present in Alu repeats, which also contain lesser numbers of other consensus DRs, including 50% of consensus DR4 motifs. Few DR2s are in potentially mobile AluY elements and the vast majority are also present in chimp and macaque. 95.5% of Alu-DR2s are distributed throughout subclasses of AluS repeats, and arose largely through deamination of a methylated CpG dinucleotide in a non-consensus motif present in AluS sequences. We find that Alu-DR2 motifs are located adjacent to numerous known retinoic acid target genes, and show by chromatin immunoprecipitation assays in squamous carcinoma cells that several of these elements recruit RARs in vivo. These findings are supported by ChIP-on-chip data from retinoic acid-treated HL60 cells revealing RAR binding to several Alu-DR2 motifs. Conclusion These data provide strong support for the notion that Alu-mediated expansion of DR elements contributed to the evolution of gene regulation by RARs and other nuclear receptors in primates and humans.
Collapse
|
22
|
Esnault C, Millet J, Schwartz O, Heidmann T. Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res 2006; 34:1522-31. [PMID: 16537839 PMCID: PMC1401513 DOI: 10.1093/nar/gkl054] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We demonstrated previously that the cytosine deaminase APOBEC3G inhibits retrotransposition of two active murine endogenous retroviruses, namely intracisternal A-particles (IAP) and MusD, in an ex vivo assay where retrotransposition was monitored by selection of neo-marked elements. Sequencing of the transposed copies further disclosed extensive editing, resulting in a high load of G-to-A mutations. Here, we asked whether this G-to-A editing was associated with an impact of APOBEC3G on viral cDNA yields. To this end, we used a specially designed quantitative PCR method to selectively measure the copy number of transposed retroelements, in the absence of G418 selection. We show that human APOBEC3G severely reduces the number of MusD and IAP transposed cDNA copies, with no effect on the level of the intermediate RNA transcripts. The magnitude of the decrease closely parallels that observed when transposed copies are assayed by selection of G418-resistant cells. Moreover, sequencing of transposed elements recovered by PCR without prior selection of the cells reveals high-level editing. Using this direct method with a series of cytosine deaminases, we further demonstrate a similar dual effect of African green monkey APOBE3G, human APOBEC3F and murine APOBEC3 on MusD retrotransposition, with a distinct extent and site specificity for each editing activity. Altogether the data demonstrate that cytosine deaminases have a protective effect against endogenous retroviruses both by reducing viral cDNA levels and by introducing mutations in the transposed copies, thus inactivating them for subsequent rounds of retrotransposition. This dual, two-step effect likely participates in the efficient defense of the cell genome against invading endogenous retroelements.
Collapse
Affiliation(s)
| | | | - Olivier Schwartz
- Department of Virology, Virus and Immunity Group, Institut Pasteur, CNRS URA 193075015 Paris, France
| | - Thierry Heidmann
- To whom correspondence should be addressed. Tel: +33 1 42 11 49 70; Fax: +33 1 42 11 53 42;
| |
Collapse
|
23
|
Gasior SL, Palmisano M, Deininger PL. Alu-linked hairpins efficiently mediate RNA interference with less toxicity than do H1-expressed short hairpin RNAs. Anal Biochem 2005; 349:41-8. [PMID: 16359634 DOI: 10.1016/j.ab.2005.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/18/2005] [Accepted: 11/01/2005] [Indexed: 12/22/2022]
Abstract
RNA interference has become a powerful tool for specific inhibition of gene expression in mammalian cells. Expression constructs allow for the long-term delivery of short interfering RNAs, usually through the expression of Pol III-transcribed hairpins. In some instances, these expression systems have been shown to have side effects, including induction of the interferon response and cytotoxicity. Here we demonstrate that H1-expressed hairpins, as well as the cloning vector, reduce the plating efficiency of HeLa cells. This toxicity is abrogated by coexpression of the hairpin in the same transcript as a human Alu repetitive element. These Alu-linked hairpins retain the ability to knock down expression of target mRNAs. This modification, which we term SINE (short interspersed repetitive element)-enhanced short hairpin RNA, provides an alternative expression system for hairpins with reduced side effects.
Collapse
Affiliation(s)
- Stephen L Gasior
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
24
|
Srivastava T, Seth A, Datta K, Chosdol K, Chattopadhyay P, Sinha S. Inter-alu PCR detects high frequency of genetic alterations in glioma cells exposed to sub-lethal cisplatin. Int J Cancer 2005; 117:683-9. [PMID: 15912534 DOI: 10.1002/ijc.21057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased genomic instability contributes to higher frequency of secondary drug resistance and neoplastic progression in tumors as well as in cells exposed to sub-lethal concentrations of chemotherapeutic agents. We have used PCR based DNA fingerprinting techniques of randomly amplified polymorphic DNA (RAPD) and inter-alu PCR to study this phenomenon in the tumor genome. The choice of the primer, either random (for RAPD) or specific (inter-alu PCR) can determine the nature of alterations being assessed. We have compared the inter-alu PCR and RAPD profiles of U87MG glioblastoma cells exposed to sequentially increasing low doses of cisplatin for 24 passages to that of untreated controls. Inter-alu PCR, with 2 primers, demonstrated a number of alterations in the treated cells, in the form of loss / gain and changes in the intensity of bands. No changes were observed by RAPD analysis with 5 primers, however, indicating a preferential increase in the alu mediated recombination frequency in the treated cells (p = 1.866 x 10(-4)). The number of changes observed with respect to the corresponding leucocyte DNA in the inter-alu PCR profile of 26 primary tumors (Grade II = 13; Grade IV = 13), resected before chemotherapy, for the 2 inter-alu primers was very small. We present a novel application of the inter-alu PCR in detecting alterations in long term cultured cells at low dose exposure to a chemotherapeutic agent. Our results suggest that alu mediated recombination may be important in cells exposed to sub-lethal doses of cisplatin but not in the genesis of primary glioma.
Collapse
Affiliation(s)
- Tapasya Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi
| | | | | | | | | | | |
Collapse
|
25
|
Brooks WH. Autoimmune disorders result from loss of epigenetic control following chromosome damage. Med Hypotheses 2005; 64:590-8. [PMID: 15617874 DOI: 10.1016/j.mehy.2004.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 08/05/2004] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis share common features in typical cases such as: adult onset, central nervous system problems, female predominance, episodes triggered by a variety of stresses, and an autoimmune reaction. At times, the different disorders are found in the same patient or close relatives. These disorders are quite complex but they may share a common mechanism that results in different, tissue-specific consequences based on the cell types in which the mechanism occurs. Here, it is hypothesized that DNA damage can lead to loss of epigenetic control, particularly when the damaged chromatin is distributed unevenly to daughter cells. Expression of genes and pseudogenes that have lost their epigenetic restraints can lead to autoimmune disorders. Loss of control of genes on the X chromosome and loss of control of polyamine expression are discussed as examples of this mechanism.
Collapse
Affiliation(s)
- Wesley H Brooks
- Drug Discovery Program, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
26
|
Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong Y, Park-Sarge OK, Sarge KD. Mechanism of hsp70i gene bookmarking. Science 2005; 307:421-3. [PMID: 15662014 DOI: 10.1126/science.1106478] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In contrast to most genomic DNA in mitotic cells, the promoter regions of some genes, such as the stress-inducible hsp70i gene that codes for a heat shock protein, remain uncompacted, a phenomenon called bookmarking. Here we show that hsp70i bookmarking is mediated by a transcription factor called HSF2, which binds this promoter in mitotic cells, recruits protein phosphatase 2A, and interacts with the CAP-G subunit of the condensin enzyme to promote efficient dephosphorylation and inactivation of condensin complexes in the vicinity, thereby preventing compaction at this site. Blocking HSF2-mediated bookmarking by HSF2 RNA interference decreases hsp70i induction and survival of stressed cells in the G1 phase, which demonstrates the biological importance of gene bookmarking.
Collapse
Affiliation(s)
- Hongyan Xing
- Department of Molecular and Cellular Biochemistry, Chandler Medical Center, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vinogradov AE. Genome size and chromatin condensation in vertebrates. Chromosoma 2005; 113:362-9. [PMID: 15647899 DOI: 10.1007/s00412-004-0323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/05/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
Cell membrane-dependent chromatin condensation was studied by flow cytometry in erythrocytes of 36 species from six classes of vertebrates. A positive relationship was found between the degree of condensation and genome size. The distribution of variances among taxonomic levels is similar for both parameters. However, chromatin condensation varied relatively more at the lower taxonomic levels, which suggests that the degree of DNA packaging might serve for fine-tuning the 'skeletal' and/or 'buffering' function of noncoding DNA (although the range of this fine-tuning is smaller than the range of genome size changes). For two closely related amphibian species differing in genome size, change in chromatin condensation under the action of elevated extracellular salinity was investigated. Condensation was steadier and its reaction to changes in solvent composition was more inertial in the species with a larger genome, which is in agreement with the buffering function postulated for redundant DNA. The uppermost genome size in vertebrates (and in living beings in general) was updated using flow cytometry and was found to be about 80 pg (78,400 Mb). The widespread opinion that the largest genome occurs in unicellular organisms is rejected as being based on artifacts.
Collapse
Affiliation(s)
- Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
28
|
Pélissier T, Bousquet-Antonelli C, Lavie L, Deragon JM. Synthesis and processing of tRNA-related SINE transcripts in Arabidopsis thaliana. Nucleic Acids Res 2004; 32:3957-66. [PMID: 15282328 PMCID: PMC506818 DOI: 10.1093/nar/gkh738] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the ubiquitous distribution of tRNA-related short interspersed elements (SINEs) in eukaryotic species, very little is known about the synthesis and processing of their RNAs. In this work, we have characterized in detail the different RNA populations resulting from the expression of a tRNA-related SINE S1 founder copy in Arabidopsis thaliana. The main population is composed of poly(A)-ending (pa) SINE RNAs, while two minor populations correspond to full-length (fl) or poly(A) minus [small cytoplasmic (sc)] SINE RNAs. Part of the poly(A) minus RNAs is modified by 3'-terminal addition of C or CA nucleotides. All three RNA populations accumulate in the cytoplasm. Using a mutagenesis approach, we show that the poly(A) region and the 3' end unique region, present at the founder locus, are both important for the maturation and the steady-state accumulation of the different S1 RNA populations. The observation that primary SINE transcripts can be post-transcriptionally processed in vivo into a poly(A)-ending species introduces the possibility that this paRNA is used as a retroposition intermediate.
Collapse
MESH Headings
- 3' Untranslated Regions
- Arabidopsis/genetics
- Base Sequence
- Cytoplasm/metabolism
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Polyadenylation
- RNA Processing, Post-Transcriptional
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Short Interspersed Nucleotide Elements
- Transcription, Genetic
Collapse
Affiliation(s)
- Thierry Pélissier
- CNRS UMR 6547 BIOMOVE and GDR 2157, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
29
|
Abstract
The effect that different regions of the Alu consensus sequence have upon the stability and accumulation of its RNA polymerase III (Pol III) directed transcripts was determined by transiently overexpressing Alu deletion and chimeric constructs in human 293 cells. Transcripts of the left Alu monomer are more stable than those of the full-length consensus sequence and any additional 3' sequence beyond the left monomer destabilizes the resulting transcript. Neither the middle A-rich region nor the 3' A-rich tail specifically affect the stability of Alu transcripts. However, the right monomer is inherently less stable than corresponding left monomer transcripts. Alu's dimeric structure and sequences peculiar to the right monomer each limit the stability and steady state accumulation of its transcripts. A host requirement to rapidly metabolize Alu RNA or restrict its abundance may have selected for these two features of the Alu consensus sequence.
Collapse
Affiliation(s)
- Tzu Huey Li
- Departments of Surgery and Genetics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
30
|
Brooks WH. Systemic lupus erythematosus and related autoimmune diseases are antigen-driven, epigenetic diseases. Med Hypotheses 2002; 59:736-41. [PMID: 12445518 DOI: 10.1016/s0306-9877(02)00322-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autoimmune diseases result when cellular stresses (ex UV, cell cycle, hormones, viruses, and/or drugs) induce altered expression of polyamines, leading to chromatin disruption, interference with chromatin methylation, exposure of sequestered genes, and interference with tissue-specific processes. Exposure of previously sequestered Alu and LINE-1 sequences can lead to reverse transcription of Alu-RNA (and other transcripts) by the LINE-1 reverse transcriptase, yielding autoantigenic, hypomethylated DNA fragments. Release from the cell of the hypomethylated DNA fragments, along with polyamine-associated nucleoprotein complexes formed with the fragments, would elicit the autoimmune response. Loss of gene control due to hypomethylation and chromatin disruption by polyamines or other factors can include loss of dosage compensation from the inactive X chromosome for spermine synthase and spermidine/spermine N(1)-acetyltransferase at Xp22.1. This leads to ongoing altered polyamine levels. Thus, autoimmune diseases result from epigenetic changes that lead to autoantigen generation.
Collapse
Affiliation(s)
- Wesley H Brooks
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida 32610, USA.
| |
Collapse
|
31
|
Abstract
During heat shock recovery in Hela cells, the level of Alu RNA transiently increases with kinetics that approximately parallel the transient expression of heat shock protein mRNAs. Coincidentally, there is a transient increase in the accessibility of Alu chromatin to restriction enzyme cleavage suggesting that an opening and re-closing of chromatin regulates the Alu stress response. Similar changes occur in alpha satellite and LINE1 chromatin showing that heat shock induces a genome-wide remodeling of chromatin structure which is independent of transcription. The increased accessibility of restriction sites within these repetitive sequences is inconsistent with a simple lengthening of the nucleosome linker region but instead suggests a scrambling of nucleosome positions. Chromatin structure and its dynamics account for many of the principal features of SINE transcriptional regulation potentially providing a functional rationale for the dispersion and high copy number of SINEs.
Collapse
Affiliation(s)
- C Kim
- Department of Chemistry, University of California, Davis, CA 95616-8535, USA
| | | | | |
Collapse
|
32
|
Li TH, Schmid CW. Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 2001; 276:135-41. [PMID: 11591480 DOI: 10.1016/s0378-1119(01)00637-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
While human Alu repeats can be considered to be members of an extremely large, globally regulated, multigene family, each member of this family resides within a different sequence context that might uniquely modulate its transcription. Unique 3' flanking sequences for several transcriptionally active human Alu elements were identified by cDNA cloning and used for primer extension analysis to compare the basal and stress-induced expression of the corresponding Alu loci. Each of six Alu loci investigated exhibits a unique pattern of expression in three different human cell lines and in response to stress induction. The sequence context surrounding each Alu member uniquely determines its transcriptional regulation. In many cases, the individual Alu loci and total Alu RNA exhibit opposing patterns of expression implying that local rather than global regulation ultimately determines the expression of individual members. Some of the stresses, which induce Alu transcription, increase co-expression of LINE1 RNA, another requirement for Alu retrotransposition.
Collapse
Affiliation(s)
- T H Li
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8535, USA
| | | |
Collapse
|
33
|
Kimura RH, Choudary PV, Stone KK, Schmid CW. Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes. Cell Stress Chaperones 2001; 6:263-72. [PMID: 11599568 PMCID: PMC434408 DOI: 10.1379/1466-1268(2001)006<0263:siobri>2.0.co;2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study surveys the induction of RNA polymerase III (Pol III)-directed expression of short interspersed element (SINE) transcripts by various stresses in an animal model, silkworm larvae. Sublethal heat shock and exposure to several toxic compounds increase the level of Bm1 RNA, the silkworm SINE transcript, while also transiently increasing expression of a well-characterized stress-induced transcript, Hsp70 messenger RNA (mRNA). In certain cases, the Bm1 RNA response coincides with that of Hsp70 mRNA, but more often Bm1 RNA responds later in recovery. Baculovirus infection and exposure to certain toxic compounds increase Bm1 RNA but not Hsp70 mRNA, showing that SINE induction is not necessarily coupled to transcription of this particular heat shock gene. SINEs behave as an additional class of stress-inducible genes in living animals but are unusual as stress genes because of their high copy number, genomic dispersion, and Pol III-directed transcription.
Collapse
Affiliation(s)
- R H Kimura
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|