1
|
Lindahl L. Ribosome Structural Changes Dynamically Affect Ribosome Function. Int J Mol Sci 2024; 25:11186. [PMID: 39456968 PMCID: PMC11508205 DOI: 10.3390/ijms252011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Ribosomes were known to be multicomponent complexes as early as the 1960s. Nonetheless, the prevailing view for decades considered active ribosomes to be a monolithic population, in which all ribosomes are identical in composition and function. This implied that ribosomes themselves did not actively contribute to the regulation of protein synthesis. In this perspective, I review evidence for a different model, based on results showing that ribosomes can harbor different types of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins) and, furthermore, need not contain a complete set of r-proteins. I also summarize recent results favoring the notion that such distinct types of ribosomes have different affinities for specific messenger RNAs and may execute the translation process differently. Thus, ribosomes should be considered active contributors to the regulation of protein synthesis.
Collapse
Affiliation(s)
- Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
2
|
D'Alfonso A, Micheli G, Camilloni G. rDNA transcription, replication and stability in Saccharomyces cerevisiae. Semin Cell Dev Biol 2024; 159-160:1-9. [PMID: 38244478 DOI: 10.1016/j.semcdb.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The ribosomal DNA locus (rDNA) is central for the functioning of cells because it encodes ribosomal RNAs, key components of ribosomes, and also because of its links to fundamental metabolic processes, with significant impact on genome integrity and aging. The repetitive nature of the rDNA gene units forces the locus to maintain sequence homogeneity through recombination processes that are closely related to genomic stability. The co-presence of basic DNA transactions, such as replication, transcription by major RNA polymerases, and recombination, in a defined and restricted area of the genome is of particular relevance as it affects the stability of the rDNA locus by both direct and indirect mechanisms. This condition is well exemplified by the rDNA of Saccharomyces cerevisiae. In this review we summarize essential knowledge on how the complexity and overlap of different processes contribute to the control of rDNA and genomic stability in this model organism.
Collapse
Affiliation(s)
- Anna D'Alfonso
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università degli studi di Roma, Sapienza, Rome, Italy.
| |
Collapse
|
3
|
Belkevich AE, Pascual HG, Fakhouri AM, Ball DG, Knutson BA. Distinct Interaction Modes for the Eukaryotic RNA Polymerase Alpha-like Subunits. Mol Cell Biol 2023; 43:269-282. [PMID: 37222571 PMCID: PMC10251799 DOI: 10.1080/10985549.2023.2210023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Eukaryotic DNA-dependent RNA polymerases (Pols I-III) encode two distinct alpha-like heterodimers where one is shared between Pols I and III, and the other is unique to Pol II. Human alpha-like subunit mutations are associated with several diseases including Treacher Collins Syndrome (TCS), 4H leukodystrophy, and primary ovarian sufficiency. Yeast is commonly used to model human disease mutations, yet it remains unclear whether the alpha-like subunit interactions are functionally similar between yeast and human homologs. To examine this, we mutated several regions of the yeast and human small alpha-like subunits and used biochemical and genetic assays to establish the regions and residues required for heterodimerization with their corresponding large alpha-like subunits. Here we show that different regions of the small alpha-like subunits serve differential roles in heterodimerization, in a polymerase- and species-specific manner. We found that the small human alpha-like subunits are more sensitive to mutations, including a "humanized" yeast that we used to characterize the molecular consequence of the TCS-causingPOLR1D G52E mutation. These findings help explain why some alpha subunit associated disease mutations have little to no effect when made in their yeast orthologs and offer a better yeast model to assess the molecular basis of POLR1D associated disease mutations.
Collapse
Affiliation(s)
- Alana E. Belkevich
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Haleigh G. Pascual
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Aula M. Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David G. Ball
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
4
|
Sultanov D, Hochwagen A. Varying strength of selection contributes to the intragenomic diversity of rRNA genes. Nat Commun 2022; 13:7245. [PMID: 36434003 PMCID: PMC9700816 DOI: 10.1038/s41467-022-34989-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Ribosome biogenesis in eukaryotes is supported by hundreds of ribosomal RNA (rRNA) gene copies that are encoded in the ribosomal DNA (rDNA). The multiple copies of rRNA genes are thought to have low sequence diversity within one species. Here, we present species-wide rDNA sequence analysis in Saccharomyces cerevisiae that challenges this view. We show that rDNA copies in this yeast are heterogeneous, both among and within isolates, and that many variants avoided fixation or elimination over evolutionary time. The sequence diversity landscape across the rDNA shows clear functional stratification, suggesting different copy-number thresholds for selection that contribute to rDNA diversity. Notably, nucleotide variants in the most conserved rDNA regions are sufficiently deleterious to exhibit signatures of purifying selection even when present in only a small fraction of rRNA gene copies. Our results portray a complex evolutionary landscape that shapes rDNA sequence diversity within a single species and reveal unexpectedly strong purifying selection of multi-copy genes.
Collapse
Affiliation(s)
- Daniel Sultanov
- grid.137628.90000 0004 1936 8753Department of Biology, New York University, New York, NY 10003 USA
| | - Andreas Hochwagen
- grid.137628.90000 0004 1936 8753Department of Biology, New York University, New York, NY 10003 USA
| |
Collapse
|
5
|
Ding Q, Li R, Ren X, Chan LY, Ho VWS, Xie D, Ye P, Zhao Z. Genomic architecture of 5S rDNA cluster and its variations within and between species. BMC Genomics 2022; 23:238. [PMID: 35346033 PMCID: PMC8961926 DOI: 10.1186/s12864-022-08476-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal DNAs (rDNAs) are arranged in purely tandem repeats, preventing them from being reliably assembled onto chromosomes during generation of genome assembly. The uncertainty of rDNA genomic structure presents a significant barrier for studying their function and evolution. RESULTS Here we generate ultra-long Oxford Nanopore Technologies (ONT) and short NGS reads to delineate the architecture and variation of the 5S rDNA cluster in the different strains of C. elegans and C. briggsae. We classify the individual rDNA's repeating units into 25 types based on the unique sequence variations in each unit of C. elegans (N2). We next perform assembly of the cluster by taking advantage of the long reads that carry these units, which led to an assembly of 5S rDNA cluster consisting of up to 167 consecutive 5S rDNA units in the N2 strain. The ordering and copy number of various rDNA units are consistent with the separation time between strains. Surprisingly, we observed a drastically reduced level of variation in the unit composition in the 5S rDNA cluster in the C. elegans CB4856 and C. briggsae AF16 strains than in the C. elegans N2 strain, suggesting that N2, a widely used reference strain, is likely to be defective in maintaining the 5S rDNA cluster stability compared with other wild isolates of C. elegans or C. briggsae. CONCLUSIONS The results demonstrate that Nanopore DNA sequencing reads are capable of generating assembly of highly repetitive sequences, and rDNA units are highly dynamic both within and between population(s) of the same species in terms of sequence and copy number. The detailed structure and variation of the 5S rDNA units within the rDNA cluster pave the way for functional and evolutionary studies.
Collapse
Affiliation(s)
- Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Vincy W S Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
6
|
Jaafar M, Contreras J, Dominique C, Martín-Villanueva S, Capeyrou R, Vitali P, Rodríguez-Galán O, Velasco C, Humbert O, Watkins NJ, Villalobo E, Bohnsack KE, Bohnsack MT, Henry Y, Merhi RA, de la Cruz J, Henras AK. Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. Nat Commun 2021; 12:6153. [PMID: 34686656 PMCID: PMC8536666 DOI: 10.1038/s41467-021-26207-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit. The molecular events underlying the assembly and maturation of the early pre-60S particles during eukaryotic ribosome synthesis are not well understood. Here, the authors combine yeast genetics and biochemical experiments to characterise the functions of two important players of eukaryotic ribosome biogenesis, the box C/D snoRNP snR190 and the helicase Dbp7, which both interact. They show that the snR190 snoRNA acts as a RNA chaperone that assists the structuring of the 25S rRNA during the maturation of early pre-60S particles and that Dbp7 is important for facilitating remodeling events in the peptidyl transferase center region of the 25S rRNAs during the maturation of early pre-60S particles.
Collapse
Affiliation(s)
- Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon.,Cancer Research Center of Lyon (CRCL), 69 008, Lyon, France
| | - Julia Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Patrice Vitali
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carmen Velasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077, Göttingen, Germany
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
7
|
Wang X, Yue Z, Xu F, Wang S, Hu X, Dai J, Zhao G. Coevolution of ribosomal RNA expansion segment 7L and assembly factor Noc2p specializes the ribosome biogenesis pathway between Saccharomyces cerevisiae and Candida albicans. Nucleic Acids Res 2021; 49:4655-4667. [PMID: 33823547 PMCID: PMC8096215 DOI: 10.1093/nar/gkab218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/01/2021] [Accepted: 03/20/2021] [Indexed: 01/20/2023] Open
Abstract
Ribosomes of different species share an evolutionarily conserved core, exhibiting flexible shells formed partially by the addition of species-specific ribosomal RNAs (rRNAs) with largely unexplored functions. In this study, we showed that by swapping the Saccharomyces cerevisiae 25S rRNA genes with non-S. cerevisiae homologs, species-specific rRNA variations caused moderate to severe pre-rRNA processing defects. Specifically, rRNA substitution by the Candida albicans caused severe growth defects and deficient pre-rRNA processing. We observed that such defects could be attributed primarily to variations in expansion segment 7L (ES7L) and could be restored by an assembly factor Noc2p mutant (Noc2p-K384R). We showed that swapping ES7L attenuated the incorporation of Noc2p and other proteins (Erb1p, Rrp1p, Rpl6p and Rpl7p) into pre-ribosomes, and this effect could be compensated for by Noc2p-K384R. Furthermore, replacement of Noc2p with ortholog from C. albicans could also enhance the incorporation of Noc2p and the above proteins into pre-ribosomes and consequently restore normal growth. Taken together, our findings help to elucidate the roles played by the species-specific rRNA variations in ribosomal biogenesis and further provide evidence that coevolution of rRNA expansion segments and cognate assembly factors specialized the ribosome biogenesis pathway, providing further insights into the function and evolution of ribosome.
Collapse
Affiliation(s)
- Xiangxiang Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhiyong Yue
- School of Medicine, Xi'an International University, Xi'an 710077, China
| | - Feifei Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xin Hu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanghou Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
8
|
Context-specific action of macrolide antibiotics on the eukaryotic ribosome. Nat Commun 2021; 12:2803. [PMID: 33990576 PMCID: PMC8121947 DOI: 10.1038/s41467-021-23068-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.
Collapse
|
9
|
Leppek K, Byeon GW, Fujii K, Barna M. VELCRO-IP RNA-seq reveals ribosome expansion segment function in translation genome-wide. Cell Rep 2021; 34:108629. [PMID: 33472078 PMCID: PMC8270675 DOI: 10.1016/j.celrep.2020.108629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Roles for ribosomal RNA (rRNA) in gene regulation remain largely unexplored. With hundreds of rDNA units positioned across multiple loci, it is not possible to genetically modify rRNA in mammalian cells, hindering understanding of ribosome function. It remains elusive whether expansion segments (ESs), tentacle-like rRNA extensions that vary in sequence and size across eukaryotic evolution, may have functional roles in translation control. Here, we develop variable expansion segment-ligand chimeric ribosome immunoprecipitation RNA sequencing (VELCRO-IP RNA-seq), a versatile methodology to generate species-adapted ESs and to map specific mRNA regions across the transcriptome that preferentially associate with ESs. Application of VELCRO-IP RNA-seq to a mammalian ES, ES9S, identified a large array of transcripts that are selectively recruited to ribosomes via an ES. We further characterize a set of 5′ UTRs that facilitate cap-independent translation through ES9S-mediated ribosome binding. Thus, we present a technology for studying the enigmatic ESs of the ribosome, revealing their function in gene-specific translation. Leppek et al. develop a pulldown technology employing chimeric yeast ribosomes, VELCRO-IP RNA-seq, to map interactions between ribosomal RNA (rRNA) and mRNAs genome-wide with positional precision. They find that expansion segments (ESs), the extended rRNA tentacles of the ribosome, specifically bind 5′ UTR elements to enable cap-independent translation of select mRNAs.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gun Woo Byeon
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Leppek K, Fujii K, Quade N, Susanto TT, Boehringer D, Lenarčič T, Xue S, Genuth NR, Ban N, Barna M. Gene- and Species-Specific Hox mRNA Translation by Ribosome Expansion Segments. Mol Cell 2020; 80:980-995.e13. [PMID: 33202249 PMCID: PMC7769145 DOI: 10.1016/j.molcel.2020.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Ribosomes have been suggested to directly control gene regulation, but regulatory roles for ribosomal RNA (rRNA) remain largely unexplored. Expansion segments (ESs) consist of multitudes of tentacle-like rRNA structures extending from the core ribosome in eukaryotes. ESs are remarkably variable in sequence and size across eukaryotic evolution with largely unknown functions. In characterizing ribosome binding to a regulatory element within a Homeobox (Hox) 5' UTR, we identify a modular stem-loop within this element that binds to a single ES, ES9S. Engineering chimeric, "humanized" yeast ribosomes for ES9S reveals that an evolutionary change in the sequence of ES9S endows species-specific binding of Hoxa9 mRNA to the ribosome. Genome editing to site-specifically disrupt the Hoxa9-ES9S interaction demonstrates the functional importance for such selective mRNA-rRNA binding in translation control. Together, these studies unravel unexpected gene regulation directly mediated by rRNA and how ribosome evolution drives translation of critical developmental regulators.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nick Quade
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Teodorus Theo Susanto
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Shifeng Xue
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Genuth
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland.
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Male G, Deolal P, Manda NK, Yagnik S, Mazumder A, Mishra K. Nucleolar size regulates nuclear envelope shape in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs242172. [PMID: 32973112 DOI: 10.1242/jcs.242172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear shape and size are cell-type specific. Change in nuclear shape is seen during cell division, development and pathology. The nucleus of Saccharomycescerevisiae is spherical in interphase and becomes dumbbell shaped during mitotic division to facilitate the transfer of one nucleus to the daughter cell. Because yeast cells undergo closed mitosis, the nuclear envelope remains intact throughout the cell cycle. The pathways that regulate nuclear shape are not well characterized. The nucleus is organized into various subcompartments, with the nucleolus being the most prominent. We have conducted a candidate-based genetic screen for nuclear shape abnormalities in S. cerevisiae to ask whether the nucleolus influences nuclear shape. We find that increasing nucleolar volume triggers a non-isometric nuclear envelope expansion resulting in an abnormal nuclear envelope shape. We further show that the tethering of rDNA to the nuclear envelope is required for the appearance of these extensions.
Collapse
Affiliation(s)
- Gurranna Male
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Naresh Kumar Manda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shantam Yagnik
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally, Serilingampally Manda 500046l, Hyderabad, Telangana, India
| | - Aprotim Mazumder
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally, Serilingampally Manda 500046l, Hyderabad, Telangana, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
12
|
Age-Dependent Ribosomal DNA Variations in Mice. Mol Cell Biol 2020; 40:MCB.00368-20. [PMID: 32900821 PMCID: PMC7588874 DOI: 10.1128/mcb.00368-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
The rRNA gene, which consists of tandem repetitive arrays (ribosomal DNA [rDNA] repeat), is one of the most unstable regions in the genome. The rDNA repeat in the budding yeast Saccharomyces cerevisiae is known to become unstable as the cell ages. However, it is unclear how the rDNA repeat changes in aging mammalian cells. Using quantitative single-cell analyses, we identified age-dependent alterations in rDNA copy number and levels of methylation in mice. The degree of methylation and copy number of rDNA from bone marrow cells of 2-year-old mice were increased by comparison to levels in 4-week-old mice in two mouse strains, BALB/cA and C57BL/6. The rRNA gene, which consists of tandem repetitive arrays (ribosomal DNA [rDNA] repeat), is one of the most unstable regions in the genome. The rDNA repeat in the budding yeast Saccharomyces cerevisiae is known to become unstable as the cell ages. However, it is unclear how the rDNA repeat changes in aging mammalian cells. Using quantitative single-cell analyses, we identified age-dependent alterations in rDNA copy number and levels of methylation in mice. The degree of methylation and copy number of rDNA from bone marrow cells of 2-year-old mice were increased by comparison to levels in 4-week-old mice in two mouse strains, BALB/cA and C57BL/6. Moreover, the level of pre-rRNA transcripts was reduced in older BALB/cA mice. We also identified many sequence variations in the rDNA. Among them, three mutations were unique to old mice, and two of them were found in the conserved region in budding yeast. We established yeast strains with the old-mouse-specific mutations and found that they shortened the life span of the cells. Our findings suggest that rDNA is also fragile in mammalian cells and that alterations within this region have a profound effect on cellular function.
Collapse
|
13
|
Ghosh A, Williams LD, Pestov DG, Shcherbik N. Proteotoxic stress promotes entrapment of ribosomes and misfolded proteins in a shared cytosolic compartment. Nucleic Acids Res 2020; 48:3888-3905. [PMID: 32030400 PMCID: PMC7144922 DOI: 10.1093/nar/gkaa068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
Cells continuously monitor protein synthesis to prevent accumulation of aberrant polypeptides. Insufficient capacity of cellular degradative systems, chaperone shortage or high levels of mistranslation by ribosomes can result in proteotoxic stress and endanger proteostasis. One of the least explored reasons for mistranslation is the incorrect functioning of the ribosome itself. To understand how cells deal with ribosome malfunction, we introduced mutations in the Expansion Segment 7 (ES7L) of 25S rRNA that allowed the formation of mature, translationally active ribosomes but induced proteotoxic stress and compromised cell viability. The ES7L-mutated ribosomes escaped nonfunctional rRNA Decay (NRD) and remained stable. Remarkably, ES7L-mutated ribosomes showed increased segregation into cytoplasmic foci containing soluble misfolded proteins. This ribosome entrapment pathway, termed TRAP (Translational Relocalization with Aberrant Polypeptides), was generalizable beyond the ES7L mutation, as wild-type ribosomes also showed increased relocalization into the same compartments in cells exposed to proteotoxic stressors. We propose that during TRAP, assembled ribosomes associated with misfolded nascent chains move into cytoplasmic compartments enriched in factors that facilitate protein quality control. In addition, TRAP may help to keep translation at its peak efficiency by preventing malfunctioning ribosomes from active duty in translation.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Dimitri G Pestov
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
14
|
Sanchez JC, Ollodart A, Large CRL, Clough C, Alvino GM, Tsuchiya M, Crane M, Kwan EX, Kaeberlein M, Dunham MJ, Raghuraman MK, Brewer BJ. Phenotypic and Genotypic Consequences of CRISPR/Cas9 Editing of the Replication Origins in the rDNA of Saccharomyces cerevisiae. Genetics 2019; 213:229-249. [PMID: 31292210 PMCID: PMC6727806 DOI: 10.1534/genetics.119.302351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
The complex structure and repetitive nature of eukaryotic ribosomal DNA (rDNA) is a challenge for genome assembly, thus the consequences of sequence variation in rDNA remain unexplored. However, renewed interest in the role that rDNA variation may play in diverse cellular functions, aside from ribosome production, highlights the need for a method that would permit genetic manipulation of the rDNA. Here, we describe a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategy to edit the rDNA locus in the budding yeast Saccharomyces cerevisiae, developed independently but similar to one developed by others. Using this approach, we modified the endogenous rDNA origin of replication in each repeat by deleting or replacing its consensus sequence. We characterized the transformants that have successfully modified their rDNA locus and propose a mechanism for how CRISPR/Cas9-mediated editing of the rDNA occurs. In addition, we carried out extended growth and life span experiments to investigate the long-term consequences that altering the rDNA origin of replication have on cellular health. We find that long-term growth of the edited clones results in faster-growing suppressors that have acquired segmental aneusomy of the rDNA-containing region of chromosome XII or aneuploidy of chromosomes XII, II, or IV. Furthermore, we find that all edited isolates suffer a reduced life span, irrespective of their levels of extrachromosomal rDNA circles. Our work demonstrates that it is possible to quickly, efficiently, and homogeneously edit the rDNA origin via CRISPR/Cas9.
Collapse
Affiliation(s)
- Joseph C Sanchez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
- Bioscience Division, Los Alamos National Laboratory, Los Alamos New Mexico 87544
| | - Anja Ollodart
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - Christopher R L Large
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - Courtnee Clough
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - Gina M Alvino
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Mitsuhiro Tsuchiya
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Matthew Crane
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Elizabeth X Kwan
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Matt Kaeberlein
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - M K Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| |
Collapse
|
15
|
Jackobel AJ, Zeberl BJ, Glover DM, Fakhouri AM, Knutson BA. DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194408. [PMID: 31382053 DOI: 10.1016/j.bbagrm.2019.194408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 01/24/2023]
Abstract
In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.
Collapse
Affiliation(s)
- Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian J Zeberl
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Danea M Glover
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
16
|
Fujii K, Susanto TT, Saurabh S, Barna M. Decoding the Function of Expansion Segments in Ribosomes. Mol Cell 2019; 72:1013-1020.e6. [PMID: 30576652 DOI: 10.1016/j.molcel.2018.11.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Expansion segments (ESs) are enigmatic insertions within the eukaryotic ribosome, the longest of which resemble tentacle-like extensions that vary in length and sequence across evolution, with a largely unknown function. By selectively engineering rRNA in yeast, we find that one of the largest ESs, ES27L, has an unexpected function in translation fidelity. Ribosomes harboring a deletion in the distal portion of ES27L have increased amino acid misincorporation, as well as readthrough and frameshifting errors. By employing quantitative mass spectrometry, we further find that ES27L acts as an RNA scaffold to facilitate binding of a conserved enzyme, methionine amino peptidase (MetAP). We show that MetAP unexpectedly controls the accuracy of ribosome decoding, which is coupled to an increase in its enzymatic function through its interaction with ES27L. These findings reveal that variable ESs of the ribosome serve important functional roles and act as platforms for the binding of proteins that modulate translation across evolution.
Collapse
Affiliation(s)
- Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Teodorus Theo Susanto
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Saumya Saurabh
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Antony A C, Ram AK, Dutta K, Alone PV. Ribosomal mutation in helix 32 of 18S rRNA alters fidelity of eukaryotic translation start site selection. FEBS Lett 2019; 593:852-867. [PMID: 30900251 DOI: 10.1002/1873-3468.13369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/09/2022]
Abstract
The 40S ribosome plays a critical role in start codon selection. To gain insights into the role of its 18S rRNA in start codon selection, a suppressor screen was performed that suppressed the preferential UUG start codon recognition (Suppressor of initiation codon: Sui- phenotype) associated with the eIF5G31R mutant. The C1209U mutation in helix h32 of 18S rRNA was found to suppress the Sui- and Gcn- (failure to derepress GCN4 expression) phenotype of the eIF5G31R mutant. The C1209U mutation suppressed Sui- and Gcd- (constitutive derepression of GCN4 expression) phenotype of eIF2βS264Y , eIF1K60E , and eIF1A-ΔC mutation. We propose that the C1209U mutation in 40S ribosomal may perturb the premature head rotation in 'Closed/PIN ' state and enhance the stringency of translation start site selection.
Collapse
Affiliation(s)
- Charles Antony A
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kalloly Dutta
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
18
|
Agrawal S, Ganley ARD. The conservation landscape of the human ribosomal RNA gene repeats. PLoS One 2018; 13:e0207531. [PMID: 30517151 PMCID: PMC6281188 DOI: 10.1371/journal.pone.0207531] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023] Open
Abstract
Ribosomal RNA gene repeats (rDNA) encode ribosomal RNA, a major component of ribosomes. Ribosome biogenesis is central to cellular metabolic regulation, and several diseases are associated with rDNA dysfunction, notably cancer, However, its highly repetitive nature has severely limited characterization of the elements responsible for rDNA function. Here we make use of phylogenetic footprinting to provide a comprehensive list of novel, potentially functional elements in the human rDNA. Complete rDNA sequences for six non-human primate species were constructed using de novo whole genome assemblies. These new sequences were used to determine the conservation profile of the human rDNA, revealing 49 conserved regions in the rDNA intergenic spacer (IGS). To provide insights into the potential roles of these conserved regions, the conservation profile was integrated with functional genomics datasets. We find two major zones that contain conserved elements characterised by enrichment of transcription-associated chromatin factors, and transcription. Conservation of some IGS transcripts in the apes underpins the potential functional significance of these transcripts and the elements controlling their expression. Our results characterize the conservation landscape of the human IGS and suggest that noncoding transcription and chromatin elements are conserved and important features of this unique genomic region.
Collapse
Affiliation(s)
- Saumya Agrawal
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Zhang W, Zhao G, Luo Z, Lin Y, Wang L, Guo Y, Wang A, Jiang S, Jiang Q, Gong J, Wang Y, Hou S, Huang J, Li T, Qin Y, Dong J, Qin Q, Zhang J, Zou X, He X, Zhao L, Xiao Y, Xu M, Cheng E, Huang N, Zhou T, Shen Y, Walker R, Luo Y, Kuang Z, Mitchell LA, Yang K, Richardson SM, Wu Y, Li BZ, Yuan YJ, Yang H, Lin J, Chen GQ, Wu Q, Bader JS, Cai Y, Boeke JD, Dai J. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 2017; 355:355/6329/eaaf3981. [PMID: 28280149 DOI: 10.1126/science.aaf3981] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/26/2017] [Indexed: 01/25/2023]
Abstract
We designed and synthesized a 976,067-base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect "bugs" detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.
Collapse
Affiliation(s)
- Weimin Zhang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanghou Zhao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, College of Life Science, Peking University, Beijing 100871, China
| | - Zhouqing Luo
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yicong Lin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lihui Wang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yakun Guo
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ann Wang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangying Jiang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingwen Jiang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Sha Hou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Huang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyi Li
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiran Qin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junkai Dong
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Qin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaying Zhang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinzhi Zou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi He
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zhao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yibo Xiao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Xu
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Erchao Cheng
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Huang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Zhou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.,BGI-Qingdao, Qingdao 266555, China
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zheng Kuang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Kun Yang
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sarah M Richardson
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jiwei Lin
- Wuxi Qinglan Biotechnology Inc., Yixing, Jiangsu 214200, China
| | - Guo-Qiang Chen
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingyu Wu
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Joel S Bader
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Junbiao Dai
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Puddu F, Salguero I, Herzog M, Geisler NJ, Costanzo V, Jackson SP. Chromatin determinants impart camptothecin sensitivity. EMBO Rep 2017; 18:1000-1012. [PMID: 28389464 PMCID: PMC5452016 DOI: 10.15252/embr.201643560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Camptothecin-induced locking of topoisomerase 1 on DNA generates a physical barrier to replication fork progression and creates topological stress. By allowing replisome rotation, absence of the Tof1/Csm3 complex promotes the conversion of impending topological stress to DNA catenation and causes camptothecin hypersensitivity. Through synthetic viability screening, we discovered that histone H4 K16 deacetylation drives the sensitivity of yeast cells to camptothecin and that inactivation of this pathway by mutating H4 K16 or the genes SIR1-4 suppresses much of the hypersensitivity of tof1∆ strains towards this agent. We show that disruption of rDNA or telomeric silencing does not mediate camptothecin resistance but that disruption of Sir1-dependent chromatin domains is sufficient to suppress camptothecin sensitivity in wild-type and tof1∆ cells. We suggest that topoisomerase 1 inhibition in proximity of these domains causes topological stress that leads to DNA hypercatenation, especially in the absence of the Tof1/Csm3 complex. Finally, we provide evidence of the evolutionarily conservation of this mechanism.
Collapse
Affiliation(s)
- Fabio Puddu
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Israel Salguero
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mareike Herzog
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Wellcome Trust Sanger Institute, Hinxton Cambridge, UK
| | - Nicola J Geisler
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vincenzo Costanzo
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Stephen P Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Lee K, Sharma R, Shrestha OK, Bingman CA, Craig EA. Dual interaction of the Hsp70 J-protein cochaperone Zuotin with the 40S and 60S ribosomal subunits. Nat Struct Mol Biol 2016; 23:1003-1010. [PMID: 27669034 PMCID: PMC5097012 DOI: 10.1038/nsmb.3299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Abstract
Ribosome-associated J protein-Hsp70 chaperones promote nascent polypeptide folding and normal translational fidelity. Though known to span the ribosome subunits, understanding of J protein Zuo1 function is limited. New structural and crosslinking data allow more precise positioning of Saccharomyces cerevisiae Zuo1 near the 60S polypeptide exit site, pointing to interactions with ribosomal protein eL31 and 25S rRNA helix 24. The junction between the 60S-interacting and subunit-spanning helices is a hinge, positioning Zuo1 on the 40S, yet accommodating subunit rotation. Interaction between C-terminus of Zuo1 and 40S occurs via 18S rRNA expansion segment 12 (ES12) of helix 44, which originates at the decoding site. Deletions in either ES12 or C-terminus of Zuo1 alter stop codon readthrough and −1 frameshifting. Our study offers insight into how this cotranslational chaperone system may monitor decoding site activity and nascent polypeptide transit, thereby coordinating protein translation and folding.
Collapse
Affiliation(s)
- Kanghyun Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruchika Sharma
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Om Kumar Shrestha
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Adamczyk J, Deregowska A, Potocki L, Kuna E, Kaplan J, Pabian S, Kwiatkowska A, Lewinska A, Wnuk M. Relationships between rDNA, Nop1 and Sir complex in biotechnologically relevant distillery yeasts. Arch Microbiol 2016; 198:715-23. [PMID: 27329282 PMCID: PMC4969353 DOI: 10.1007/s00203-016-1258-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
Abstract
Distillery yeasts are poorly characterized physiological group among the Saccharomyces sensu stricto complex. As industrial yeasts are under constant environmental stress during fermentation processes and the nucleolus is a stress sensor, in the present study, nucleolus-related parameters were evaluated in 22 commercially available distillery yeast strains. Distillery yeasts were found to be a heterogeneous group with a variable content and length of rDNA and degree of nucleolus fragmentation. The levels of rDNA were negatively correlated with Nop1 (r = -0.59, p = 0.0038). Moreover, the protein levels of Sir transcriptional silencing complex and longevity regulators, namely Sir1, Sir2, Sir3 and Fob1, were studied and negative correlations between Sir2 and Nop1 (r = -0.45, p = 0.0332), and between Sir2 and Fob1 (r = -0.49, p = 0.0211) were revealed. In general, S. paradoxus group of distillery yeasts with higher rDNA pools and Sir2 level than S. bayanus group was found to be more tolerant to fermentation-associated stress stimuli, namely mild cold/heat stresses and KCl treatment. We postulate that rDNA state may be considered as a novel factor that may modulate a biotechnological process.
Collapse
Affiliation(s)
- Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Potocki
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Ewelina Kuna
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Jakub Kaplan
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Sylwia Pabian
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | | | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland.
| |
Collapse
|
23
|
Kannan K, Tsvetanova B, Chuang RY, Noskov VN, Assad-Garcia N, Ma L, Hutchison Iii CA, Smith HO, Glass JI, Merryman C, Venter JC, Gibson DG. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9. Sci Rep 2016; 6:30714. [PMID: 27489041 PMCID: PMC4973257 DOI: 10.1038/srep30714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 01/04/2023] Open
Abstract
Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the “simple” M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Ma
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Hamilton O Smith
- Synthetic Genomics, Inc., La Jolla, CA 92037, USA.,J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - John I Glass
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - J Craig Venter
- Synthetic Genomics, Inc., La Jolla, CA 92037, USA.,J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Daniel G Gibson
- Synthetic Genomics, Inc., La Jolla, CA 92037, USA.,J. Craig Venter Institute, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Dinman JD. Pathways to Specialized Ribosomes: The Brussels Lecture. J Mol Biol 2016; 428:2186-94. [PMID: 26764228 DOI: 10.1016/j.jmb.2015.12.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
"Specialized ribosomes" is a topic of intense debate and research whose provenance can be traced to the earliest days of molecular biology. Here, the history of this idea is reviewed, and critical literature in which the specialized ribosomes have come to be presently defined is discussed. An argument supporting the evolution of a variety of ribosomes with specialized functions as a consequence of selective pressures acting on a near-infinite set of possible ribosomes is presented, leading to a discussion of how this may also serve as a biological buffering mechanism. The possible relationship between specialized ribosomes and human health is explored. A set of criteria and possible approaches are also presented to help guide the definitive identification of "specialized" ribosomes, and this is followed by a discussion of how synthetic biology approaches might be used to create new types of special ribosomes.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Choudhury M, Zaman S, Jiang JC, Jazwinski SM, Bastia D. Mechanism of regulation of 'chromosome kissing' induced by Fob1 and its physiological significance. Genes Dev 2015; 29:1188-201. [PMID: 26063576 PMCID: PMC4470286 DOI: 10.1101/gad.260844.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein-mediated "chromosome kissing" between two DNA sites in trans (or in cis) is known to facilitate three-dimensional control of gene expression and DNA replication. However, the mechanisms of regulation of the long-range interactions are unknown. Here, we show that the replication terminator protein Fob1 of Saccharomyces cerevisiae promoted chromosome kissing that initiated rDNA recombination and controlled the replicative life span (RLS). Oligomerization of Fob1 caused synaptic (kissing) interactions between pairs of terminator (Ter) sites that initiated recombination in rDNA. Fob1 oligomerization and Ter-Ter kissing were regulated by intramolecular inhibitory interactions between the C-terminal domain (C-Fob1) and the N-terminal domain (N-Fob1). Phosphomimetic substitutions of specific residues of C-Fob1 counteracted the inhibitory interaction. A mutation in either N-Fob1 that blocked Fob1 oligomerization or C-Fob1 that blocked its phosphorylation antagonized chromosome kissing and recombination and enhanced the RLS. The results provide novel insights into a mechanism of regulation of Fob1-mediated chromosome kissing.
Collapse
Affiliation(s)
- Malay Choudhury
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Shamsu Zaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - James C Jiang
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Deepak Bastia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| |
Collapse
|
26
|
O'Sullivan JM, Pai DA, Cridge AG, Engelke DR, Ganley ARD. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure? Biomol Concepts 2015; 4:277-86. [PMID: 25436580 DOI: 10.1515/bmc-2012-0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/15/2022] Open
Abstract
The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfill the cellular demand for rRNA, the ribosomal RNA (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review, we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization.
Collapse
|
27
|
Walters AD, May CK, Dauster ES, Cinquin BP, Smith EA, Robellet X, D'Amours D, Larabell CA, Cohen-Fix O. The yeast polo kinase Cdc5 regulates the shape of the mitotic nucleus. Curr Biol 2014; 24:2861-7. [PMID: 25454593 PMCID: PMC4255140 DOI: 10.1016/j.cub.2014.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/23/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022]
Abstract
Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompasses the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.
Collapse
Affiliation(s)
- Alison D Walters
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Christopher K May
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma S Dauster
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Bertrand P Cinquin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elizabeth A Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xavier Robellet
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Damien D'Amours
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Carolyn A Larabell
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Lewinska A, Miedziak B, Kulak K, Molon M, Wnuk M. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae. Biogerontology 2014; 15:289-316. [PMID: 24711086 PMCID: PMC4019837 DOI: 10.1007/s10522-014-9499-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/25/2014] [Indexed: 12/20/2022]
Abstract
The nucleolus is speculated to be a regulator of cellular senescence in numerous biological systems (Guarente, Genes Dev 11(19):2449–2455, 1997; Johnson et al., Curr Opin Cell Biol 10(3):332–338, 1998). In the budding yeast Saccharomyces cerevisiae, alterations in nucleolar architecture, the redistribution of nucleolar protein and the accumulation of extrachromosomal ribosomal DNA circles (ERCs) during replicative aging have been reported. However, little is known regarding rDNA stability and changes in nucleolar activity during chronological aging (CA), which is another yeast aging model used. In the present study, the impact of aberrant cell cycle checkpoint control (knock-out of BUB1, BUB2, MAD1 and TEL1 genes in haploid and diploid hemizygous states) on CA-mediated changes in the nucleolus was studied. Nucleolus fragmentation, changes in the nucleolus size and the nucleolus/nucleus ratio, ERC accumulation, expression pattern changes and the relocation of protein involved in transcriptional silencing during CA were revealed. All strains examined were affected by oxidative stress, aneuploidy (numerical rather than structural aberrations) and DNA damage. However, the bub1 cells were the most prone to aneuploidy events, which may contribute to observed decrease in chronological lifespan. We postulate that chronological aging may be affected by redox imbalance-mediated chromosome XII instability leading to both rDNA instability and whole chromosome aneuploidy. CA-mediated nucleolus fragmentation may be a consequence of nucleolus enlargement and/or Nop2p upregulation. Moreover, the rDNA content of chronologically aging cells may be a factor determining the subsequent replicative lifespan. Taken together, we demonstrated that the nucleolus state is also affected during CA in yeast.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland
| | | | | | | | | |
Collapse
|
29
|
Ganley ARD, Kobayashi T. Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Res 2014; 14:49-59. [DOI: 10.1111/1567-1364.12133] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022] Open
Affiliation(s)
- Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences; Massey University; Auckland New Zealand
| | - Takehiko Kobayashi
- Division of Cytogenetics; National Institute of Genetics; Mishima Shizuoka Japan
- Department of Genetics; The Graduate University for Advanced Studies; SOKENDAI; Mishima Shizuoka Japan
| |
Collapse
|
30
|
Hamperl S, Brown CR, Garea AV, Perez-Fernandez J, Bruckmann A, Huber K, Wittner M, Babl V, Stoeckl U, Deutzmann R, Boeger H, Tschochner H, Milkereit P, Griesenbeck J. Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res 2013; 42:e2. [PMID: 24106087 PMCID: PMC3874202 DOI: 10.1093/nar/gkt891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry. We present and discuss the proteomic data sets obtained for chromatin in different functional states. The native chromatin was further amenable to electron microscopy analysis yielding information about nucleosome occupancy and positioning at the single-molecule level. We also provide evidence that chromatin from virtually every single copy genomic locus of interest can be purified and analyzed by this technique.
Collapse
Affiliation(s)
- Stephan Hamperl
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl für Biochemie III, 93053 Regensburg, Germany and Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nemoto N, Udagawa T, Chowdhury W, Kitabatake M, Shin BS, Hiraishi H, Wang S, Singh CR, Brown SJ, Ohno M, Asano K. Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function. ACTA ACUST UNITED AC 2013; 1:e26402. [PMID: 26824023 PMCID: PMC4718063 DOI: 10.4161/trla.26402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/08/2013] [Accepted: 09/06/2013] [Indexed: 01/28/2023]
Abstract
In yeast Saccharomyces cerevisiae, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During translation initiation, the 60S subunit joins the 40S initiation complex, producing the 80S initiation complex. During elongation, the 60S subunit binds the CCA-ends of aminoacyl- and peptidyl-tRNAs at the A-loop and P-loop, respectively, transferring the peptide onto the α-amino group of the aminoacyl-tRNA. To study the role of 25S rRNA in translation in vivo, we randomly mutated 25S rRNA and isolated and characterized seven point mutations that affected yeast cell growth and polysome profiles. Four of these mutations, G651A, A1435U, A1446G and A1587G, change a base involved in base triples crucial for structural integrity. Three other mutations change bases near the ribosomal surface: C2879U and U2408C alter the A-loop and P-loop, respectively, and G1735A maps near a Eukarya-specific bridge to the 40S subunit. By polysome profiling in mmslΔ mutants defective in nonfunctional 25S rRNA decay, we show that some of these mutations are defective in both the initiation and elongation phases of translation. Of the mutants characterized, C2879U displays the strongest defect in translation initiation. The ribosome transit-time assay directly shows that this mutation is also defective in peptide elongation/termination. Thus, our genetic analysis not only identifies bases critical for structural integrity of the 60S subunit, but also suggests a role for bases near the peptidyl transferase center in translation initiation.
Collapse
Affiliation(s)
- Naoki Nemoto
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Tsuyoshi Udagawa
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Wasimul Chowdhury
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | | | - Byung-Shik Shin
- Laboratory of Gene Regulation and Development; Eunice Kennedy Shriver NICHD; National Institutes of Health; Bethesda, MD USA
| | - Hiroyuki Hiraishi
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Suzhi Wang
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA; Arthropod Genomics Center; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Susan J Brown
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA; Arthropod Genomics Center; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Mutsuhito Ohno
- Insititute for Virus Research; Kyoto University; Kyoto, Japan
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| |
Collapse
|
32
|
Interaction between 25S rRNA A loop and eukaryotic translation initiation factor 5B promotes subunit joining and ensures stringent AUG selection. Mol Cell Biol 2013; 33:3540-8. [PMID: 23836883 DOI: 10.1128/mcb.00771-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In yeast, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During the last step of translation initiation, eukaryotic initiation factor 5B (eIF5B) promotes the 60S subunit joining with the 40S initiation complex (IC). Malfunctional 60S subunits produced by misfolding or mutation may disrupt the 40S IC stalling on the start codon, thereby altering the stringency of initiation. Using several point mutations isolated by random mutagenesis, here we studied the role of 25S rRNA in start codon selection. Three mutations changing bases near the ribosome surface had strong effects, allowing the initiating ribosomes to skip both AUG and non-AUG codons: C2879U and U2408C, altering the A loop and P loop, respectively, of the peptidyl transferase center, and G1735A, mapping near a Eukarya-specific bridge to the 40S subunit. Overexpression of eIF5B specifically suppressed the phenotype caused by C2879U, suggesting functional interaction between eIF5B and the A loop. In vitro reconstitution assays showed that C2879U decreased eIF5B-catalyzed 60S subunit joining with a 40S IC. Thus, eIF5B interaction with the peptidyl transferase center A loop increases the accuracy of initiation by stabilizing the overall conformation of the 80S initiation complex. This study provides an insight into the effect of ribosomal mutations on translation profiles in eukaryotes.
Collapse
|
33
|
The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J 2012; 31:3480-93. [PMID: 22805593 DOI: 10.1038/emboj.2012.185] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/19/2012] [Indexed: 12/27/2022] Open
Abstract
Several DNA cis-elements and trans-acting factors were described to be involved in transcription termination and to release the elongating RNA polymerases from their templates. Different models for the molecular mechanism of transcription termination have been suggested for eukaryotic RNA polymerase I (Pol I) from results of in vitro and in vivo experiments. To analyse the molecular requirements for yeast RNA Pol I termination, an in vivo approach was used in which efficient termination resulted in growth inhibition. This led to the identification of a Myb-like protein, Ydr026c, as bona fide termination factor, now designated Nsi1 (NTS1 silencing protein 1), since it was very recently described as silencing factor of ribosomal DNA. Possible Nsi1 functions in regard to the mechanism of transcription termination are discussed.
Collapse
|
34
|
Burman LG, Mauro VP. Analysis of rRNA processing and translation in mammalian cells using a synthetic 18S rRNA expression system. Nucleic Acids Res 2012; 40:8085-98. [PMID: 22718970 PMCID: PMC3439915 DOI: 10.1093/nar/gks530] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of processing, assembly, and function of higher eukaryotic ribosomal RNA (rRNA) has been hindered by the lack of an expression system that enables rRNA to be modified and then examined functionally. Given the potential usefulness of such a system, we have developed one for mammalian 18S rRNA. We inserted a sequence tag into expansion segment 3 of mouse 18S rRNA to monitor expression and cleavage by hybridization. Mutations were identified that confer resistance to pactamycin, allowing functional analysis of 40S ribosomal subunits containing synthetic 18S rRNAs by selectively blocking translation from endogenous (pactamycin-sensitive) subunits. rRNA constructs were suitably expressed in transfected cells, shown to process correctly, incorporate into ≈ 15% of 40S subunits, and function normally based on various criteria. After rigorous analysis, the system was used to investigate the importance of sequences that flank 18S rRNA in precursor transcripts. Although deletion analysis supported the requirement of binding sites for the U3 snoRNA, it showed that a large segment of the 5' external transcribed spacer and the entire first internal transcribed spacer, both of which flank 18S rRNA, are not required. The success of this approach opens the possibility of functional analyses of ribosomes, with applications in basic research and synthetic biology.
Collapse
Affiliation(s)
- Luke G Burman
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Rakauskaite R, Dinman JD. Mutations of highly conserved bases in the peptidyltransferase center induce compensatory rearrangements in yeast ribosomes. RNA (NEW YORK, N.Y.) 2011; 17:855-864. [PMID: 21441349 PMCID: PMC3078735 DOI: 10.1261/rna.2593211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Molecular dynamics simulation identified three highly conserved rRNA bases in the large subunit of the ribosome that form a three-dimensional (3D) "gate" that induces pausing of the aa-tRNA acceptor stem during accommodation into the A-site. A nearby fourth base contacting the "tryptophan finger" of yeast protein L3, which is involved in the coordinating elongation factor recruitment to the ribosome with peptidyltransfer, is also implicated in this process. To better understand the functional importance of these bases, single base substitutions as well as deletions at all four positions were constructed and expressed as the sole forms of ribosomes in yeast Saccharomyces cerevisiae. None of the mutants had strong effects on cell growth, translational fidelity, or on the interactions between ribosomes and tRNAs. However, the mutants did promote strong effects on cell growth in the presence of translational inhibitors, and differences in viability between yeast and Escherichia coli mutants at homologous positions suggest new targets for antibacterial therapeutics. Mutant ribosomes also promoted changes in 25S rRNA structure, all localized to the core of peptidyltransferase center (i.e., the proto-ribosome area). We suggest that a certain degree of structural plasticity is built into the ribosome, enabling it to ensure accurate translation of the genetic code while providing it with the flexibility to adapt and evolve.
Collapse
Affiliation(s)
- Rasa Rakauskaite
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
36
|
Albert B, Léger-Silvestre I, Normand C, Ostermaier MK, Pérez-Fernández J, Panov KI, Zomerdijk JCBM, Schultz P, Gadal O. RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. ACTA ACUST UNITED AC 2011; 192:277-93. [PMID: 21263028 PMCID: PMC3172167 DOI: 10.1083/jcb.201006040] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RNA polymerase I (Pol I) produces large ribosomal RNAs (rRNAs). In this study, we show that the Rpa49 and Rpa34 Pol I subunits, which do not have counterparts in Pol II and Pol III complexes, are functionally conserved using heterospecific complementation of the human and Schizosaccharomyces pombe orthologues in Saccharomyces cerevisiae. Deletion of RPA49 leads to the disappearance of nucleolar structure, but nucleolar assembly can be restored by decreasing ribosomal gene copy number from 190 to 25. Statistical analysis of Miller spreads in the absence of Rpa49 demonstrates a fourfold decrease in Pol I loading rate per gene and decreased contact between adjacent Pol I complexes. Therefore, the Rpa34 and Rpa49 Pol I-specific subunits are essential for nucleolar assembly and for the high polymerase loading rate associated with frequent contact between adjacent enzymes. Together our data suggest that localized rRNA production results in spatially constrained rRNA production, which is instrumental for nucleolar assembly.
Collapse
Affiliation(s)
- Benjamin Albert
- Laboratoire de Biologie Moléculaire des Eucaryotes du Centre National de la Recherche Scientifique, Université de Toulouse, F-31000 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nemoto N, Singh CR, Udagawa T, Wang S, Thorson E, Winter Z, Ohira T, Ii M, Valášek L, Brown SJ, Asano K. Yeast 18 S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. J Biol Chem 2010; 285:32200-12. [PMID: 20699223 PMCID: PMC2952221 DOI: 10.1074/jbc.m110.146662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/09/2010] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the 40 S ribosomal subunit serves as the platform of initiation factor assembly, to place itself precisely on the AUG start codon. Structural arrangement of the 18 S rRNA determines the overall shape of the 40 S subunit. Here, we present genetic evaluation of yeast 18 S rRNA function using 10 point mutations altering the polysome profile. All the mutants reduce the abundance of the mutant 40 S, making it limiting for translation initiation. Two of the isolated mutations, G875A, altering the core of the platform domain that binds eIF1 and eIF2, and A1193U, changing the h31 loop located below the P-site tRNA(i)(Met), show phenotypes indicating defective regulation of AUG selection. Evidence is provided that these mutations reduce the interaction with the components of the preinitiation complex, thereby inhibiting its function at different steps. These results indicate that the 18 S rRNA mutations impair the integrity of scanning-competent preinitiation complex, thereby altering the 40 S subunit response to stringent AUG selection. Interestingly, nine of the mutations alter the body/platform domains of 18 S rRNA, potentially affecting the bridges to the 60 S subunit, but they do not change the level of 18 S rRNA intermediates. Based on these results, we also discuss the mechanism of the selective degradation of the mutant 40 S subunits.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Codon, Initiator/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Point Mutation
- Protein Biosynthesis
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Fungal
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Naoki Nemoto
- From the Molecular Cellular and Developmental Biology Program and
| | | | - Tsuyoshi Udagawa
- From the Molecular Cellular and Developmental Biology Program and
| | - Suzhi Wang
- From the Molecular Cellular and Developmental Biology Program and
- Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506 and
| | | | - Zachery Winter
- From the Molecular Cellular and Developmental Biology Program and
| | - Takahiro Ohira
- From the Molecular Cellular and Developmental Biology Program and
| | - Miki Ii
- From the Molecular Cellular and Developmental Biology Program and
| | - Leoš Valášek
- the Laboratory of Regulation of Gene Expression, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Susan J. Brown
- From the Molecular Cellular and Developmental Biology Program and
- Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506 and
| | - Katsura Asano
- From the Molecular Cellular and Developmental Biology Program and
| |
Collapse
|
38
|
Petrov A, Puglisi JD. Site-specific labeling of Saccharomyces cerevisiae ribosomes for single-molecule manipulations. Nucleic Acids Res 2010; 38:e143. [PMID: 20501598 PMCID: PMC2910073 DOI: 10.1093/nar/gkq390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-specific labeling of Escherichia coli ribosomes has allowed application of single-molecule fluorescence spectroscopy and force methods to probe the mechanism of translation. To apply these approaches to eukaryotic translation, eukaryotic ribosomes must be specifically labeled with fluorescent labels and molecular handles. Here, we describe preparation and labeling of the small and large yeast ribosomal subunits. Phylogenetically variable hairpin loops in ribosomal RNA are mutated to allow hybridization of oligonucleotides to mutant ribosomes. We demonstrate specific labeling of the ribosomal subunits, and their use in single-molecule fluorescence and force experiments.
Collapse
Affiliation(s)
- Alexey Petrov
- Department of Structural Biology and Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | |
Collapse
|
39
|
Torres-Machorro AL, Hernández R, Cevallos AM, López-Villaseñor I. Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 2010; 34:59-86. [DOI: 10.1111/j.1574-6976.2009.00196.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Effects of age on meiosis in budding yeast. Dev Cell 2009; 16:844-55. [PMID: 19531355 DOI: 10.1016/j.devcel.2009.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/02/2009] [Accepted: 05/05/2009] [Indexed: 11/23/2022]
Abstract
In humans, the frequency with which meiotic chromosome mis-segregation occurs increases with age. Whether age-dependent meiotic defects occur in other organisms is unknown. Here, we examine the effects of replicative aging on meiosis in budding yeast. We find that aged mother cells show a decreased ability to initiate the meiotic program and fail to express the meiotic inducer IME1. The few aged mother cells that do enter meiosis complete this developmental program but exhibit defects in meiotic chromosome segregation and spore formation. Furthermore, we find that mutations that extend replicative life span also extend the sexual reproductive life span. Our results indicate that in budding yeast, the ability to initiate and complete the meiotic program as well as the fidelity of meiotic chromosome segregation decrease with cellular age and are controlled by the same pathways that govern aging of asexually reproducing yeast cells.
Collapse
|
41
|
The cis element and factors required for condensin recruitment to chromosomes. Mol Cell 2009; 34:26-35. [PMID: 19362534 DOI: 10.1016/j.molcel.2009.02.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/16/2008] [Accepted: 02/16/2009] [Indexed: 11/23/2022]
Abstract
Condensins are required for segregation of rDNA repeats in concert with Fob1, a replication fork block protein binding at the replication fork barrier (RFB) site within rDNA in yeast. Here, we found that the RFB site functions as a cis element for Fob1-dependent condensin recruitment onto chromosomes. Replication fork blockage itself is not necessary for condensin recruitment. Instead, by genetic screening, we identified three genes, TOF2, CSM1, and LRS4, required both for condensin recruitment to the RFB site and for assuring the segregation of rDNA repeats. Hierarchical binding of Fob1, these three proteins and condensin, and interactions between Csm1/Lrs4 and multiple subunits of condensin were observed. These results suggest that three proteins control protein interactions linking between Fob1 and condensin, and contribute to ensuring the faithful segregation of rDNA repeats. Our study also suggests that recruitment of condensin onto chromosomes requires cis elements and recruiters that physically interact with condensin.
Collapse
|
42
|
Abstract
Mature rRNA are normally extremely stable in rapidly growing cells. However, studies show that some mature rRNA in Saccharomyces cerevisiae are, in fact, turned over quite rapidly by the nonfunctional rRNA decay (NRD) pathway. NRD eliminates the RNA component of mature but defective ribosomal subunits and ribosomes. NRD was discovered using rDNA reporter plasmids to express and track the fate of rRNA containing mutations in functionally important regions of the ribosome. This chapter outlines some of the available rDNA reporter plasmids that can be used to study NRD and describes assays to test for functionality and stability of rRNA in yeast.
Collapse
|
43
|
The importance of inter- and intramolecular base pairing for translation reinitiation on a eukaryotic bicistronic mRNA. Genes Dev 2009; 23:331-44. [PMID: 19204118 DOI: 10.1101/gad.507609] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calicivirus structure proteins are expressed from a subgenomic mRNA with two overlapping cistrons. The first ORF of this RNA codes for the viral major capsid protein VP1, and the second for the minor capsid protein VP2. Translation of VP2 is mediated by a termination/reinitiation mechanism, which depends on an upstream sequence element of approximately 70 nucleotides denoted "termination upstream ribosomal binding site" (TURBS). Two short sequence motifs within the TURBS were found to be essential for reinitiation. By a whole set of single site mutations and reciprocal base exchanges we demonstrate here for the first time conclusive evidence for the necessity of mRNA/18S rRNA hybridization for translation reinitiation in an eukaryotic system. Moreover, we show that motif 2 exhibits intramolecular hybridization with a complementary region upstream of motif 1, thus forming a secondary structure that positions post-termination ribosomes in an optimal distance to the VP2 start codon. Analysis of the essential elements of the TURBS led to a better understanding of the requirements for translation termination/reinitiation in eukaryotes.
Collapse
|
44
|
rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit. Mol Cell Biol 2008; 29:808-21. [PMID: 19029250 DOI: 10.1128/mcb.00896-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.
Collapse
|
45
|
A nucleolus-localized activator of Cdc14 phosphatase supports rDNA segregation in yeast mitosis. Curr Biol 2008; 18:1001-5. [PMID: 18595708 DOI: 10.1016/j.cub.2008.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/23/2022]
Abstract
Cdc14 phosphatase is an important regulator of mitosis in budding yeast. Cdc14 antagonizes cyclin-dependent kinases and promotes multiple postmetaphase events, including segregation of the ribosomal RNA gene array (rDNA) and the nucleolus assembled around this gene cluster. During most of the cell cycle, Cdc14 is anchored to the nucleolus and kept inactive by binding to Net1 (also known as Cfi1). Cdc14 and Net1 are part of a larger nucleolar-protein network, which also contains the Net1-related protein Tof2. Tof2 contributes to the transcriptional silencing of rDNA regions, but the precise cellular and molecular functions of Tof2 remain unclear. Here, we report that, like Net1, Tof2 can bind to Cdc14 directly. Unlike Net1, however, Tof2 did not inhibit Cdc14 but supported Cdc14 phosphatase activity and in vivo function. Deletion of TOF2 delayed rDNA segregation with little effect on mitotic exit, impaired relocalization of condensin to the nucleolus in anaphase, and caused rDNA-dependent synthetic lethality when a cdc14 mutation was present. Thus, Tof2 collaborates with Cdc14 specifically in rDNA segregation, presumably by targeting Cdc14 phosphatase activity to the nucleolus during anaphase to support resolution and compaction of this repetitive and highly transcribed DNA locus.
Collapse
|
46
|
Abstract
Following chromosome duplication in S phase of the cell cycle, the sister chromatids are linked by cohesin. At the onset of anaphase, separase cleaves cohesin and thereby initiates sister chromatid separation. Separase activation results from the destruction of its inhibitor, securin, which is triggered by a ubiquitin ligase called the anaphase-promoting complex (APC). Here, we show in budding yeast that securin destruction and, thus, separase activation are not sufficient for the efficient segregation of the repetitive ribosomal DNA (rDNA). We find that rDNA segregation also requires the APC-mediated destruction of the S-phase cyclin Clb5, an activator of the protein kinase Cdk1. Mutations that prevent Clb5 destruction are lethal and cause defects in rDNA segregation and DNA synthesis. These defects are distinct from the mitotic-exit defects caused by stabilization of the mitotic cyclin Clb2, emphasizing the importance of cyclin specificity in the regulation of late-mitotic events. Efficient rDNA segregation, both in mitosis and meiosis, also requires APC-dependent destruction of Dbf4, an activator of the protein kinase Cdc7. We speculate that the dephosphorylation of Clb5-specific Cdk1 substrates and Dbf4-Cdc7 substrates drives the resolution of rDNA in early anaphase. The coincident destruction of securin, Clb5, and Dbf4 coordinates bulk chromosome segregation with segregation of rDNA.
Collapse
|
47
|
Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits. Mol Cell Biol 2008; 28:3151-61. [PMID: 18332120 DOI: 10.1128/mcb.01674-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BUD23 was identified from a bioinformatics analysis of Saccharomyces cerevisiae genes involved in ribosome biogenesis. Deletion of BUD23 leads to severely impaired growth, reduced levels of the small (40S) ribosomal subunit, and a block in processing 20S rRNA to 18S rRNA, a late step in 40S maturation. Bud23 belongs to the S-adenosylmethionine-dependent Rossmann-fold methyltransferase superfamily and is related to small-molecule methyltransferases. Nevertheless, we considered that Bud23 methylates rRNA. Methylation of G1575 is the only mapped modification for which the methylase has not been assigned. Here, we show that this modification is lost in bud23 mutants. The nuclear accumulation of the small-subunit reporters Rps2-green fluorescent protein (GFP) and Rps3-GFP, as well as the rRNA processing intermediate, the 5' internal transcribed spacer 1, indicate that bud23 mutants are defective for small-subunit export. Mutations in Bud23 that inactivated its methyltransferase activity complemented a bud23Delta mutant. In addition, mutant ribosomes in which G1575 was changed to adenosine supported growth comparable to that of cells with wild-type ribosomes. Thus, Bud23 protein, but not its methyltransferase activity, is important for biogenesis and export of the 40S subunit in yeast.
Collapse
|
48
|
Bommakanti AS, Lindahl L, Zengel JM. Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae. RNA (NEW YORK, N.Y.) 2008; 14:460-464. [PMID: 18218702 PMCID: PMC2248265 DOI: 10.1261/rna.786408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 11/27/2007] [Indexed: 05/25/2023]
Abstract
The macrolide erythromycin binds to the large subunit of the prokaryotic ribosome near the peptidyltransferase center (PTC) and inhibits elongation of new peptide chains beyond a few amino acids. Nucleotides A2058 and A2059 (E. coli numbering) in 23S rRNA play a crucial role in the binding of erythromycin, and mutation of nucleotide A2058 confers erythromycin resistance in both gram-positive and gram-negative bacteria. There are high levels of sequence and structural similarity in the PTC of prokaryotic and eukaryotic ribosomes. However, eukaryotic ribosomes are resistant to erythromycin and the presence of a G at the position equivalent to E. coli nucleotide A2058 is believed to be the reason. To test this hypothesis, we introduced a G to A mutation at this position of the yeast Saccharomyces cerevisiae 25S rRNA and analyzed sensitivity toward erythromycin. Neither growth studies nor erythromycin binding assays on mutated yeast ribosomes indicated any erythromycin sensitivity in mutated yeast strains. These results suggest that the identity of nucleotide 2058 is not the only determinant responsible for the difference in erythromycin sensitivity between yeast and prokaryotes.
Collapse
MESH Headings
- Base Sequence
- DNA Primers/genetics
- Drug Resistance, Fungal/genetics
- Erythromycin/metabolism
- Erythromycin/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genes, Bacterial
- Genes, Fungal
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Ananth S Bommakanti
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | | | | |
Collapse
|
49
|
Rakauskaitė R, Dinman JD. rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance. Nucleic Acids Res 2008; 36:1497-507. [PMID: 18203742 PMCID: PMC2275155 DOI: 10.1093/nar/gkm1179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/24/2007] [Accepted: 12/26/2007] [Indexed: 11/29/2022] Open
Abstract
To ensure accurate and rapid protein synthesis, nearby and distantly located functional regions of the ribosome must dynamically communicate and coordinate with one another through a series of information exchange networks. The ribosome is approximately 2/3 rRNA and information should pass mostly through this medium. Here, two viable mutants located in the peptidyltransferase center (PTC) of yeast ribosomes were created using a yeast genetic system that enables stable production of ribosomes containing only mutant rRNAs. The specific mutants were C2820U (Escherichia coli C2452) and Psi2922C (E. coli U2554). Biochemical and genetic analyses of these mutants suggest that they may trap the PTC in the 'open' or aa-tRNA bound conformation, decreasing peptidyl-tRNA binding. We suggest that these structural changes are manifested at the biological level by affecting large ribosomal subunit biogenesis, ribosomal subunit joining during initiation, susceptibility/resistance to peptidyltransferase inhibitors, and the ability of ribosomes to properly decode termination codons. These studies also add to our understanding of how information is transmitted both locally and over long distances through allosteric networks of rRNA-rRNA and rRNA-protein interactions.
Collapse
Affiliation(s)
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 2135 Microbiology Building, College Park, MD 20742, USA
| |
Collapse
|
50
|
Fan-Minogue H, Bedwell DM. Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA (NEW YORK, N.Y.) 2008; 14:148-57. [PMID: 18003936 PMCID: PMC2151042 DOI: 10.1261/rna.805208] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent studies of prokaryotic ribosomes have dramatically increased our knowledge of ribosomal RNA (rRNA) structure, functional centers, and their interactions with antibiotics. However, much less is known about how rRNA function differs between prokaryotic and eukaryotic ribosomes. The core decoding sites are identical in yeast and human 18S rRNAs, suggesting that insights obtained in studies with yeast rRNA mutants can provide information about ribosome function in both species. In this study, we examined the importance of key nucleotides of the 18S rRNA decoding site on ribosome function and aminoglycoside susceptibility in Saccharomyces cerevisiae cells expressing homogeneous populations of mutant ribosomes. We found that residues G577, A1755, and A1756 (corresponding to Escherichia coli residues G530, A1492, and A1493, respectively) are essential for cell viability. We also found that residue G1645 (A1408 in E. coli) and A1754 (G1491 in E. coli) both make significant and distinct contributions to aminoglycoside resistance. Furthermore, we found that mutations at these residues do not alter the basal level of translational accuracy, but influence both paromomycin-induced misreading of sense codons and readthrough of stop codons. This study represents the most comprehensive mutational analysis of the eukaryotic decoding site to date, and suggests that many fundamental features of decoding site function are conserved between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Hua Fan-Minogue
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|