1
|
Bulvas O, Knejzlík Z, Sýs J, Filimoněnko A, Čížková M, Clarová K, Rejman D, Kouba T, Pichová I. Deciphering the allosteric regulation of mycobacterial inosine-5'-monophosphate dehydrogenase. Nat Commun 2024; 15:6673. [PMID: 39107302 PMCID: PMC11303537 DOI: 10.1038/s41467-024-50933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.
Collapse
Affiliation(s)
- Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Sýs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anatolij Filimoněnko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Čížková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kamila Clarová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Liu Y, Tian B. Protein-DNA binding sites prediction based on pre-trained protein language model and contrastive learning. Brief Bioinform 2023; 25:bbad488. [PMID: 38171929 PMCID: PMC10782905 DOI: 10.1093/bib/bbad488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Protein-DNA interaction is critical for life activities such as replication, transcription and splicing. Identifying protein-DNA binding residues is essential for modeling their interaction and downstream studies. However, developing accurate and efficient computational methods for this task remains challenging. Improvements in this area have the potential to drive novel applications in biotechnology and drug design. In this study, we propose a novel approach called Contrastive Learning And Pre-trained Encoder (CLAPE), which combines a pre-trained protein language model and the contrastive learning method to predict DNA binding residues. We trained the CLAPE-DB model on the protein-DNA binding sites dataset and evaluated the model performance and generalization ability through various experiments. The results showed that the area under ROC curve values of the CLAPE-DB model on the two benchmark datasets reached 0.871 and 0.881, respectively, indicating superior performance compared to other existing models. CLAPE-DB showed better generalization ability and was specific to DNA-binding sites. In addition, we trained CLAPE on different protein-ligand binding sites datasets, demonstrating that CLAPE is a general framework for binding sites prediction. To facilitate the scientific community, the benchmark datasets and codes are freely available at https://github.com/YAndrewL/clape.
Collapse
Affiliation(s)
- Yufan Liu
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Boxue Tian
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Neuwald AF, Kolaczkowski BD, Altschul SF. eCOMPASS: evaluative comparison of multiple protein alignments by statistical score. Bioinformatics 2021; 37:3456-3463. [PMID: 33983436 PMCID: PMC8545322 DOI: 10.1093/bioinformatics/btab374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Motivation Detecting subtle biologically relevant patterns in protein sequences often requires the construction of a large and accurate multiple sequence alignment (MSA). Methods for constructing MSAs are usually evaluated using benchmark alignments, which, however, typically contain very few sequences and are therefore inappropriate when dealing with large numbers of proteins. Results eCOMPASS addresses this problem using a statistical measure of relative alignment quality based on direct coupling analysis (DCA): to maintain protein structural integrity over evolutionary time, substitutions at one residue position typically result in compensating substitutions at other positions. eCOMPASS computes the statistical significance of the congruence between high scoring directly coupled pairs and 3D contacts in corresponding structures, which depends upon properly aligned homologous residues. We illustrate eCOMPASS using both simulated and real MSAs. Availability and implementation The eCOMPASS executable, C++ open source code and input data sets are available at https://www.igs.umaryland.edu/labs/neuwald/software/compass Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bryan D Kolaczkowski
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Stephen F Altschul
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Methionine aminopeptidases with short sequence inserts within the catalytic domain are differentially inhibited: Structural and biochemical studies of three proteins from Vibrio spp. Eur J Med Chem 2020; 209:112883. [PMID: 33035924 DOI: 10.1016/j.ejmech.2020.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022]
Abstract
Methionine aminopeptidases (MetAPs) have been recognized as drug targets and have been extensively studied for discovery of selective inhibitors. MetAPs are essential enzymes in all living cells. While most prokaryotes contain a single gene, some prokaryotes and all eukaryotes including human have redundancy. Due to the similarity in the active sites of the MetAP enzyme between the pathogens and human limited the success of discovering selective inhibitors. We recently have discovered that MetAPs with small inserts within the catalytic domain to have different susceptibilities against some inhibitors compared to those that do not have. Using this clue we used bioinformatic tools to identify new variants of MetAPs with inserts in pathogenic species. Two new isoforms were identified in Vibrio species with two and three inserts in addition to an isoform without any insert. Multiple sequence alignment suggested that inserts are conserved in several of the Vibrio species. Two of the three inserts are common between two and three insert isoforms. One of the inserts is identified to have "NNKNN" motif that is similar to well-characterized quorum sensing peptide, "NNWNN". Another insert is predicted to have a posttranslational modification site. Three Vibrio proteins were cloned, expressed, purified, enzyme kinetics established and inhibitor screening has been performed. Several of the pyridinylpyrimidine derivatives selectively inhibited MetAPs with inserts compared to those that do not have, including the human enzyme. Crystal structure and molecular modeling studies provide the molecular basis for selective inhibition.
Collapse
|
5
|
Moore KS, 't Hoen PAC. Computational approaches for the analysis of RNA-protein interactions: A primer for biologists. J Biol Chem 2018; 294:1-9. [PMID: 30455357 DOI: 10.1074/jbc.rev118.004842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA-binding proteins (RBPs) play important roles in the control of gene expression and the coordination of different layers of post-transcriptional regulation. Interactions between certain RBPs and mRNA transcripts are notoriously difficult to predict, as any given protein-RNA interaction may rely not only on RNA sequence, but also on three-dimensional RNA structures, competitive inhibition from other RBPs, and input from cellular signaling pathways. Advanced and high-throughput technologies for the identification of RNA-protein interactions have come to the rescue, but the identification of binding sites and downstream functional effects of RBPs from the resulting data can be challenging. In this review, we discuss statistical inference and machine-learning approaches and tools relevant for the study of RBPs and the analysis of large-scale RNA-protein interaction datasets. This primer is intended for life scientists who are interested in incorporating these tools into their own research. We begin with the demystification of regression models, as used in the analysis of next-generation sequencing data, and progress to a discussion of Hidden Markov Models, which are of particular value in analyzing cross-linking followed by immunoprecipitation data. We then continue with examples of machine learning techniques, such as support vector machines and gradient tree boosting. We close with a brief discussion of current trends in the field, including deep learning architectures.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin, and Landsteiner Laboratory AMC/UvA, 1066 CX Amsterdam
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing. Proc Natl Acad Sci U S A 2015; 112:15548-55. [PMID: 26631744 DOI: 10.1073/pnas.1522127112] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cotranscriptional RNA processing and surveillance factors mediate heterochromatin formation in diverse eukaryotes. In fission yeast, RNAi machinery and RNA elimination factors including the Mtl1-Red1 core and the exosome are involved in facultative heterochromatin assembly; however, the exact mechanisms remain unclear. Here we show that RNA elimination factors cooperate with the conserved exoribonuclease Dhp1/Rat1/Xrn2, which couples pre-mRNA 3'-end processing to transcription termination, to promote premature termination and facultative heterochromatin formation at meiotic genes. We also find that Dhp1 is critical for RNAi-mediated heterochromatin assembly at retroelements and regulated gene loci and facilitates the formation of constitutive heterochromatin at centromeric and mating-type loci. Remarkably, our results reveal that Dhp1 interacts with the Clr4/Suv39h methyltransferase complex and acts directly to nucleate heterochromatin. Our work uncovers a previously unidentified role for 3'-end processing and transcription termination machinery in gene silencing through premature termination and suggests that noncanonical transcription termination by Dhp1 and RNA elimination factors is linked to heterochromatin assembly. These findings have important implications for understanding silencing mechanisms targeting genes and repeat elements in higher eukaryotes.
Collapse
|
7
|
Rondinelli B, Rosano D, Antonini E, Frenquelli M, Montanini L, Huang D, Segalla S, Yoshihara K, Amin SB, Lazarevic D, The BT, Verhaak RGW, Futreal PA, Di Croce L, Chin L, Cittaro D, Tonon G. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J Clin Invest 2015; 125:4625-37. [PMID: 26551685 DOI: 10.1172/jci81040] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers.
Collapse
|
8
|
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol Cell Biol 2014; 34:1894-910. [PMID: 24591651 DOI: 10.1128/mcb.00084-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.
Collapse
|
9
|
Saijo M. The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair. Mech Ageing Dev 2013; 134:196-201. [DOI: 10.1016/j.mad.2013.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/13/2013] [Accepted: 03/23/2013] [Indexed: 11/16/2022]
|
10
|
Alper BJ, Lowe BR, Partridge JF. Centromeric heterochromatin assembly in fission yeast--balancing transcription, RNA interference and chromatin modification. Chromosome Res 2012; 20:521-34. [PMID: 22733402 DOI: 10.1007/s10577-012-9288-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Distinct regions of the eukaryotic genome are packaged into different types of chromatin, with euchromatin representing gene rich, transcriptionally active regions and heterochromatin more condensed and gene poor. The assembly and maintenance of heterochromatin is important for many aspects of genome control, including silencing of gene transcription, suppression of recombination, and to ensure proper chromosome segregation. The precise mechanisms underlying heterochromatin establishment and maintenance are still unclear, but much progress has been made towards understanding this process during the last few years, particularly from studies performed in fission yeast. In this review, we hope to provide a conceptual model of centromeric heterochromatin in fission yeast that integrates our current understanding of the competing forces of transcription, replication, and RNA decay that influence its assembly and propagation.
Collapse
Affiliation(s)
- Benjamin J Alper
- Department of Biochemistry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | |
Collapse
|
11
|
Buscaino A, White SA, Houston DR, Lejeune E, Simmer F, de Lima Alves F, Diyora PT, Urano T, Bayne EH, Rappsilber J, Allshire RC. Raf1 Is a DCAF for the Rik1 DDB1-like protein and has separable roles in siRNA generation and chromatin modification. PLoS Genet 2012; 8:e1002499. [PMID: 22319459 PMCID: PMC3271066 DOI: 10.1371/journal.pgen.1002499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/09/2011] [Indexed: 12/29/2022] Open
Abstract
Non-coding transcription can trigger histone post-translational modifications forming specialized chromatin. In fission yeast, heterochromatin formation requires RNAi and the histone H3K9 methyltransferase complex CLRC, composed of Clr4, Raf1, Raf2, Cul4, and Rik1. CLRC mediates H3K9 methylation and siRNA production; it also displays E3-ubiquitin ligase activity in vitro. DCAFs act as substrate receptors for E3 ligases and may couple ubiquitination with histone methylation. Here, structural alignment and mutation of signature WDxR motifs in Raf1 indicate that it is a DCAF for CLRC. We demonstrate that Raf1 promotes H3K9 methylation and siRNA amplification via two distinct, separable functions. The association of the DCAF Raf1 with Cul4-Rik1 is critical for H3K9 methylation, but dispensable for processing of centromeric transcripts into siRNAs. Thus the association of a DCAF, Raf1, with its adaptor, Rik1, is required for histone methylation and to allow RNAi to signal to chromatin.
Collapse
Affiliation(s)
- Alessia Buscaino
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sharon A. White
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas R. Houston
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erwan Lejeune
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Femke Simmer
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Piyush T. Diyora
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Takeshi Urano
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo, Japan
| | - Elizabeth H. Bayne
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SIS. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 2011; 335:96-100. [PMID: 22144463 DOI: 10.1126/science.1211651] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Facultative heterochromatin that changes during cellular differentiation coordinates regulated gene expression, but its assembly is poorly understood. Here, we describe facultative heterochromatin islands in fission yeast and show that their formation at meiotic genes requires factors that eliminate meiotic messenger RNAs (mRNAs) during vegetative growth. Blocking production of meiotic mRNA or loss of RNA elimination factors, including Mmi1 and Red1 proteins, abolishes heterochromatin islands. RNA elimination machinery is enriched at meiotic loci and interacts with Clr4/SUV39h, a methyltransferase involved in heterochromatin assembly. Heterochromatin islands disassemble in response to nutritional signals that induce sexual differentiation. This process involves the antisilencing factor Epe1, the loss of which causes dramatic increase in heterochromatic loci. Our analyses uncover unexpected regulatory roles for mRNA-processing factors that assemble dynamic heterochromatin to modulate gene expression.
Collapse
Affiliation(s)
- Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cardona-Felix CS, Lara-Gonzalez S, Brieba LG. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:497-505. [PMID: 21636889 DOI: 10.1107/s0907444911010547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.
Collapse
Affiliation(s)
- Cesar S Cardona-Felix
- Grupo de Bioquímica Estructural, Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, México
| | | | | |
Collapse
|
14
|
González-Díaz H, Muíño L, Anadón AM, Romaris F, Prado-Prado FJ, Munteanu CR, Dorado J, Sierra AP, Mezo M, González-Warleta M, Gárate T, Ubeira FM. MISS-Prot: web server for self/non-self discrimination of protein residue networks in parasites; theory and experiments in Fasciola peptides and Anisakis allergens. MOLECULAR BIOSYSTEMS 2011; 7:1938-55. [PMID: 21468430 DOI: 10.1039/c1mb05069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infections caused by human parasites (HPs) affect the poorest 500 million people worldwide but chemotherapy has become expensive, toxic, and/or less effective due to drug resistance. On the other hand, many 3D structures in Protein Data Bank (PDB) remain without function annotation. We need theoretical models to quickly predict biologically relevant Parasite Self Proteins (PSP), which are expressed differentially in a given parasite and are dissimilar to proteins expressed in other parasites and have a high probability to become new vaccines (unique sequence) or drug targets (unique 3D structure). We present herein a model for PSPs in eight different HPs (Ascaris, Entamoeba, Fasciola, Giardia, Leishmania, Plasmodium, Trypanosoma, and Toxoplasma) with 90% accuracy for 15 341 training and validation cases. The model combines protein residue networks, Markov Chain Models (MCM) and Artificial Neural Networks (ANN). The input parameters are the spectral moments of the Markov transition matrix for electrostatic interactions associated with the protein residue complex network calculated with the MARCH-INSIDE software. We implemented this model in a new web-server called MISS-Prot (MARCH-INSIDE Scores for Self-Proteins). MISS-Prot was programmed using PHP/HTML/Python and MARCH-INSIDE routines and is freely available at: . This server is easy to use by non-experts in Bioinformatics who can carry out automatic online upload and prediction with 3D structures deposited at PDB (mode 1). We can also study outcomes of Peptide Mass Fingerprinting (PMFs) and MS/MS for query proteins with unknown 3D structures (mode 2). We illustrated the use of MISS-Prot in experimental and/or theoretical studies of peptides from Fasciola hepatica cathepsin proteases or present on 10 Anisakis simplex allergens (Ani s 1 to Ani s 10). In doing so, we combined electrophoresis (1DE), MALDI-TOF Mass Spectroscopy, and MASCOT to seek sequences, Molecular Mechanics + Molecular Dynamics (MM/MD) to generate 3D structures and MISS-Prot to predict PSP scores. MISS-Prot also allows the prediction of PSP proteins in 16 additional species including parasite hosts, fungi pathogens, disease transmission vectors, and biotechnologically relevant organisms.
Collapse
Affiliation(s)
- Humberto González-Díaz
- Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Creamer KM, Partridge JF. RITS-connecting transcription, RNA interference, and heterochromatin assembly in fission yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:632-46. [PMID: 21823226 DOI: 10.1002/wrna.80] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, a bevy of evidence has been unearthed indicating that 'silent' heterochromatin is not as transcriptionally inert as once thought. In the unicellular yeast Schizosaccharomyces pombe, the processing of transcripts derived from centromeric repeats into homologous short interfering RNA (siRNA) is essential for the formation of centromeric heterochromatin. Deletion of genes required for siRNA biogenesis showed that core components of the canonical RNA interference (RNAi) pathway are essential for centromeric heterochromatin assembly as well as for centromere function. Subsequent purification of the RNA-induced initiation of transcriptional gene silencing (RITS) complex provided the critical link between siRNAs and heterochromatin assembly, with RITS acting as a physical bridge between noncoding RNA scaffolds and chromatin. Here, we review current understanding of how RITS promotes heterochromatin formation and how it participates in transcription-coupled silencing. WIREs RNA 2011 2 632-646 DOI: 10.1002/wrna.80 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin M Creamer
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, USA
| | | |
Collapse
|
16
|
Shanker S, Job G, George OL, Creamer KM, Shaban A, Partridge JF. Continuous requirement for the Clr4 complex but not RNAi for centromeric heterochromatin assembly in fission yeast harboring a disrupted RITS complex. PLoS Genet 2010; 6:e1001174. [PMID: 21060862 PMCID: PMC2965749 DOI: 10.1371/journal.pgen.1001174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent "priRNAs." The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3(WG)) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi-independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4(+) in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi-independent factors in the assembly of heterochromatin.
Collapse
Affiliation(s)
- Sreenath Shanker
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Godwin Job
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Olivia L. George
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kevin M. Creamer
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Alaa Shaban
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Janet F. Partridge
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Bayne EH, White SA, Kagansky A, Bijos DA, Sanchez-Pulido L, Hoe KL, Kim DU, Park HO, Ponting CP, Rappsilber J, Allshire RC. Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 2010; 140:666-77. [PMID: 20211136 PMCID: PMC2875855 DOI: 10.1016/j.cell.2010.01.038] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/23/2009] [Accepted: 01/21/2010] [Indexed: 12/22/2022]
Abstract
In fission yeast, RNAi directs heterochromatin formation at centromeres, telomeres, and the mating type locus. Noncoding RNAs transcribed from repeat elements generate siRNAs that are incorporated into the Argonaute-containing RITS complex and direct it to nascent homologous transcripts. This leads to recruitment of the CLRC complex, including the histone methyltransferase Clr4, promoting H3K9 methylation and heterochromatin formation. A key question is what mediates the recruitment of Clr4/CLRC to transcript-bound RITS. We have identified a LIM domain protein, Stc1, that is required for centromeric heterochromatin integrity. Our analyses show that Stc1 is specifically required to establish H3K9 methylation via RNAi, and interacts both with the RNAi effector Ago1, and with the chromatin-modifying CLRC complex. Moreover, tethering Stc1 to a euchromatic locus is sufficient to induce silencing and heterochromatin formation independently of RNAi. We conclude that Stc1 associates with RITS on centromeric transcripts and recruits CLRC, thereby coupling RNAi to chromatin modification.
Collapse
Affiliation(s)
- Elizabeth H. Bayne
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Sharon A. White
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Alexander Kagansky
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Dominika A. Bijos
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Kwang-Lae Hoe
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dong-Uk Kim
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Han-Oh Park
- Bioneer Corporation, Daejeon 306-220, Republic of Korea
| | - Chris P. Ponting
- MRC Functional Genomics Unit, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| |
Collapse
|
18
|
Aygün O, Grewal SIS. Assembly and functions of heterochromatin in the fission yeast genome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 75:259-67. [PMID: 21502415 PMCID: PMC6309827 DOI: 10.1101/sqb.2010.75.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In eukaryotic genomes, heterochromatin regulates various chromosomal processes including suppression of transcription and illegitimate recombination as well as proper segregation of chromosomes during cell division. Recent studies using the fission yeast Schizosaccharomyces pombe model system have revealed a complex interplay among RNA polymerase II transcription, RNAi machinery, and factors involved in posttranslational modifications of histones that are critical for the assembly and maintenance of heterochromatin. Heterochromatin proteins targeted to specific sites in the genome can spread across extended chromosomal domains and mediate epigenetic genome control by providing a recruitment platform for various factors including chromatin-modifying activities. In this chapter, we discuss mechanisms of heterochromatin assembly in fission yeast and highlight emerging evidence suggesting the involvement of heterochromatin factors in the suppression of noncoding RNAs across the genome.
Collapse
Affiliation(s)
- O Aygün
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
19
|
Abstract
Phylogenomics reveals extreme gene loss in typhus group (TG) rickettsiae relative to the levels for other rickettsial lineages. We report here a curious protease-encoding gene (ppcE) that is conserved only in TG rickettsiae. As a possible determinant of host pathogenicity, ppcE warrants consideration in the development of therapeutics against epidemic and murine typhus.
Collapse
|
20
|
CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34:562-70. [PMID: 19818632 DOI: 10.1016/j.tibs.2009.07.002] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/01/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
The evolutionarily conserved cullin family proteins can assemble as many as 400 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. CUL4, one of three founding cullins conserved from yeast to humans, uses a large beta-propeller protein, DDB1, as a linker to interact with a subset of WD40 proteins that serve as substrate receptors, forming as many as 90 E3 complexes in mammals. Many CRL4 complexes are involved in chromatin regulation and are frequently hijacked by different viruses.
Collapse
|
21
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
22
|
Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 2008; 15:381-8. [DOI: 10.1038/nsmb.1406] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/22/2008] [Indexed: 11/09/2022]
|
23
|
Abstract
In the fission yeast Schizosaccharomyces pombe, the RNAi pathway plays an important role in the formation and maintenance of heterochromatin. Heterochromatin, or silent chromatin, is an epigenetically inherited attribute of eukaryotic chromosomes which is required for gene regulation, chromosome segregation and maintenance of genome stability. In S. pombe, heterochromatin forms on related repetitive DNA sequences at specific loci. These repetitive sequences, in concert with the RNAi machinery, are thought to attract several proteins including chromatin-modifying enzymes which act to promote heterochromatin formation. The purification of complexes participating in heterochromatin formation has allowed us to begin to analyse in detail the processes involved. In the future this will help us to understand how the RNAi machinery acts to induce the chromatin modifications which lead to heterochromatin assembly in fission yeast.
Collapse
Affiliation(s)
- Sharon A White
- Welcome Trust Centre for Cell Biology, Institute of Cell Biology, The University of Edinburgh, Edinburgh, EH9 3JR Scotland, UK.
| | | |
Collapse
|
24
|
Bernardes JS, Dávila AMR, Costa VS, Zaverucha G. Improving model construction of profile HMMs for remote homology detection through structural alignment. BMC Bioinformatics 2007; 8:435. [PMID: 17999748 PMCID: PMC2245980 DOI: 10.1186/1471-2105-8-435] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 11/09/2007] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs) are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the Twilight Zone, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance. RESULTS We used the SCOP database to perform our experiments. Structural alignments were obtained using the 3DCOFFEE and MAMMOTH-mult tools; sequence alignments were obtained using CLUSTALW, TCOFFEE, MAFFT and PROBCONS. We performed leave-one-family-out cross-validation over super-families. Performance was evaluated through ROC curves and paired two tailed t-test. CONCLUSION We observed that pHMMs derived from structural alignments performed significantly better than pHMMs derived from sequence alignment in low-identity regions, mainly below 20%. We believe this is because structural alignment tools are better at focusing on the important patterns that are more often conserved through evolution, resulting in higher quality pHMMs. On the other hand, sensitivity of these tools is still quite low for these low-identity regions. Our results suggest a number of possible directions for improvements in this area.
Collapse
Affiliation(s)
- Juliana S Bernardes
- COPPE, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vítor S Costa
- DCC-FCUP e LIACC, Universidade do Porto, Porto, Portugal
| | - Gerson Zaverucha
- COPPE, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Kann MG, Sheetlin SL, Park Y, Bryant SH, Spouge JL. The identification of complete domains within protein sequences using accurate E-values for semi-global alignment. Nucleic Acids Res 2007; 35:4678-85. [PMID: 17596268 PMCID: PMC1950549 DOI: 10.1093/nar/gkm414] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance.
Collapse
Affiliation(s)
| | | | | | | | - John L. Spouge
- *To whom correspondence should be addressed.301 402 9310301 480 2484
| |
Collapse
|
26
|
Abstract
The formation of heterochromatin, which requires methylation of histone H3 at lysine 9 and the subsequent recruitment of chromodomain proteins such as heterochromatin protein HP1, serves as a model for the role of histone modifications and chromatin assembly in epigenetic control of the genome. Recent studies in Schizosaccharomyces pombe indicate that heterochromatin serves as a dynamic platform to recruit and spread a myriad of regulatory proteins across extended domains to control various chromosomal processes, including transcription, chromosome segregation and long-range chromatin interactions.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
27
|
Shimanouchi K, Takata KI, Yamaguchi M, Murakami S, Ishikawa G, Takeuchi R, Kanai Y, Ruike T, Nakamura R, Abe Y, Sakaguchi K. Drosophila damaged DNA binding protein 1 contributes to genome stability in somatic cells. J Biochem 2007; 139:51-8. [PMID: 16428319 DOI: 10.1093/jb/mvj006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The damaged DNA-binding protein (DDB) complex consists of a heterodimer of p127 (DDB1) and p48 (DDB2) subunits and is believed to have a role in nucleotide excision repair (NER). We used the GAL4-UAS targeted expression system to knock down DDB1 in wing imaginal discs of Drosophila. The knock-down was achieved in transgenic flies using over-expression of inverted repeat RNA of the D-DDB1 gene [UAS-D-DDB1(650)-dsRNA]. As a consequence of RNA interference (RNAi), the fly had a shrunken wing phenotype. The wing spot test showed induced genome instability in transgenic flies with RNAi knock-down of D-DDB1 in wing imaginal discs. When Drosophila larvae with RNAi knock-down of D-DDB1 in wing imaginal discs were treated with the chemical mutagen methyl methanesulfonate (MMS), the frequency of flies with a severely shrunken wing phenotype increased compared to non-treated transgenic flies. These results suggested that DDB1 plays a role in the response to DNA damaged with MMS and in genome stability in Drosophila somatic cells.
Collapse
Affiliation(s)
- Kaori Shimanouchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
He YJ, McCall CM, Hu J, Zeng Y, Xiong Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 2006; 20:2949-54. [PMID: 17079684 PMCID: PMC1620025 DOI: 10.1101/gad.1483206] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cullins assemble the largest family of ubiquitin ligases by binding with ROC1 and various substrate receptors. CUL4 function is linked with many cellular processes, but its substrate-recruiting mechanism remains elusive. We identified a protein motif, the DWD box (DDB1-binding WD40 protein), and demonstrated the binding of 15 DWD proteins with DDB1-CUL4A. We provide evidence supporting the critical function of the DWD box and DDB1's role as the linker mediating DWD protein association with CUL4A. A database search predicts that about one-third of WD40 proteins, 90 in humans, contain the DWD box, suggesting a potentially large number of DWD-DDB1-CUL4-ROC1 E3 ligases.
Collapse
Affiliation(s)
- Yizhou Joseph He
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
29
|
Turutina VP, Laskin AA, Kudryashov NA, Skryabin KG, Korotkov EV. Identification of amino acid latent periodicity within 94 protein families. J Comput Biol 2006; 13:946-64. [PMID: 16761920 DOI: 10.1089/cmb.2006.13.946] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here, we have applied information decomposition, cyclic profile alignment, and noise decomposition techniques to search for latent repeats within protein families of various functions. We have identified 94 protein families with a family-specific periodicity. In each case, the periodic element was found in greater than 70% of family members. Latent periodicity profiles with specific length and signature were obtained in each case. The possible relationship between the periodic elements thus identified and the evolutionary development of the protein families are discussed with specific reference to the possibility that there is a correlation between the periodic elements and protein function.
Collapse
Affiliation(s)
- Vera P Turutina
- Bioengineering Center of Russian Academy of Sciences, Prospect 60-tya Oktyabrya, Moscow
| | | | | | | | | |
Collapse
|
30
|
Sugasawa K. UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair. J Mol Histol 2006; 37:189-202. [PMID: 16858626 DOI: 10.1007/s10735-006-9044-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 12/31/2022]
Abstract
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Genome Damage Response Research Unit, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
31
|
Abstract
The organization of eukaryotic genomes requires a harmony between efficient compaction and accessibility. This is achieved through its packaging into chromatin. Chromatin can be subdivided into two general structural and functional compartments: euchromatin and heterochromatin. Euchromatin comprises most of the expressed genome, while heterochromatin participates intimately in the production of structures such as centromeres and telomeres essential for chromosome function. Studies in the fission yeast Schizosaccharomyces pombe have begun to highlight the genetic pathways critical for the assembly and epigenetic maintenance of heterochromatin, including key roles played by the RNAi machinery, H3 lysine 9 methylation and heterochromatin protein 1 (HP1). Recent studies have also identified a novel E3 ubiquitin ligase universally required for H3 K9 methylation. Here we outline these studies and propose several models for the role of this E3 ligase in heterochromatin assembly.
Collapse
Affiliation(s)
- Peter J Horn
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St., Biotech 2, Suite 210, Worcester, 01605, USA
| | | |
Collapse
|
32
|
Abstract
Cullin RING ubiquitin ligases (CRULs) are found in all eukaryotes and play an essential role in targeting proteins for ubiquitin-mediated destruction, thus regulating a plethora of cellular processes. Viruses manipulate CRULs by redirecting this destruction machinery to eliminate unwanted host cell proteins, thus allowing viruses to slip past host immune barriers. Depending on the host organism, virus-modified CRULs can perform an amazing range of tasks, including the elimination of crucial signal transduction molecules in the human interferon pathway and suppression of virus-induced gene silencing in plants. This Perspective summarizes recent advances in our understanding of how viral proteins manipulate the function of CRULs.
Collapse
Affiliation(s)
- Michele Barry
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
33
|
Li T, Chen X, Garbutt KC, Zhou P, Zheng N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 2006; 124:105-17. [PMID: 16413485 DOI: 10.1016/j.cell.2005.10.033] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/16/2005] [Accepted: 10/11/2005] [Indexed: 01/28/2023]
Abstract
The DDB1-Cul4A ubiquitin ligase complex promotes protein ubiquitination in diverse cellular functions and is reprogrammed by the V proteins of paramyxoviruses to degrade STATs and block interferon signaling. Here we report the crystal structures of DDB1 alone and in complex with the simian virus 5 V protein. The DDB1 structure reveals an intertwined three-propeller cluster, which contains two tightly coupled beta propellers with a large pocket in between and a third beta propeller flexibly attached on the side. The rigid double-propeller fold of DDB1 is targeted by the viral V protein, which inserts an entire helix into the double-propeller pocket, whereas the third propeller domain docks DDB1 to the N terminus of the Cul4A scaffold. Together, these results not only provide structural insights into how the virus hijacks the DDB1-Cul4A ubiquitin ligase but also establish a structural framework for understanding the multiple functions of DDB1 in the uniquely assembled cullin-RING E3 machinery.
Collapse
Affiliation(s)
- Ti Li
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
34
|
Li F, Goto DB, Zaratiegui M, Tang X, Martienssen R, Cande WZ. Two novel proteins, dos1 and dos2, interact with rik1 to regulate heterochromatic RNA interference and histone modification. Curr Biol 2006; 15:1448-57. [PMID: 16040243 DOI: 10.1016/j.cub.2005.07.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 06/30/2005] [Accepted: 07/01/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chromosomal behavior during mitosis and meiosis depends in part on heterochromatic modifications such as histone H3 lysine-9 methylation (H3K9me). In fission yeast, the Heterochromatin Protein 1 homolog Swi6 recognizes H3K9me, silences transcription, and retains cohesin at pericentromeric repeats. Heterochromatin formation also depends on processing of transcripts derived from centromeric repeats by the RNAi machinery. The DDB1 homolog, Rik1, and histone methyltransferase, Clr4, act in a complex to promote H3K9me. However, the mechanism underlying this interaction is poorly understood. RESULTS Using a cytological screen, we have identified two novel genes, dos1(+) and dos2(+), which are required for localization of Swi6. Deletion of either of these genes results in mitotic and meiotic chromosome missegregation, defects in mitotic centromeric cohesion and meiotic telomere clustering, and loss of heterochromatic silencing. Dos1 is predominantly located in the nucleus in a Dos2-dependent manner and directly interacts with Rik1. Each of these genes is required for the association of H3K9me with centromeric repeats, as well as for the production of small interfering RNAs. CONCLUSIONS Dos1 and Dos2 are required for the formation of heterochromatin in fission yeast. We hypothesize that the physical interaction between Dos1 and Rik1 represents a role in regulating activity of the Rik1/Clr4 complex. Dos2 contributes to this role by regulating Dos1 localization. Our findings suggest a mechanism for recruitment of Clr4 in the RNAi-dependent heterochromatin pathway, in which Dos1 and Dos2 are essential.
Collapse
Affiliation(s)
- Fei Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
35
|
Turutina VP, Laskin AA, Kudryashov NA, Skryabin KG, Korotkov EV. Identification of latent periodicity in amino acid sequences of protein families. BIOCHEMISTRY. BIOKHIMIIA 2006; 71:18-31. [PMID: 16457614 DOI: 10.1134/s0006297906010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed.
Collapse
Affiliation(s)
- V P Turutina
- Bioengineering Center, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
36
|
Thon G, Hansen KR, Altes SP, Sidhu D, Singh G, Verhein-Hansen J, Bonaduce MJ, Klar AJS. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 2005; 171:1583-95. [PMID: 16157682 PMCID: PMC1456086 DOI: 10.1534/genetics.105.048298] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fission yeast heterochromatin is formed at centromeres, telomeres, and in the mating-type region where it mediates the transcriptional silencing of the mat2-P and mat3-M donor loci and the directionality of mating-type switching. We conducted a genetic screen for directionality mutants. This screen revealed the essential role of two previously uncharacterized factors, Clr7 and Clr8, in heterochromatin formation. Clr7 and Clr8 are required for localization of the Swi6 chromodomain protein and for histone H3 lysine 9 methylation, thereby influencing not only mating-type switching but also transcriptional silencing in all previously characterized heterochromatic regions, chromosome segregation, and meiotic recombination in the mating-type region. We present evidence for physical interactions between Clr7 and the mating-type region and between Clr7 and the S. pombe cullin Pcu4, indicating that a complex containing these proteins mediates an early step in heterochromatin formation and implying a role for ubiquitination at this early stage prior to the action of the Clr4 histone methyl-transferase. Like Clr7 and Clr8, Pcu4 is required for histone H3 lysine 9 methylation, and bidirectional centromeric transcripts that are normally processed into siRNA by the RNAi machinery in wild-type cells are easily detected in cells lacking Clr7, Clr8, or Pcu4. Another physical interaction, between the nucleoporin Nup189 and Clr8, suggests that Clr8 might be involved in tethering heterochromatic regions to the nuclear envelope by association with the nuclear-pore complex.
Collapse
Affiliation(s)
- Geneviève Thon
- Department of Genetics, Institute of Molecular Biology and Physiology, University of Copenhagen, Øster Farimasgade 2A, DK-1353 Copenhagen K, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jia S, Kobayashi R, Grewal SIS. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 2005; 7:1007-13. [PMID: 16127433 DOI: 10.1038/ncb1300] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Accepted: 08/10/2005] [Indexed: 11/09/2022]
Abstract
In eukaryotes, heterochromatin mediates diverse processes including gene silencing and regulation of long-range chromatin interactions. The formation of heterochromatin involves a conserved array of histone modifications; in particular, methylation of histone H3 at Lys 9 (H3K9me) is essential for recruiting HP1/Swi6 proteins. In fission yeast, the Clr4 methyltransferase is responsible for H3K9me across all heterochromatic domains. However, the mechanism of Clr4 recruitment to these loci is poorly understood. We show that Clr4 associates with Cul4, a cullin family protein that serves as a scaffold for assembling ubiquitin ligases. Mutations in Cul4 result in defective localization of Clr4 and loss of silencing at heterochromatic loci. This is accompanied by a severe reduction in H3K9me and Swi6 levels, and accumulation of transcripts corresponding to naturally silenced repeat elements within heterochromatic domains. Moreover, heterochromatin defects in Cul4 mutants could not be rescued by expression of Cul4 protein lacking Nedd8 modification, which is essential for its ubiquitin ligase activity. Rik1, a protein related to DNA damage binding protein DDB1 and required for H3K9me, also interacts with Cul4, the association of which might serve to target Clr4 to heterochromatic loci. These analyses uncover a role for Cul4-based protein ubiquitination in regulating H3K9me and heterochromatin formation.
Collapse
Affiliation(s)
- Songtao Jia
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
38
|
Martienssen RA, Zaratiegui M, Goto DB. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet 2005; 21:450-6. [PMID: 15979194 DOI: 10.1016/j.tig.2005.06.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/17/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Fission yeast is a useful model for RNA interference because it has single-copy genes for components of the RNAi pathway such as argonaute, dicer and RNA-dependent RNA polymerase (RdRP). Functions for RNAi revealed in S. pombe, such as heterochromatic silencing and chromosome segregation, are likely to be ancient because they are shared with some other eukaryotes. The underlying mechanisms are being rapidly unraveled.
Collapse
|
39
|
Holmberg C, Fleck O, Hansen HA, Liu C, Slaaby R, Carr AM, Nielsen O. Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev 2005; 19:853-62. [PMID: 15805471 PMCID: PMC1074322 DOI: 10.1101/gad.329905] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human UV-damaged DNA-binding protein Ddb1 associates with cullin 4 ubiquitin ligases implicated in nucleotide excision repair (NER). These complexes also contain the signalosome (CSN), but NER-relevant ubiquitination targets have not yet been identified. We report that fission yeast Ddb1, Cullin 4 (Pcu4), and CSN subunits Csn1 and Csn2 are required for degradation of the ribonucleotide reductase (RNR) inhibitor protein Spd1. Ddb1-deficient cells have >20-fold increased spontaneous mutation rate. This is partly dependent on the error-prone translesion DNA polymerases. Spd1 deletion substantially reduced the mutation rate, suggesting that insufficient RNR activity accounts for approximately 50% of observed mutations. Epistasis analysis indicated that Ddb1 contributed to mutation avoidance and tolerance to DNA damage in a pathway distinct from NER. Finally, we show that Ddb1/Csn1/Cullin 4-mediated Spd1 degradation becomes essential when cells differentiate into meiosis. These results suggest that Ddb1, along with Cullin 4 and the signalosome, constitute a major pathway controlling genome stability, repair, and differentiation via RNR regulation.
Collapse
Affiliation(s)
- Christian Holmberg
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Chromatin at centromeres is distinct from the chromatin in which the remainder of the genome is assembled. Two features consistently distinguish centromeres: the presence of the histone H3 variant CENP-A and, in most organisms, the presence of heterochromatin. In fission yeast, domains of silent "heterochromatin" flank the CENP-A chromatin domain that forms a platform upon which the kinetochore is assembled. Thus, fission yeast centromeres resemble their metazoan counterparts where the kinetochore is embedded in centromeric heterochromatin. The centromeric outer repeat chromatin is underacetylated on histones H3 and H4, and methylated on lysine 9 of histone H3, which provides a binding site for the chromodomain protein Swi6 (orthologue of Heterochromatin Protein 1, HP1). The remarkable demonstration that the assembly of repressive heterochromatin is dependent on the RNA interference machinery provokes many questions about the mechanisms of this process that may be tractable in fission yeast. Heterochromatin ensures that a high density of cohesin is recruited to centromeric regions, but it could have additional roles in centromere architecture and the prevention of merotely, and it might also act as a trigger for kinetochore assembly. In addition, we discuss an epigenetic model for ensuring that CENP-A is targeted and replenished at the kinetochore domain.
Collapse
Affiliation(s)
- Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
41
|
Abstract
Fission yeast centromeres are composed of two distinctive chromatin domains. The central domain nucleosomes contain the histone H3-like protein CENP-A(Cnp1). In contrast, the flanking repeats are coated with silent chromatin in which Swi6 (HP1) binds histone H3 methylated on lysine 9 that is induced by the action of the RNA interference pathway on non-coding centromeric transcripts. The overall structure is similar to that of metazoan centromeres where the kinetochore is embedded in surrounding heterochromatin. Kinetochore specific proteins associate with the central domain and affect silencing in that region. The flanking heterochromatin is required to recruit cohesin and mediate tight physical cohesion between sister centromeres. The loss of silencing that accompanies defects in heterochromatin has been invaluable as a tool in the investigation of centromere function. Both the heterochromatin and kinetochore regions are required for the de novo assembly of a functional centromere on DNA constructs, suggesting that heterochromatin may provide an environment that promotes kinetochore assembly within the central domain. The process is clearly epigenetically regulated. Fission yeast kinetochores associate with 2-4 microtubules, and flanking heterochromatin may be required to promote the orientation of multiple microtubule binding sites on one kinetochore towards the same pole and thus prevent merotelic orientation.
Collapse
Affiliation(s)
- Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|
42
|
Neuwald AF, Liu JS. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model. BMC Bioinformatics 2004; 5:157. [PMID: 15504234 PMCID: PMC538276 DOI: 10.1186/1471-2105-5-157] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 10/25/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Certain protein families are highly conserved across distantly related organisms and belong to large and functionally diverse superfamilies. The patterns of conservation present in these protein sequences presumably are due to selective constraints maintaining important but unknown structural mechanisms with some constraints specific to each family and others shared by a larger subset or by the entire superfamily. To exploit these patterns as a source of functional information, we recently devised a statistically based approach called contrast hierarchical alignment and interaction network (CHAIN) analysis, which infers the strengths of various categories of selective constraints from co-conserved patterns in a multiple alignment. The power of this approach strongly depends on the quality of the multiple alignments, which thus motivated development of theoretical concepts and strategies to improve alignment of conserved motifs within large sets of distantly related sequences. RESULTS Here we describe a hidden Markov model (HMM), an algebraic system, and Markov chain Monte Carlo (MCMC) sampling strategies for alignment of multiple sequence motifs. The MCMC sampling strategies are useful both for alignment optimization and for adjusting position specific background amino acid frequencies for alignment uncertainties. Associated statistical formulations provide an objective measure of alignment quality as well as automatic gap penalty optimization. Improved alignments obtained in this way are compared with PSI-BLAST based alignments within the context of CHAIN analysis of three protein families: Gialpha subunits, prolyl oligopeptidases, and transitional endoplasmic reticulum (p97) AAA+ ATPases. CONCLUSION While not entirely replacing PSI-BLAST based alignments, which likewise may be optimized for CHAIN analysis using this approach, these motif-based methods often more accurately align very distantly related sequences and thus can provide a better measure of selective constraints. In some instances, these new approaches also provide a better understanding of family-specific constraints, as we illustrate for p97 ATPases. Programs implementing these procedures and supplementary information are available from the authors.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Box 100, Cold Spring Harbor, NY 11724, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, 1 Oxford Street, Cambridge MA, 02138, USA
| |
Collapse
|
43
|
Bjerling P, Ekwall K, Egel R, Thon G. A novel type of silencing factor, Clr2, is necessary for transcriptional silencing at various chromosomal locations in the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 2004; 32:4421-8. [PMID: 15317867 PMCID: PMC516054 DOI: 10.1093/nar/gkh780] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mating-type region of the fission yeast Schizosaccharomyces pombe comprises three loci: mat1, mat2-P and mat3-M. mat1 is expressed and determines the mating type of the cell. mat2-P and mat3-M are two storage cassettes located in a 17 kb heterochromatic region with features identical to those of mammalian heterochromatin. Mutations in the swi6+, clr1+, clr2+, clr3+, clr4+ and clr6+ genes were obtained in screens for factors necessary for silencing the mat2-P-mat3-M region. swi6+ encodes a chromodomain protein, clr3+ and clr6+ histone deacetylases, and clr4+ a histone methyltransferase. Here, we describe the cloning and characterization of clr2+. The clr2+ gene encodes a 62 kDa protein with no obvious sequence homologs. Deletion of clr2+ not only affects transcriptional repression in the mating-type region, but also centromeric silencing and silencing of a PolII-transcribed gene inserted in the rDNA repeats. Using chromatin immunoprecipitation, we show that Clr2 is necessary for histone hypoacetylation in the mating-type region, suggesting that Clr2 acts upstream of histone deacetylases to promote transcriptional silencing.
Collapse
Affiliation(s)
- Pernilla Bjerling
- Department of Biosciences, Karolinska Institutet, Sodertorn University College, 141 89 Huddinge, Sweden.
| | | | | | | |
Collapse
|
44
|
Allard S, Masson JY, Côté J. Chromatin remodeling and the maintenance of genome integrity. ACTA ACUST UNITED AC 2004; 1677:158-64. [PMID: 15020056 DOI: 10.1016/j.bbaexp.2003.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/06/2003] [Accepted: 10/06/2003] [Indexed: 12/18/2022]
Abstract
DNA damage of any type is threatening for a cell. If lesions are left unrepaired, genomic instability can arise, faithful transmission of genetic information is greatly compromised eventually leading the cell to undergo apoptosis or carcinogenesis. In order to access/detect and repair these damages, repair factors must circumvent the natural repressive barrier of chromatin. This review will present recent progress showing the intricate link between chromatin, its remodeling and the DNA repair process. Several studies demonstrated that one of the first events following specific types of DNA damage is the phosphorylation of histone H2A. This mark or the damage itself are responsible for the association of chromatin-modifying complexes near damaged DNA. These complexes are able to change the chromatin structure around the wounded DNA in order to allow the repair machinery to gain access and repair the lesion. Chromatin modifiers include ATP-dependent remodelers such as SWI/SNF and Rad54 as well as histone acetyltransferases (HATs) like SAGA/NuA4-related complexes and p300/CBP, which have been shown to facilitate DNA accessibility and repair in different pathways leading to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Stéphane Allard
- Centre de Recherche en Cancérologie de l'Université Laval, Hôtel-Dieu de Québec (CHUQ), 9 rue McMahon, Québec, Canada G1R 2J6
| | | | | |
Collapse
|
45
|
Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 2004; 9:105-20. [PMID: 15009096 DOI: 10.1111/j.1365-2443.2004.00705.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CENP-A, a centromere-specific histone H3, is conserved throughout eukaryotes, and formation of CENP-A chromatin defines the active centromere region. Here, we report the isolation of CENP-A chromatin from HeLa interphase nuclei by chromatin immunoprecipitation using anti-CENP-A monoclonal antibody, and systematic identification of its components by mass spectrometric analyses. The isolated chromatin contained CENP-B, CENP-C, CENP-H, CENP-I/hMis 6 and hMis 12 as well as CENP-A, suggesting that the isolated chromatin may represent the centromere complex (CEN-complex). Mass spectrometric analyses of the CEN-complex identified approximately 40 proteins, including the previously reported centromere proteins and the proteins of unknown function. In addition, we unexpectedly identified a series of proteins previously reported to be related to functions other than chromosome segregation, such as uvDDB-1, XAP8, hSNF2H, FACTp180, FACTp80/SSRP1, polycomb group proteins (BMI-1, RING1, RNF2, HPC3 and PHP2), KNL5 and racGAP. We found that uvDDB-1 was actually localized to the centromeric region throughout cell cycle, while BMI-1 was transiently co-localized with the centromeres in interphase. These results give us new insights into the architecture, dynamics and function of centromeric chromatin in interphase nuclei, which might reflect regulation of cell proliferation and differentiation.
Collapse
Affiliation(s)
- Chikashi Obuse
- Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Bondar T, Mirkin EV, Ucker DS, Walden WE, Mirkin SM, Raychaudhuri P. Schizosaccharomyces pombe Ddb1 is functionally linked to the replication checkpoint pathway. J Biol Chem 2003; 278:37006-14. [PMID: 12857752 DOI: 10.1074/jbc.m303003200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizosaccharomyces pombe Ddb1 is homologous to the mammalian DDB1 protein, which has been implicated in damaged-DNA recognition and global genomic repair. However, a recent study suggested that the S. pombe Ddb1 is involved in cell division and chromosomal segregation. Here, we provide evidence that the S. pombe Ddb1 is functionally linked to the replication checkpoint control gene cds1. We show that the S. pombe strain lacking ddb1 has slow growth due to delayed replication progression. Flow cytometric analysis shows an extensive heterogeneity in DNA content. Furthermore, the Deltaddb1 strain is hypersensitive to UV irradiation in S phase and is unable to tolerate a prolonged replication block imposed by hydroxyurea. Interestingly, the Deltaddb1 strain exhibits a high level of the Cds1 kinase activity during passage through S phase. Moreover, mutation of the cds1 gene relieves the defects observed in Deltaddb1 strain. The results suggest that many of the defects observed in Deltaddb1 cells are linked to an aberrant activation of Cds1, and that Ddb1 is functionally linked to Cds1.
Collapse
Affiliation(s)
- Tanya Bondar
- Department of Biochemistry, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
A group of recent publications contribute new insights concerning the role of the DNA damage-binding protein complex (DDB) in DNA repair. Mutations in the 48kDa DDB2 subunit are now found in all confirmed cases of xeroderma pigmentosum complementation group E. Several studies have reported a connection between the 127kDa DDB1 subunit and proteins involved in ubiquitin-mediated proteolysis. One such multiprotein complex containing DDB1 and DDB2 is closely related to a complex containing DDB1 and the Cockayne syndrome group A (CSA) protein. There is accumulating evidence for several levels of cellular regulation of DDB, including translocation to the nucleus, proteolytic degradation of DDB2 protein, and transcriptional induction of DDB2 mRNA. Although the mechanism is not yet known, it appears that DDB assists in nucleotide excision repair in chromatin.
Collapse
Affiliation(s)
- Birgitte Ø Wittschieben
- Research Pavilion, Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.6, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
48
|
Leupin O, Bontron S, Strubin M. Hepatitis B virus X protein and simian virus 5 V protein exhibit similar UV-DDB1 binding properties to mediate distinct activities. J Virol 2003; 77:6274-83. [PMID: 12743284 PMCID: PMC154990 DOI: 10.1128/jvi.77.11.6274-6283.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The UV-damaged DNA-binding activity protein (UV-DDB) consists of two subunits, DDB1 and DDB2, and functions in DNA repair and cell cycle regulation. The DDB1 subunit is a target for the hepatitis B virus X protein (HBx). Binding of HBx to DDB1 interferes with cell growth and viability in culture and has been implicated in the establishment of viral infection. DDB1 also interacts with the V proteins encoded by several paramyxoviruses including simian virus 5 (SV5), which prevent interferon signaling by targeting either STAT1 or STAT2 proteins for proteolysis. The role of V binding to DDB1, however, remains unclear. Here we show that the V protein of SV5 (SV5-V) and HBx exhibit strikingly similar DDB1 binding properties. Thus, SV5-V and HBx bind to DDB1 in a mutually exclusive manner, and SV5-V shares with HBx the ability to enhance the steady-state levels of DDB1 and to inhibit its association with DDB2. Yet only HBx induces cell death, and SV5-V can prevent HBx from doing so by blocking its interaction with DDB1. Binding of SV5-V to DDB1 may serve another function, since SV5-V shows a decreased ability to induce STAT1 degradation in cells expressing reduced amounts of DDB1. These findings demonstrate that HBx performs a unique function through its association with DDB1 for which SV5-V cannot substitute and suggest that SV5-V and HBx have evolved to bind DDB1 to achieve distinct functions, both by a mechanism that does not involve DDB2.
Collapse
Affiliation(s)
- Olivier Leupin
- Department of Genetics and Microbiology, University Medical Centre (C.M.U.), 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
49
|
Neuwald AF, Kannan N, Poleksic A, Hata N, Liu JS. Ran's C-terminal, basic patch, and nucleotide exchange mechanisms in light of a canonical structure for Rab, Rho, Ras, and Ran GTPases. Genome Res 2003; 13:673-92. [PMID: 12671004 PMCID: PMC430177 DOI: 10.1101/gr.862303] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Proteins comprising the core of the eukaryotic cellular machinery are often highly conserved, presumably due to selective constraints maintaining important structural features. We have developed statistical procedures to decompose these constraints into distinct categories and to pinpoint critical structural features within each category. When applied to P-loop GTPases, this revealed within Rab, Rho, Ras, and Ran a canonical network of molecular interactions centered on bound nucleotide. This network presumably performs a crucial structural and/or mechanistic role considering that it has persisted for more than a billion years after the divergence of these families. We call these 'FY-pivot' GTPases after their most distinguishing feature, a phenylalanine or tyrosine that functions as a pivot within this network. Specific families deviate somewhat from canonical features in interesting ways, presumably reflecting their functional specialization during evolution. We illustrate this here for Ran GTPases, within which two highly conserved histidines, His30 and His139, strikingly diverge from their canonical counterparts. These, along with other residues specifically conserved in Ran, such as Tyr98, Lys99, and Phe138, appear to work in conjunction with FY-pivot canonical residues to facilitate alternative conformations in which these histidines are strategically positioned to couple Ran's basic patch and C-terminal switch to nucleotide exchange and effector binding. Other core components of the cellular machinery are likewise amenable to this approach, which we term Contrast Hierarchical Alignment and Interaction Network (CHAIN) analysis.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | | | | | | | |
Collapse
|
50
|
Zolezzi F, Fuss J, Uzawa S, Linn S. Characterization of a Schizosaccharomyces pombe strain deleted for a sequence homologue of the human damaged DNA binding 1 (DDB1) gene. J Biol Chem 2002; 277:41183-91. [PMID: 12181326 DOI: 10.1074/jbc.m207890200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human damaged DNA-binding protein (DDB) is a heterodimer of p48/DDB2 and p127/DDB1 subunits. Mutations in DDB2 are responsible for Xeroderma Pigmentosum group E, but no mutants of mammalian DDB1 have been described. To study DDB1, the Schizosaccharomyces pombe DDB1 sequence homologue (ddb1(+)) was cloned, and a ddb1 deletion strain was constructed. The gene is not essential; however, mutant cells showed a 37% impairment in colony-forming ability, an elongated phenotype, and abnormal nuclei. The ddb1Delta strain was sensitive to UV irradiation, X-rays, methylmethane sulfonate, and thiabendazole, and these sensitivities were compared with those of the well characterized rad13Delta, rhp51Delta, and cds1Delta mutant strains. Ddb1p showed nuclear and nucleolar localization, and the aberrant nuclear structures observed in the ddb1Delta strain suggest a role for Ddb1p in chromosome segregation.
Collapse
Affiliation(s)
- Francesca Zolezzi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3206, USA
| | | | | | | |
Collapse
|