1
|
Rebuzzini P, Rustichelli S, Fassina L, Canobbio I, Zuccotti M, Garagna S. BPA Exposure Affects Mouse Gastruloids Axial Elongation by Perturbing the Wnt/β-Catenin Pathway. Int J Mol Sci 2024; 25:7924. [PMID: 39063166 PMCID: PMC11276681 DOI: 10.3390/ijms25147924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian embryos are very vulnerable to environmental toxicants (ETs) exposure. Bisphenol A (BPA), one of the most diffused ETs, exerts endocrine-disrupting effects through estro-gen-mimicking and hormone-like properties, with detrimental health effects, including on reproduction. However, its impact during the peri-implantation stages is still unclear. This study, using gastruloids as a 3D stem cell-based in vitro model of embryonic development, showed that BPA exposure arrests their axial elongation when present during the Wnt/β-catenin pathway activation period by β-catenin protein reduction. Gastruloid reshaping might have been impeded by the downregulation of Snail, Slug and Twist, known to suppress E-cadherin expression and to activate the N-cadherin gene, and by the low expression of the N-cadherin protein. Also, the lack of gastruloids elongation might be related to altered exit of BPA-exposed cells from the pluripotency condition and their following differentiation. In conclusion, here we show that the inhibition of gastruloids' axial elongation by BPA might be the result of the concomitant Wnt/β-catenin perturbation, reduced N-cadherin expression and Oct4, T/Bra and Cdx2 altered patter expression, which all together concur in the impaired development of mouse gastruloids.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
| | - Serena Rustichelli
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
- University School for Advanced Studies Pavia (IUSS), 27100 Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering (DIII), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy;
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Ilaria Canobbio
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
2
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
3
|
Low-Dose X-Ray Increases Paracellular Permeability of Human Renal Glomerular Endothelial Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5382420. [PMID: 36267304 PMCID: PMC9578893 DOI: 10.1155/2022/5382420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Objective Glomerular endothelium functions as a filtration barrier of metabolites in the kidney. Although X-ray irradiation modulated the permeability of the vascular endothelium, the response of human renal glomerular endothelial cells (HRGECs) to low-dose X-ray irradiation has not been investigated. We evaluated the impacts of low-dose X-ray irradiation on HRGECs and revealed the underlying mechanism. Methods HRGECs were exposed to X-ray with doses of 0, 0.1, 0.5, 1.0, and 2.0 Gy. The proliferation, viability, and apoptosis of HRGECs were examined by MTT assay, trypan blue staining assay, and TUNEL staining, respectively. The paracellular permeability was assessed by paracellular permeability assay. The expression of VE-cadherin was investigated via immunofluorescence assay. Western blot and qRT-PCR detected the expression levels of VE-cadherin and CLDN5. Besides, the expression levels of pVE-cadherin (pY658), TGF-β, TGF-βRI, Src, p-Src, Smad2, p-Smad2, Smad3, p-Smad3, SNAIL, SLUG, and apoptosis-related proteins were tested by Western blot. Results The proliferation, viability, and apoptosis of HRGECs were not affected by low-dose (<2.0 Gy) X-ray irradiation. X-ray irradiation dose-dependently reduced the level of VE-cadherin, and VE-cadherin and CLDN5 levels were reduced with X-ray irradiation. The levels of pY658, p-Src, p-Smad2, and p-Smad3 were upregulated with the increase in X-ray dose. Besides, the paracellular permeability of HRGECs was increased by even low-dose (<2.0 Gy) X-ray irradiation. Therefore, low-dose X-ray irradiation reduced the cumulative content of VE-cadherin and increased the level of pY658 via activation of the TGF-β signaling pathway. Conclusion Even though low-dose X-ray exposure had no impact on proliferation, viability, and apoptosis of HRGECs, it increased the paracellular permeability by deterioration and downregulation of VE-cadherin through stimulating the TGF-β signaling pathway. This study built the framework for kidney response to low-dose irradiation exposure.
Collapse
|
4
|
Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol 2021; 22:e358-e368. [PMID: 34339656 DOI: 10.1016/s1470-2045(21)00343-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a process during which cells lose their epithelial characteristics, for instance apical-basal cell polarity and cell-cell contact, and gain mesenchymal properties, such as increased motility. In colorectal cancer, EMT has an important role in tumour progression, metastasis, and drug resistance. There has been accumulating evidence from preclinical and early clinical studies that show that EMT markers might serve as outcome predictors and potential therapeutic targets in colorectal cancer. This Review describes the fundamentals of EMT, including biology, newly partial EMT, and associated changes. We also provide a comprehensive summary of therapeutic compounds capable of targeting EMT markers, including drugs in preclinical and clinical trials and those with repurpose potential. Lastly, we explore the obstacles of EMT bench-to-bedside drug development.
Collapse
Affiliation(s)
- Nan Zhang
- West China School of Medicine, Sichuan University, Chengdu, China; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK; Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| | - Shijie Cai
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| | - Qiu Li
- West China School of Medicine, Sichuan University, Chengdu, China; Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- West China School of Medicine, Sichuan University, Chengdu, China; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - David Kerr
- West China School of Medicine, Sichuan University, Chengdu, China; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| |
Collapse
|
5
|
Kaufman ML, Goodson NB, Park KU, Schwanke M, Office E, Schneider SR, Abraham J, Hensley A, Jones KL, Brzezinski JA. Initiation of Otx2 expression in the developing mouse retina requires a unique enhancer and either Ascl1 or Neurog2 activity. Development 2021; 148:dev199399. [PMID: 34143204 PMCID: PMC8254865 DOI: 10.1242/dev.199399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
During retinal development, a large subset of progenitors upregulates the transcription factor Otx2, which is required for photoreceptor and bipolar cell formation. How these retinal progenitor cells initially activate Otx2 expression is unclear. To address this, we investigated the cis-regulatory network that controls Otx2 expression in mice. We identified a minimal enhancer element, DHS-4D, that drove expression in newly formed OTX2+ cells. CRISPR/Cas9-mediated deletion of DHS-4D reduced OTX2 expression, but this effect was diminished in postnatal development. Systematic mutagenesis of the enhancer revealed that three basic helix-loop-helix (bHLH) transcription factor-binding sites were required for its activity. Single cell RNA-sequencing of nascent Otx2+ cells identified the bHLH factors Ascl1 and Neurog2 as candidate regulators. CRISPR/Cas9 targeting of these factors showed that only the simultaneous loss of Ascl1 and Neurog2 prevented OTX2 expression. Our findings suggest that Ascl1 and Neurog2 act either redundantly or in a compensatory fashion to activate the DHS-4D enhancer and Otx2 expression. We observed redundancy or compensation at both the transcriptional and enhancer utilization levels, suggesting that the mechanisms governing Otx2 regulation in the retina are flexible and robust.
Collapse
Affiliation(s)
- Michael L. Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Noah B. Goodson
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael Schwanke
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emma Office
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophia R. Schneider
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joy Abraham
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Austin Hensley
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joseph A. Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Kang E, Seo J, Yoon H, Cho S. The Post-Translational Regulation of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in Cancer Metastasis. Int J Mol Sci 2021; 22:3591. [PMID: 33808323 PMCID: PMC8037257 DOI: 10.3390/ijms22073591] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is generally observed in normal embryogenesis and wound healing. However, this process can occur in cancer cells and lead to metastasis. The contribution of EMT in both development and pathology has been studied widely. This transition requires the up- and down-regulation of specific proteins, both of which are regulated by EMT-inducing transcription factors (EMT-TFs), mainly represented by the families of Snail, Twist, and ZEB proteins. This review highlights the roles of key EMT-TFs and their post-translational regulation in cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (E.K.); (J.S.); (H.Y.)
| |
Collapse
|
7
|
Gao P, Tian Y, Xie Q, Zhang L, Yan Y, Xu D. Manganese exposure induces permeability in renal glomerular endothelial cells via the Smad2/3-Snail-VE-cadherin axis. Toxicol Res (Camb) 2020; 9:683-692. [PMID: 33178429 DOI: 10.1093/toxres/tfaa067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Manganese (Mn) is an essential micronutrient. However, it is well established that Mn overexposure causes nervous system diseases. In contrast, there are few reports on the effects of Mn exposure on glomerular endothelium. In the present study, the potential effects of Mn exposure on glomerular endothelium were evaluated. Sprague Dawley rats were used as a model of Mn overexposure by intraperitoneal injection of MnCl2·H2O at 25 mg/kg body weight. Mn exposure decreased expression of vascular endothelial-cadherin, a key component of adherens junctions, and increased exudate from glomeruli in Sprague Dawley rats. Human renal glomerular endothelial cells were cultured with different concentration of Mn. Exposure to 0.2 mM Mn increased permeability of human renal glomerular endothelial cell monolayers and decreased vascular endothelial-cadherin expression without inducing cytotoxicity. In addition, Mn exposure increased phosphorylation of mothers against decapentaplegic homolog 2/3 and upregulated expression of zinc finger protein SNAI1, a negative transcriptional regulator of vascular endothelial-cadherin. Our data suggest Mn exposure may contribute to development of glomerular diseases by inducing permeability of glomerular endothelium.
Collapse
Affiliation(s)
- Peng Gao
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Yutian Tian
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Qi Xie
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Liang Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Yongjian Yan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| |
Collapse
|
8
|
Micati DJ, Radhakrishnan K, Young JC, Rajpert‐De Meyts E, Hime GR, Abud HE, Loveland KL. ‘Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway’. Andrology 2020; 8:1456-1470. [DOI: 10.1111/andr.12823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Diana J. Micati
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Karthika Radhakrishnan
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Julia C. Young
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Ewa Rajpert‐De Meyts
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Gary R. Hime
- Department of Anatomy and Neuroscience University of Melbourne Melbourne Victoria Australia
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Stem Cells and Development Program Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Kate L. Loveland
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| |
Collapse
|
9
|
Zhu P, Zhang C, Gao Y, Wu F, Zhou Y, Wu WS. The transcription factor Slug represses p16 Ink4a and regulates murine muscle stem cell aging. Nat Commun 2019; 10:2568. [PMID: 31189923 PMCID: PMC6561969 DOI: 10.1038/s41467-019-10479-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2019] [Indexed: 01/21/2023] Open
Abstract
Activation of the p16Ink4a-associated senescence pathway during aging breaks muscle homeostasis and causes degenerative muscle disease by irreversibly dampening satellite cell (SC) self-renewal capacity. Here, we report that the zinc-finger transcription factor Slug is highly expressed in quiescent SCs of mice and functions as a direct transcriptional repressor of p16Ink4a. Loss of Slug promotes derepression of p16Ink4a in SCs and accelerates the entry of SCs into a fully senescent state upon damage-induced stress. p16Ink4a depletion partially rescues defects in Slug-deficient SCs. Furthermore, reduced Slug expression is accompanied by p16Ink4a accumulation in aged SCs. Slug overexpression ameliorates aged muscle regeneration by enhancing SC self-renewal through active repression of p16Ink4a transcription. Our results identify a cell-autonomous mechanism underlying functional defects of SCs at advanced age. As p16Ink4a dysregulation is the chief cause for regenerative defects of human geriatric SCs, these findings highlight Slug as a potential therapeutic target for aging-associated degenerative muscle disease. Muscle regeneration depends on self-renewal of muscle stem cells but how this is regulated on aging is unclear. Here, the authors identify Slug as regulating p16Ink4a in quiescent muscle stem cells, and when Slug expression reduces in aged stem cells, p16Ink4a accumulates, causing regenerative defects.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chunping Zhang
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yongxing Gao
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Furen Wu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yalu Zhou
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Wen-Shu Wu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Kang H, Park B, Kang H, Park H, Yu S, Kim I. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. ENVIRONMENTAL TOXICOLOGY 2018; 33:640-649. [PMID: 29451351 PMCID: PMC5969316 DOI: 10.1002/tox.22548] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/23/2018] [Accepted: 02/03/2018] [Indexed: 05/05/2023]
Abstract
Delphinidin is major anthocyanidin that is extracted from many pigmented fruits and vegetables. This substance has anti-oxidant, anti-inflammatory, anti-angiogenic, and anti-cancer properties. In addition, delphinidin strongly suppresses the migration and invasion of various cancer cells during tumorigenesis. Although delphinidin has anti-cancer effects, little is known about its functional roles in osteosarcoma (OS). For these reasons, we have demonstrated the effects of delphinidin on OS cell lines. The effects of delphinidin on cell viability and growth of OS cells were assessed using the MTT assay and colony formation assays. Hoechst staining indicated that the delphinidin-treated OS cells were undergoing apoptosis. Flow cytometry, confocal microscopy, and a western blot analysis also indicated evidence of apoptosis. Inhibition of cell migration and invasion was found to be associated with epithelial-to-mesenchymal transition (EMT), observed by using a wound healing assay, an invasion assay, and a western blot analysis. Furthermore, delphinidin treatment resulted in a profound reduction of phosphorylated forms of ERK and p38. These findings demonstrate that delphinidin treatment suppressed EMT through the mitogen-activated protein kinase (MAPK) signaling pathway in OS cell lines. Taken together, our results suggest that delphinidin strongly inhibits cell proliferation and induces apoptosis. Delphinidin treatment also suppresses cell migration and prevents EMT via the MAPK-signaling pathway in OS cell lines. For these reasons, delphinidin has anti-cancer effects and can suppress metastasis in OS cell lines, and it might be worth using as an OS therapeutic agent.
Collapse
Affiliation(s)
- Hae‐Mi Kang
- Department of Oral AnatomySchool of Dentistry, Pusan National University, Busandaehak‐ro, 49, Mulguem‐eupYangsan‐siGyeongsangnam‐do50612South Korea
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak‐ro, 49, Mulguem‐eupYangsan‐siGyeongsangnam‐do50612South Korea
| | - Bong‐Soo Park
- Department of Oral AnatomySchool of Dentistry, Pusan National University, Busandaehak‐ro, 49, Mulguem‐eupYangsan‐siGyeongsangnam‐do50612South Korea
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak‐ro, 49, Mulguem‐eupYangsan‐siGyeongsangnam‐do50612South Korea
| | - Hyun‐Kyung Kang
- Department of Dental HygieneSilla University, 140 Baekyang‐daero 700 beon‐gilBusan46958South Korea
| | - Hae‐Ryoun Park
- Department of Oral PathologySchool of Dentistry, Pusan National University, Busandaehak‐ro, 49, Mulguem‐eupYangsan‐siGyeongsangnam‐do50612South Korea
| | - Su‐Bin Yu
- Department of Oral AnatomySchool of Dentistry, Pusan National University, Busandaehak‐ro, 49, Mulguem‐eupYangsan‐siGyeongsangnam‐do50612South Korea
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak‐ro, 49, Mulguem‐eupYangsan‐siGyeongsangnam‐do50612South Korea
| | - In‐Ryoung Kim
- Department of Oral AnatomySchool of Dentistry, Pusan National University, Busandaehak‐ro, 49, Mulguem‐eupYangsan‐siGyeongsangnam‐do50612South Korea
| |
Collapse
|
11
|
Guo S, Yan X, Shi F, Ma K, Chen ZJ, Zhang C. Expression and distribution of the zinc finger protein, SNAI3, in mouse ovaries and pre-implantation embryos. J Reprod Dev 2018; 64:179-186. [PMID: 29445069 PMCID: PMC5902906 DOI: 10.1262/jrd.2017-088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/27/2018] [Indexed: 12/18/2022] Open
Abstract
The Snail gene family includes Snai1, Snai2, and Snai3 that encode zinc finger-containing transcriptional repressors in mammals. The expression and localization of SNAI1 and SNAI2 have been studied extensively during folliculogenesis, ovulation, luteinization, and embryogenesis in mice. However, the role of SNAI3 is unknown. In this study, we investigated the expression of SNAI3 during these processes. Our immunohistochemistry data showed that SNAI3 first appeared in oocytes by postnatal day (PD) 9. Following this, SNAI3 was found to be expressed consistently in theca and interstitial cells, along with oocytes. In gonadotropin-treated immature mice, the expression of SNAI3 did not change significantly during follicular development. The expression of SNAI3 was reduced during ovulation, after which it increased gradually during luteinization. Similar results were obtained from western blot analyses. Furthermore, real-time polymerase chain reaction (RT-PCR) analyses revealed varying mRNA levels of different Snail factors at a given time in gonadotropin-induced ovaries. During early embryo cleavage, SNAI3 was localized to the nucleus, except the nucleolus at the germinal vesicle and one-cell stages. From two- to eight-cell stages, SNAI3 was localized only to the nucleolus. Thereafter, SNAI3 was detected only in the cytoplasm, except during the blastocyst stage when it was localized to the nucleus of the trophectoderm and the inner cell mass. RT-PCR results showed that the expression of Snail superfamily genes was decreased during the blastocyst stage. From the eight-cell to morula stage, when compaction occurs that is a prerequisite for blastocyst formation, Snai3 mRNA was expressed at very low levels and was opposite to the highest expression level of the compaction-related gene, E-cadherin, at the eight-cell stage. Taken together, our results suggest that SNAI3 likely plays some roles during folliculogenesis, luteinization, and early embryonic development.
Collapse
Affiliation(s)
- Shujuan Guo
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Ji'nan, Shandong 250014, China
| | - Xingyu Yan
- Hebei Medical University Nursing School, Shijiazhuang 050000, China
| | - Feifei Shi
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Ji'nan, Shandong 250014, China
| | - Ke Ma
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Ji'nan, Shandong 250014, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Cong Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Ji'nan, Shandong 250014, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| |
Collapse
|
12
|
Micati DJ, Hime GR, McLaughlin EA, Abud HE, Loveland KL. Differential expression profiles of conserved Snail transcription factors in the mouse testis. Andrology 2018; 6:362-373. [PMID: 29381885 DOI: 10.1111/andr.12465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/29/2017] [Accepted: 12/15/2017] [Indexed: 01/11/2023]
Abstract
Snail transcription factors are key regulators of cellular transitions during embryonic development and tumorigenesis. The closely related SNAI1 and SNAI2 proteins induce epithelial-mesenchymal transitions (EMTs), acting predominantly as transcriptional repressors, while the functions of SNAI3 are unknown. An initial examination of Snai2-deficient mice provided evidence of deficient spermatogenesis. To address the hypothesis that Snail proteins are important for male fertility, this study provides the first comprehensive cellular expression profiles of all three mammalian Snail genes in the post-natal mouse testis. To evaluate Snail transcript expression profiles, droplet digital (dd) PCR and in situ hybridization were employed. Snai1, 2 and 3 transcripts are readily detected at 7, 14, 28 days post-partum (dpp) and 7 weeks (adult). Unique cellular expression was demonstrated for each by in situ hybridization and immunohistochemistry using Western blot-validated antibodies. SNAI1 and SNAI2 are in the nucleus of the most mature germ cell types at post-natal ages 10, 15 and 26. SNAI3 is only detected from 15 dpp onwards and is localized in the Sertoli cell cytoplasm. In the adult testis, Snai1 and Snai2 transcripts are detected in spermatogonia and spermatocytes, while Snai3 is in both germ and Sertoli cells. SNAI1 protein is evident in nuclei of spermatogonia, spermatocytes, round spermatids and elongated spermatids (Stages IX-XII). SNAI2 is present in the nuclei of spermatogonia and spermatocytes, with a faint signal detected in round spermatids. SNAI3 was detected only in Sertoli cell cytoplasm, as in juvenile testes. Additionally, colocalization of SNAI1 and SNAI2 with previously identified key binding partners, LSD1 and PRC2 complex components, provides strong evidence that these important functional interactions are conserved during spermatogenesis to control gene activity. These distinct expression profiles suggest that each Snail family member has unique functions during spermatogenesis.
Collapse
Affiliation(s)
- D J Micati
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - G R Hime
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - E A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - H E Abud
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - K L Loveland
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Li L, Chen X, Dong F, Liu Q, Zhang C, Xu D, Allen TD, Liu J. Dihydroartemisinin up-regulates VE-cadherin expression in human renal glomerular endothelial cells. J Cell Mol Med 2017; 22:2028-2032. [PMID: 29193726 PMCID: PMC5824371 DOI: 10.1111/jcmm.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/09/2017] [Indexed: 01/05/2023] Open
Abstract
The antimalarial agent dihydroartemisinin (DHA) has been shown to be anti‐inflammatory. In this study, we found that DHA increased the expression of the junctional protein vascular endothelial (VE)‐cadherin in human renal glomerular endothelial cells. In addition, DHA inhibited TGF‐β RI‐Smad2/3 signalling and its downstream effectors SNAIL and SLUG, which repress VE‐cadherin gene transcription. Correspondingly, DHA decreased the binding of SNAIL and SLUG to the VE‐cadherin promoter. Together, our results suggest an effect of DHA in regulating glomerular permeability by elevation of VE‐cadherin expression.
Collapse
Affiliation(s)
- Liqun Li
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaocui Chen
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Qiang Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Caiqing Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong, University, Jinan, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | | | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Li Y, Pang Z, Huang H, Wang C, Cai T, Xi R. Transcription Factor Antagonism Controls Enteroendocrine Cell Specification from Intestinal Stem Cells. Sci Rep 2017; 7:988. [PMID: 28428611 PMCID: PMC5430544 DOI: 10.1038/s41598-017-01138-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/23/2017] [Indexed: 01/28/2023] Open
Abstract
The balanced maintenance and differentiation of local stem cells is required for Homeostatic renewal of tissues. In the Drosophila midgut, the transcription factor Escargot (Esg) maintains undifferentiated states in intestinal stem cells, whereas the transcription factors Scute (Sc) and Prospero (Pros) promote enteroendocrine cell specification. However, the mechanism through which Esg and Sc/Pros coordinately regulate stem cell differentiation is unknown. Here, by combining chromatin immunoprecipitation analysis with genetic studies, we show that both Esg and Sc bind to a common promoter region of pros. Moreover, antagonistic activity between Esg and Sc controls the expression status of Pros in stem cells, thereby, specifying whether stem cells remain undifferentiated or commit to enteroendocrine cell differentiation. Our study therefore reveals transcription factor antagonism between Esg and Sc as a novel mechanism that underlies fate specification from intestinal stem cells in Drosophila.
Collapse
Affiliation(s)
- Yumei Li
- School of Life Science, Tsinghua University, Beijing, 100084, China. .,National Institute of Biological Sciences, Zhongguancun Life Science Park 7 Science Park Road, Beijing, 102206, China.
| | - Zhimin Pang
- National Institute of Biological Sciences, Zhongguancun Life Science Park 7 Science Park Road, Beijing, 102206, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Zhongguancun Life Science Park 7 Science Park Road, Beijing, 102206, China
| | - Chenhui Wang
- National Institute of Biological Sciences, Zhongguancun Life Science Park 7 Science Park Road, Beijing, 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Zhongguancun Life Science Park 7 Science Park Road, Beijing, 102206, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Zhongguancun Life Science Park 7 Science Park Road, Beijing, 102206, China.
| |
Collapse
|
15
|
Jha HC, Sun Z, Upadhyay SK, El-Naccache DW, Singh RK, Sahu SK, Robertson ES. KSHV-Mediated Regulation of Par3 and SNAIL Contributes to B-Cell Proliferation. PLoS Pathog 2016; 12:e1005801. [PMID: 27463802 PMCID: PMC4963126 DOI: 10.1371/journal.ppat.1005801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/09/2016] [Indexed: 12/23/2022] Open
Abstract
Studies have suggested that Epithelial-Mesenchymal Transition (EMT) and transformation is an important step in progression to cancer. Par3 (partitioning-defective protein) is a crucial factor in regulating epithelial cell polarity. However, the mechanism by which the latency associated nuclear antigen (LANA) encoded by Kaposi's Sarcoma associated herpesvirus (KSHV) regulates Par3 and EMTs markers (Epithelial-Mesenchymal Transition) during viral-mediated B-cell oncogenesis has not been fully explored. Moreover, several studies have demonstrated a crucial role for EMT markers during B-cell malignancies. In this study, we demonstrate that Par3 is significantly up-regulated in KSHV-infected primary B-cells. Further, Par3 interacted with LANA in KSHV positive and LANA expressing cells which led to translocation of Par3 from the cell periphery to a predominantly nuclear signal. Par3 knockdown led to reduced cell proliferation and increased apoptotic induction. Levels of SNAIL was elevated, and E-cadherin was reduced in the presence of LANA or Par3. Interestingly, KSHV infection in primary B-cells led to enhancement of SNAIL and down-regulation of E-cadherin in a temporal manner. Importantly, knockdown of SNAIL, a major EMT regulator, in KSHV cells resulted in reduced expression of LANA, Par3, and enhanced E-cadherin. Also, SNAIL bound to the promoter region of p21 and can regulate its activity. Further a SNAIL inhibitor diminished NF-kB signaling through upregulation of Caspase3 in KSHV positive cells in vitro. This was also supported by upregulation of SNAIL and Par3 in BC-3 transplanted NOD-SCID mice which has potential as a therapeutic target for KSHV-associated B-cell lymphomas.
Collapse
Affiliation(s)
- Hem C. Jha
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhiguo Sun
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Santosh K. Upadhyay
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Darine W. El-Naccache
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajnish K. Singh
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sushil K. Sahu
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Pioli PD, Whiteside SK, Weis JJ, Weis JH. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology 2016; 221:618-33. [PMID: 26831822 DOI: 10.1016/j.imbio.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/31/2023]
Abstract
T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4(+) regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4(+) regulatory T cells but effector CD8(α+) and CD4(+) conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Sarah K Whiteside
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Janis J Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| |
Collapse
|
17
|
Abba ML, Patil N, Leupold JH, Allgayer H. MicroRNA Regulation of Epithelial to Mesenchymal Transition. J Clin Med 2016; 5:jcm5010008. [PMID: 26784241 PMCID: PMC4730133 DOI: 10.3390/jcm5010008] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors.
Collapse
Affiliation(s)
- Mohammed L Abba
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Nitin Patil
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Jörg Hendrik Leupold
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Heike Allgayer
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| |
Collapse
|
18
|
Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res 2015; 142:92-101. [PMID: 26003864 DOI: 10.1016/j.exer.2015.02.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/22/2015] [Accepted: 02/03/2015] [Indexed: 12/22/2022]
Abstract
Cataract is a common age-related condition that is caused by progressive clouding of the normally clear lens. Cataract can be effectively treated by surgery; however, like any surgery, there can be complications and the development of a secondary cataract, known as posterior capsule opacification (PCO), is the most common. PCO is caused by aberrant growth of lens epithelial cells that are left behind in the capsular bag after surgical removal of the fiber mass. An epithelial-to-mesenchymal transition (EMT) is central to fibrotic PCO and forms of fibrotic cataract, including anterior/posterior polar cataracts. Transforming growth factor β (TGFβ) has been shown to induce lens EMT and consequently research has focused on identifying ways of blocking its action. Intriguingly, recent studies in animal models have shown that EMT and cataract developed when a class of negative-feedback regulators, Sprouty (Spry)1 and Spry2, were conditionally deleted from the lens. Members of the Spry family act as general antagonists of the receptor tyrosine kinase (RTK)-mediated MAPK signaling pathway that is involved in many physiological and developmental processes. As the ERK/MAPK signaling pathway is a well established target of Spry proteins, and overexpression of Spry can block aberrant TGFβ-Smad signaling responsible for EMT and anterior subcapsular cataract, this indicates a role for the ERK/MAPK pathway in TGFβ-induced EMT. Given this and other supporting evidence, a case is made for focusing on RTK antagonists, such as Spry, for cataract prevention. In addition, and looking to the future, this review also looks at possibilities for supplanting EMT with normal fiber differentiation and thereby promoting lens regenerative processes after cataract surgery. Whilst it is now known that the epithelial to fiber differentiation process is driven by FGF, little is known about factors that coordinate the precise assembly of fibers into a functional lens. However, recent research provides key insights into an FGF-activated mechanism intrinsic to the lens that involves interactions between the Wnt-Frizzled and Jagged/Notch signaling pathways. This reciprocal epithelial-fiber cell interaction appears to be critical for the assembly and maintenance of the highly ordered three-dimensional architecture that is central to lens function. This information is fundamental to defining the specific conditions and stimuli needed to recapitulate developmental programs and promote regeneration of lens structure and function after cataract surgery.
Collapse
Affiliation(s)
- F J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia; Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia.
| | - E H Shin
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia
| | - J W McAvoy
- Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia
| |
Collapse
|
19
|
Pioli PD, Chen X, Weis JJ, Weis JH. Fatal autoimmunity results from the conditional deletion of Snai2 and Snai3. Cell Immunol 2015; 295:1-18. [PMID: 25732600 DOI: 10.1016/j.cellimm.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/03/2023]
Abstract
Transcriptional regulation of gene expression is a key component of orchestrating proper immune cell development and function. One strategy for maintaining these transcriptional programs has been the evolution of transcription factor families with members possessing overlapping functions. Using the germ line deletion of Snai2 combined with the hematopoietic specific deletion of Snai3, we report that these factors function redundantly to preserve the development of B and T cells. Such animals display severe lymphopenia, alopecia and dermatitis as well as profound autoimmunity manifested by the production of high levels of autoantibodies as early as 3 weeks of age and die by 30 days after birth. Autoantibodies included both IgM and IgG isotypes and were reactive against cytoplasmic and membranous components. A regulatory T cell defect contributed to the autoimmune response in that adoptive transfer of wild type regulatory T cells alleviated symptoms of autoimmunity. Additionally, transplantation of Snai2/Snai3 double deficient bone marrow into Snai2 sufficient Rag2(-/-) recipients resulted in autoantibody generation. The results demonstrated that appropriate expression of Snai2 and Snai3 in cells of hematopoietic derivation plays an important role in development and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Xinjian Chen
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Janis J Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| |
Collapse
|
20
|
Gingold JA, Fidalgo M, Guallar D, Lau Z, Sun Z, Zhou H, Faiola F, Huang X, Lee DF, Waghray A, Schaniel C, Felsenfeld DP, Lemischka IR, Wang J. A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Mol Cell 2014; 56:140-52. [PMID: 25240402 PMCID: PMC4184964 DOI: 10.1016/j.molcel.2014.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.
Collapse
Affiliation(s)
- Julian A Gingold
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhen Sun
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dung-Fang Lee
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avinash Waghray
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christoph Schaniel
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan P Felsenfeld
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ihor R Lemischka
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Pioli PD, Weis JH. Snail transcription factors in hematopoietic cell development: a model of functional redundancy. Exp Hematol 2014; 42:425-30. [PMID: 24674754 DOI: 10.1016/j.exphem.2014.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/15/2022]
Abstract
Coordinated gene expression is crucial in facilitating proper lymphoid cell development and function. The precise patterns of gene expression during B- and T-cell development are regulated through a complex interplay between a multitude of transcriptional regulators, both activators and repressors. We have recently identified the Snail family of transcription factors as playing significant and overlapping roles in lymphoid cell development, in that deletion of both SNAI2 and SNAI3 was required to fully impact the generation of mature T and B cells. Analyses using compound heterozygote animals further demonstrated that SNAI2 and SNAI3 were partially haplosufficient and relatively equivalent in their ability to preserve B-cell generation in the bone marrow. In this review, we summarize studies elucidating the role of the Snail family in hematopoiesis, with a focus on lymphoid cell development. Using the Snail family as an example, we discuss the concepts of functional redundancy and strategies employed to assay transcription factor families for intramember compensation.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Gras B, Jacqueroud L, Wierinckx A, Lamblot C, Fauvet F, Lachuer J, Puisieux A, Ansieau S. Snail family members unequally trigger EMT and thereby differ in their ability to promote the neoplastic transformation of mammary epithelial cells. PLoS One 2014; 9:e92254. [PMID: 24638100 PMCID: PMC3956896 DOI: 10.1371/journal.pone.0092254] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/19/2014] [Indexed: 01/06/2023] Open
Abstract
By fostering cell commitment to the epithelial-to-mesenchymal transition (EMT), SNAIL proteins endow cells with motility, thereby favoring the metastatic spread of tumor cells. Whether the phenotypic change additionally facilitates tumor initiation has never been addressed. Here we demonstrate that when a SNAIL protein is ectopically produced in non-transformed mammary epithelial cells, the cells are protected from anoikis and proliferate under low-adherence conditions: a hallmark of cancer cells. The three SNAIL proteins show unequal oncogenic potential, strictly correlating with their ability to promote EMT. SNAIL3 especially behaves as a poor EMT-inducer comforting the concept that the transcription factor functionally diverges from its two related proteins.
Collapse
Affiliation(s)
- Baptiste Gras
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- UNIV UMR1052, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Laurent Jacqueroud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- UNIV UMR1052, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Anne Wierinckx
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- UNIV UMR1052, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- ProfileXpert, Bron, France
| | - Christelle Lamblot
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- UNIV UMR1052, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Frédérique Fauvet
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- UNIV UMR1052, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Joël Lachuer
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- UNIV UMR1052, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- ProfileXpert, Bron, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- UNIV UMR1052, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Institut Universitaire de France, Paris, France
- * E-mail: (AP); (SA)
| | - Stéphane Ansieau
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- UNIV UMR1052, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- * E-mail: (AP); (SA)
| |
Collapse
|
23
|
Saunders LR, McClay DR. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. Development 2014; 141:1503-13. [PMID: 24598159 DOI: 10.1242/dev.101436] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental cell state change that transforms epithelial to mesenchymal cells during embryonic development, adult tissue repair and cancer metastasis. EMT includes a complex series of intermediate cell state changes including remodeling of the basement membrane, apical constriction, epithelial de-adhesion, directed motility, loss of apical-basal polarity, and acquisition of mesenchymal adhesion and polarity. Transcriptional regulatory state changes must ultimately coordinate the timing and execution of these cell biological processes. A well-characterized gene regulatory network (GRN) in the sea urchin embryo was used to identify the transcription factors that control five distinct cell changes during EMT. Single transcription factors were perturbed and the consequences followed with in vivo time-lapse imaging or immunostaining assays. The data show that five different sub-circuits of the GRN control five distinct cell biological activities, each part of the complex EMT process. Thirteen transcription factors (TFs) expressed specifically in pre-EMT cells were required for EMT. Three TFs highest in the GRN specified and activated EMT (alx1, ets1, tbr) and the 10 TFs downstream of those (tel, erg, hex, tgif, snail, twist, foxn2/3, dri, foxb, foxo) were also required for EMT. No single TF functioned in all five sub-circuits, indicating that there is no EMT master regulator. Instead, the resulting sub-circuit topologies suggest EMT requires multiple simultaneous regulatory mechanisms: forward cascades, parallel inputs and positive-feedback lock downs. The interconnected and overlapping nature of the sub-circuits provides one explanation for the seamless orchestration by the embryo of cell state changes leading to successful EMT.
Collapse
|
24
|
Norton CR, Chen Y, Han XH, Bradley CK, Krebs LT, Yoon JK, Gridley T. Absence of a major role for the snai1 and snai3 genes in regulating skeletal muscle regeneration in mice. PLOS CURRENTS 2013; 5. [PMID: 24270643 PMCID: PMC3828230 DOI: 10.1371/currents.md.e495b27ee347fd3870a8316d4786fc17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Snail gene family encodes DNA-binding zinc finger proteins that function as transcriptional repressors. While the Snai1 and Snai2 genes are required for normal development in mice, Snai3 mutant mice exhibit no obvious abnormalities. The Snai3 gene is expressed at high levels in skeletal muscle. However, we demonstrate by histological analysis that Snai3 null mutant mice exhibit normal skeletal muscle. During hindlimb muscle regeneration after cardiotoxin-mediated injury, the Snai3 null mice exhibited efficient regeneration. To determine whether the Snai3 gene functions redundantly with the Snai1 gene during skeletal muscle regeneration, we performed hindlimb muscle regeneration in mice with skeletal muscle-specific deletion of the Snai1 gene on a Snai3 null genetic background. These mice also exhibited efficient regeneration, demonstrating that there is no major role for the Snai1 and Snai3 genes in regulating skeletal muscle regeneration in mice.
Collapse
Affiliation(s)
- Christine R Norton
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Pioli PD, Dahlem TJ, Weis JJ, Weis JH. Deletion of Snai2 and Snai3 results in impaired physical development compounded by lymphocyte deficiency. PLoS One 2013; 8:e69216. [PMID: 23874916 PMCID: PMC3713067 DOI: 10.1371/journal.pone.0069216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/05/2013] [Indexed: 11/26/2022] Open
Abstract
The Snail family of transcriptional regulators consists of three highly conserved members. These proteins regulate (repress) transcription via the recruitment of histone deacetylases to target gene promoters that possess the appropriate E-box binding sequences. Murine Snai1 is required for mouse development while Snai2 deficient animals survive with some anomalies. Less is known about the third member of the family, Snai3. To investigate the function of Snai3, we generated a conditional knockin mouse. Utilizing Cre-mediated deletion to facilitate the ablation of Snai3 in T cells or the entire animal, we found little to no effect of the loss of Snai3 in the entire animal or in T cell lineages. This finding provided the hypothesis that absence of Snai3 was mitigated, in part, by the presence of Snai2. To test this hypothesis we created Snai2/Snai3 double deficient mice. The developmental consequences of lacking both of these proteins was manifested in stunted growth, a paucity of offspring including a dramatic deficiency of female mice, and impaired immune cell development within the lymphoid lineages.
Collapse
Affiliation(s)
- Peter D. Pioli
- The Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Timothy J. Dahlem
- The Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Janis J. Weis
- The Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John H. Weis
- The Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
26
|
The snail family gene snai3 is not essential for embryogenesis in mice. PLoS One 2013; 8:e65344. [PMID: 23762348 PMCID: PMC3675094 DOI: 10.1371/journal.pone.0065344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/25/2013] [Indexed: 12/29/2022] Open
Abstract
The Snail gene family encodes zinc finger-containing transcriptional repressor proteins. Three members of the Snail gene family have been described in mammals, encoded by the Snai1, Snai2, and Snai3 genes. The function of the Snai1 and Snai2 genes have been studied extensively during both vertebrate embryogenesis and tumor progression and metastasis, and play critically important roles during these processes. However, little is known about the function of the Snai3 gene and protein. We describe here generation and analysis of Snai3 conditional and null mutant mice. We also generated an EYFP-tagged Snai3 null allele that accurately reflects endogenous Snai3 gene expression, with the highest levels of expression detected in thymus and skeletal muscle. Snai3 null mutant homozygous mice are viable and fertile, and exhibit no obvious phenotypic defects. These results demonstrate that Snai3 gene function is not essential for embryogenesis in mice.
Collapse
|
27
|
ZEB1 imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression. Mol Cell Biol 2013; 33:1368-82. [PMID: 23339872 DOI: 10.1128/mcb.01259-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle development is orchestrated by the myogenic regulatory factor MyoD, whose activity is blocked in myoblasts by proteins preventing its nuclear translocation and/or binding to G/C-centered E-boxes in target genes. Recent evidence indicates that muscle gene expression is also regulated at the cis level by differential affinity for DNA between MyoD and other E-box binding proteins during myogenesis. MyoD binds to G/C-centered E-boxes, enriched in muscle differentiation genes, in myotubes but not in myoblasts. Here, we used cell-based and in vivo Drosophila, Xenopus laevis, and mouse models to show that ZEB1, a G/C-centered E-box binding transcriptional repressor, imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression. We found that, contrary to MyoD, ZEB1 binds to G/C-centered E-boxes in muscle differentiation genes at the myoblast stage but not in myotubes. Its knockdown results in precocious expression of muscle differentiation genes and acceleration of myotube formation. Inhibition of muscle genes by ZEB1 occurs via transcriptional repression and involves recruitment of the CtBP corepressor. Lastly, we show that the pattern of gene expression associated with muscle differentiation is accelerated in ZEB1(-/-) mouse embryos. These results set ZEB1 as an important regulator of the temporal pattern of gene expression controlling muscle differentiation.
Collapse
|
28
|
Chiang C, Ayyanathan K. Characterization of the E-box binding affinity to SNAG-zinc finger proteins. Mol Biol 2012. [DOI: 10.1134/s0026893312060027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Lee K, Nelson CM. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:171-221. [PMID: 22364874 DOI: 10.1016/b978-0-12-394305-7.00004-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue fibrosis often presents as the final outcome of chronic disease and is a significant cause of morbidity and mortality worldwide. Fibrosis is driven by continuous expansion of fibroblasts and myofibroblasts. Epithelial-mesenchymal transition (EMT) is a form of cell plasticity in which epithelia acquire mesenchymal phenotypes and is increasingly recognized as an integral aspect of tissue fibrogenesis. In this review, we describe recent insight into the molecular and cellular factors that regulate EMT and its underlying signaling pathways. We also consider how mechanical cues from the microenvironment affect the regulation of EMT. Finally, we discuss the role of EMT in fibrotic diseases and propose approaches for detecting and treating fibrogenesis by targeting EMT.
Collapse
Affiliation(s)
- KangAe Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
30
|
Chiang C, Ayyanathan K. Snail/Gfi-1 (SNAG) family zinc finger proteins in transcription regulation, chromatin dynamics, cell signaling, development, and disease. Cytokine Growth Factor Rev 2012; 24:123-31. [PMID: 23102646 DOI: 10.1016/j.cytogfr.2012.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022]
Abstract
The Snail/Gfi-1 (SNAG) family of zinc finger proteins is a group of transcriptional repressors that have been intensively studied in mammals. SNAG family members are similarly structured with an N-terminal SNAG repression domain and a C-terminal zinc finger DNA binding domain, however, the spectrum of target genes they regulate and the ranges of biological functions they govern vary widely between them. They play active roles in transcriptional regulation, formation of repressive chromatin structure, cellular signaling and developmental processes. They can also result in disease states due to deregulation. We have performed a thorough investigation of the relevant literature and present a comprehensive mini-review. Based on the available information, we also propose a mechanism by which SNAG family members may function.
Collapse
Affiliation(s)
- Cindy Chiang
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | |
Collapse
|
31
|
Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis. Mol Cell 2012; 47:457-68. [PMID: 22771117 DOI: 10.1016/j.molcel.2012.05.046] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 02/08/2012] [Accepted: 05/31/2012] [Indexed: 01/10/2023]
Abstract
In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-Seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex binds and excludes MyoD from its targets. Notably, Snail binds E box motifs that are G/C rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevent MyoD occupancy on differentiation-specific regulatory elements, and the change from Snail to MyoD binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving myogenic regulatory factors (MRFs), Snai1/2, miR-30a, and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells.
Collapse
|
32
|
Dahlem T, Cho S, Spangrude GJ, Weis JJ, Weis JH. Overexpression of Snai3 suppresses lymphoid- and enhances myeloid-cell differentiation. Eur J Immunol 2012; 42:1038-43. [PMID: 22531927 DOI: 10.1002/eji.201142193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The altered expression of transcription factors in hematopoietic stem cells and their subsequent lineages can alter the development of lymphoid and myeloid lineages. The role of the transcriptional repressor Snai3 protein in the derivation of cells of the hemato-poietic system was investigated. Snai3 is expressed in terminal T-cell and myeloid lineages, therefore, we chose to determine if expressing Snai3 in the early stages of hematopoietic development would influence cell-lineage determination. Expression of Snai3 by retroviral transduction of hematopoietic stem cells using bone marrow chimera studies demonstrated a block in lymphoid-cell development and enhanced expansion of myeloid-lineage cells. Analysis of Snai3-expressing hematopoietic precursor cells showed normal numbers of immature cells, but a block in the development of cells committed to lymphoid lineages. These data indicate that the overexpression of Snai3 does alter bone marrow cell development and that the identification of genes whose expression is altered by the presence of Snai3 would aid in our understanding of these developmental pathways.
Collapse
Affiliation(s)
- Timothy Dahlem
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
33
|
An epistatic mini-circuitry between the transcription factors Snail and HNF4α controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs. Cell Death Differ 2011; 19:937-46. [PMID: 22139130 DOI: 10.1038/cdd.2011.175] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Preservation of the epithelial state involves the stable repression of epithelial-to-mesenchymal transition program, whereas maintenance of the stem compartment requires the inhibition of differentiation processes. A simple and direct molecular mini-circuitry between master elements of these biological processes might provide the best device to keep balanced such complex phenomena. In this work, we show that in hepatic stem cell Snail, a transcriptional repressor of the hepatocyte differentiation master gene HNF4α, directly represses the expression of the epithelial microRNAs (miRs)-200c and -34a, which in turn target several stem cell genes. Notably, in differentiated hepatocytes HNF4α, previously identified as a transcriptional repressor of Snail, induces the miRs-34a and -200a, b, c that, when silenced, causes epithelial dedifferentiation and reacquisition of stem traits. Altogether these data unveiled Snail, HNF4α and miRs-200a, b, c and -34a as epistatic elements controlling hepatic stem cell maintenance/differentiation.
Collapse
|
34
|
Taqi MM, Bazov I, Watanabe H, Sheedy D, Harper C, Alkass K, Druid H, Wentzel P, Nyberg F, Yakovleva T, Bakalkin G. Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addict Biol 2011; 16:499-509. [PMID: 21521424 DOI: 10.1111/j.1369-1600.2011.00323.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genetic, epigenetic and environmental factors may influence the risk for neuropsychiatric disease through their effects on gene transcription. Mechanistically, these effects may be integrated through regulation of methylation of CpG dinucleotides overlapping with single-nucleotide polymorphisms (SNPs) associated with a disorder. We addressed this hypothesis by analyzing methylation of prodynorphin (PDYN) CpG-SNPs associated with alcohol dependence, in human alcoholics. Postmortem specimens of the dorsolateral prefrontal cortex (dl-PFC) involved in cognitive control of addictive behavior were obtained from 14 alcohol-dependent and 14 control subjects. Methylation was measured by pyrosequencing after bisulfite treatment of DNA. DNA binding proteins were analyzed by electromobility shift assay. Three PDYN CpG-SNPs associated with alcoholism were found to be differently methylated in the human brain. In the dl-PFC of alcoholics, methylation levels of the C, non-risk variant of 3'-untranslated region (3'-UTR) SNP (rs2235749; C > T) were increased, and positively correlated with dynorphins. A DNA-binding factor that differentially targeted the T, risk allele and methylated and unmethylated C allele of this SNP was identified in the brain. The findings suggest a causal link between alcoholism-associated PDYN 3'-UTR CpG-SNP methylation, activation of PDYN transcription and vulnerability of individuals with the C, non-risk allele(s) to develop alcohol dependence.
Collapse
Affiliation(s)
- Malik Mumtaz Taqi
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Horvay K, Casagranda F, Gany A, Hime GR, Abud HE. Wnt signaling regulates Snai1 expression and cellular localization in the mouse intestinal epithelial stem cell niche. Stem Cells Dev 2010; 20:737-45. [PMID: 20670162 DOI: 10.1089/scd.2010.0188] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Snail genes are transcriptional repressors well known to play important roles in epithelial to mesenchymal transitions during both embryogenesis and cancer metastasis. Although they are generally regarded as markers of mesenchymal cells, Snail genes have also recently been implicated in regulating stem cell populations in both Drosophila and vertebrates. In this study we investigate Snai1, a member of the mouse Snail family, in the intestinal stem cell niche and examine the relationship between canonical Wnt signaling, a key regulatory pathway of intestinal stem cells, and expression and cellular localization of Snai1. Strong nuclear expression of Snai1 was detected in the crypt base columnar stem cells in the adult small intestine while Snai1 was mostly found in the cytoplasm of differentiated enterocytes and enteroendocrine cells. Expression and cellular localization of Snai1 in the intestinal epithelium appears to be regulated by the canonical Wnt signaling pathway as Snai1 expression was dramatically reduced after conditional deletion of β-catenin. Conversely, significant nuclear Snai1 was detected in polyps derived from Apc(min) mice and in intestinal villi after conditional mutation of Apc in AhCre, Apc(f/f) mice, indicating that upregulation of the Wnt pathway in the intestinal epithelium induces both increased expression and nuclear localization of Snai1.
Collapse
Affiliation(s)
- Katja Horvay
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | | | | | | | | |
Collapse
|
36
|
Kim D, Song J, Jin EJ. MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem 2010; 285:26900-26907. [PMID: 20576614 DOI: 10.1074/jbc.m110.115105] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that fulfill diverse functions by negatively regulating gene expression. Here, we investigated the involvement of miRNAs in the chondrogenic differentiation of chick limb mesenchymal cells and found that the expression of miR-221 increased upon chondrogenic inhibition. Blockade of miR-221 via peanut agglutinin-based antisense oligonucleotides reversed the chondro-inhibitory actions of a JNK inhibitor on the proliferation and migration of chondrogenic progenitors as well as the formation of precartilage condensations. We determined that mdm2 is a relevant target of miR-221 during chondrogenesis. miR-221 was necessary and sufficient to down-regulate Mdm2 expression, and this down-modulation of Mdm2 by miR-221 prevented the degradation of (and consequently up-regulated) the Slug protein, which negatively regulates the proliferation of chondroprogenitors. These results indicate that miR-221 contributes to the regulation of cell proliferation by negatively regulating Mdm2 and thereby inhibiting Slug degradation during the chondrogenesis of chick limb mesenchymal cells.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Korea
| | - Jinsoo Song
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Korea.
| |
Collapse
|
37
|
de Herreros AG, Peiró S, Nassour M, Savagner P. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010; 15:135-47. [PMID: 20455012 PMCID: PMC2930904 DOI: 10.1007/s10911-010-9179-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/26/2010] [Indexed: 12/12/2022] Open
Abstract
Since its initial description, the interconversion between epithelial and mesenchymal cells (designed as epithelial-mesenchymal or mesenchymal-epithelial transition, EMT or MET, respectively) has received special attention since it provides epithelial cells with migratory features. Different studies using cell lines have identified cytokines, intercellular signaling elements and transcriptional factors capable of regulating this process. Particularly, the identification of Snail family members as key effectors of EMT has opened new ways for the study of this cellular process. In this article we discuss the molecular pathways that control EMT, showing a very tight and interdependent regulation. We also analyze the contribution of EMT and Snail genes in the process of tumorigenesis using the mammary gland as cellular model.
Collapse
Affiliation(s)
- Antonio Garcia de Herreros
- IMIM-Hospital del Mar, Parc de Recerca Biomèdica de Barcelona, C/Doctor Aiguader, 88, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
38
|
Bai S, Wang H, Shen J, Zhou R, Bushinsky DA, Favus MJ. Elevated vitamin D receptor levels in genetic hypercalciuric stone-forming rats are associated with downregulation of Snail. J Bone Miner Res 2010; 25:830-40. [PMID: 19929616 PMCID: PMC3153334 DOI: 10.1359/jbmr.091010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 09/21/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022]
Abstract
Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)(2)D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)(2)D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H(3). These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H(3).
Collapse
Affiliation(s)
- Shaochun Bai
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| | - Hongwei Wang
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| | - Jikun Shen
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| | - Randal Zhou
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| | - David A Bushinsky
- Department of Medicine, University of Rochester School of MedicineRochester, New York, USA
| | - Murray J Favus
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| |
Collapse
|
39
|
Reece-Hoyes JS, Deplancke B, Barrasa MI, Hatzold J, Smit RB, Arda HE, Pope PA, Gaudet J, Conradt B, Walhout AJM. The C. elegans Snail homolog CES-1 can activate gene expression in vivo and share targets with bHLH transcription factors. Nucleic Acids Res 2009; 37:3689-98. [PMID: 19372275 PMCID: PMC2699517 DOI: 10.1093/nar/gkp232] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Snail-type transcription factors (TFs) are found in numerous metazoan organisms and function in a plethora of cellular and developmental processes including mesoderm and neuronal development, apoptosis and cancer. So far, Snail-type TFs are exclusively known as transcriptional repressors. They repress gene expression by recruiting transcriptional co-repressors and/or by preventing DNA binding of activators from the basic helix-loop-helix (bHLH) family of TFs to CAGGTG E-box sequences. Here we report that the Caenorhabditis elegans Snail-type TF CES-1 can activate transcription in vivo. Moreover, we provide results that suggest that CES-1 can share its binding site with bHLH TFs, in different tissues, rather than only occluding bHLH DNA binding. Together, our data indicate that there are at least two types of CES-1 target genes and, therefore, that the molecular function of Snail-type TFs is more plastic than previously appreciated.
Collapse
Affiliation(s)
- John S Reece-Hoyes
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lopez D, Niu G, Huber P, Carter WB. Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Arch Biochem Biophys 2008; 482:77-82. [PMID: 19046938 DOI: 10.1016/j.abb.2008.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 11/30/2022]
Abstract
Endothelial integrity is dependent on intracellular adherens junctions formed by complexes of vascular endothelial (VE)-cadherin and catenins. We have previously demonstrated that exposing endothelial cells (EC) to breast cancer cell-conditioned media (CM) for 24h results in a reduction in VE-cadherin protein and mRNA levels. Herein, we examined the mechanism(s) involved in the downregulation of VE-cadherin by CM. Human dermal microvascular EC exposed to CM showed a downregulation in VE-cadherin promoter activity and upregulation of Twist, Slug, and Snail expression. Reporter gene analysis demonstrated a direct repression of the VE-cadherin promoter by Slug, Snail, and Twist expression plasmids. At least two E-box motifs appear to be involved in this regulatory process as shown by electrophoretic mobility shift assays. These results suggest that factors released by breast cancer cells are able to upregulate Twist, Slug, and Snail expression in EC, which in turn downregulate the activity of the VE-cadherin promoter.
Collapse
Affiliation(s)
- Dayami Lopez
- Don and Erika Wallace Comprehensive Breast Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612-9416, USA
| | | | | | | |
Collapse
|
41
|
Cobaleda C, Pérez-Caro M, Vicente-Dueñas C, Sánchez-García I. Function of the Zinc-Finger Transcription FactorSNAI2in Cancer and Development. Annu Rev Genet 2007; 41:41-61. [PMID: 17550342 DOI: 10.1146/annurev.genet.41.110306.130146] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elucidation of the molecular mechanisms that underlie disease development is still a tremendous challenge for basic science, and a prerequisite to the development of new and disease-specific targeted therapies. This review focuses on the function of SNAI2, a member of the Snail family of zinc-finger transcription factors, and discusses its possible role in disease development. SNAI2 has been implicated in diseases of melanocyte development and cancer in humans. Many malignancies arise from a rare population of cells that alone have the ability to self-renew and sustain the tumor (i.e., cancer stem cells). SNAI2 controls key aspects of stem cell function in mouse and human, suggesting that similar mechanisms control normal development and cancer stem cell properties. These insights are expected to contribute significantly to the genetics of cancer and to the development of both cancer therapy and new methods for assessing treatment efficacy.
Collapse
Affiliation(s)
- César Cobaleda
- Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
42
|
Gerrard L, Howard M, Paterson T, Thippeswamy T, Quinn JP, Haddley K. A proximal E-box modulates NGF effects on rat PPT-A promoter activity in cultured dorsal root ganglia neurones. Neuropeptides 2005; 39:475-83. [PMID: 16198417 DOI: 10.1016/j.npep.2005.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
The rat preprotachykinin A (rtPPTA) promoter fragment spanning -865+92, relative to the major transcriptional start, has previously been demonstrated to be nerve growth factor (NGF) responsive in primary cultures of rat dorsal root ganglion (DRG) neurones [Harrison, P.T., Dalziel, R.G., Ditchfield, N.A., Quinn, J.P., 1999. Neuronal-specific and nerve growth factor-inducible expression directed by the preprotachykinin-A promoter delivered by an adeno-associated virus vector. Neuroscience 94, 997-1003]. In this communication, we demonstrate that an E box element at -60, in part, regulates the activity of this rtPPT-A promoter fragment in DRG neurones in response to NGF. Differential regulation of the promoter is observed in the presence or absence of NGF when the E Box site is present. Under basal conditions binding of proteins to this -60 element may antagonise promoter activity. Hence, in the absence of NGF, mutation of the -60 E box increased reporter gene expression. Further, comparison of levels of reporter gene expression supported by both WT and mutated promoter indicate that in the presence of NGF the -60 E box element also plays a role as an activator domain. This represents a novel mechanism for NGF regulation of rtPPT-A. Similarly, an important role for this signalling pathway was observed in neonate rat DRG neuronal cultures, which require NGF for their survival, namely mutation of the -60 element resulted in higher levels of reporter gene expression.
Collapse
|
43
|
Schlake T. FGF signals specifically regulate the structure of hair shaft medulla via IGF-binding protein 5. Development 2005; 132:2981-90. [PMID: 15930103 DOI: 10.1242/dev.01873] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reciprocal interactions between the dermal papilla and the hair matrix control proliferation and differentiation in the mature hair follicle. Analysis of expression suggests an important role for FGF7 and FGF10, as well as their cognate receptor FGFR2-IIIb, in these processes. Transgenic mice that express a soluble dominant-negative version of this receptor in differentiating hair keratinocytes were generated to interfere with endogenous FGF signalling. Transgenic mice develop abnormally thin but otherwise normal hairs, characterised by single columns of medulla cells in all hair types. All structural defects and the accompanying changes of global gene expression patterns are restricted to the hair medulla. Forced transgenic expression of IGF-binding protein 5, whose expression level is elevated upon suppression of FGFR2-IIIb-mediated signalling largely phenocopies the defect of dnFgfr2-IIIb-expressing hairs. Thus, the results identify Igfbp5-mediated FGFR2-IIIb signals as a key regulator of the genetic program that controls the structure of the hair shaft medulla.
Collapse
Affiliation(s)
- Thomas Schlake
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
44
|
De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17:535-47. [PMID: 15683729 DOI: 10.1016/j.cellsig.2004.10.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
During development and carcinogenesis, the gradient of different molecular factors, the availability of corresponding receptors and the interplay between different signalling cascades combine to orchestrate the different stages. A good understanding of both developmental processes and oncogenesis leads to new insights into normal and aberrant regulation, processes that share some mutual key players. In this review, we will focus on the Snail family of transcription factors. These proteins, which share an evolutionarily conserved role in invertebrates and vertebrates, are implicated in several developmental processes, but are involved in carcinogenesis as well. We will highlight the different signalling cascades leading to the expression of Snail and Slug and how these factors are regulated on the transcriptional level. Then we will focus on how these factors execute their functions by repression of the numerous target genes that have been described to date.
Collapse
Affiliation(s)
- Bram De Craene
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | |
Collapse
|
45
|
Abstract
Numerous studies suggest that loss of E-cadherin is necessary to induce Epithelial–mesenchymal transition (EMT) and metastasis. Snail is a major contributor to EMTs. The Snail family of zinc-finger transcription factors interact with the E-cadherin promoter to repress transcription during EMT. The present article reviews the regulation of E-cadherin and discusses recent novel insights into the molecular basis in the process of EMT.
Collapse
|
46
|
Kiefer H, Chatail-Hermitte F, Ravassard P, Bayard E, Brunet I, Mallet J. ZENON, a novel POZ Kruppel-like DNA binding protein associated with differentiation and/or survival of late postmitotic neurons. Mol Cell Biol 2005; 25:1713-29. [PMID: 15713629 PMCID: PMC549352 DOI: 10.1128/mcb.25.5.1713-1729.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The rat tyrosine hydroxylase gene promoter contains an E-box/dyad motif and an octameric and heptameric element that may be recognized by classes of transcription factors highly expressed during nervous system development. In a one-hybrid genetic screen, we used these sites as targets to isolate cDNAs encoding new transcription factors present in the brain. We identified ZENON, a novel rat POZ protein that contains two clusters of Kruppel-like zinc fingers and that presents several features of a transcription factor. ZENON is found in nuclei following transient transfection with the cDNA. The N-terminal zinc finger cluster contains a DNA binding domain that interacts with the E box. Cotranfection experiments revealed that ZENON induces tyrosine hydroxylase promoter activity. Unlike other POZ proteins, the ZENON POZ domain is not required for either activation of transcription or self-association. In the embryonic neural tube, ZENON expression is restricted to neurons that have already achieved mitosis and are engaged in late stages of neuronal differentiation (late postmitotic neurons). ZENON neuronal expression persists in the adult brain; therefore, ZENON can be considered a marker of mature neurons. We propose that ZENON is involved in the maintenance of panneuronal features and/or in the survival of mature neurons.
Collapse
Affiliation(s)
- Hélène Kiefer
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, CNRS UMR 7091, BAtiment CERVI, Hôpital de la Pitié-Salpêtrière, 83, Blvd. de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Takahashi E, Funato N, Higashihori N, Hata Y, Gridley T, Nakamura M. Snail regulates p21(WAF/CIP1) expression in cooperation with E2A and Twist. Biochem Biophys Res Commun 2005; 325:1136-44. [PMID: 15555546 DOI: 10.1016/j.bbrc.2004.10.148] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Indexed: 01/15/2023]
Abstract
Snail, a zinc-finger transcriptional repressor, is essential for mesoderm and neural crest cell formation and epithelial-mesenchymal transition. The basic helix-loop-helix transcription factors E2A and Twist have been linked with Snail during embryonic development. In this study, we examined the role of Snail in cellular differentiation through regulation of p21(WAF/CIP1) expression. A reporter assay with the p21 promoter demonstrated that Snail inhibited expression of p21 induced by E2A. Co-expression of Snail with Twist showed additive inhibitory effects. Deletion mutants of the p21 promoter revealed that sequences between -270 and -264, which formed a complex with unidentified nuclear factor(s), were critical for E2A and Snail function. The E2A-dependent expression of the endogenous p21 gene was also inhibited by Snail.
Collapse
Affiliation(s)
- Eishi Takahashi
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Oloumi A, McPhee T, Dedhar S. Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1691:1-15. [PMID: 15053919 DOI: 10.1016/j.bbamcr.2003.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 11/28/2003] [Accepted: 12/04/2003] [Indexed: 01/03/2023]
Abstract
Integrin-linked kinase (ILK) is a serine/threonine protein kinase which interacts with the cytoplasmic domains of beta1 and beta3 integrins. ILK structure and its localization at the focal adhesion allows it not only to interact with different structural proteins, but also to mediate many different signalling pathways. Extracellular matrices (ECM) and growth factors each stimulate ILK signalling. Constitutive activation of ILK in epithelial cells results in oncogenic phenotypes such as disruption of cell extracellular matrix and cell to cell interactions, suppression of suspension-induced apoptosis, and induction of anchorage independent cell growth and cell cycle progression. More specifically, pathological overexpression of ILK results in down-regulation of E-cadherin expression, and nuclear accumulation of beta-catenin, leading to the subsequent activation of the beta-catenin/Tcf transcription complex, the downstream components of the Wnt signalling pathway. Here we review the data implicating ILK in the regulation of these two signalling pathways, and discuss recent novel insights into the molecular basis and requirement of ILK in the process of epithelial to mesenchymal transformation (EMT).
Collapse
Affiliation(s)
- Arusha Oloumi
- British Columbia Cancer Agency and Jack Bell Research Centre, University of British Columbia, Vancouver Hospital, 2660 Oak St. Vancouver, BC, Canada V6H 3Z6
| | | | | |
Collapse
|
49
|
Espineda CE, Chang JH, Twiss J, Rajasekaran SA, Rajasekaran AK. Repression of Na,K-ATPase beta1-subunit by the transcription factor snail in carcinoma. Mol Biol Cell 2003; 15:1364-73. [PMID: 14699059 PMCID: PMC363145 DOI: 10.1091/mbc.e03-09-0646] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Na,K-ATPase consists of two essential alpha- and beta-subunits and regulates the intracellular Na+ and K+ homeostasis. Although the alpha-subunit contains the catalytic activity, it is not active without functional beta-subunit. Here, we report that poorly differentiated carcinoma cell lines derived from colon, breast, kidney, and pancreas show reduced expression of the Na,K-ATPase beta1-subunit. Decreased expression of beta1-subunit in poorly differentiated carcinoma cell lines correlated with increased expression of the transcription factor Snail known to down-regulate E-cadherin. Ectopic expression of Snail in well-differentiated epithelial cell lines reduced the protein levels of E-cadherin and beta1-subunit and induced a mesenchymal phenotype. Reduction of Snail expression in a poorly differentiated carcinoma cell line by RNA interference increased the levels of Na,K-ATPase beta1-subunit. Furthermore, Snail binds to a noncanonical E-box in the Na,K-ATPase beta1-subunit promoter and suppresses its promoter activity. These results suggest that down-regulation of Na,K-ATPase beta1-subunit and E-cadherin by Snail are associated with events leading to epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Cromwell E Espineda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
50
|
Leszczynski JK, Esser KA. The MEF2 site is necessary for induction of the myosin light chain 2 slow promoter in overloaded regenerating plantaris muscle. Life Sci 2003; 73:3265-76. [PMID: 14561531 DOI: 10.1016/j.lfs.2003.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional overload (OV) of the rat plantaris muscle results in a fast to slow change in muscle phenotype with induction of the slow contractile protein genes including myosin light chain 2 slow (MLC2s). To identify potential cis-acting DNA sites regulating MLC2s following ablation, plasmid constructs were transfected in vivo into regenerating overloaded plantaris muscles. Activity of the 270bp promoter (-270MLC2s) was increased in OV muscles at 28 days. Mutation of the MEF2 site (-270MEF2) knocked out the overload-induced activity of the promoter. Mutation of the Ebox (-270Ebox) resulted in an earlier induction with OV and mutation of the CACC site (-270CACC) resulted in increased activity in the CON PLN with OV induction detected by 21 days. These results demonstrate that the -270MLC2s promoter contains the elements necessary for expression of MLC2s in regenerating OV PLN. More importantly, mutation analysis of -270MLC2s promoter demonstrates that mechanical loading induced expression shares some common molecular mechanisms with slow nerve dependent model regulation. In these two models of physiological induction of MLC2s, the CACC site acts as a repressor region (on/off switch) and the MEF2 site acts to modulate quantitative expression.
Collapse
Affiliation(s)
- J K Leszczynski
- Department of Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60608, USA
| | | |
Collapse
|