1
|
Zhang G, Guo Z, Ke Y, Li H, Xiao X, Lin D, Lin L, Wang Y, Liu J, Lu H, Hong H, Yan C. Comparative analysis of size-fractional eukaryotic microbes in subtropical riverine systems inferred from 18S rRNA gene V4 and V9 regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175972. [PMID: 39233079 DOI: 10.1016/j.scitotenv.2024.175972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Eukaryotic microbes play key ecological roles in riverine ecosystems. Amplicon sequencing has greatly facilitated the identification and characterization of eukaryotic microbial communities. Currently, 18S rRNA gene V4 and V9 hypervariable regions are widely used for sequencing eukaryotic microbes. Identifying optimal regions for the profiling of size-fractional eukaryotic microbial communities is critical for microbial ecological studies. In this study, we spanned three rivers with typical natural-human influenced transition gradients to evaluate the performance of the 18S rRNA gene V4 and V9 hypervariable regions for sequencing size-fractional eukaryotic microbes (>180 μm, 20-180 μm, 5-20 μm, 3-5 μm, 0.8-3 μm). Our comparative analysis revealed that amplicon results depend on the specific species and microbial size. The V9 region was most effective for detecting a broad taxonomic range of species. The V4 region was superior to the V9 region for the identification of microbes in the minor 3 μm and at the family and genus levels, especially for specific microbial groups, such as Labyrinthulomycetes. However, the V9 region was more effective for studies of diverse eukaryotic groups, including Archamoebae, Heterolobosea, and Microsporidia, and various algae, such as Haptophyta, Florideophycidae, and Bangiales. Our results highlight the importance of accounting for potential misclassifications when employing both V4 and V9 regions for the identification of microbial sequences. The use of optimal regions for amplification could enhance the utility of amplicon sequencing in environmental studies. The insights gained from this work will aid future studies that employ amplicon-based identification approaches for the characterization of eukaryotic microbial communities and contribute to our understanding of microbial ecology within aquatic systems.
Collapse
Affiliation(s)
- Guanglong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Zhenli Guo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Yue Ke
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Hanyi Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Xilin Xiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Da Lin
- Fujian Provincial Environmental Monitoring Center Station, Fuzhou 350003, China
| | - Lujian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Useros F, García-Cunchillos I, Henry N, Berney C, Lara E. How good are global DNA-based environmental surveys for detecting all protist diversity? Arcellinida as an example of biased representation. Environ Microbiol 2024; 26:e16606. [PMID: 38509748 DOI: 10.1111/1462-2920.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Metabarcoding approaches targeting microeukaryotes have deeply changed our vision of protist environmental diversity. The public repository EukBank consists of 18S v4 metabarcodes from 12,672 samples worldwide. To estimate how far this database provides a reasonable overview of all eukaryotic diversity, we used Arcellinida (lobose testate amoebae) as a case study. We hypothesised that (1) this approach would allow the discovery of unexpected diversity, but also that (2) some groups would be underrepresented because of primer/sequencing biases. Most of the Arcellinida sequences appeared in freshwater and soil, but their abundance and diversity appeared underrepresented. Moreover, 84% of ASVs belonged to the suborder Phryganellina, a supposedly species-poor clade, whereas the best-documented suborder (Glutinoconcha, 600 described species) was only marginally represented. We explored some possible causes of these biases. Mismatches in the primer-binding site seem to play a minor role. Excessive length of the target region could explain some of these biases, but not all. There must be some other unknown factors involved. Altogether, while metabarcoding based on ribosomal genes remains a good first approach to document microbial eukaryotic clades, alternative approaches based on other genes or sequencing techniques must be considered for an unbiased picture of the diversity of some groups.
Collapse
Affiliation(s)
| | - Iván García-Cunchillos
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nicolas Henry
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Paris, France
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Cédric Berney
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | | |
Collapse
|
3
|
Han Y, Guo C, Guan X, McMinn A, Liu L, Zheng G, Jiang Y, Liang Y, Shao H, Tian J, Wang M. Comparison of Deep-Sea Picoeukaryotic Composition Estimated from the V4 and V9 Regions of 18S rRNA Gene with a Focus on the Hadal Zone of the Mariana Trench. MICROBIAL ECOLOGY 2022; 83:34-47. [PMID: 33811505 DOI: 10.1007/s00248-021-01747-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Diversity of microbial eukaryotes is estimated largely based on sequencing analysis of the hypervariable regions of 18S rRNA genes. But the use of different regions of 18S rRNA genes as molecular markers may generate bias in diversity estimation. Here, we compared the differences between the two most widely used markers, V4 and V9 regions of the 18S rRNA gene, in describing the diversity of epipelagic, bathypelagic, and hadal picoeukaryotes in the Challenger Deep of the Mariana Trench, which is a unique and little explored environment. Generally, the V9 region identified more OTUs in deeper waters than V4, while the V4 region provided greater Shannon diversity than V9. In the epipelagic zone, where Alveolata was the dominant group, picoeukaryotic community compositions identified by V4 and V9 markers are similar at different taxonomic levels. However, in the deep waters, the results of the two datasets show clear differences. These differences were mainly contributed by Retaria, Fungi, and Bicosoecida. The primer targeting the V9 region has an advantage in amplifying Bicosoecids in the bathypelagic and hadal zone of the Mariana Trench, and its high abundance in V9 dataset pointed out the possibility of Bicosoecids as a dominant group in this environment. Chrysophyceae, Fungi, MALV-I, and Retaria were identified as the dominant picoeukaryotes in the bathypelagic and hadal zone and potentially play important roles in deep-sea microbial food webs and biogeochemical cycling by their phagotrophic, saprotrophic, and parasitic life styles. Overall, the use of different markers of 18S rRNA gene allows a better assessment and understanding of the picoeukaryotic diversity in deep-sea environments.
Collapse
Affiliation(s)
- Yuye Han
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Xuran Guan
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Lu Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Guiliang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
4
|
Bininda-Emonds ORP. 18S rRNA variability maps reveal three highly divergent, conserved motifs within Rotifera. BMC Ecol Evol 2021; 21:118. [PMID: 34112085 PMCID: PMC8194223 DOI: 10.1186/s12862-021-01845-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 18S rRNA is a major component of the small subunit of the eukaryotic ribosome and an important phylogenetic marker for many groups, often to the point of being the only marker available for some. A core structure across eukaryotes exists for this molecule that can help to inform about its evolution in different groups. Using an alignment of 18S rDNA for Rotifera as traditionally recognized (=Bdelloidea, Monogononta, and Seisonacea, but not Acanthocephala), I fitted sequences for three exemplar species (Adineta vaga, Brachionus plicatilis, and Seison nebaliae, respectively) to the core structure and used these maps to reveal patterns of evolution for the remainder of this diverse group of microscopic animals. RESULTS The obtained variability maps of the 18S rRNA molecule revealed a pattern of high diversity among the three major rotifer clades coupled with strong conservation within each of bdelloids and monogononts. A majority of individual sites (ca. 60%) were constant even across rotifers as a whole with variable sites showing only intermediate rates of evolution. Although the three structural maps each showed good agreement with the inferred core structure for eukaryotic 18S rRNA and so were highly similar to one another at the secondary and tertiary levels, the overall pattern is of three highly distinct, but conserved motifs within the group at the primary sequence level. A novel finding was that of a variably expressed deletion at the 3' end of the V3 hypervariable region among some bdelloid species that occasionally extended into and included the pseudoknot structure following this region as well as the central "square" of the 18S rRNA molecule. Compared to other groups, levels of variation and rates of evolution for 18S rRNA in Rotifera roughly matched those for Gastropoda and Acanthocephala, despite increasing evidence for the latter being a clade within Rotifera. CONCLUSIONS The lack of comparative data for comparable groups makes interpretation of the results (i.e., very low variation within each of the three major rotifer clades, but high variation between them) and their potential novelty difficult. However, these findings in combination with the high morphological diversity within rotifers potentially help to explain why no clear consensus has been reached to date with regard to the phylogenetic relationships among the major groups.
Collapse
Affiliation(s)
- Olaf R P Bininda-Emonds
- AG Systematics and Evolutionary Biology, IBU-Faculty V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26111, Oldenburg, Germany.
| |
Collapse
|
5
|
Interaction Networks of Ribosomal Expansion Segments in Kinetoplastids. Subcell Biochem 2021; 96:433-450. [PMID: 33252739 DOI: 10.1007/978-3-030-58971-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expansion segments (ES) are insertions of a few to hundreds of nucleotides at discrete locations on eukaryotic ribosomal RNA (rRNA) chains. Some cluster around 'hot spots' involved in translation regulation and some may participate in biogenesis. Whether ES play the same roles in different organisms is currently unclear, especially since their size may vary dramatically from one species to another and very little is known about their functions. Most likely, ES variation is linked to adaptation to a particular environment. In this chapter, we compare the interaction networks of ES from four kinetoplastid parasites, which have evolved in diverse insect vectors and mammalian hosts: Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani and Leishmania major. Here, we comparatively analyze ribosome structures from these representative kinetoplastids and ascertain meaningful structural differences from mammalian ribosomes. We base our analysis on sequence alignments and three-dimensional structures of 80S ribosomes solved by cryo-electron microscopy (cryo-EM). Striking differences in size are observed between ribosomes of different parasites, indicating that not all ES are expanded equally. Larger ES are not always matched by large surrounding ES or proteins extensions in their vicinity, a particularity that may lead to clues about their biological function. ES display different species-specific patterns of conservation, which underscore the density of their interaction network at the surface of the ribosome. Making sense of the conservation patterns of ES is part of a global effort to lay the basis for functional studies aimed at discovering unique kinetoplastid-specific sites suitable for therapeutic applications against these human and often animal pathogens.
Collapse
|
6
|
Chen X, Li J, Xu K. Insights into the phylogeny of three systematically controversial subfamilies of urostylid ciliates based on rDNA. ZOOL SCR 2021. [DOI: 10.1111/zsc.12473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xumiao Chen
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
- Center of Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Ju Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Qingdao Marine Product Museum Qingdao China
| | - Kuidong Xu
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
- Center of Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
7
|
Chen W, Yang C, Whipps CM, Peng Z, Zhao Y. Taxonomy on three novel species of Sphaeromyxa Thélohan 1892 (Myxozoa, Bivalvulida, Sphaeromyxidae) with insight into the evolution of the genus. Parasitol Res 2020; 119:1493-1503. [PMID: 32185480 DOI: 10.1007/s00436-020-06656-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Abstract
Three new myxosporeans of the genus Sphaeromyxa Thélohan 1892 were discovered from the coastal waters off Xiamen in the East China Sea and characterized based on morphological and SSU rDNA data. Sphaeromyxa photopectoralis sp. n. was described from Photopectoralis bindus, and Sphaeromyxa sebastisca sp. n. was described infecting both Sebastiscus marmoratus (type-host) and Scorpaenopsis cirrosa. These two species are morphologically consistent with the "balbianii" group, possessing straight myxospores and truncated ends, but are distinct from one another genetically and by myxospore dimensions. A third myxosporean infecting Siganus fuscescens was described as Sphaeromyxa xiamenensis sp. n., and this species is morphologically consistent with the "incurvata" group, bearing arcuate myxospores with rounded ends. The molecular phylogeny and estimated rRNA secondary structure suggest that marine sphaeromyxids are probably derived from freshwater myxidiids, and "incurvata" and "balbianii" groups might each represent independent evolutionary lineages. The present study also shows that S. limocapitis phylogenetically nested in "incurvata" group.
Collapse
Affiliation(s)
- Wei Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chengzhong Yang
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Christopher M Whipps
- Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 246 Illick Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanjun Zhao
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
8
|
Photosynthetic Picoeukaryotes Diversity in the Underlying Ice Waters of the White Sea, Russia. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The White Sea is a unique basin combining features of temperate and arctic seas. The current state of its biocenoses can serve as a reference point in assessing the expected desalination of the ocean as a result of climate change. A metagenomic study of under-ice ice photosynthetic picoeukaryotes (PPEs) was undertaken by Illumina high-throughput sequencing of the 18S rDNA V4 region from probes collected in March 2013 and 2014. The PPE biomass in samples was 0.03–0.17 µg C·L−1 and their abundance varied from 10 cells·mL−1 to 140 cells·mL−1. There were representatives of 16 algae genera from seven classes and three supergroups, but Chlorophyta, especially Mamiellophyceae, dominated. The most represented genera were Micromonas and Mantoniella. For the first time, the predominance of Mantoniella (in four samples) and Bolidophyceae (in one sample) was observed in under-ice water. It can be assumed that a change in environmental conditions will lead to a considerable change in the structure of arctic PPE communities.
Collapse
|
9
|
Solarz W, Najberek K, Wilk‐Woźniak E, Biedrzycka A. Raccoons foster the spread of freshwater and terrestrial microorganisms—Mammals as a source of microbial eDNA. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Wojciech Solarz
- Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
| | - Kamil Najberek
- Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
| | | | | |
Collapse
|
10
|
Evidence of Intra-individual SSU Polymorphisms in Dark-spored Myxomycetes (Amoebozoa). Protist 2019; 170:125681. [PMID: 31586669 DOI: 10.1016/j.protis.2019.125681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 11/24/2022]
Abstract
The nuclear small subunit rRNA gene (SSU or 18S) is a marker frequently used in phylogenetic and barcoding studies in Amoebozoa, including Myxomycetes. Despite its common usage and the confirmed existence of divergent copies of ribosomal genes in other protists, the potential presence of intra-individual SSU variability in Myxomycetes has never been studied before. Here we investigated the pattern of nucleotide polymorphism in the 5' end fragment of SSU by cloning and sequencing a total of 238 variants from eight specimens, each representing a species of the dark-spored orders Stemonitidales and Physarales. After excluding singletons, a relatively low SSU intra-individual variability was found but our data indicate that this might be a widely distributed phenomenon in Myxomycetes as all samples analyzed possessed various ribotypes. To determine if the occurrence of multiple SSU variants within a single specimen has a negative effect on the circumscription of species boundaries, we conducted phylogenetic analyses that revealed that clone variation may be detrimental for inferring phylogenetic relationships among some of the specimens analyzed. Despite that intra-individual variability should be assessed in additional taxa, our results indicate that special care should be taken for species identification when working with closely related species.
Collapse
|
11
|
Chen X, Li J, Xu K. Multigene‐based phylogeny analyses of the controversial family Condylostomatidae (Ciliophora, Heterotrichea). ZOOL SCR 2019. [DOI: 10.1111/zsc.12383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xumiao Chen
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao 266071 China
| | - Ju Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Kuidong Xu
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
- University of Chinese Academy of Sciences Beijing China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao 266071 China
| |
Collapse
|
12
|
Milyutina IA, Belevich TA, Ilyash LV, Troitsky AV. Insight into picophytoplankton diversity of the subarctic White Sea-The first recording of Pedinophyceae in environmental DNA. Microbiologyopen 2019; 8:e892. [PMID: 31184446 PMCID: PMC6813492 DOI: 10.1002/mbo3.892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Operational taxonomic units 94%-95% similar to the known Pedinophyceae were found as a result of high-through sequencing of 18S rDNA V4 amplicons of environmental DNA from the summer picophytoplankton samples from the White Sea. Partial sequence of a ribosomal operon (the 5,298 bp includes partial 18S and 28S rDNA, complete 5.8S rDNA, ITS1, and ITS2 sequences) and a partial 2,112 bp chloroplast 23S rDNA sequence White Sea Pedinophyceae was amplified from metagenomic DNA by specific primers and sequenced. A new phylotype was designated as uncultured Pedinophyceae WS. On Chlorophyta phylogenetic trees the discovered phylotype occupies a basal position in the Marsupiomonadales clade. The synapomorphic base substitutions in rRNA hairpins confirm the relationship of Pedinophyceae WS to Marsupiomonadales and its difference from known genera of the order. The obtained results extend knowledge of picophytoplankton diversity in subarctic waters.
Collapse
MESH Headings
- Arctic Regions
- Biodiversity
- Cluster Analysis
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Environmental/chemistry
- DNA, Environmental/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Phylogeny
- Phytoplankton/classification
- Phytoplankton/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5.8S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Irina A. Milyutina
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | | | | | - Aleksey V. Troitsky
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
13
|
Abstract
BACKGROUND RNA secondary structure comparison is a fundamental task for several studies, among which are RNA structure prediction and evolution. The comparison can currently be done efficiently only for pseudoknot-free structures due to their inherent tree representation. RESULTS In this work, we introduce an algebraic language to represent RNA secondary structures with arbitrary pseudoknots. Each structure is associated with a unique algebraic RNA tree that is derived from a tree grammar having concatenation, nesting and crossing as operators. From an algebraic RNA tree, an abstraction is defined in which the primary structure is neglected. The resulting structural RNA tree allows us to define a new measure of similarity calculated exploiting classical tree alignment. CONCLUSIONS The tree grammar with its operators permit to uniquely represent any RNA secondary structure as a tree. Structural RNA trees allow us to perform comparison of RNA secondary structures with arbitrary pseudoknots without taking into account the primary structure.
Collapse
Affiliation(s)
- Michela Quadrini
- School of Science and Technology, University of Camerino, Via Madonna della Carceri 9, Camerino, 62032 Italy
| | - Luca Tesei
- School of Science and Technology, University of Camerino, Via Madonna della Carceri 9, Camerino, 62032 Italy
| | - Emanuela Merelli
- School of Science and Technology, University of Camerino, Via Madonna della Carceri 9, Camerino, 62032 Italy
| |
Collapse
|
14
|
Molecular and Morphological Diversity of the Oxymonad Genera Monocercomonoides and Blattamonas gen. nov. Protist 2018; 169:744-783. [DOI: 10.1016/j.protis.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 11/20/2022]
|
15
|
Clerissi C, Brunet S, Vidal-Dupiol J, Adjeroud M, Lepage P, Guillou L, Escoubas JM, Toulza E. Protists Within Corals: The Hidden Diversity. Front Microbiol 2018; 9:2043. [PMID: 30233528 PMCID: PMC6127297 DOI: 10.3389/fmicb.2018.02043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Previous observations suggested that microbial communities contribute to coral health and the ecological resilience of coral reefs. However, most studies of coral microbiology focused on prokaryotes and the endosymbiotic algae Symbiodinium. In contrast, knowledge concerning diversity of other protists is still lacking, possibly due to methodological constraints. As most eukaryotic DNA in coral samples was derived from hosts, protist diversity was missed in metagenome analyses. To tackle this issue, we designed blocking primers for Scleractinia sequences amplified with two primer sets that targeted variable loops of the 18S rRNA gene (18SV1V2 and 18SV4). These blocking primers were used on environmental colonies of Pocillopora damicornis sensu lato from two regions with contrasting thermal regimes (Djibouti and New Caledonia). In addition to Symbiodinium clades A/C/D, Licnophora and unidentified coccidia genera were found in many samples. In particular, coccidian sequences formed a robust monophyletic clade with other protists identified in Agaricia, Favia, Montastraea, Mycetophyllia, Porites, and Siderastrea coral colonies. Moreover, Licnophora and coccidians had different distributions between the two geographic regions. A similar pattern was observed between Symbiodinium clades C and A/D. Although we were unable to identify factors responsible for this pattern, nor were we able to confirm that these taxa were closely associated with corals, we believe that these primer sets and the associated blocking primers offer new possibilities to describe the hidden diversity of protists within different coral species.
Collapse
Affiliation(s)
- Camille Clerissi
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Sébastien Brunet
- McGill University and Génome Québec Innovation Centre, Montréal, QC, Canada
| | - Jeremie Vidal-Dupiol
- IFREMER, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, Montpellier, France
| | - Mehdi Adjeroud
- Institut de Recherche pour le Développement, UMR 9220 ENTROPIE & Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, France
| | - Pierre Lepage
- McGill University and Génome Québec Innovation Centre, Montréal, QC, Canada
| | - Laure Guillou
- CNRS, UMR 7144, Sorbonne Universités, Université Pierre et Marie Curie - Paris 6, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Michel Escoubas
- CNRS, IHPE UMR 5244, Univ. Perpignan Via Domitia, IFREMER, Univ. Montpellier, Montpellier, France
| | - Eve Toulza
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| |
Collapse
|
16
|
Bass D, Tikhonenkov DV, Foster R, Dyal P, Janouškovec J, Keeling PJ, Gardner M, Neuhauser S, Hartikainen H, Mylnikov AP, Berney C. Rhizarian 'Novel Clade 10' Revealed as Abundant and Diverse Planktonic and Terrestrial Flagellates, including Aquavolon n. gen. J Eukaryot Microbiol 2018; 65:828-842. [PMID: 29658156 PMCID: PMC6282753 DOI: 10.1111/jeu.12524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023]
Abstract
Rhizarian ‘Novel Clade 10’ (NC10) is frequently detected by 18S rRNA gene sequencing studies in freshwater planktonic samples. We describe a new genus and two species of eukaryovorous biflagellate protists, Aquavolon hoantrani n. gen. n. sp. and A. dientrani n. gen. n. sp., which represent the first morphologically characterized members of NC10, here named Aquavolonida ord. nov. The slightly metabolic cells possess naked heterodynamic flagella, whose kinetosomes lie at a right angle to each other and are connected by at least one fibril. Unlike their closest known relative Tremula longifila, they rotate around their longitudinal axis when swimming and only very rarely glide on surfaces. Screening of a wide range of environmental DNA extractions with lineage‐specific PCR primers reveals that Aquavolonida consists of a large radiation of protists, which are most diversified in freshwater planktonic habitats and as yet undetected in marine environments. Earlier‐branching lineages in Aquavolonida include less frequently detected organisms from soils and freshwater sediments. The 18S rRNA gene phylogeny suggests that Aquavolonida forms a common evolutionary lineage with tremulids and uncharacterized ‘Novel Clade 12’, which likely represents one of the deepest lineages in the Rhizaria, separate from Cercozoa (Filosa), Endomyxa, and Retaria.
Collapse
Affiliation(s)
- David Bass
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.,Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, DT4 8UB, UK
| | - Denis Victorovich Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia.,Botany Department, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Rachel Foster
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Patricia Dyal
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jan Janouškovec
- Botany Department, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Michelle Gardner
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Sigrid Neuhauser
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, Innsbruck, 6020, Austria
| | - Hanna Hartikainen
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Alexandre P Mylnikov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia
| | - Cédric Berney
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
17
|
Sausen N, Malavasi V, Melkonian M. Molecular phylogeny, systematics, and revision of the type species of Lobomonas, L. francei (Volvocales, Chlorophyta) and closely related taxa. JOURNAL OF PHYCOLOGY 2018; 54:198-214. [PMID: 29278416 DOI: 10.1111/jpy.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
In the present study, three new strains of the rare volvocalean green alga Lobomonas were isolated from field-collected samples, one from Sardinia (Italy) and two from Argentina, and comparatively studied. The Sardinian and one of the Argentinian strains were identified as Lobomonas francei, the type species of the genus, whereas the second Argentinian strain corresponded to L. panduriformis. Two additional nominal species of Lobomonas from culture collections (L. rostrata and L. sphaerica) were included in the analysis and shown to be morphologically and molecularly identical to the L. francei strains. The presence, number, and shapes of cell wall lobes, the diagnostic criterion of Lobomonas, were shown to be highly variable depending on the chemical composition of the culture medium used. The analyses by SEM gave evidence that the cell wall lobes in Lobomonas originate at the junctions of adjacent cell wall plates by extrusion of gelatinous material. The four L. francei strains had identical nrRNA gene sequences and differed by only one or two substitutions in the ITS1 + ITS2 sequences. In the phylogenetic analyses, L. francei and L. panduriformis were sister taxa; however, another nominal Lobomonas species (L. monstruosa) did not belong to this genus. Lobomonas, together with taxa designated as Vitreochlamys, Tetraspora, and Paulschulzia, formed a monophyletic group that in the combined analyses was sister to the "Chlamydomonas/Volvox-clade." Based on these results, Lobomonas was revised, the diagnosis of the type species emended, a lectotype and an epitype designated, and several taxa synonymized with the type species.
Collapse
Affiliation(s)
- Nicole Sausen
- Botanical Institute, Cologne Biocenter, University of Cologne, Zülpicher Str. 47 b, Cologne, 50674, Germany
| | - Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Michael Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Zülpicher Str. 47 b, Cologne, 50674, Germany
| |
Collapse
|
18
|
Flues S, Blokker M, Dumack K, Bonkowski M. Diversity of Cercomonad Species in the Phyllosphere and Rhizosphere of Different Plant Species with a Description of Neocercomonas epiphylla (Cercozoa, Rhizaria) a Leaf-Associated Protist. J Eukaryot Microbiol 2018; 65:587-599. [PMID: 29377417 DOI: 10.1111/jeu.12503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Cercomonads are among the most abundant and diverse groups of heterotrophic flagellates in terrestrial systems and show an affinity to plants. However, we still lack basic knowledge of plant-associated protists. We isolated 75 Cercomonadida strains from the phyllosphere and rhizosphere of plants from three functional groups: grasses (Poa sp.), legumes (Trifolium sp.) and forbs (Plantago sp.), representing 28 OTUs from the genera Cercomonas, Neocercomonas and Paracercomonas. The community composition differed clearly between phyllosphere and rhizosphere, but was not influenced by plant species identity. From these isolates we describe three novel cercomonad species including Neocercomonas epiphylla that was consistently and exclusively isolated from the phyllosphere. For each new species we provide a detailed morphological description as well as an 18S rDNA gene sequence as a distinct marker of species identity. Our data contribute to a better resolution of the systematics of cercomonads and their association with plants, by describing three novel species and adding gene sequences of 10 new cercomonad genotypes and of nine previously described species. In view of the functional importance of cercozoan communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of their composition, function and predator-prey interactions are clearly required.
Collapse
Affiliation(s)
- Sebastian Flues
- Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Cologne, 50674, Germany
| | - Malte Blokker
- Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Cologne, 50674, Germany
| | - Kenneth Dumack
- Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Cologne, 50674, Germany
| | - Michael Bonkowski
- Department of Terrestrial Ecology, Institute for Zoology, University of Cologne, Cologne, 50674, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
19
|
Eckert IM, Littlefair JE, Zhang GK, Chain FJ, Crease TJ, Cristescu ME. Bioinformatics for Biomonitoring: Species Detection and Diversity Estimates Across Next-Generation Sequencing Platforms. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Reich M, Labes A. How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar Genomics 2017; 36:57-75. [PMID: 29031541 DOI: 10.1016/j.margen.2017.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/30/2022]
Abstract
Marine fungi have attracted attention in recent years due to increased appreciation of their functional role in ecosystems and as important sources of new natural products. The concomitant development of various "omic" technologies has boosted fungal research in the fields of biodiversity, physiological ecology and natural product biosynthesis. Each of these research areas has its own research agenda, scientific language and quality standards, which have so far hindered an interdisciplinary exchange. Inter- and transdisciplinary interactions are, however, vital for: (i) a detailed understanding of the ecological role of marine fungi, (ii) unlocking their hidden potential for natural product discovery, and (iii) designing access routes for biotechnological production. In this review and opinion paper, we describe the two different "worlds" of marine fungal natural product chemists and marine fungal molecular ecologists. The individual scientific approaches and tools employed are summarised and explained, and enriched with a first common glossary. We propose a strategy to find a multidisciplinary approach towards a comprehensive view on marine fungi and their chemical potential.
Collapse
Affiliation(s)
- Marlis Reich
- University of Bremen, BreMarE, NW2 B3320, Leobener Str. 5, D-28359 Bremen, Germany.
| | - Antje Labes
- Flensburg University of Applied Sciences, Kanzleistr. 91-93, D-24943 Flensburg, Germany.
| |
Collapse
|
21
|
Two new species of Ripella (Amoebozoa, Vannellida) and unusual intragenomic variability in the SSU rRNA gene of this genus. Eur J Protistol 2017; 61:92-106. [PMID: 28992523 DOI: 10.1016/j.ejop.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
Abstract
Two new species, Ripella decalvata and R. tribonemae (Amoebozoa, Vannellida), are described and the diversity of known strains assigned to the genus analyzed. Ripella spp. are closely similar to each other in the light microscopic characters and sequences of small-subunit (SSU) ribosomal RNA gene, but differences in the cell coat structure and cytochrome oxidase (COI) gene sequences are more prominent. SSU rRNA in R. platypodia CCAP1589/2, R. decalvata and R. tribonemae demonstrates an unusual pattern of intragenomic variation. Sequencing of multiple molecular clones of this gene produced numerous sequence variants in a number of specific sites. These sites were usually terminal parts of several variable helices in all studied strains. Analysis of all known Ripella strains shows that SSU rRNA sites differing between strains of different origin are mainly restricted to these areas of the gene. There are only two sites, which differ between strains, but not within genomes. This intragenomic variability of the SSU rRNA gene, seemingly characteristic of all Ripella spp., was never reported to be so extensive in Amoebozoa. The data obtained show another example of complex organization of rRNA gene cluster in protists and emphasize caution needed when interpreting the metagenomic data based on this marker.
Collapse
|
22
|
Arrigoni R, Vacherie B, Benzoni F, Stefani F, Karsenti E, Jaillon O, Not F, Nunes F, Payri C, Wincker P, Barbe V. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol Ecol Resour 2017; 17:1054-1071. [DOI: 10.1111/1755-0998.12640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto Arrigoni
- Red Sea Research Center; Division of Biological and Environmental Science and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milan 20126 Italy
| | | | - Francesca Benzoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milan 20126 Italy
- Institut de Recherche pour le Développement; UMR227 Coreus2; 101 Promenade Roger Laroque BP A5 Noumea Cedex 98848 New Caledonia
| | - Fabrizio Stefani
- Water Research Institute-National Research Council (IRSA-CNR); Via del Mulino 19 Brugherio I-20861 Italy
| | - Eric Karsenti
- Ecole Normale Supérieure; Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197; Paris F-75005 France
- Directors’ Research; European Molecular Biology Laboratory; Meyerhofstr. 1 Heidelberg 69117 Germany
| | - Olivier Jaillon
- CEA/DSV/IG/Genoscope; Evry Cedex France
- Université d'Evry; UMR 8030; Evry CP5706 France
| | - Fabrice Not
- UPMC-CNRS; UMR 7144; Station Biologique de Roscoff; Place Georges Teissier Roscoff 29680 France
| | - Flavia Nunes
- Ifremer Centre Bretagne; DYNECO; Laboratoire d’Écologie Benthique Côtière (LEBCO); 29280 Plouzané France
| | - Claude Payri
- Institut de Recherche pour le Développement; UMR227 Coreus2; 101 Promenade Roger Laroque BP A5 Noumea Cedex 98848 New Caledonia
| | - Patrick Wincker
- CEA/DSV/IG/Genoscope; Evry Cedex France
- Université d'Evry; UMR 8030; Evry CP5706 France
| | | |
Collapse
|
23
|
Barcoding Heliozoa: Perspectives of 18S rDNA for Distinguishing Between Acanthocystis Species. Protist 2016; 167:555-567. [DOI: 10.1016/j.protis.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 09/03/2016] [Accepted: 09/29/2016] [Indexed: 11/21/2022]
|
24
|
Light microscopic morphometrics, ultrastructure, and molecular phylogeny of the putative pycnotrichid Ciliate, Buxtonella sulcata. Eur J Protistol 2015; 51:425-36. [DOI: 10.1016/j.ejop.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 11/21/2022]
|
25
|
Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists. Proc Natl Acad Sci U S A 2015; 112:E4743-51. [PMID: 26261337 DOI: 10.1073/pnas.1500163112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The decline of amphibian populations, particularly frogs, is often cited as an example in support of the claim that Earth is undergoing its sixth mass extinction event. Amphibians seem to be particularly sensitive to emerging diseases (e.g., fungal and viral pathogens), yet the diversity and geographic distribution of infectious agents are only starting to be investigated. Recent work has linked a previously undescribed protist with mass-mortality events in the United States, in which infected frog tadpoles have an abnormally enlarged yellowish liver filled with protist cells of a presumed parasite. Phylogenetic analyses revealed that this infectious agent was affiliated with the Perkinsea: a parasitic group within the alveolates exemplified by Perkinsus sp., a "marine" protist responsible for mass-mortality events in commercial shellfish populations. Using small subunit (SSU) ribosomal DNA (rDNA) sequencing, we developed a targeted PCR protocol for preferentially sampling a clade of the Perkinsea. We tested this protocol on freshwater environmental DNA, revealing a wide diversity of Perkinsea lineages in these environments. Then, we used the same protocol to test for Perkinsea-like lineages in livers of 182 tadpoles from multiple families of frogs. We identified a distinct Perkinsea clade, encompassing a low level of SSU rDNA variation different from the lineage previously associated with tadpole mass-mortality events. Members of this clade were present in 38 tadpoles sampled from 14 distinct genera/phylogroups, from five countries across three continents. These data provide, to our knowledge, the first evidence that Perkinsea-like protists infect tadpoles across a wide taxonomic range of frogs in tropical and temperate environments, including oceanic islands.
Collapse
|
26
|
Wang P, Gao F, Huang J, Strüder-Kypke M, Yi Z. A case study to estimate the applicability of secondary structures of SSU-rRNA gene in taxonomy and phylogenetic analyses of ciliates. ZOOL SCR 2015. [DOI: 10.1111/zsc.12122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pu Wang
- Laboratory of Protozoology; Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao China
| | - Feng Gao
- Laboratory of Protozoology; Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao China
| | - Jie Huang
- Laboratory of Protozoology; Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao China
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences; Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan China
| | | | - Zhenzhen Yi
- Laboratory of Protozoology; Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao China
- Laboratory of Protozoology; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education; College of Life Science; South China Normal University; Guangzhou China
| |
Collapse
|
27
|
Vannini C, Volpi M, Lardicci C. A Multi Size-Level Assessment of Benthic Marine Communities in a Coastal Environment: Are They Different Sides of the Same Coin? PLoS One 2015; 10:e0129942. [PMID: 26075405 PMCID: PMC4468208 DOI: 10.1371/journal.pone.0129942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
Organism body size has been demonstrated to be a discriminating element in shaping the response of living beings to environmental factors, thus playing a fundamental role in community structuring. Despite the importance of studies elucidating relations among communities of different size levels in ecosystems, the attempts that have been made in this sense are still very scarce and a reliable approach for these research still has to be defined. We characterized the benthic communities of bacteria, microbial eukaryotes, meiofauna and macrofauna in a coastal environment, encompassing a 10000-fold gradient in body size, testing and discussing a mixed approach of molecular fingerprinting for microbes and morphological observations for meio- and macrofauna. We found no correlation among structures of the different size-level communities: this suggests that community composition at one size-level could have no (or very low) influence on the community composition at other size-levels. Moreover, each community responds in a different way to the environmental parameters and with a degree of sensitivity which seems to increase with organism size. Therefore, our data indicate that the characterization of all the different size levels is clearly a necessity in order to study the dynamics really acting in a system.
Collapse
Affiliation(s)
- Claudia Vannini
- Department of Biology, University of Pisa, Pisa, Italy
- * E-mail:
| | - Marta Volpi
- Department of Biology, University of Pisa, Pisa, Italy
- Center for Geomicrobiology, Institute of Bioscience, University of Aarhus, Aarhus, Denmark
| | | |
Collapse
|
28
|
Darienko T, Gustavs L, Eggert A, Wolf W, Pröschold T. Evaluating the Species Boundaries of Green Microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) Using Integrative Taxonomy and DNA Barcoding with Further Implications for the Species Identification in Environmental Samples. PLoS One 2015; 10:e0127838. [PMID: 26080086 PMCID: PMC4469705 DOI: 10.1371/journal.pone.0127838] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
Integrative taxonomy is an approach for defining species and genera by taking phylogenetic, morphological, physiological, and ecological data into account. This approach is appropriate for microalgae, where morphological convergence and high levels of morphological plasticity complicate the application of the traditional classification. Although DNA barcode markers are well-established for animals, fungi, and higher plants, there is an ongoing discussion about suitable markers for microalgae and protists because these organisms are genetically more diverse compared to the former groups. To solve these problems, we assess the usage of a polyphasic approach combining phenotypic and genetic parameters for species and generic characterization. The application of barcode markers for database queries further allows conclusions about the ‘coverage’ of culture-based approaches in biodiversity studies and integrates additional aspects into modern taxonomic concepts. Although the culture-dependent approach revealed three new lineages, which are described as new species in this paper, the culture-independent analyses discovered additional putative new species. We evaluated three barcode markers (V4, V9 and ITS-2 regions, nuclear ribosomal operon) and studied the morphological and physiological plasticity of Coccomyxa, which became a model organism because its whole genome sequence has been published. In addition, several biotechnological patents have been registered for Coccomyxa. Coccomyxa representatives are distributed worldwide, are free-living or in symbioses, and colonize terrestrial and aquatic habitats. We investigated more than 40 strains and reviewed the biodiversity and biogeographical distribution of Coccomyxa species using DNA barcoding. The genus Coccomyxa formed a monophyletic group within the Trebouxiophyceae separated into seven independent phylogenetic lineages representing species. Summarizing, the combination of different characteristics in an integrative approach helps to evaluate environmental data and clearly identifies microalgae at generic and species levels.
Collapse
Affiliation(s)
- Tatyana Darienko
- M. G. Kholodny Institute of Botany, National Academy Science of Ukraine, Kyiv 01601, Ukraine
| | - Lydia Gustavs
- University of Rostock, Institute of Biological Sciences, Applied Ecology and Phycology, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Anja Eggert
- Leibniz Institute for Baltic Sea Research Warnemünde, Physical Oceanography, D-18119 Rostock, Germany
| | - Wiebke Wolf
- University of Rostock, Institute of Biological Sciences, Applied Ecology and Phycology, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Thomas Pröschold
- University of Rostock, Institute of Biological Sciences, Applied Ecology and Phycology, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
- University of Vienna, Department of Limnology and Biooceanography, A-1090 Vienna, Austria
- * E-mail:
| |
Collapse
|
29
|
Majaneva M, Hyytiäinen K, Varvio SL, Nagai S, Blomster J. Bioinformatic Amplicon Read Processing Strategies Strongly Affect Eukaryotic Diversity and the Taxonomic Composition of Communities. PLoS One 2015; 10:e0130035. [PMID: 26047335 PMCID: PMC4457843 DOI: 10.1371/journal.pone.0130035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
Amplicon read sequencing has revolutionized the field of microbial diversity studies. The technique has been developed for bacterial assemblages and has undergone rigorous testing with mock communities. However, due to the great complexity of eukaryotes and the numbers of different rDNA copies, analyzing eukaryotic diversity is more demanding than analyzing bacterial or mock communities, so studies are needed that test the methods of analyses on taxonomically diverse natural communities. In this study, we used 20 samples collected from the Baltic Sea ice, slush and under-ice water to investigate three program packages (UPARSE, mothur and QIIME) and 18 different bioinformatic strategies implemented in them. Our aim was to assess the impact of the initial steps of bioinformatic strategies on the results when analyzing natural eukaryotic communities. We found significant differences among the strategies in resulting read length, number of OTUs and estimates of diversity as well as clear differences in the taxonomic composition of communities. The differences arose mainly because of the variable number of chimeric reads that passed the pre-processing steps. Singleton removal and denoising substantially lowered the number of errors. Our study showed that the initial steps of the bioinformatic amplicon read processing strategies require careful consideration before applying them to eukaryotic communities.
Collapse
Affiliation(s)
- Markus Majaneva
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- * E-mail:
| | - Kirsi Hyytiäinen
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Sirkka Liisa Varvio
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Satoshi Nagai
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Yokohama, Japan
| | - Jaanika Blomster
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Zhang Y, Zhao YJ, Wang Q, Tang FH. New Comparative Analysis Based on the Secondary Structure of SSU-rRNA Gene Reveals the Evolutionary Trend and the Family-Genus Characters of Mobilida (Ciliophora, Peritrichia). Curr Microbiol 2015; 71:259-67. [DOI: 10.1007/s00284-015-0848-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
|
31
|
Brown EA, Chain FJJ, Crease TJ, MacIsaac HJ, Cristescu ME. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities? Ecol Evol 2015; 5:2234-51. [PMID: 26078859 PMCID: PMC4461424 DOI: 10.1002/ece3.1485] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022] Open
Abstract
DNA metabarcoding is a promising method for describing communities and estimating biodiversity. This approach uses high-throughput sequencing of targeted markers to identify species in a complex sample. By convention, sequences are clustered at a predefined sequence divergence threshold (often 3%) into operational taxonomic units (OTUs) that serve as a proxy for species. However, variable levels of interspecific marker variation across taxonomic groups make clustering sequences from a phylogenetically diverse dataset into OTUs at a uniform threshold problematic. In this study, we use mock zooplankton communities to evaluate the accuracy of species richness estimates when following conventional protocols to cluster hypervariable sequences of the V4 region of the small subunit ribosomal RNA gene (18S) into OTUs. By including individually tagged single specimens and "populations" of various species in our communities, we examine the impact of intra- and interspecific diversity on OTU clustering. Communities consisting of single individuals per species generated a correspondence of 59-84% between OTU number and species richness at a 3% divergence threshold. However, when multiple individuals per species were included, the correspondence between OTU number and species richness dropped to 31-63%. Our results suggest that intraspecific variation in this marker can often exceed 3%, such that a single species does not always correspond to one OTU. We advocate the need to apply group-specific divergence thresholds when analyzing complex and taxonomically diverse communities, but also encourage the development of additional filtering steps that allow identification of artifactual rRNA gene sequences or pseudogenes that may generate spurious OTUs.
Collapse
Affiliation(s)
- Emily A Brown
- Department of Biology, McGill University1205 Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
- Great Lakes Institute for Environmental Research, University of WindsorWindsor, Ontario, Canada, N9B 3P4
| | - Frédéric J J Chain
- Department of Biology, McGill University1205 Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| | - Teresa J Crease
- Department of Integrative Biology, University of Guelph50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of WindsorWindsor, Ontario, Canada, N9B 3P4
| | - Melania E Cristescu
- Department of Biology, McGill University1205 Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
32
|
Flynn JM, Brown EA, Chain FJJ, MacIsaac HJ, Cristescu ME. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol Evol 2015; 5:2252-66. [PMID: 26078860 PMCID: PMC4461425 DOI: 10.1002/ece3.1497] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 11/05/2022] Open
Abstract
Metabarcoding has the potential to become a rapid, sensitive, and effective approach for identifying species in complex environmental samples. Accurate molecular identification of species depends on the ability to generate operational taxonomic units (OTUs) that correspond to biological species. Due to the sometimes enormous estimates of biodiversity using this method, there is a great need to test the efficacy of data analysis methods used to derive OTUs. Here, we evaluate the performance of various methods for clustering length variable 18S amplicons from complex samples into OTUs using a mock community and a natural community of zooplankton species. We compare analytic procedures consisting of a combination of (1) stringent and relaxed data filtering, (2) singleton sequences included and removed, (3) three commonly used clustering algorithms (mothur, UCLUST, and UPARSE), and (4) three methods of treating alignment gaps when calculating sequence divergence. Depending on the combination of methods used, the number of OTUs varied by nearly two orders of magnitude for the mock community (60–5068 OTUs) and three orders of magnitude for the natural community (22–22191 OTUs). The use of relaxed filtering and the inclusion of singletons greatly inflated OTU numbers without increasing the ability to recover species. Our results also suggest that the method used to treat gaps when calculating sequence divergence can have a great impact on the number of OTUs. Our findings are particularly relevant to studies that cover taxonomically diverse species and employ markers such as rRNA genes in which length variation is extensive.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Biology, McGill University 1205 Docteur Penfield, Stewart Biology Building, Montreal, Quebec, Canada, H3A 1B1
| | - Emily A Brown
- Department of Biology, McGill University 1205 Docteur Penfield, Stewart Biology Building, Montreal, Quebec, Canada, H3A 1B1 ; Great Lakes Institute for Environmental Research, University of Windsor Windsor, Ontario, Canada
| | - Frédéric J J Chain
- Department of Biology, McGill University 1205 Docteur Penfield, Stewart Biology Building, Montreal, Quebec, Canada, H3A 1B1
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor Windsor, Ontario, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University 1205 Docteur Penfield, Stewart Biology Building, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
33
|
Berney C, Geisen S, Van Wichelen J, Nitsche F, Vanormelingen P, Bonkowski M, Bass D. Expansion of the 'Reticulosphere': Diversity of Novel Branching and Network-forming Amoebae Helps to Define Variosea (Amoebozoa). Protist 2015; 166:271-95. [PMID: 25965302 DOI: 10.1016/j.protis.2015.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 11/28/2022]
Abstract
Amoebae able to form cytoplasmic networks or displaying a multiply branching morphology remain very poorly studied. We sequenced the small-subunit ribosomal RNA gene of 15 new amoeboid isolates, 14 of which are branching or network-forming amoebae (BNFA). Phylogenetic analyses showed that these isolates all group within the poorly-known and weakly-defined class Variosea (Amoebozoa). They are resolved into six lineages corresponding to distinct new morphotypes; we describe them as new genera Angulamoeba (type species Angulamoeba microcystivorans n. gen., n. sp.; and A. fungorum n. sp.), Arboramoeba (type species Arboramoeba reticulata n. gen., n. sp.), Darbyshirella (type species Darbyshirella terrestris n. gen., n. sp.), Dictyamoeba (type species Dictyamoeba vorax n. gen., n. sp.), Heliamoeba (type species Heliamoeba mirabilis n. gen., n. sp.), and Ischnamoeba (type species Ischnamoeba montana n. gen., n. sp.). We also isolated and sequenced four additional variosean strains, one belonging to Flamella, one related to Telaepolella tubasferens, and two members of the cavosteliid protosteloid lineage. We identified a further 104 putative variosean environmental clone sequences in GenBank, comprising up to 14 lineages that may prove to represent additional novel morphotypes. We show that BNFA are phylogenetically widespread in Variosea and morphologically very variable, both within and between lineages.
Collapse
Affiliation(s)
- Cédric Berney
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Stefan Geisen
- Department of Terrestrial Ecology, Zoological Institute, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jeroen Van Wichelen
- Research Unit Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| | - Frank Nitsche
- Department of General Ecology, Zoological Institute, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Pieter Vanormelingen
- Research Unit Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| | - Michael Bonkowski
- Department of Terrestrial Ecology, Zoological Institute, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - David Bass
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| |
Collapse
|
34
|
Filker S, Gimmler A, Dunthorn M, Mahé F, Stoeck T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 2014; 19:283-95. [DOI: 10.1007/s00792-014-0713-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/16/2014] [Indexed: 11/24/2022]
|
35
|
Li M, Ponce-Gordo F, Grim JN, Wang C, Nilsen F. New insights into the molecular phylogeny of Balantidium (Ciliophora, Vetibuliferida) based on the analysis of new sequences of species from fish hosts. Parasitol Res 2014; 113:4327-33. [DOI: 10.1007/s00436-014-4195-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
|
36
|
Chen DS, Jin PY, Zhang KJ, Ding XL, Yang SX, Ju JF, Zhao JY, Hong XY. The complete mitochondrial genomes of six species of Tetranychus provide insights into the phylogeny and evolution of spider mites. PLoS One 2014; 9:e110625. [PMID: 25329165 PMCID: PMC4199730 DOI: 10.1371/journal.pone.0110625] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Many spider mites belonging to the genus Tetranychus are of agronomical importance. With limited morphological characters, Tetranychus mites are usually identified by a combination of morphological characteristics and molecular diagnostics. To clarify their molecular evolution and phylogeny, the mitochondrial genomes of the green and red forms of Tetranychus urticae as well as T. kanzawai, T. ludeni, T. malaysiensis, T. phaselus, T. pueraricola were sequenced and compared. The seven mitochondrial genomes are typical circular molecules of about 13,000 bp encoding and they are composed of the complete set of 37 genes that are usually found in metazoans. The order of the mitochondrial (mt) genes is the same as that in the mt genomes of Panonychus citri and P. ulmi, but very different from that in other Acari. The J-strands of the mitochondrial genomes have high (∼ 84%) A+T contents, negative GC-skews and positive AT-skews. The nucleotide sequence of the cox1 gene, which is commonly used as a taxon barcode and molecular marker, is more highly conserved than the nucleotide sequences of other mitochondrial genes in these seven species. Most tRNA genes in the seven genomes lose the D-arm and/or the T-arm. The functions of these tRNAs need to be evaluated. The mitochondrial genome of T. malaysiensis differs from the other six genomes in having a slightly smaller genome size, a slight difference in codon usage, and a variable loop in place of the T-arm of some tRNAs by a variable loop. A phylogenic analysis shows that T. malaysiensis first split from other Tetranychus species and that the clade of the family Tetranychoidea occupies a basal position in the Trombidiformes. The mt genomes of the green and red forms of T. urticae have limited divergence and short evolutionary distance.
Collapse
Affiliation(s)
- Da-Song Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Peng-Yu Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kai-Jun Zhang
- Department of Entomology, College of Plant Protection, Southwest University, Chongqing, China
| | - Xiu-Lei Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Si-Xia Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia-Fei Ju
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing-Yu Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Jahn MT, Schmidt K, Mock T. A novel cost effective and high-throughput isolation and identification method for marine microalgae. PLANT METHODS 2014; 10:26. [PMID: 25114712 PMCID: PMC4128616 DOI: 10.1186/1746-4811-10-26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/23/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Marine microalgae are of major ecologic and emerging economic importance. Biotechnological screening schemes of microalgae for specific traits and laboratory experiments to advance our knowledge on algal biology and evolution strongly benefit from culture collections reflecting a maximum of the natural inter- and intraspecific diversity. However, standard procedures for strain isolation and identification, namely DNA extraction, purification, amplification, sequencing and taxonomic identification still include considerable constraints increasing the time required to establish new cultures. RESULTS In this study, we report a cost effective and high-throughput isolation and identification method for marine microalgae. The throughput was increased by applying strain isolation on plates and taxonomic identification by direct PCR (dPCR) of phylogenetic marker genes in combination with a novel sequencing electropherogram based screening method to assess the taxonomic diversity and identity of the isolated cultures. For validation of the effectiveness of this approach, we isolated and identified a range of unialgal cultures from natural phytoplankton communities sampled in the Arctic Ocean. These cultures include the isolate of a novel marine Chlorophyceae strain among several different diatoms. CONCLUSIONS We provide an efficient and effective approach leading from natural phytoplankton communities to isolated and taxonomically identified algal strains in only a few weeks. Validated with sensitive Arctic phytoplankton, this approach overcomes the constraints of standard molecular characterisation and establishment of unialgal cultures.
Collapse
Affiliation(s)
- Martin T Jahn
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Current address: Department of Botany II, Julius-Maximilians University Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Katrin Schmidt
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
38
|
Gao F, Gao S, Wang P, Katz LA, Song W. Phylogenetic analyses of cyclidiids (Protista, Ciliophora, Scuticociliatia) based on multiple genes suggest their close relationship with thigmotrichids. Mol Phylogenet Evol 2014; 75:219-26. [DOI: 10.1016/j.ympev.2014.01.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 01/21/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
39
|
Chambouvet A, Berney C, Romac S, Audic S, Maguire F, De Vargas C, Richards TA. Diverse molecular signatures for ribosomally 'active' Perkinsea in marine sediments. BMC Microbiol 2014; 14:110. [PMID: 24779375 PMCID: PMC4044210 DOI: 10.1186/1471-2180-14-110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 04/03/2014] [Indexed: 01/09/2023] Open
Abstract
Background Perkinsea are a parasitic lineage within the eukaryotic superphylum Alveolata. Recent studies making use of environmental small sub-unit ribosomal RNA gene (SSU rDNA) sequencing methodologies have detected a significant diversity and abundance of Perkinsea-like phylotypes in freshwater environments. In contrast only a few Perkinsea environmental sequences have been retrieved from marine samples and only two groups of Perkinsea have been cultured and morphologically described and these are parasites of marine molluscs or marine protists. These two marine groups form separate and distantly related phylogenetic clusters, composed of closely related lineages on SSU rDNA trees. Here, we test the hypothesis that Perkinsea are a hitherto under-sampled group in marine environments. Using 454 diversity ‘tag’ sequencing we investigate the diversity and distribution of these protists in marine sediments and water column samples taken from the Deep Chlorophyll Maximum (DCM) and sub-surface using both DNA and RNA as the source template and sampling four European offshore locations. Results We detected the presence of 265 sequences branching with known Perkinsea, the majority of them recovered from marine sediments. Moreover, 27% of these sequences were sampled from RNA derived cDNA libraries. Phylogenetic analyses classify a large proportion of these sequences into 38 cluster groups (including 30 novel marine cluster groups), which share less than 97% sequence similarity suggesting this diversity encompasses a range of biologically and ecologically distinct organisms. Conclusions These results demonstrate that the Perkinsea lineage is considerably more diverse than previously detected in marine environments. This wide diversity of Perkinsea-like protists is largely retrieved in marine sediment with a significant proportion detected in RNA derived libraries suggesting this diversity represents ribosomally ‘active’ and intact cells. Given the phylogenetic range of hosts infected by known Perkinsea parasites, these data suggest that Perkinsea either play a significant but hitherto unrecognized role as parasites in marine sediments and/or members of this group are present in the marine sediment possibly as part of the ‘seed bank’ microbial community.
Collapse
Affiliation(s)
- Aurélie Chambouvet
- Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Hugerth LW, Muller EEL, Hu YOO, Lebrun LAM, Roume H, Lundin D, Wilmes P, Andersson AF. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS One 2014; 9:e95567. [PMID: 24755918 PMCID: PMC3995771 DOI: 10.1371/journal.pone.0095567] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/28/2014] [Indexed: 01/22/2023] Open
Abstract
High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.
Collapse
Affiliation(s)
- Luisa W. Hugerth
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden
| | - Emilie E. L. Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Yue O. O. Hu
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden
| | - Laura A. M. Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Hugo Roume
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Lundin
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anders F. Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden
| |
Collapse
|
41
|
Thompson C, Baravalle ME, Valentini B, Mangold A, Torioni de Echaide S, Ruybal P, Farber M, Echaide I. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c. Exp Parasitol 2014; 141:98-105. [PMID: 24681200 DOI: 10.1016/j.exppara.2014.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 11/29/2022]
Abstract
The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones.
Collapse
Affiliation(s)
- C Thompson
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina.
| | - M E Baravalle
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - B Valentini
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - A Mangold
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - S Torioni de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - P Ruybal
- Instituto Nacional de Tecnología Agropecuaria, Centro Nacional de Investigaciones Agropecuarias Castelar, Los Reseros y Las Cabañas, CP 1712 Castelar, Buenos Aires, Argentina
| | - M Farber
- Instituto Nacional de Tecnología Agropecuaria, Centro Nacional de Investigaciones Agropecuarias Castelar, Los Reseros y Las Cabañas, CP 1712 Castelar, Buenos Aires, Argentina
| | - I Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| |
Collapse
|
42
|
Zhao YE, Wang ZH, Xu Y, Wu LP, Hu L. Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari. Exp Parasitol 2013; 135:370-81. [DOI: 10.1016/j.exppara.2013.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 05/06/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022]
|
43
|
The Mystery of Clade X: Orciraptor gen. nov. and Viridiraptor gen. nov. are Highly Specialised, Algivorous Amoeboflagellates (Glissomonadida, Cercozoa). Protist 2013; 164:706-47. [DOI: 10.1016/j.protis.2013.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/20/2022]
|
44
|
Lineage-specific molecular probing reveals novel diversity and ecological partitioning of haplosporidians. ISME JOURNAL 2013; 8:177-86. [PMID: 23966100 DOI: 10.1038/ismej.2013.136] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/12/2013] [Accepted: 07/09/2013] [Indexed: 11/08/2022]
Abstract
Haplosporidians are rhizarian parasites of mostly marine invertebrates. They include the causative agents of diseases of commercially important molluscs, including MSX disease in oysters. Despite their importance for food security, their diversity and distributions are poorly known. We used a combination of group-specific PCR primers to probe environmental DNA samples from planktonic and benthic environments in Europe, South Africa and Panama. This revealed several highly distinct novel clades, novel lineages within known clades and seasonal (spring vs autumn) and habitat-related (brackish vs littoral) variation in assemblage composition. High frequencies of haplosporidian lineages in the water column provide the first evidence for life cycles involving planktonic hosts, host-free stages or both. The general absence of haplosporidian lineages from all large online sequence data sets emphasises the importance of lineage-specific approaches for studying these highly divergent and diverse lineages. Combined with host-based field surveys, environmental sampling for pathogens will enhance future detection of known and novel pathogens and the assessment of disease risk.
Collapse
|
45
|
Qvarnstrom Y, Nerad TA, Visvesvara GS. Characterization of a new pathogenic Acanthamoeba Species, A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. J Eukaryot Microbiol 2013; 60:626-33. [PMID: 23879685 PMCID: PMC4618466 DOI: 10.1111/jeu.12069] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/10/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Abstract
Acanthamoeba spp. are free‐living amoebae that are ubiquitous in natural environments. They can cause cutaneous, nasopharyngeal, and disseminated infection, leading to granulomatous amebic encephalitis (GAE) in immunocompromised individuals. In addition, they can cause amoebic keratitis in contact lens wearers. Acanthamoeba GAE is almost always fatal because of difficulty and delay in diagnosis and lack of optimal antimicrobial therapy. Here, we report the description of an unusual strain isolated from skin and brain of a GAE patient. The amoebae displayed large trophozoites and star‐shaped cysts, characteristics for acanthamoebas belonging to morphology Group 1. However, its unique morphology and growth characteristics differentiated this new strain from other Group 1 species. DNA sequence analysis, secondary structure prediction, and phylogenetic analysis of the 18S rRNA gene confirmed that this new strain belonged to Group 1, but that it was distinct from the other sequence types within that group. Thus, we hereby propose the establishment of a new species, Acanthamoeba byersi n. sp. as well as a new sequence type, T18, for this new strain. To our knowledge, this is the first report of a Group 1 Acanthamoeba that is indisputably pathogenic in humans.
Collapse
Affiliation(s)
- Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, 30329, Georgia
| | | | | |
Collapse
|
46
|
Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME JOURNAL 2013; 7:2387-99. [PMID: 23864128 DOI: 10.1038/ismej.2013.116] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/29/2013] [Accepted: 06/09/2013] [Indexed: 11/09/2022]
Abstract
Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.
Collapse
|
47
|
Multigene-based analyses on evolutionary phylogeny of two controversial ciliate orders: Pleuronematida and Loxocephalida (Protista, Ciliophora, Oligohymenophorea). Mol Phylogenet Evol 2013; 68:55-63. [DOI: 10.1016/j.ympev.2013.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 11/20/2022]
|
48
|
Ptáčková E, Kostygov AY, Chistyakova LV, Falteisek L, Frolov AO, Patterson DJ, Walker G, Cepicka I. Evolution of Archamoebae: Morphological and Molecular Evidence for Pelobionts Including Rhizomastix, Entamoeba, Iodamoeba, and Endolimax. Protist 2013; 164:380-410. [DOI: 10.1016/j.protis.2012.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
49
|
Ashrafi S, Mugniéry D, van Heese EY, van Aelst AC, Helder J, Karssen G. Description of Meloidoderita salina sp. n. (Nematoda, Sphaeronematidae) from a micro-tidal salt marsh at Mont-Saint-Michel Bay in France. Zookeys 2013:1-26. [PMID: 23378798 PMCID: PMC3536011 DOI: 10.3897/zookeys.249.4138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 11/30/2022] Open
Abstract
Meloidoderita salinasp. n. is described and illustrated from the halophytic plant Atriplex portulacoides L. (sea purslane) growing in a micro-tidal salt marsh in the Mont-Saint-Michel Bay in France. This new species is the first member of Meloidoderita Poghossian, 1966 collected from a saline environment, and is characterized by the following features: sedentary mature females having a small swollen body with a clear posterior protuberance; slightly dorsally curved stylet, 19.9 µm long, with posteriorly sloping knobs; neck region irregular in shape and twisted; well developed secretory-excretory (S–E) pore, with markedly sclerotized S-E duct running posteriorly; prominent uterus bordered by a thick hyaline wall and filled with eggs. The adult female transforms into a cystoid. Eggs are deposited in both egg-mass and cystoid. Cystoids of Meloidoderita salinasp.n. display a unique sub-cuticular hexagonal beaded pattern.
Male without stylet, pharyngeal region degenerated, S-E duct prominent, deirids small, developed testis 97.5 µm long, spicules 18.4 µm long, cloacal opening ventrally protruded, small phasmids posterior to cloaca opening and situated at 5.9 (3.2–7.7) µm from tail end, and conical tail ending in a rounded terminus marked with one (rarely two) ventrally positioned mucro. Additionally, some young malesof the new species were observed enveloped in the last J2 cuticle. Second-stage juvenile body 470 µm long, with a 16.4 µm long stylet, prominent rounded knobs set off from the shaft, hemizonid anterior and adjacent to S-E pore, small deirids located just above S-E pore level, genital primordium located at 68–77% of body length, phasmids small and located at about 19 µm from tail tip, and tail 38.7 µm long, tapering to finely pointed terminus with a finger-like projection. Phylogenetic analyses based on the nearly full length small subunit ribosomal DNA sequences of Meloidoderita salinasp. n. revealed a close relationship of the new species with Sphaeronema alni Turkina & Chizhov, 1986 and placed these two species sister to the rest of Criconematina.
Collapse
Affiliation(s)
- Samad Ashrafi
- Plant Protection Service, Wageningen Nematode Collection, P.O. Box 9102, 6700 HC Wageningen, The Netherlands ; Ghent University, Department of Biology, Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Kudryavtsev A, Pawlowski J. Squamamoeba japonica n. g. n. sp. (Amoebozoa): A Deep-sea Amoeba from the Sea of Japan with a Novel Cell Coat Structure. Protist 2013; 164:13-23. [DOI: 10.1016/j.protis.2012.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 03/27/2012] [Accepted: 07/19/2012] [Indexed: 11/28/2022]
|