1
|
Inkpen SM, Solbakken MH, Jentoft S, Eslamloo K, Rise ML. Full characterization and transcript expression profiling of the interferon regulatory factor (IRF) gene family in Atlantic cod (Gadus morhua). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:166-180. [PMID: 30928323 DOI: 10.1016/j.dci.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Atlantic cod (Gadus morhua) represents a unique immune system among teleost fish, making it a species of interest for immunological studies, and especially for investigating the evolutionary history of immune gene families. The interferon regulatory factor (IRF) gene family encodes transcription factors which function in the interferon pathway, but also in areas including leukocyte differentiation, cell growth, autoimmunity, and development. We previously characterized several IRF family members in Atlantic cod (Irf4a, Irf4b, Irf7, Irf8, and two Irf10 splice variants) at the cDNA and putative amino acid levels, and in the current study we took advantage of the new and improved Atlantic cod genome assembly in combination with rapid amplification of cDNA ends (RACE) to characterize the remaining family members (i.e. Irf3, Irf5, Irf6, Irf9, and two Irf2 splice variants). Real-time quantitative PCR (QPCR) was used to investigate constitutive expression of all IRF transcripts during embryonic development, suggesting several putative maternal transcripts, and potential stage-specific roles. QPCR studies also showed 11 of 13 transcripts were responsive to stimulation with poly(I:C), while 6 of 13 transcripts were responsive to lipopolysaccharide (LPS) in Atlantic cod head kidney macrophages, indicating roles for cod IRF family members in both antiviral and antibacterial responses. This study is the first to investigate expression of the complete IRF family in Atlantic cod, and suggests potential novel roles for several of these transcription factors within immunity as well as in early development of this species.
Collapse
Affiliation(s)
- Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| |
Collapse
|
2
|
Pushing the annotation of cellular activities to a higher resolution: Predicting functions at the isoform level. Methods 2015; 93:110-8. [PMID: 26238263 DOI: 10.1016/j.ymeth.2015.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
In past decades, the experimental determination of protein functions was expensive and time-consuming, so numerous computational methods were developed to speed up and guide the process. However, most of these methods predict protein functions at the gene level and do not consider the fact that protein isoforms (translated from alternatively spliced transcripts), not genes, are the actual function carriers. Now, high-throughput RNA-seq technology is providing unprecedented opportunities to unravel protein functions at the isoform level. In this article, we review recent progress in the high-resolution functional annotations of protein isoforms, focusing on two methods developed by the authors. Both methods can integrate multiple RNA-seq datasets for comprehensively characterizing functions of protein isoforms.
Collapse
|
3
|
Li W, Kang S, Liu CC, Zhang S, Shi Y, Liu Y, Zhou XJ. High-resolution functional annotation of human transcriptome: predicting isoform functions by a novel multiple instance-based label propagation method. Nucleic Acids Res 2013; 42:e39. [PMID: 24369432 PMCID: PMC3973446 DOI: 10.1093/nar/gkt1362] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alternative transcript processing is an important mechanism for generating functional diversity in genes. However, little is known about the precise functions of individual isoforms. In fact, proteins (translated from transcript isoforms), not genes, are the function carriers. By integrating multiple human RNA-seq data sets, we carried out the first systematic prediction of isoform functions, enabling high-resolution functional annotation of human transcriptome. Unlike gene function prediction, isoform function prediction faces a unique challenge: the lack of the training data--all known functional annotations are at the gene level. To address this challenge, we modelled the gene-isoform relationships as multiple instance data and developed a novel label propagation method to predict functions. Our method achieved an average area under the receiver operating characteristic curve of 0.67 and assigned functions to 15 572 isoforms. Interestingly, we observed that different functions have different sensitivities to alternative isoform processing, and that the function diversity of isoforms from the same gene is positively correlated with their tissue expression diversity. Finally, we surveyed the literature to validate our predictions for a number of apoptotic genes. Strikingly, for the famous 'TP53' gene, we not only accurately identified the apoptosis regulation function of its five isoforms, but also correctly predicted the precise direction of the regulation.
Collapse
Affiliation(s)
- Wenyuan Li
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Shuli Kang
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Chun-Chi Liu
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Shihua Zhang
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Yi Shi
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Yan Liu
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Xianghong Jasmine Zhou
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
- *To whom correspondence should be addressed. Tel:
+1 213 740 7055; Fax: +1 213 740 2475;
| |
Collapse
|
4
|
Cheng CS, Feldman KE, Lee J, Verma S, Huang DB, Huynh K, Chang M, Ponomarenko JV, Sun SC, Benedict CA, Ghosh G, Hoffmann A. The specificity of innate immune responses is enforced by repression of interferon response elements by NF-κB p50. Sci Signal 2011; 4:ra11. [PMID: 21343618 DOI: 10.1126/scisignal.2001501] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE-containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity.
Collapse
Affiliation(s)
- Christine S Cheng
- Signaling Systems Laboratory, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tandem alternative splicing of zebrafish connexin45.6. Genomics 2010; 96:112-8. [PMID: 20466054 DOI: 10.1016/j.ygeno.2010.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/19/2010] [Accepted: 05/04/2010] [Indexed: 11/24/2022]
Abstract
Early studies suggested that most connexin genes share a relatively simple structure with a single intron of variable length interrupting the 5' untranslated region (UTR). Here we report that zebrafish cx45.6 shows six isoforms of alternative 5'UTRs which are generated from multiple promoter usage and alternative pre-mRNA splicing. Interestingly, cx45.6 undergoes tandem alternative splicing, which produces transcripts only differing by 3 nucleotides. This is the first study that has demonstrated tandem alternative pre-mRNA splicing in the connexin gene family. Expression patterns of cx45.6 alternative transcripts were demonstrated by real-time RT-PCR during zebrafish embryonic development and in adult tissues. The complexity of 5'UTR diversity suggests complicated regulatory mechanisms for cx45.6 gene expression at both transcriptional and post-transcriptional levels, and we propose that tandem alternative splicing in cx45.6 5'UTRs could play a role in translational control. These results lay groundwork for further investigations on the regulation and function of cx45.6 gene expression.
Collapse
|
6
|
Lv J, Yang Y, Yin H, Chu F, Wang H, Zhang W, Zhang Y, Jin Y. Molecular determinants and evolutionary dynamics of wobble splicing. Mol Biol Evol 2009; 26:1081-92. [PMID: 19221008 PMCID: PMC2668829 DOI: 10.1093/molbev/msp023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alternative splicing at tandem splice sites (wobble splicing) is widespread in many species, but the mechanisms specifying the tandem sites remain poorly understood. Here, we used synaptotagmin I as a model to analyze the phylogeny of wobble splicing spanning more than 300 My of insect evolution. Phylogenetic analysis indicated that the occurrence of species-specific wobble splicing was related to synonymous variation at tandem splice sites. Further mutagenesis experiments demonstrated that wobble splicing could be lost by artificially induced synonymous point mutations due to destruction of splice acceptor sites. In contrast, wobble splicing could not be correctly restored through mimicking an ancestral tandem acceptor by artificial synonymous mutation in in vivo splicing assays, which suggests that artificial tandem splice sites might be incompatible with normal wobble splicing. Moreover, combining comparative genomics with hybrid minigene analysis revealed that alternative splicing has evolved from the 3′ tandem donor to the 5′ tandem acceptor in Culex pipiens, as a result of an evolutionary shift of cis element sequences from 3′ to 5′ splice sites. These data collectively suggest that the selection of tandem splice sites might not simply be an accident of history but rather in large part the result of coevolution between splice site and cis element sequences as a basis for wobble splicing. An evolutionary model of wobble splicing is proposed.
Collapse
Affiliation(s)
- Jianning Lv
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Marozin S, Altomonte J, Stadler F, Thasler WE, Schmid RM, Ebert O. Inhibition of the IFN-β Response in Hepatocellular Carcinoma by Alternative Spliced Isoform of IFN Regulatory Factor-3. Mol Ther 2008; 16:1789-1797. [DOI: 10.1038/mt.2008.201] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/19/2008] [Indexed: 12/21/2022] Open
|
8
|
Hiller M, Platzer M. Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet 2008; 24:246-55. [PMID: 18394746 DOI: 10.1016/j.tig.2008.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 12/11/2022]
Abstract
Alternative splicing at donor or acceptor sites located just a few nucleotides apart is widespread in many species. It results in subtle changes in the transcripts and often in the encoded proteins. Several of these tandem splice events contribute to the repertoire of functionally different proteins, whereas many are neutral or deleterious. Remarkably, some of the functional events are differentially spliced in tissues or developmental stages, whereas others exhibit constant splicing ratios, indicating that function is not always associated with differential splicing. Stochastic splice site selection seems to play a major role in these processes. Here, we review recent progress in understanding functional and evolutionary aspects as well as the mechanism of splicing at short-distance tandem sites.
Collapse
Affiliation(s)
- Michael Hiller
- Bioinformatics Group, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany.
| | | |
Collapse
|
9
|
Hiller M, Szafranski K, Sinha R, Huse K, Nikolajewa S, Rosenstiel P, Schreiber S, Backofen R, Platzer M. Assessing the fraction of short-distance tandem splice sites under purifying selection. RNA (NEW YORK, N.Y.) 2008; 14:616-29. [PMID: 18268022 PMCID: PMC2271360 DOI: 10.1261/rna.883908] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many alternative splice events result in subtle mRNA changes, and most of them occur at short-distance tandem donor and acceptor sites. The splicing mechanism of such tandem sites likely involves the stochastic selection of either splice site. While tandem splice events are frequent, it is unknown how many are functionally important. Here, we use phylogenetic conservation to address this question, focusing on tandems with a distance of 3-9 nucleotides. We show that previous contradicting results on whether alternative or constitutive tandem motifs are more conserved between species can be explained by a statistical paradox (Simpson's paradox). Applying methods that take biases into account, we found higher conservation of alternative tandems in mouse, dog, and even chicken, zebrafish, and Fugu genomes. We estimated a lower bound for the number of alternative sites that are under purifying (negative) selection. While the absolute number of conserved tandem motifs decreases with the evolutionary distance, the fraction under selection increases. Interestingly, a number of frameshifting tandems are under selection, suggesting a role in regulating mRNA and protein levels via nonsense-mediated decay (NMD). An analysis of the intronic flanks shows that purifying selection also acts on the intronic sequence. We propose that stochastic splice site selection can be an advantageous mechanism that allows constant splice variant ratios in situations where a deviation in this ratio is deleterious.
Collapse
Affiliation(s)
- Michael Hiller
- Bioinformatics Group, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hiller M, Szafranski K, Huse K, Backofen R, Platzer M. Selection against tandem splice sites affecting structured protein regions. BMC Evol Biol 2008; 8:89. [PMID: 18366714 PMCID: PMC2279118 DOI: 10.1186/1471-2148-8-89] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 03/21/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Alternative selection of splice sites in tandem donors and acceptors is a major mode of alternative splicing. Here, we analyzed whether in-frame tandem sites leading to subtle mRNA insertions/deletions of 3, 6, or 9 nucleotides are under natural selection. RESULTS We found multiple lines of evidence that the human protein coding sequences are under selection against such in-frame tandem splice events, indicating that these events are often deleterious. The strength of selection is not homogeneous within the coding sequence as protein regions that fold into a fixed 3D structure (intrinsically ordered) are under stronger selection, especially against sites with a strong minor splice site. Investigating structures of functional protein domains, we found that tandem acceptors are preferentially located at the domain surface and outside structural elements such as helices and sheets. Using three-species comparisons, we estimate that more than half of all mutations that create NAGNAG acceptors in the coding region have been eliminated by selection. CONCLUSION We estimate that ~2,400 introns are under selection against possessing a tandem site.
Collapse
Affiliation(s)
- Michael Hiller
- Bioinformatics Group, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
11
|
Martin HJ, Lee JM, Walls D, Hayward SD. Manipulation of the toll-like receptor 7 signaling pathway by Epstein-Barr virus. J Virol 2007; 81:9748-58. [PMID: 17609264 PMCID: PMC2045431 DOI: 10.1128/jvi.01122-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) infection of primary B cells causes B-cell activation and proliferation. Activation of B cells requires binding of antigen to the B-cell receptor and a survival signal from ligand-bound CD40, signals that are provided by the EBV LMP1 and LMP2A latency proteins. Recently, Toll-like receptor (TLR) signaling has been reported to provide a third B-cell activation stimulus. The interaction between the EBV and TLR pathways was therefore investigated. Both UV-inactivated and untreated EBV upregulated the expression of TLR7 and downregulated the expression of TLR9 in naive B cells. UV-inactivated virus transiently stimulated naive B-cell proliferation in the presence of the TLR7 ligand R837, while addition of the TLR7 antagonist IRS 661 impaired cell growth induced by untreated EBV. Interferon regulatory factor 5 (IRF-5) is a downstream mediator of TLR7 signaling. IRF-5 was induced following EBV infection, and IRF-5 was expressed in B-cell lines with type III latency. Expression of IRF-5 in this setting is surprising since IRF-5 has tumor suppressor and antiviral properties. B-cell proliferation assays provided evidence that EBV modulates TLR7 signaling responses. Examination of IRF-5 transcripts identified a novel splice variant, V12, that was induced by EBV infection, was constitutively nuclear, and acted as a dominant negative form in IRF-5 reporter assays. IRF-4 negatively regulates IRF-5 activation, and IRF-4 was also present in type III latently infected cells. EBV therefore initially uses TLR7 signaling to enhance B-cell proliferation and subsequently modifies the pathway to regulate IRF-5 activity.
Collapse
Affiliation(s)
- Heather J Martin
- Johns Hopkins School of Medicine, Bunting-Blaustein Building CRB308, 1650 Orleans Street, Baltimore, MD 21231-1000, USA
| | | | | | | |
Collapse
|
12
|
Murphy SP, Choi JC, Holtz R. Regulation of major histocompatibility complex class II gene expression in trophoblast cells. Reprod Biol Endocrinol 2004; 2:52. [PMID: 15236650 PMCID: PMC479700 DOI: 10.1186/1477-7827-2-52] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Accepted: 07/05/2004] [Indexed: 11/18/2022] Open
Abstract
Trophoblast cells are unique because they are one of the few mammalian cell types that do not express major histocompatibility complex (MHC) class II antigens, either constitutively or after exposure to IFN-gamma. The absence of MHC class II antigen expression on trophoblast cells has been postulated to be one of the essential mechanisms by which the semi-allogeneic fetus evades immune rejection reactions by the maternal immune system. Consistent with this hypothesis, trophoblast cells from the placentas of women suffering from chronic inflammation of unknown etiology and spontaneous recurrent miscarriages have been reported to aberrantly express MHC class II antigens. The lack of MHC class II antigen expression on trophoblast cells is due to silencing of expression of the class II transactivator (CIITA), a transacting factor that is essential for constitutive and IFN-gamma-inducible MHC class II gene transcription. Transfection of trophoblast cells with CIITA expression vectors activates both MHC class II and class Ia antigen expression, which confers on trophoblast cells both the ability to activate helper T cells, and sensitivity to lysis by cytotoxic T lymphocytes. Collectively, these studies strongly suggest that stringent silencing of CIITA (and therefore MHC class II) gene expression in trophoblast cells is critical for the prevention of immune rejection responses against the fetus by the maternal immune system. The focus of this review is to summarize studies examining the novel mechanisms by which CIITA is silenced in trophoblast cells. The elucidation of the silencing of CIITA in trophoblast cells may shed light on how the semi-allogeneic fetus evades immune rejection by the maternal immune system during pregnancy.
Collapse
Affiliation(s)
- Shawn P Murphy
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jason C Choi
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Renae Holtz
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
13
|
Giroux M, Schmidt M, Descoteaux A. IFN-gamma-induced MHC class II expression: transactivation of class II transactivator promoter IV by IFN regulatory factor-1 is regulated by protein kinase C-alpha. THE JOURNAL OF IMMUNOLOGY 2004; 171:4187-94. [PMID: 14530341 DOI: 10.4049/jimmunol.171.8.4187] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies based on pharmacological evidence suggested a requirement for protein kinase C (PKC) activity in the regulation of IFN-gamma-induced MHC class II (MHC-II) expression. In the present study, we investigated the molecular mechanisms by which PKC-alpha modulates IFN-gamma-induced MHC-II expression in the mouse macrophage cell line RAW 264.7. Overexpression of a dominant-negative (DN) mutant of PKC-alpha inhibited the expression of IFN-gamma-induced MHC-II but had no effect on IFN-gamma-induced STAT1 nuclear translocation and DNA binding activity, as well as on the expression of inducible NO synthase, IFN consensus sequence binding protein, MHC class I, IFN regulatory factor (IRF)-1, and IFN-gamma-inducible protein-10. Further analysis showed that IFN-gamma-induced expression of the MHC class II transactivator (CIITA), a transcriptional coactivator essential for MHC-II expression, was inhibited in DN PKC-alpha-overexpressing cells. Studies with reporter constructs containing the promoter IV region of CIITA revealed that overexpression of a constitutively active mutant of PKC-alpha enhanced IRF-1, but not IRF-2, transcriptional activity. Furthermore, characterization of IRF-1 from both normal and DN PKC-alpha-overexpressing cells revealed differences in IRF-1 posttranslational modifications. Collectively, our data suggest a novel regulatory mechanism for IFN-gamma-induced MHC-II expression, whereby PKC regulates CIITA expression by selectively modulating the transcriptional activity of IRF-1.
Collapse
Affiliation(s)
- Mélanie Giroux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | | | |
Collapse
|
14
|
Childs KS, Goodbourn S. Identification of novel co-repressor molecules for Interferon Regulatory Factor-2. Nucleic Acids Res 2003; 31:3016-26. [PMID: 12799427 PMCID: PMC162335 DOI: 10.1093/nar/gkg431] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have identified two novel proteins that interact specifically with the C-terminal repression domain of Interferon Regulatory Factor-2 (IRF-2). These proteins, which we term IRF-2 binding proteins 1 and 2 (IRF-2BP1 and IRF-2BP2, the latter having two splicing isoforms, A and B), are nuclear proteins, and have the properties of IRF-2-dependent transcriptional co-repressors that can inhibit both enhancer-activated and basal transcription in a manner that is not dependent upon histone deacetylation. IRF-2BP1 and IRF-2BP2A/B contain an N-terminal zinc finger and a C-terminal RING finger domain of the C3HC4 subclass, but show no homology to other known transcriptional regulators; they therefore define a new family of co- repressor proteins. An alternatively spliced form of IRF-2 that lacks two amino acids (valines 177 and 178) in the central portion of the protein (IRF-2[S]) cannot bind to these co-repressors and cannot mediate repression despite having the same C- terminal repression domain as IRF-2, suggesting that the relative conformation of the DNA binding domain and the C-terminal region of IRF-2 is crucial for transcriptional repression.
Collapse
Affiliation(s)
- Kay S Childs
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, London SW17 0RE, UK
| | | |
Collapse
|
15
|
Burchert A, Wölfl S, Schmidt M, Brendel C, Denecke B, Cai D, Odyvanova L, Lahaye T, Müller MC, Berg T, Gschaidmeier H, Wittig B, Hehlmann R, Hochhaus A, Neubauer A. Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood 2003; 101:259-64. [PMID: 12393722 DOI: 10.1182/blood-2002-02-0659] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal disease of hematopoietic stem cells caused by a reciprocal translocation of the long arms of chromosomes 9 and 22. In human leukocyte antigen A*0201(+) (HLA-A*0201(+)) individuals, response after interferon-alpha (IFN-alpha) was shown to be associated with the emergence of CML-specific cytotoxic T cells that recognize PR-1, a myeloblastin (MBN)-derived nonapeptide. In contrast, imatinib potently induces remissions from CML by specific inhibition of the ABL tyrosine kinase. Here, we explored molecular regulations associated with CML responses under different treatment forms using cDNA-array. Expression of MBN was found to be down-regulated in remission under imatinib therapy (0 of 7 MBN(+) patients). In contrast, MBN transcription was readily detectable in the peripheral blood in 8 of 8 tested IFN-alpha patients in complete remission (P =.0002). IFN-alpha-dependent MBN transcription was confirmed in vitro by stimulation of peripheral blood mononuclear cells (PBMCs) with IFN-alpha and by IFN-alpha-mediated activation of the MBN promoter in reporter gene assays. Finally, with the use of HLA-A*0201-restricted, MBN-specific tetrameric complexes, it was demonstrated that all of 4 IFN-alpha-treated patients (100%), but only 2 of 11 imatinib patients (19%), in complete hematological or cytogenetic remission developed MBN-specific cytotoxic T cells (P =.011). Together, the induction of MBN expression by IFN-alpha, but not imatinib, may contribute to the specific ability of IFN-alpha to induce an MBN-specific T-cell response in CML patients. This also implies that the character of remissions achieved with either drug may not be equivalent and therefore a therapy modality combining IFN-alpha and imatinib may be most effective.
Collapse
Affiliation(s)
- Andreas Burchert
- Klinikum der Philipps Universität Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xi H, Blanck G. The IRF-2 DNA binding domain facilitates the activation of the class II transactivator (CIITA) type IV promoter by IRF-1. Mol Immunol 2003; 39:677-84. [PMID: 12493643 DOI: 10.1016/s0161-5890(02)00214-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
IFN-gamma induced transcription of class II transactivator (CIITA), a major regulator of MHC class II gene expression, is directed by the CIITA type IV promoter. The IFN-gamma activation of the CIITA type IV promoter is mediated by STAT1 and IRF-1, which bind to the GAS and IRF-E of the promoter, respectively. We and others have determined that IRF-2, another member of the IRF family, also activates the CIITA type IV promoter, by binding to the IRF-E. Also, IRF-2 cooperates with IRF-1 to activate the promoter. DNA binding analyses determined that IRF-1 and IRF-2 can co-occupy the IRF-E of the CIITA type IV promoter. To further understand the mechanism of IRF-1 and IRF-2 cooperativity in the activation of CIITA type IV promoter, we characterized the binding of IRF-1 and IRF-2 to the CIITA IRF-E and mapped the domains of IRF-2 required for the cooperative transactivation. Off-rate experiments revealed that the IRF-2/IRF-E complex was more stable than the IRF-1/IRF-E complex and that the affinity of IRF-1 for the IRF-E was increased when IRF-1 co-occupied the IRF-E with IRF-2. Deletion analysis of functional domains of IRF-2 revealed that a previously described latent activation domain of IRF-2 was essential for IRF-2 transactivation and participated in cooperative activation of the CIITA promoter by IRF-1 and IRF-2. However, the DNA binding domain of IRF-2 was sufficient for cooperativity with IRF-1 in the activation of the CIITA type IV promoter. DNA binding assay demonstrated that, like the full-length IRF-2, the IRF-2 DNA binding domain could co-occupy the CIITA IRF-E with IRF-1.
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | |
Collapse
|
17
|
Feng X, Petraglia AL, Chen M, Byskosh PV, Boos MD, Reder AT. Low expression of interferon-stimulated genes in active multiple sclerosis is linked to subnormal phosphorylation of STAT1. J Neuroimmunol 2002; 129:205-15. [PMID: 12161037 DOI: 10.1016/s0165-5728(02)00182-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multiple sclerosis is an immune-mediated brain disease ameliorated by interferon-beta therapy. Immune responses to IFN-alpha and IFN-beta are sometimes subnormal in MS peripheral blood mononuclear cells (MNCs), suggesting an underlying defect in type I IFN signaling. We studied IFN-beta regulation of mRNA and protein induction for IFN regulatory factor-1 (IRF-1) and IRF-2, which control multiple IFN-stimulated genes, and for 2',5'-oligoadenylate synthetase (2',5'-OAS) and MxA, which are antiviral proteins. First, mRNA levels in resting MNC from untreated patients with clinically active MS contained IRF-1 at 38% of normal controls, 45% for IRF-2, 44% for 2',5'-OAS (all p<0.005), and 46% for MxA protein (p<0.007). Stable MS patients had intermediate levels of 2',5'-OAS and MxA. IFN-beta-1b therapy increased IRF-1, IRF-2, and 2',5'-OAS mRNA in resting MNC-but only up to levels seen in unstimulated control cells. In untreated patients with active MS, serine phosphorylation of the STAT1 transcription factor was markedly reduced, suggesting a mechanism for the low levels of IFN-induced genes. Secondly, in untreated patients with stable MS, culture with IFN-beta induced excessive tyrosine phosphorylation of STAT1, and this correlated with low SHP1 tyrosine phosphatase levels. Excessive P-Tyr-STAT1 responses could induce inflammatory cytokines and demyelination in MS, as in motheaten mice, which have defects in SHP-1 function. Abnormal IFN signaling may predict the course of MS and responses to therapy.
Collapse
Affiliation(s)
- Xuan Feng
- Department of Neurology, MC-2030, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
18
|
Jarosinski KW, Massa PT. Interferon regulatory factor-1 is required for interferon-gamma-induced MHC class I genes in astrocytes. J Neuroimmunol 2002; 122:74-84. [PMID: 11777545 DOI: 10.1016/s0165-5728(01)00467-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies have shown that the role of the transcription factor interferon regulatory factor-1 (IRF-1) in the expression of major histocompatibility complex (MHC) class I molecules is tissue-specific. Our previous studies indicated a role for IRF-1 in expression of MHC class I genes in cultured astrocytes in response to interferon-gamma (IFN-gamma). However, the requirement for IRF-1 in MHC class I expression has not been directly analyzed in neural tissue. To further ascertain the importance of IRF-1 in the induction of MHC class I genes in astrocytes in response to IFN-gamma, we analyzed astrocytes from mice with a targeted disruption of the IRF-1 gene (IRF-1(-/-) mice). As expected, astrocytes from wild type (IRF-1(+/+)) mice showed a coordinate increase in both IRF-1 and MHC class I gene expression in response to IFN-gamma. To the contrary, astrocytes from IRF-1(-/-) mice had greatly reduced MHC class I mRNA expression. MHC class I gene promoter activity in astrocytes was controlled entirely through a single enhancer, the MHC-IRF-E, to which IRF-1 bound in response to IFN-gamma in wild type but not in IRF-1(-/-) mouse astrocytes. In vivo, astrocytes in brains of wild type mice readily responded to IFN-gamma to express MHC class I molecules. This correlated with increased MHC class I mRNA in the brain. In contrast, brains of IRF-1(-/-) mice showed no MHC class I gene induction following exposure to IFN-gamma indicating that all cells in the central nervous system (CNS) including astrocytes with the potential to express MHC class I molecules were dependent on IRF-1. These studies conclusively demonstrate a major role for IRF-1/MHC-IRF-E interactions in controlling MHC class I gene expression in astrocytes in response to IFN-gamma.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| | | |
Collapse
|
19
|
Xi H, Goodwin B, Shepherd AT, Blanck G. Impaired class II transactivator expression in mice lacking interferon regulatory factor-2. Oncogene 2001; 20:4219-27. [PMID: 11464288 DOI: 10.1038/sj.onc.1204556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Revised: 04/12/2001] [Accepted: 04/18/2001] [Indexed: 11/09/2022]
Abstract
Class II transactivator (CIITA) is required for both constitutive and inducible expression of MHC class II genes. IFN-gamma induced expression of CIITA in various cell types is directed by CIITA type IV promoter. The two transactivators, STAT1 and IRF-1, mediate the IFN-gamma activation of the type IV promoter by binding to the GAS and IRF-E of the promoter, respectively. In addition to IRF-1, IRF-2, another member of the IRF family, also activates the human CIITA type IV promoter, and IRF-2 cooperates with IRF-1 to activate the promoter in transient transfection assays. IRF-1 and IRF-2 can co-occupy the IRF-E of the human CIITA type IV promoter. To understand the effect of loss of IRF-2 on the endogenous CIITA expression, we assayed for CIITA expression in IRF-2 knock-out mice. Both basal and IFN-gamma induced CIITA expression were reduced in IRF-2 knock-out mice. At least half of the amount of inducible CIITA mRNA depends on IRF-2. The reduction of IFN-gamma induced CIITA mRNA in IRF-2 knock-out mice was due to the reduction of the type IV CIITA mRNA induction. The reduction of basal CIITA mRNA was apparently due to the reduction of CIITA mRNA originating from other promoters. These data indicate that IRF-2, like IRF-1, plays a critical role in the regulation of the endogenous CIITA gene. The implications in understanding the previously described phenotypes of IRF-2 defective mice are discussed.
Collapse
Affiliation(s)
- H Xi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida, FL33612, USA
| | | | | | | |
Collapse
|