1
|
Li Y, Li J, Wang J, Zhang S, Giles K, Prakash TP, Rigo F, Napierala JS, Napierala M. Premature transcription termination at the expanded GAA repeats and aberrant alternative polyadenylation contributes to the Frataxin transcriptional deficit in Friedreich's ataxia. Hum Mol Genet 2022; 31:3539-3557. [PMID: 35708503 PMCID: PMC9558844 DOI: 10.1093/hmg/ddac134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 06/05/2022] [Indexed: 11/18/2022] Open
Abstract
Frataxin deficiency in Friedreich's ataxia results from transcriptional downregulation of the FXN gene caused by expansion of the intronic trinucleotide guanine-adenine-adenine (GAA) repeats. We used multiple transcriptomic approaches to determine the molecular mechanism of transcription inhibition caused by long GAAs. We uncovered that transcription of FXN in patient cells is prematurely terminated upstream of the expanded repeats leading to the formation of a novel, truncated and stable RNA. This FXN early terminated transcript (FXN-ett) undergoes alternative, non-productive splicing and does not contribute to the synthesis of functional frataxin. The level the FXN-ett RNA directly correlates with the length of the longer of the two expanded GAA tracts. Targeting GAAs with antisense oligonucleotides or excision of the repeats eliminates the transcription impediment, diminishes expression of the aberrant FXN-ett, while increasing levels of FXN mRNA and frataxin. Non-productive transcription may represent a common phenomenon and attractive therapeutic target in diseases caused by repeat-mediated transcription aberrations.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Siyuan Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Keith Giles
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Thazha P Prakash
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
2
|
Li Y, Li J, Wang J, Lynch D, Shen X, R. Corey D, Parekh D, Bhat B, Woo C, Cherry J, Napierala J, Napierala M. Targeting 3' and 5' untranslated regions with antisense oligonucleotides to stabilize frataxin mRNA and increase protein expression. Nucleic Acids Res 2021; 49:11560-11574. [PMID: 34718736 PMCID: PMC8599914 DOI: 10.1093/nar/gkab954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - David R Lynch
- Division of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Abramson Research Center, Room 502, Philadelphia, PA 19104, USA
| | - Xiulong Shen
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R. Corey
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darshan Parekh
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Caroline Woo
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
DNA triplex with conformationally locked sugar disintegrates to duplex: Insights from molecular simulations. Biochem Biophys Res Commun 2020; 532:662-667. [DOI: 10.1016/j.bbrc.2020.08.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
|
4
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
5
|
Gottesfeld JM. Molecular Mechanisms and Therapeutics for the GAA·TTC Expansion Disease Friedreich Ataxia. Neurotherapeutics 2019; 16:1032-1049. [PMID: 31317428 PMCID: PMC6985418 DOI: 10.1007/s13311-019-00764-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common inherited ataxia, is caused by transcriptional silencing of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin. Currently, there is no approved therapy for this fatal disorder. Gene silencing in FRDA is due to hyperexpansion of the triplet repeat sequence GAA·TTC in the first intron of the FXN gene, which results in chromatin histone modifications consistent with heterochromatin formation. Frataxin is involved in mitochondrial iron homeostasis and the assembly and transfer of iron-sulfur clusters to various mitochondrial enzymes and components of the electron transport chain. Frataxin insufficiency leads to progressive spinocerebellar neurodegeneration, causing symptoms of gait and limb ataxia, slurred speech, muscle weakness, sensory loss, and cardiomyopathy in many patients, resulting in death in early adulthood. Numerous approaches are being taken to find a treatment for FRDA, including excision or correction of the repeats by genome engineering methods, gene activation with small molecules or artificial transcription factors, delivery of frataxin to affected cells by protein replacement therapy, gene therapy, or small molecules to increase frataxin protein levels, and therapies aimed at countering the cellular consequences of reduced frataxin. This review will summarize the mechanisms involved in repeat-mediated gene silencing and recent efforts aimed at development of therapeutics.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA.
| |
Collapse
|
6
|
Shen X, Kilikevicius A, O'Reilly D, Prakash TP, Damha MJ, Rigo F, Corey DR. Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion. Bioorg Med Chem Lett 2018; 28:2850-2855. [PMID: 30076049 PMCID: PMC6129981 DOI: 10.1016/j.bmcl.2018.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022]
Abstract
Friedreich's ataxia (FRDA) is an incurable neurodegenerative disorder caused by reduced expression of the mitochondrial protein frataxin (FXN). The genetic cause of the disease is an expanded GAA repeat within the FXN gene. Agents that increase expression of FXN protein are a potential approach to therapy. We previously described anti-trinucleotide GAA duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) that activate FXN protein expression in multiple patient derived cell lines. Here we test two distinct series of compounds for their ability to increase FXN expression. ASOs with butane linkers showed low potency, which is consistent with the low Tm values and suggesting that flexible conformation impairs activity. By contrast, single-stranded siRNAs (ss-siRNAs) that combine the strengths of dsRNA and ASO approaches had nanomolar potencies. ss-siRNAs provide an additional option for developing nucleic acid therapeutics to treat FRDA.
Collapse
Affiliation(s)
- Xiulong Shen
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States; Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States
| | - Audrius Kilikevicius
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States; Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States
| | - Daniel O'Reilly
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, United States
| | - David R Corey
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States; Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| |
Collapse
|
7
|
Heidelberg D, Ronsin S, Bonneville F, Hannoun S, Tilikete C, Cotton F. Main inherited neurodegenerative cerebellar ataxias, how to recognize them using magnetic resonance imaging? J Neuroradiol 2018; 45:265-275. [PMID: 29920348 DOI: 10.1016/j.neurad.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Ataxia is a neurodegenerative disease resulting from brainstem, cerebellar, and/or spinocerebellar tracts impairments. Symptoms onset could vary widely from childhood to late-adulthood. Autosomal cerebellar ataxias are considered as one of the most complex group in neurogenetics. In addition to their genetic heterogeneity, there is an important phenotypic variability in the expression of cerebellar impairment, complicating the genetic mutation research. A pattern recognition approach using brain MRI measures of atrophy, hyperintensities and iron-induced hypointensity of the dentate nuclei, could be therefore helpful in guiding genetic research. This review will discuss a pattern recognition approach that, associated with the age at disease onset, and clinical manifestations, may help neuroradiologists differentiate the most frequent profiles of ataxia.
Collapse
Affiliation(s)
- D Heidelberg
- Faculty of Medicine, Claude-Bernard Lyon 1 University, 69000 Lyon, France; Service de radiologie and Laboratoire d'anatomie de Rockefeller, centre hospitalier Lyon Sud, hospices civils de Lyon, 69000 Lyon, France
| | - S Ronsin
- Neuro-ophtalmology unit and neurology D, Neurological and Neurosurgical Hospital P. Wertheimer, Hospices Civils de Lyon, 69000 Lyon, France
| | - F Bonneville
- Service de neuroradiologie diagnostique et thérapeutique, Hôpitaux de Toulouse, Hôpital Pierre-Paul-Riquet, 31000 Toulouse, France
| | - S Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, 1107, 2020 Beirut, Lebanon
| | - C Tilikete
- Faculty of Medicine, Claude-Bernard Lyon 1 University, 69000 Lyon, France; Neuro-ophtalmology unit and neurology D, Neurological and Neurosurgical Hospital P. Wertheimer, Hospices Civils de Lyon, 69000 Lyon, France; Lyon neuroscience research center, Inserm U1028, CNRS UMR5292, Impact Team, 69000 Lyon, France
| | - F Cotton
- Faculty of Medicine, Claude-Bernard Lyon 1 University, 69000 Lyon, France; Service de radiologie and Laboratoire d'anatomie de Rockefeller, centre hospitalier Lyon Sud, hospices civils de Lyon, 69000 Lyon, France; CREATIS, Inserm U1044/CNRS UMR 5220, 69000 Lyon, France.
| |
Collapse
|
8
|
Oligonucleotides Hold Promise as a Therapy for Friedreich's Ataxia: Friedreich's ataxia currently is incurable, but synthetic antisense oligonucleotides have demonstrated promising results in increasing frataxin gene expression and restoring it to normal levels. Am J Med Genet A 2018; 176:1282. [PMID: 29878710 DOI: 10.1002/ajmg.a.38850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome. Cell Syst 2017; 4:344-356.e7. [PMID: 28237796 DOI: 10.1016/j.cels.2017.01.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/06/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
DNA in cells is predominantly B-form double helix. Though certain DNA sequences in vitro may fold into other structures, such as triplex, left-handed Z form, or quadruplex DNA, the stability and prevalence of these structures in vivo are not known. Here, using computational analysis of sequence motifs, RNA polymerase II binding data, and genome-wide potassium permanganate-dependent nuclease footprinting data, we map thousands of putative non-B DNA sites at high resolution in mouse B cells. Computational analysis associates these non-B DNAs with particular structures and indicates that they form at locations compatible with an involvement in gene regulation. Further analyses support the notion that non-B DNA structure formation influences the occupancy and positioning of nucleosomes in chromatin. These results suggest that non-B DNAs contribute to the control of a variety of critical cellular and organismal processes.
Collapse
|
10
|
Abstract
INTRODUCTION Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. AREAS COVERED We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. EXPERT OPINION 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| | - Joel M Gottesfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| |
Collapse
|
11
|
Lai Y, Beaver JM, Lorente K, Melo J, Ramjagsingh S, Agoulnik IU, Zhang Z, Liu Y. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia. PLoS One 2014; 9:e93464. [PMID: 24691413 PMCID: PMC3972099 DOI: 10.1371/journal.pone.0093464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER). We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA)20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jill M. Beaver
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Karla Lorente
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jonathan Melo
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Shyama Ramjagsingh
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Irina U. Agoulnik
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, Florida, United States of America
| | - Zunzhen Zhang
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- * E-mail: (ZZ); (YL)
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
- * E-mail: (ZZ); (YL)
| |
Collapse
|
12
|
Abstract
Friedreich ataxia is the most common autosomal recessive ataxia. It is a progressive neurodegenerative disorder, typically with onset before 20 years of age. Signs and symptoms include progressive ataxia, ascending weakness and ascending loss of vibration and joint position senses, pes cavus, scoliosis, cardiomyopathy, and arrhythmias. There are no disease-modifying medications to either slow or halt the progression of the disease, but research investigating therapies to increase endogenous frataxin production and decrease the downstream consequences of disrupted iron homeostasis is ongoing. Clinical trials of promising medications are underway, and the treatment era of Friedreich ataxia is beginning.
Collapse
Affiliation(s)
- Abigail Collins
- Pediatrics and Neurology, Children's Hospital Colorado, University of Colorado, Denver, School of Medicine, 13123 East 16th Avenue, B155, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Belotserkovskii BP, Mirkin SM, Hanawalt PC. DNA sequences that interfere with transcription: implications for genome function and stability. Chem Rev 2013; 113:8620-37. [PMID: 23972098 DOI: 10.1021/cr400078y] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Gottesfeld JM, Rusche JR, Pandolfo M. Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:147-54. [PMID: 23859350 PMCID: PMC3766837 DOI: 10.1111/jnc.12302] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 01/08/2023]
Abstract
The genetic defect in Friedreich's ataxia (FRDA) is the expansion of a GAA·TCC triplet in the first intron of the FXN gene, which encodes the mitochondrial protein frataxin. Previous studies have established that the repeats reduce transcription of this essential gene, with a concomitant decrease in frataxin protein in affected individuals. As the repeats do not alter the FXN protein coding sequence, one therapeutic approach would be to increase transcription of pathogenic FXN genes. Histone posttranslational modifications near the expanded repeats are consistent with heterochromatin formation and FXN gene silencing. In an effort to find small molecules that would reactivate this silent gene, histone deacetylase inhibitors were screened for their ability to up-regulate FXN gene expression in patient cells and members of the pimelic 2-aminobenzamide family of class I histone deacetylase inhibitors were identified as potent inducers of FXN gene expression and frataxin protein. Importantly, these molecules up-regulate FXN expression in human neuronal cells derived from patient-induced pluripotent stem cells and in two mouse models for the disease. Preclinical studies of safety and toxicity have been completed for one such compound and a phase I clinical trial in FRDA patients has been initiated. Furthermore, medicinal chemistry efforts have identified improved compounds with superior pharmacological properties.
Collapse
Affiliation(s)
- Joel M. Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| | | | - Massimo Pandolfo
- Université Libre de Bruxelles - Hôpital Erasme, 1070 Brussels, Belgium
| |
Collapse
|
15
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Yuhao Du
- College of Chemistry and Molecular Sciences; Wuhan University; Hubei; Wuhan; 430072; P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Hubei; Wuhan; 430072; P. R. China
| |
Collapse
|
17
|
Richardson TE, Kelly HN, Yu AE, Simpkins JW. Therapeutic strategies in Friedreich's ataxia. Brain Res 2013; 1514:91-7. [PMID: 23587934 PMCID: PMC4461031 DOI: 10.1016/j.brainres.2013.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
First established as a diagnosis by Nikolaus Friedreich in 1863, Friedreich's ataxia (FA) is an autosomal recessive progressive neurodegenerative disorder cause by a trinucleotide repeat expansion. FA begins with the functional absence of the FXN gene product frataxin, a protein whose exact function still remains unknown. This absence results in impaired intracellular antioxidant defenses, dysregulation of iron-sulfur cluster proteins, depression of aerobic electron transport chain respiration, massive mitochondrial dysfunction, and ultimately cell death in the brain, spinal cord and heart. Herein, we review the molecular and cellular pathogenesis leading to widespread organ system dysfunction, as well as current therapeutic research aimed at preventing the debilitating effects of frataxin loss and preventing the signs and symptoms associated of FA. We also discuss the ongoing treatment strategies employed by our laboratory to prevent mitochondrial damage using synergistic effects of 17β-estradiol and methylene blue, previously shown by our group and others to have protective effects in human FA fibroblasts. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Timothy E. Richardson
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Heather N. Kelly
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amanda E. Yu
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James W. Simpkins
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
18
|
Soragni E, Xu C, Plasterer HL, Jacques V, Rusche JR, Gottesfeld JM. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia. J Child Neurol 2012; 27:1164-73. [PMID: 22764181 PMCID: PMC3743553 DOI: 10.1177/0883073812448533] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous studies have pointed to histone deacetylase inhibitors as potential therapeutics for various neurodegenerative diseases, and clinical trials with several histone deacetylase inhibitors have been performed or are under way. However, histone deacetylase inhibitors tested to date either are highly cytotoxic or have very low specificities for different histone deacetylase enzymes. The authors' laboratories have identified a novel class of histone deacetylase inhibitors (2-aminobenzamides) that reverses heterochromatin-mediated silencing of the frataxin (FXN) gene in Friedreich ataxia. The authors have identified the histone deacetylase enzyme isotype target of these compounds and present evidence that compounds that target this enzyme selectively increase FXN expression from pathogenic alleles. Studies with model compounds show that these histone deacetylase inhibitors increase FXN messenger RNA levels in the brain in mouse models for Friedreich ataxia and relieve neurological symptoms observed in mouse models and support the notion that this class of molecules may serve as therapeutics for the human disease.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Chunping Xu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | | - Joel M. Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
19
|
Abstract
It is now established that a small fraction of genomic DNA does adopt the non-canonical B-DNA structure or 'unusual' DNA structure. The unusual DNA structures like DNA-hairpin, cruciform, Z-DNA, triplex and tetraplex are represented as hotspots of chromosomal breaks, homologous recombination and gross chromosomal rearrangements since they are prone to the structural alterations. Friedreich's ataxia (FRDA), the autosomal recessive degenerative disorder of nervous and muscles tissue, is caused by the massive expansion of (GAA) repeats that occur in the first intron of Frataxin gene X25 on chromosome 9q13-q21.1. The purine strand of the DNA in the expanded (GAA) repeat region folds back to form the (R.R*Y) type of triplex, which further inhibits the frataxin gene expression, and this clearly suggests that the shape of DNA is the determining factor in the cellular function. FRDA is the only disease known so far to be associated with DNA triplex. Structural characterization of GAA-containing DNA triplexes using some simple biophysical methods like UV melting, UV absorption, circular dichroic spectroscopy and electrophoretic mobility shift assay are discussed. Further, the clinical aspects and genetic analysis of FRDA patients who carry (GAA) repeat expansions are presented. The potential of some small molecules that do not favour the DNA triplex formation as therapeutics for FRDA are also briefly discussed.
Collapse
Affiliation(s)
- Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110 029, India.
| |
Collapse
|
20
|
Kumari D, Usdin K. Is Friedreich ataxia an epigenetic disorder? Clin Epigenetics 2012; 4:2. [PMID: 22414340 PMCID: PMC3305337 DOI: 10.1186/1868-7083-4-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/30/2012] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia (FRDA) is a debilitating and frequently fatal neurological disorder that is recessively inherited. It belongs to the group of genetic disorders known as the Repeat Expansion Diseases, in which pathology arises from the deleterious consequences of the inheritance of a tandem repeat array whose repeat number exceeds a critical threshold. In the case of FRDA, the repeat unit is the triplet GAA•TTC and the tandem array is located in the first intron of the frataxin (FXN) gene. Pathology arises because expanded alleles make lower than normal levels of mature FXN mRNA and thus reduced levels of frataxin, the FXN gene product. The repeats form a variety of unusual DNA structures that have the potential to affect gene expression in a number of ways. For example, triplex formation in vitro and in bacteria leads to the formation of persistent RNA:DNA hybrids that block transcription. In addition, these repeats have been shown to affect splicing in model systems. More recently, it has been shown that the region flanking the repeats in the FXN gene is enriched for epigenetic marks characteristic of transcriptionally repressed regions of the genome. However, exactly how repeats in an intron cause the FXN mRNA deficit in FRDA has been the subject of much debate. Identifying the mechanism or mechanisms responsible for the FXN mRNA deficit in FRDA is important for the development of treatments for this currently incurable disorder. This review discusses evidence for and against different models for the repeat-mediated mRNA deficit.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | | |
Collapse
|
21
|
Chromatin changes in the development and pathology of the Fragile X-associated disorders and Friedreich ataxia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:802-10. [PMID: 22245581 DOI: 10.1016/j.bbagrm.2011.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/22/2011] [Accepted: 12/26/2011] [Indexed: 01/11/2023]
Abstract
The Fragile X-associated disorders (FXDs) and Friedreich ataxia (FRDA) are genetic conditions resulting from expansion of a trinucleotide repeat in a region of the affected gene that is transcribed but not translated. In the case of the FXDs, pathology results from expansion of CGG•CCG-repeat tract in the 5' UTR of the FMR1 gene, while pathology in FRDA results from expansion of a GAA•TTC-repeat in intron 1 of the FXN gene. Expansion occurs during gametogenesis or early embryogenesis by a mechanism that is not well understood. Associated Expansion then produces disease pathology in various ways that are not completely understood either. In the case of the FXDs, alleles with 55-200 repeats express higher than normal levels of a transcript that is thought to be toxic, while alleles with >200 repeats are silenced. In addition, alleles with >200 repeats are associated with a cytogenetic abnormality known as a fragile site, which is apparent as a constriction or gap in the chromatin that is seen when cells are grown in presence of inhibitors of thymidylate synthase. FRDA alleles show a deficit of the FXN transcript. This review will address the role of repeat-mediated chromatin changes in these aspects of FXD and FRDA disease pathology. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
22
|
Kim E, Napierala M, Dent SYR. Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich's ataxia. Nucleic Acids Res 2011; 39:8366-77. [PMID: 21745819 PMCID: PMC3201871 DOI: 10.1093/nar/gkr542] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/12/2011] [Accepted: 06/13/2011] [Indexed: 12/19/2022] Open
Abstract
Friedreich's ataxia (FRDA) is caused by biallelic expansion of GAA repeats leading to the transcriptional silencing of the frataxin (FXN) gene. The exact molecular mechanism of inhibition of FXN expression is unclear. Herein, we analyze the effects of hyperexpanded GAA repeats on transcription status and chromatin modifications proximal and distal to the GAA repeats. Using chromatin immunoprecipitation and quantitative PCR we detected significant changes in the chromatin landscape in FRDA cells relative to control cells downstream of the promoter, especially in the vicinity of the GAA tract. In this region, hyperexpanded GAAs induced a particular constellation of histone modifications typically associated with heterochromatin-like structures. Similar epigenetic changes were observed in GFP reporter construct containing 560 GAA repeats. Furthermore, we observed similar levels of FXN pre-mRNA at a region upstream of hyperexpanded GAA repeats in FRDA and control cells, indicating similar efficiency of transcription initiation. We also demonstrated that histone modifications associated with hyperexpanded GAA repeats are independent of initiation and progression of transcription. Our data provide strong evidence that FXN deficiency in FRDA patients results from a block of transition from initiation to a productive elongation of FXN transcription due to heterochromatin-like structures formed in the proximity of the hyperexpanded GAAs.
Collapse
Affiliation(s)
- Eunah Kim
- The Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, Texas 78957 and The Genes and Development Program, Graduate School of Biomedical Sciences and the Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marek Napierala
- The Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, Texas 78957 and The Genes and Development Program, Graduate School of Biomedical Sciences and the Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sharon Y. R. Dent
- The Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, Texas 78957 and The Genes and Development Program, Graduate School of Biomedical Sciences and the Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
23
|
Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 2010; 13:651-90. [PMID: 20156111 PMCID: PMC2924788 DOI: 10.1089/ars.2009.3015] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/08/2010] [Accepted: 02/14/2010] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron-sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment.
Collapse
Affiliation(s)
- Renata Santos
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Sophie Lefevre
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
- University Pierre et Marie Curie, Paris, France
| | - Dominika Sliwa
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Alexandra Seguin
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Jean-Michel Camadro
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Emmanuel Lesuisse
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| |
Collapse
|
24
|
Li K, Singh A, Crooks DR, Dai X, Cong Z, Pan L, Ha D, Rouault TA. Expression of human frataxin is regulated by transcription factors SRF and TFAP2. PLoS One 2010; 5:e12286. [PMID: 20808827 PMCID: PMC2924884 DOI: 10.1371/journal.pone.0012286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/24/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Friedreich ataxia is an autosomal recessive neurodegenerative disease caused by reduced expression levels of the frataxin gene (FXN) due to expansion of triplet nucleotide GAA repeats in the first intron of FXN. Augmentation of frataxin expression levels in affected Friedreich ataxia patient tissues might substantially slow disease progression. METHODOLOGY/PRINCIPAL FINDINGS We utilized bioinformatic tools in conjunction with chromatin immunoprecipitation and electrophoretic mobility shift assays to identify transcription factors that influence transcription of the FXN gene. We found that the transcription factors SRF and TFAP2 bind directly to FXN promoter sequences. SRF and TFAP2 binding sequences in the FXN promoter enhanced transcription from luciferase constructs, while mutagenesis of the predicted SRF or TFAP2 binding sites significantly decreased FXN promoter activity. Further analysis demonstrated that robust SRF- and TFAP2-mediated transcriptional activity was dependent on a regulatory element, located immediately downstream of the first FXN exon. Finally, over-expression of either SRF or TFAP2 significantly increased frataxin mRNA and protein levels in HEK293 cells, and frataxin mRNA levels were also elevated in SH-SY5Y cells and in Friedreich ataxia patient lymphoblasts transfected with SRF or TFAP2. CONCLUSIONS/SIGNIFICANCE We identified two transcription factors, SRF and TFAP2, as well as an intronic element encompassing EGR3-like sequence, that work together to regulate expression of the FXN gene. By providing new mechanistic insights into the molecular factors influencing frataxin expression, our results should aid in the discovery of new therapeutic targets for the treatment of Friedreich ataxia.
Collapse
Affiliation(s)
- Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Anamika Singh
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Daniel R. Crooks
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Xiaoman Dai
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhuangzhuang Cong
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Liang Pan
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Dung Ha
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Tracey A. Rouault
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| |
Collapse
|
25
|
Mancuso M, Sammarco MC, Grabczyk E. Transposon Tn7 preferentially inserts into GAA*TTC triplet repeats under conditions conducive to Y*R*Y triplex formation. PLoS One 2010; 5:e11121. [PMID: 20559546 PMCID: PMC2886061 DOI: 10.1371/journal.pone.0011121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/21/2010] [Indexed: 11/26/2022] Open
Abstract
Background Expansion of an unstable GAA•TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Structure formation by the repeat has been implicated in both frataxin repression and GAA•TTC instability. The GAA•TTC sequence is capable of adopting multiple non-B DNA structures including Y•R•Y and R•R•Y triplexes. Lower pH promotes the formation of Y•R•Y triplexes by GAA•TTC. Here we used the bacterial transposon Tn7 as an in vitro tool to probe whether GAA•TTC repeats can attract a well-characterized recombinase. Methodology/Principal Findings Tn7 showed a pH-dependent preference for insertion into uninterrupted regions of a Friedreich ataxia patient-derived repeat, inserting 48, 39 and 14 percent of the time at pH 7, pH 8 and pH 9, respectively. Moreover, Tn7 also showed orientation and region specific insertion within the repeat at pH 7 and pH 8, but not at pH 9. In contrast, transposon Tn5 showed no strong preference for or against the repeat during in vitro transposition at any pH tested. Y•R•Y triplex formation was reduced in predictable ways by transposon interruption of the GAA•TTC repeat. However, transposon interruptions in the GAA•TTC repeats did not increase the in vitro transcription efficiency of the templates. Conclusions/Significance We have demonstrated that transposon Tn7 will recognize structures that form spontaneously in GAA•TTC repeats and insert in a specific orientation within the repeat. The conditions used for in vitro transposition span the physiologically relevant range suggesting that long GAA•TTC repeats can form triplex structures in vivo, attracting enzymes involved in DNA repair, recombination and chromatin modification.
Collapse
Affiliation(s)
- Miriam Mancuso
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | | | | |
Collapse
|
26
|
Schmucker S, Puccio H. Understanding the molecular mechanisms of Friedreich's ataxia to develop therapeutic approaches. Hum Mol Genet 2010; 19:R103-10. [PMID: 20413654 DOI: 10.1093/hmg/ddq165] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The physiopathological consequences of frataxin deficiency are a severe disruption of iron-sulfur cluster biosynthesis, mitochondrial iron overload coupled to cellular iron dysregulation and an increased sensitivity to oxidative stress. Frataxin is a highly conserved protein, which has been suggested to participate in a variety of different roles associated with cellular iron homeostasis. The present review discusses recent advances that have made crucial contributions in understanding the molecular mechanisms underlying FRDA and in advancements toward potential novel therapeutic approaches. Owing to space constraints, this review will focus on the most commonly accepted and solid molecular and biochemical studies concerning the function of frataxin and the physiopathology of the disease. We invite the reader to read the following reviews to have a more exhaustive overview of the field [Pandolfo, M. and Pastore, A. (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J. Neurol., 256 (Suppl. 1), 9-17; Gottesfeld, J.M. (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol. Ther., 116, 236-248; Pandolfo, M. (2008) Drug insight: antioxidant therapy in inherited ataxias. Nat. Clin. Pract. Neurol., 4, 86-96; Puccio, H. (2009) Multicellular models of Friedreich ataxia. J. Neurol., 256 (Suppl. 1), 18-24].
Collapse
Affiliation(s)
- Stéphane Schmucker
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, BP10142, IllkirchF-67400, France
| | | |
Collapse
|
27
|
Bergquist H, Nikravesh A, Fernández RD, Larsson V, Nguyen CH, Good L, Zain R. Structure-specific recognition of Friedreich's ataxia (GAA)n repeats by benzoquinoquinoxaline derivatives. Chembiochem 2010; 10:2629-37. [PMID: 19746387 DOI: 10.1002/cbic.200900263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Expansion of GAA triplet repeats in intron 1 of the FXN gene reduces frataxin expression and causes Friedreich's ataxia. (GAA)n repeats form non-B-DNA structures, including triple helix H-DNA and higher-order structures (sticky DNA). In the proposed mechanisms of frataxin gene silencing, central unanswered questions involve the characterization of non-B-DNA structure(s) that are strongly suggested to play a role in frataxin expression. Here we examined (GAA)n binding by triplex-stabilizing benzoquinoquinoxaline (BQQ) and the corresponding triplex-DNA-cleaving BQQ-1,10-phenanthroline (BQQ-OP) compounds. We also examined the ability of these compounds to act as structural probes for H-DNA formation within higher-order structures at pathological frataxin sequences in plasmids. DNA-complex-formation analyses with a gel-mobility-shift assay and sequence-specific probing of H-DNA-forming (GAA)n sequences by single-strand oligonucleotides and triplex-directed cleavage demonstrated that a parallel pyrimidine (rather than purine) triplex is the more stable motif formed at (GAA)n repeats under physiologically relevant conditions.
Collapse
Affiliation(s)
- Helen Bergquist
- Department of Molecular Biology and Functional Genomics, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Marmolino D, Acquaviva F. Friedreich's Ataxia: from the (GAA)n repeat mediated silencing to new promising molecules for therapy. CEREBELLUM (LONDON, ENGLAND) 2009; 8:245-59. [PMID: 19165552 DOI: 10.1007/s12311-008-0084-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/14/2008] [Indexed: 10/25/2022]
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease due to a pathological expansion of a GAA triplet repeat in the first intron of the FXN gene encoding for the mitochondrial protein frataxin. The expansion is responsible for most cases of FRDA through the formation of a nonusual B-DNA structure and heterochromatin conformation that determine a direct transcriptional silencing and the subsequent reduction in frataxin expression. Among other functions, frataxin is an iron chaperone central for the assembly of iron-sulfur clusters in mitochondria; its reduction is associated with iron accumulation in mitochondria, increased cellular sensitivity to oxidative stress and cell damage. There is, nowadays, no effective therapy for FRDA and current therapeutic strategies mainly act to slow down the consequences of frataxin deficiency. Therefore, drugs that are able to increase the amount of frataxin are excellent candidates for a rational approach to FRDA therapy. Recently, several drugs have been assessed for their ability to increase the amount of cellular frataxin, including human recombinant erythropoietin, histone deacetylase inhibitors, and the PPAR-gamma agonists.
Collapse
Affiliation(s)
- Daniele Marmolino
- Laboratoire de Neurologie Expérimentale, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium,
| | | |
Collapse
|
29
|
Belotserkovskii BP, Liu R, Hanawalt PC. Peptide nucleic acid (PNA) binding and its effect on in vitro transcription in friedreich's ataxia triplet repeats. Mol Carcinog 2009; 48:299-308. [PMID: 19306309 DOI: 10.1002/mc.20486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide nucleic acids (PNAs) are DNA mimics in which peptide-like linkages are substituted for the phosphodiester backbone. Homopyrimidine PNAs can invade double-stranded DNA containing the homologous sequence by displacing the homopyrimidine strand from the DNA duplex and forming a PNA/DNA/PNA triplex with the complementary homopurine strand. Among biologically interesting targets for triplex-forming PNA are (GAA/CTT)(n) repeats. Expansion of these repeats results in partial inhibition of transcription in the frataxin gene, causing Friedreich's ataxia. We have studied PNA binding and its effect on T7 RNA polymerase transcription in vitro for short repeats (n = 3) and for long repeats (n = 39), placed in both possible orientations relative to the T7 promoter such that either the GAA-strand, or the CTT-strand serves as the template for transcription. In all cases PNA bound specifically and efficiently to its target sequence. For the short insert, PNA binding to the template strand caused partial transcription blockage with well-defined sites of RNA product truncation in the region of the PNA-binding sequence, whereas binding to the nontemplate strand did not block transcription. However, PNA binding to long repeats, whether in the template or the nontemplate strand, resulted in a dramatic reduction of the amount of full-length transcription product, although in the case of the nontemplate strand there were no predominant truncation sites. Biological implications of these results are discussed.
Collapse
|
30
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
31
|
Kumari D, Usdin K. Chromatin remodeling in the noncoding repeat expansion diseases. J Biol Chem 2008; 284:7413-7. [PMID: 18957431 DOI: 10.1074/jbc.r800026200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Friedreich ataxia, myotonic dystrophy type 1 and 3 forms of intellectual disability, fragile X syndrome, FRAXE mental retardation, and FRA12A mental retardation are repeat expansion diseases caused by expansion of CTG.CAG, GAA.TTC, or CGG.CCG repeat tracts. These repeats are transcribed but not translated. They are located in different parts of different genes and cause symptoms that range from ataxia and hypertrophic cardiomyopathy to muscle wasting, male infertility, and mental retardation, yet recent reports suggest that, despite these differences, the repeats may share a common property, namely the ability to initiate repeat-mediated epigenetic changes that result in heterochromatin formation.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
32
|
Kim HM, Narayanan V, Mieczkowski PA, Petes TD, Krasilnikova MM, Mirkin SM, Lobachev KS. Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J 2008; 27:2896-906. [PMID: 18833189 DOI: 10.1038/emboj.2008.205] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/15/2008] [Indexed: 11/10/2022] Open
Abstract
Expansion of triplex-forming GAA/TTC repeats in the first intron of FXN gene results in Friedreich's ataxia. Besides FXN, there are a number of other polymorphic GAA/TTC loci in the human genome where the size variations thus far have been considered to be a neutral event. Using yeast as a model system, we demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin, which correlates with their propensity to adopt triplex structure and to block replication progression. We show that fragility is mediated by mismatch repair machinery and requires the MutSbeta and endonuclease activity of MutLalpha. We suggest that the mechanism of GAA/TTC-induced chromosomal aberrations defined in yeast can also operate in human carriers with expanded tracts.
Collapse
Affiliation(s)
- Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Usdin K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 2008; 18:1011-9. [PMID: 18593815 DOI: 10.1101/gr.070409.107] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tandem repeats are common features of both prokaryote and eukaryote genomes, where they can be found not only in intergenic regions but also in both the noncoding and coding regions of a variety of different genes. The repeat expansion diseases are a group of human genetic disorders caused by long and highly polymorphic tandem repeats. These disorders provide many examples of the effects that such repeats can have on many biological processes. While repeats in the coding sequence can result in the generation of toxic or malfunctioning proteins, noncoding repeats can also have significant effects including the generation of chromosome fragility, the silencing of the genes in which they are located, the modulation of transcription and translation, and the sequestering of proteins involved in processes such as splicing and cell architecture.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
34
|
Abstract
Pathological expansions of GAA repeats in the first intron of the frataxin gene cause most cases of Friedreich ataxia, a progressively debilitating neurodegenerative disease. The disease is inherited in an autosomal recessive manner and the GAA repeats are suspected to form unusual non B-DNA conformations that decrease transcription and subsequently reduce levels of the encoded protein, frataxin. Recent work has shown that GAA repeats induce heterochromatin formation and silencing of the frataxin gene locus. Frataxin plays a crucial role in iron metabolism and detoxification and interacts with electron transport chain proteins. Clinical trials are currently underway to examine the efficacy of antioxidants in the treatment of Friedreich ataxia, but therapeutics designed to increase frataxin message levels are still in the developmental stages. This review will focus on the progress of potential treatment strategies for Friedreich ataxia that target the GAA expanded gene and seek to increase the level of frataxin message and protein.
Collapse
Affiliation(s)
- Michael D Hebert
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| |
Collapse
|
35
|
Ditlevson JV, Tornaletti S, Belotserkovskii BP, Teijeiro V, Wang G, Vasquez KM, Hanawalt PC. Inhibitory effect of a short Z-DNA forming sequence on transcription elongation by T7 RNA polymerase. Nucleic Acids Res 2008; 36:3163-70. [PMID: 18400779 PMCID: PMC2425487 DOI: 10.1093/nar/gkn136] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
DNA sequences capable of forming unusual secondary structures can be a source of genomic instability. In some cases that instability might be affected by transcription, as recently shown for the Z-DNA forming sequence (CG)14, which causes genomic instability both in mammalian cells and in bacteria, and this effect increases with its transcription. We have investigated the effect of this (CG)14 sequence on transcription with T7 RNA polymerase in vitro. We detected partial transcription blockage within the sequence; the blockage increased with negative supercoiling of the template DNA. This effect was not observed in a control self-complementary sequence of identical length and base composition as the (CG)14 sequence, when the purine–pyrimidine alternation required for Z-DNA formation was disrupted. These findings suggest that the inhibitory effect on T7 transcription results from Z-DNA formation in the (CG)14 sequence rather than from an effect of the sequence composition or from hairpin formation in either the DNA or the RNA product.
Collapse
Affiliation(s)
- Jennifer V Ditlevson
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008; 90:1117-30. [PMID: 18331847 DOI: 10.1016/j.biochi.2008.02.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/08/2008] [Indexed: 01/25/2023]
Abstract
DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence-specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park--Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
37
|
Gottesfeld JM. Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 2007; 116:236-48. [PMID: 17826840 PMCID: PMC2080619 DOI: 10.1016/j.pharmthera.2007.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
This review concerns the development of small molecule therapeutics for the inherited neurodegenerative disease Friedreich ataxia (FRDA). FRDA is caused by transcriptional repression of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin and accompanying loss of frataxin protein. Frataxin insufficiency leads to mitochrondrial dysfunction and progressive neurodegeneration, along with scoliosis, diabetes and cardiomyopathy. Individuals with FRDA generally die in early adulthood from the associated heart disease, the most common cause of death in FRDA. While antioxidants and iron chelators have shown promise in ameliorating the symptoms of the disease, there is no effective therapy for FRDA that addresses the cause of the disease, the loss of frataxin protein. Gene therapy and protein replacement strategies for FRDA are promising approaches; however, current technology is not sufficiently advanced to envisage treatments for FRDA coming from these approaches in the near future. Since the FXN mutation in FRDA, expanded GAA.TTC triplets in an intron, does not alter the amino acid sequence of frataxin protein, gene reactivation would be of therapeutic benefit. Thus, a number of laboratories have focused on small molecule activators of FXN gene expression as potential therapeutics, and this review summarizes the current status of these efforts, as well as the molecular basis for gene silencing in FRDA.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Biology, MB-27, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Belotserkovskii BP, De Silva E, Tornaletti S, Wang G, Vasquez KM, Hanawalt PC. A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J Biol Chem 2007; 282:32433-41. [PMID: 17785457 DOI: 10.1074/jbc.m704618200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring DNA sequences that are able to form unusual DNA structures have been shown to be mutagenic, and in some cases the mutagenesis induced by these sequences is enhanced by their transcription. It is possible that transcription-coupled DNA repair induced at sites of transcription arrest might be involved in this mutagenesis. Thus, it is of interest to determine whether there are correlations between the mutagenic effects of such noncanonical DNA structures and their ability to arrest transcription. We have studied T7 RNA polymerase transcription through the sequence from the nuclease-sensitive element of the human c-MYC promoter, which is mutagenic in mammalian cells (Wang, G., and Vasquez, K. M. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 13448-13453). This element has two mirror-symmetric homopurine-homopyrimidine blocks that potentially can form either DNA triplex (H-DNA) or quadruplex structures. We detected truncated transcription products indicating partial transcription arrest within and closely downstream of the element. The arrest required negative supercoiling and was much more pronounced when the pyrimidine-rich strand of the element served as the template. The exact positions of arrest sites downstream from the element depended upon the downstream flanking sequences. We made various nucleotide substitutions in the wild-type sequence from the c-MYC nuclease-sensitive element that specifically destabilize either the triplex or the quadruplex structure. When these substitutions were ranked for their effects on transcription, the results implicated the triplex structure in the transcription arrest. We suggest that transcription-induced triplex formation enhances pre-existing weak transcription pause sites within the flanking sequences by creating steric obstacles for the transcription machinery.
Collapse
|
39
|
Grabczyk E, Mancuso M, Sammarco MC. A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 2007; 35:5351-9. [PMID: 17693431 PMCID: PMC2018641 DOI: 10.1093/nar/gkm589] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 06/27/2007] [Accepted: 07/16/2007] [Indexed: 11/13/2022] Open
Abstract
Expansion of an unstable GAA.TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Deficiency of frataxin, an essential mitochondrial protein, leads to progressive neurodegeneration and cardiomyopathy. The degree of frataxin reduction correlates with GAA.TTC tract length, but the mechanism of reduction remains controversial. Here we show that transcription causes extensive RNA.DNA hybrid formation on GAA.TTC templates in bacteria as well as in defined transcription reactions using T7 RNA polymerase in vitro. RNA.DNA hybrids can also form to a lesser extent on smaller, so-called 'pre-mutation' size GAA.TTC repeats, that do not cause disease, but are prone to expansion. During in vitro transcription of longer repeats, T7 RNA polymerase arrests in the promoter distal end of the GAA.TTC tract and an extensive RNA.DNA hybrid is tightly linked to this arrest. RNA.DNA hybrid formation appears to be an intrinsic property of transcription through long GAA.TTC tracts. RNA.DNA hybrids have a potential role in GAA.TTC tract instability and in the mechanism underlying reduced frataxin mRNA levels in Friedreich Ataxia.
Collapse
Affiliation(s)
- Ed Grabczyk
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
40
|
Greene E, Mahishi L, Entezam A, Kumari D, Usdin K. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 2007; 35:3383-90. [PMID: 17478498 PMCID: PMC1904289 DOI: 10.1093/nar/gkm271] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/06/2007] [Accepted: 04/09/2007] [Indexed: 11/22/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common hereditary ataxia, is caused by mutations in the frataxin (FXN) gene. The vast majority of FRDA mutations involve expansion of a GAA*TTC-repeat tract in intron 1, which leads to an FXN mRNA deficit. Bisulfite mapping demonstrates that the region adjacent to the repeat was methylated in both unaffected and affected individuals. However, methylation was more extensive in patients. Additionally, three residues were almost completely methylation-free in unaffected individuals but almost always methylated in those with FRDA. One of these residues is located within an E-box whose deletion caused a significant drop in promoter activity in reporter assays. Elevated levels of histone H3 dimethylated on lysine 9 were seen in FRDA cells consistent with a more repressive chromatin organization. Such chromatin is known to reduce transcription elongation. This may be one way in which the expanded repeats contribute to the frataxin deficit in FRDA. Our data also suggest that repeat-mediated chromatin changes may also affect transcription initiation by blocking binding of factors that increase frataxin promoter activity. Our results also raise the possibility that the repeat-mediated increases in DNA methylation in the FXN gene in FRDA patients are secondary to the chromatin changes.
Collapse
Affiliation(s)
| | | | | | | | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| |
Collapse
|
41
|
Ananiev EV, Chamberlin MA, Klaiber J, Svitashev S. Microsatellite megatracts in the maize (Zea mays L.) genome. Genome 2007; 48:1061-9. [PMID: 16391675 DOI: 10.1139/g05-061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long tracts (megatracts) of (CAG)n, (TAG)n, and (GAA)n microsatellite sequences capable of forming composite DNA segments were found in the maize (Zea mays L.) genome. Some of the (CAG)n and (TAG)n megatracts were organized in clusters of up to 1 Mb on several chromosomes, as detected by fluorescence in situ hybridization (FISH), as well as on extended DNA fibers. Extensive polymorphism was found among different maize inbred lines with respect to the number and size of microsatellite megatract clusters on the A chromosomes. Polymorphism was also common among B chromosomes of different nuclei in the inbred line Zapalote Chico. Different retrotransposable elements were often inserted into the microsatellite tracts. Size variation in some (TAG)n and (GAA)n megatracts was observed in consecutive generations among siblings of the inbred lines, indicating that these loci are highly unstable and predisposed to dynamic mutations similar to those described in mammalian systems.
Collapse
Affiliation(s)
- E V Ananiev
- Yield Enhancement, Pioneer Hi-Bred International Inc., Johnston, IA 50131, USA.
| | | | | | | |
Collapse
|
42
|
Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2006; 2:551-8. [PMID: 16921367 DOI: 10.1038/nchembio815] [Citation(s) in RCA: 329] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/26/2006] [Indexed: 02/06/2023]
Abstract
Expansion of GAA x TTC triplets within an intron in FXN (the gene encoding frataxin) leads to transcription silencing, forming the molecular basis for the neurodegenerative disease Friedreich's ataxia. Gene silencing at expanded FXN alleles is accompanied by hypoacetylation of histones H3 and H4 and trimethylation of histone H3 at Lys9, observations that are consistent with a heterochromatin-mediated repression mechanism. We describe the synthesis and characterization of a class of histone deacetylase (HDAC) inhibitors that reverse FXN silencing in primary lymphocytes from individuals with Friedreich's ataxia. We show that these molecules directly affect the histones associated with FXN, increasing acetylation at particular lysine residues on histones H3 and H4 (H3K14, H4K5 and H4K12). This class of HDAC inhibitors may yield therapeutics for Friedreich's ataxia.
Collapse
Affiliation(s)
- David Herman
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Friedreich ataxia is the most common hereditary ataxia. The signs and symptoms of the disorder derive from decreased expression of the protein frataxin, which is involved in iron metabolism. Frataxin chaperones iron for iron-sulfur cluster biogenesis and detoxifies iron in the mitochondrial matrix. Decreased expression of frataxin is associated with impairments of iron-sulfur cluster biogenesis and heme synthesis, as well as with mitochondrial dysfunction and oxidative stress. Compounds currently in clinical trials are directed toward improving mitochondrial function and lessening oxidative stress. Iron chelators and compounds that increase frataxin expression are under evaluation. Further elucidation of frataxin's function should lead to additional therapeutic approaches.
Collapse
Affiliation(s)
- Robert B Wilson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19106, USA.
| |
Collapse
|
44
|
Burnett R, Melander C, Puckett JW, Son LS, Wells RD, Dervan PB, Gottesfeld JM. DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia. Proc Natl Acad Sci U S A 2006; 103:11497-502. [PMID: 16857735 PMCID: PMC1544198 DOI: 10.1073/pnas.0604939103] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA abnormality found in 98% of Friedreich's ataxia (FRDA) patients is the unstable hyperexpansion of a GAA.TTC triplet repeat in the first intron of the frataxin gene. Expanded GAA.TTC repeats result in decreased transcription and reduced levels of frataxin protein in affected individuals. Beta-alanine-linked pyrrole-imidazole polyamides bind GAA.TTC tracts with high affinity and disrupt the intramolecular DNA.DNA-associated region of the sticky-DNA conformation formed by long GAA.TTC repeats. Fluorescent polyamide-Bodipy conjugates localize in the nucleus of a lymphoid cell line derived from a FRDA patient. The synthetic ligands increase transcription of the frataxin gene in cell culture, resulting in increased levels of frataxin protein. DNA microarray analyses indicate that a limited number of genes are significantly affected in FRDA cells. Polyamides may increase transcription by altering the DNA conformation of genes harboring long GAA.TTC repeats or by chromatin opening.
Collapse
Affiliation(s)
- Ryan Burnett
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Christian Melander
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - James W. Puckett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and
| | - Leslie S. Son
- Center for Genome Research, Institute for Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Robert D. Wells
- Center for Genome Research, Institute for Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Peter B. Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and
| | - Joel M. Gottesfeld
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
45
|
Greene E, Entezam A, Kumari D, Usdin K. Ancient repeated DNA elements and the regulation of the human frataxin promoter. Genomics 2005; 85:221-30. [PMID: 15676280 DOI: 10.1016/j.ygeno.2004.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 10/23/2004] [Indexed: 11/25/2022]
Abstract
Friedreich ataxia results from frataxin insufficiency caused by repeat expansion in intron 1 of the frataxin gene. Since the coding sequence is unchanged, the potential exists to ameliorate symptoms by increasing frataxin promoter activity. We therefore defined the minimal frataxin promoter in humans. Despite the fact that frataxin is an essential gene, its promoter is not well conserved in mammals, in part because it has been the frequent target of retroelement insertions. Most of the activity of the human frataxin promoter can be attributed to these retroelements, illustrating how these elements, considered parasitic by some, have been co-opted to drive critical genes. Individuals with the milder French Acadian form and those with the classic form of the disease have no biologically relevant sequence differences in the promoter or 3' UTR, suggesting that some other region of the gene, perhaps the repeat itself, is responsible for the difference in disease severity.
Collapse
Affiliation(s)
- Eriko Greene
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | |
Collapse
|
46
|
Pollard LM, Sharma R, Gómez M, Shah S, Delatycki MB, Pianese L, Monticelli A, Keats BJB, Bidichandani SI. Replication-mediated instability of the GAA triplet repeat mutation in Friedreich ataxia. Nucleic Acids Res 2004; 32:5962-71. [PMID: 15534367 PMCID: PMC528813 DOI: 10.1093/nar/gkh933] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/22/2004] [Accepted: 10/22/2004] [Indexed: 11/14/2022] Open
Abstract
Friedreich ataxia is caused by the expansion of a polymorphic and unstable GAA triplet repeat in the FRDA gene, but the mechanisms for its instability are poorly understood. Replication of (GAA*TTC)n sequences (9-105 triplets) in plasmids propagated in Escherichia coli displayed length- and orientation-dependent instability. There were small length variations upon replication in both orientations, but large contractions were frequently observed when GAA was the lagging strand template. DNA replication was also significantly slower in this orientation. To evaluate the physiological relevance of our findings, we analyzed peripheral leukocytes from human subjects carrying repeats of similar length (8-107 triplets). Analysis of 9400 somatic FRDA molecules using small-pool PCR revealed a similar mutational spectrum, including large contractions. The threshold length for the initiation of somatic instability in vivo was between 40 and 44 triplets, corresponding to the length of a eukaryotic Okazaki fragment. Consistent with the stabilization of premutation alleles during germline transmission, we also found that instability of somatic cells in vivo and repeats propagated in E.coli were abrogated by (GAGGAA)n hexanucleotide interruptions. Our data demonstrate that the GAA triplet repeat mutation in Friedreich ataxia is destabilized, frequently undergoing large contractions, during DNA replication.
Collapse
Affiliation(s)
- Laura M Pollard
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Our discovery that plasmids containing the Friedreich's ataxia (FRDA) expanded GAA.TTC sequence, which forms sticky DNA, are prone to form dimers compared with monomers in vivo is the basis of an intracellular assay in Escherichia coli for this unusual DNA conformation. Sticky DNA is a single long GAA.GAA.TTC triplex formed in plasmids harboring a pair of long GAA.TTC repeat tracts in the direct repeat orientation. This requirement is fulfilled by either plasmid dimers of DNAs with a single trinucleotide repeat sequence tract or by monomeric DNAs containing a pair of direct repeat GAA.TTC sequences. DNAs harboring a single GAA.TTC repeat are unable to form this type of triplex conformation. An excellent correlation was observed between the ability of a plasmid to adopt the sticky triplex conformation as assayed in vitro and its propensity to form plasmid dimers relative to monomers in vivo. The variables measured that strongly influenced these measurements are as follows: length of the GAA.TTC insert; the extent of periodic interruptions within the repeat sequence; the orientation of the repeat inserts; and the in vivo negative supercoil density. Nitrogen mustard cross-linking studies on a family of GAA.TTC-containing plasmids showed the presence of sticky DNA in vivo and, thus, serves as an important bridge between the in vitro and in vivo determinations. Biochemical genetic studies on FRDA containing DNAs grown in recA or nucleotide excision repair or ruv-deficient cells showed that the in vivo properties of sticky DNA play an important role in the monomer-dimer-sticky DNA intracellular intercon-versions. Thus, the sticky DNA triplex exists and functions in living cells, strengthening the likelihood of its role in the etiology of FRDA.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A & M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | |
Collapse
|
48
|
Sarsero JP, Li L, Wardan H, Sitte K, Williamson R, Ioannou PA. Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 2003; 5:72-81. [PMID: 12516053 DOI: 10.1002/jgm.320] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Friedreich ataxia is a slowly progressive neurodegenerative disease caused by reduced expression of frataxin as a result of a GAA repeat expansion in the first intron of the FRDA gene. We report here the development of a sensitive cellular assay for frataxin expression from the intact FRDA locus that should facilitate the identification of potentially therapeutic pharmacological agents to treat Friedreich ataxia. METHODS PAC and BAC clones containing the entire human FRDA functional genomic sequence were identified and shown to express FRDA mRNA. The GET Recombination system was used to insert cassettes consisting of the gene encoding EGFP linked to a kanamycin/neomycin resistance determinant into a BAC clone containing the entire FRDA gene and surrounding regions. RESULTS Two in-frame fusions between the FRDA gene and a gene coding for enhanced green fluorescent protein (EGFP) were constructed. One fusion is within exon 2 of the FRDA gene. The other is at the end of exon 5a, containing the entire frataxin protein fused to EGFP. Both constructs were shown to drive the expression of EGFP from the regulatory elements of the FRDA locus, with the frataxin-EGFP fusion proteins targeted to the mitochondria. Stable cell lines containing the EGFP fusion in exon 5a were produced. Enhancement of FRDA gene expression by hemin and butyric acid was demonstrated. CONCLUSIONS Expression studies with FRDA-EGFP fusion constructs will facilitate delineation of regulatory elements determining the tissue and developmental specificity of FRDA gene expression. These constructs should also facilitate screening for pharmacological compounds that can modulate the expression of the FRDA gene in a clinically relevant manner.
Collapse
Affiliation(s)
- Joseph P Sarsero
- Cell and Gene Therapy Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Jain A, Rajeswari MR, Ahmed F. Formation and thermodynamic stability of intermolecular (R*R*Y) DNA triplex in GAA/TTC repeats associated with Freidreich's ataxia. J Biomol Struct Dyn 2002; 19:691-9. [PMID: 11843630 DOI: 10.1080/07391102.2002.10506775] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
It is well established that GAA/TTC base triplet expansion is the cause of degenerative disorder in Freidreich's Ataxia. It is also known that these repeat sequences fold back to form the unusual intramolecular triple helix structures in DNA of the type Pyrimidine *Purine *Pyrimidine or Purine *Purine*Pyrimidine. In this paper we report on the stability of Purine *Purine*Pyrimidine intermolecular triple helix DNA containing GAA/TTC repeats under physiological conditions. Using the oligonucleotides 5' TCGC GAA GAA GAA GAA GAA CGCT 3', 5'-AGCG TTC TTC TTC TTC TTC GCGA-3' for duplex and 5'-AAG AAG AAG AAG AAG -3' as triplex forming strand (TFO), we have established the formation of triplex by UV-melting temperature (Tm), stoichiometry of mixing and circular dichroic spectra. This was further confirmed by gel-retardation assay. The thermodynamic parameters Delta G, Delta H and Delta S for both duplex and triplex formation were determined at different salt concentrations. The results suggest the formation of a stable intermolecular, anti - parallel triplex in GAA/TTC repeat sequences where each repeat unit contains two A*A*T and one G*G*C triplet. The therapeutic agents and TFOs, which competitively inhibit the in-vivo intra-molecular triplex by formation of a more stable inter-molecular triplex, could be used to reverse the transcription deficit in GAA/TTC expansions in Frataxin gene.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | | | | |
Collapse
|
50
|
Grabczyk E, Kumari D, Usdin K. Fragile X syndrome and Friedreich's ataxia: two different paradigms for repeat induced transcript insufficiency. Brain Res Bull 2001; 56:367-73. [PMID: 11719274 DOI: 10.1016/s0361-9230(01)00572-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA repeat expansion is the genetic basis for a growing number of neurological disorders. While the largest subset of these diseases results in an increase in the length of a polyglutamine tract in the protein encoded by the affected gene, the most common form of inherited mental retardation, fragile X syndrome, and the most common inherited ataxia, Friedreich's ataxia, are both caused by expansions that are transcribed but not translated. These expansions both decrease expression of the gene in which the expanded repeat is located, but they do so by quite different mechanisms. In fragile X syndrome, CGG. CCG expansion in the 5' untranslated region of the FMR1 gene leads to hypermethylation of the repeats and the adjacent CpG-rich promoter. Methylation prevents the binding of the transcription factor alpha-Pal/NRF-1, and may indirectly affect the binding of other factors via the formation of transcriptionally silent chromatin. In Friedreich's ataxia, GAA. TTC expansion in an intron of the FRDA gene reduces expression by interfering with transcription elongation. The model that best describes the available data is transcription-driven formation of a transient purine. purine. pyrimidine DNA triplex behind an advancing RNA polymerase. This structure lassoes the RNA polymerase that caused it, trapping the enzyme on the template.
Collapse
Affiliation(s)
- E Grabczyk
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|