1
|
Yin M, Feng C, Yu Z, Zhang Y, Li Y, Wang X, Song C, Guo M, Li C. sc2GWAS: a comprehensive platform linking single cell and GWAS traits of human. Nucleic Acids Res 2024:gkae1008. [PMID: 39565208 DOI: 10.1093/nar/gkae1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Identifying cell populations associated with risk variants is essential for uncovering cell-specific mechanisms that drive disease development and progression. Integrating genome-wide association studies (GWAS) with single-cell RNA sequencing (scRNA-seq) has become an effective strategy for detecting trait-cell relationships. The accumulation of trait-related single cell data has led to an urgent need for its comprehensively processing. To address this, we developed sc2GWAS (https://bio.liclab.net/sc2GWAS/), which aims to document large-scale GWAS trait-cell regulatory pairs at single-cell resolution and provide comprehensive annotations and enrichment analyses for these related pairs. The current version of sc2GWAS curates a total of 15 078 310 candidate trait-cell pairs from > 6 300 000 individual cells, offering a valuable resource for exploring complex regulatory relationships between traits and cells. We applied strict quality control measures on both scRNA-seq data and GWAS data, ensuring the reliability and accuracy of the datasets for the identification of trait-relevant cells and genes. In addition, sc2GWAS provides ranked lists of trait-relevant genes and extensive (epi) genetic annotations, making it a valuable resource for downstream analyses. We demonstrate the utility of the platform by investigating Alzheimer's disease, where we identified significant associations between the disease and microglial cells, with the APOE gene emerging as particularly significant. This platform facilitates detailed research into complex trait-cell and trait-gene interactions, we anticipate that sc2GWAS will become a comprehensive and valuable platform for exploring GWAS trait-cell regulatory mechanisms.
Collapse
Affiliation(s)
- Mingxue Yin
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Chenchen Feng
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Zhengmin Yu
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Yuexin Zhang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Ye Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Xuan Wang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Chao Song
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chunquan Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
2
|
Kontou PI, Bagos PG. The goldmine of GWAS summary statistics: a systematic review of methods and tools. BioData Min 2024; 17:31. [PMID: 39238044 PMCID: PMC11375927 DOI: 10.1186/s13040-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of complex traits and diseases. GWAS summary statistics have become essential tools for various genetic analyses, including meta-analysis, fine-mapping, and risk prediction. However, the increasing number of GWAS summary statistics and the diversity of software tools available for their analysis can make it challenging for researchers to select the most appropriate tools for their specific needs. This systematic review aims to provide a comprehensive overview of the currently available software tools and databases for GWAS summary statistics analysis. We conducted a comprehensive literature search to identify relevant software tools and databases. We categorized the tools and databases by their functionality, including data management, quality control, single-trait analysis, and multiple-trait analysis. We also compared the tools and databases based on their features, limitations, and user-friendliness. Our review identified a total of 305 functioning software tools and databases dedicated to GWAS summary statistics, each with unique strengths and limitations. We provide descriptions of the key features of each tool and database, including their input/output formats, data types, and computational requirements. We also discuss the overall usability and applicability of each tool for different research scenarios. This comprehensive review will serve as a valuable resource for researchers who are interested in using GWAS summary statistics to investigate the genetic basis of complex traits and diseases. By providing a detailed overview of the available tools and databases, we aim to facilitate informed tool selection and maximize the effectiveness of GWAS summary statistics analysis.
Collapse
Affiliation(s)
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131, Lamia, Greece.
| |
Collapse
|
3
|
Zheng S, Liu L, Liang K, Yan J, Meng D, Liu Z, Tian S, Shan Y. Multi-omics insight into the metabolic and cellular characteristics in the pathogenesis of hypothyroidism. Commun Biol 2024; 7:990. [PMID: 39143378 PMCID: PMC11324791 DOI: 10.1038/s42003-024-06680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
While circulating metabolites and immune system have been increasingly linked to hypothyroidism risk, the causality underlying these associations remains largely uninterrogated. We used Mendelian randomization to identified putative causal traits for hypothyroidism via integrating omics data. Briefly, we utilized 1180 plasma metabolites and 731 immune cells traits as exposures to identify putatively causal traits for hypothyroidism in the discovery (40,926 cases) and replication cohorts (14,871 cases). By combining MR results from two large-scale cohorts, we ultimately identified 21 putatively causal traits, including five plasma metabolites and 16 immune cell traits. CD3 on CD28+ CD4+ T cell and 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (p-16:0/18:1) demonstrated the most pronounced positive and negative associations with hypothyroidism risk, respectively. The odds ratio and 95% confidence interval were 1.09 (1.07, 1.12) and 0.81 (0.75, 0.87), respectively. No evidence of horizontal pleiotropy, heterogeneity among instrumental variables or reverse causation were found for these 21 significant associations. Our study elucidates key metabolites and immune cell traits associated with hypothyroidism. These findings provide new insights into the etiology and potential therapeutic targets for hypothyroidism.
Collapse
Affiliation(s)
- Shengzhang Zheng
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lihua Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Kailin Liang
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jielin Yan
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Danqun Meng
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhipeng Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Sicong Tian
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| | - Yujuan Shan
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| |
Collapse
|
4
|
Dai Y, Itai T, Pei G, Yan F, Chu Y, Jiang X, Weinberg SM, Mukhopadhyay N, Marazita ML, Simon LM, Jia P, Zhao Z. DeepFace: Deep-learning-based framework to contextualize orofacial-cleft-related variants during human embryonic craniofacial development. HGG ADVANCES 2024; 5:100312. [PMID: 38796699 PMCID: PMC11193024 DOI: 10.1016/j.xhgg.2024.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the "casual" variants are largely unknown. Here, we developed DeepFace, a convolutional neural network model, to assess the functional impact of variants by SNP activity difference (SAD) scores. The DeepFace model is trained with 204 epigenomic assays from crucial human embryonic craniofacial developmental stages of post-conception week (pcw) 4 to pcw 10. The Pearson correlation coefficient between the predicted and actual values for 12 epigenetic features achieved a median range of 0.50-0.83. Specifically, our model revealed that SNPs significantly associated with OFCs tended to exhibit higher SAD scores across various variant categories compared to less related groups, indicating a context-specific impact of OFC-related SNPs. Notably, we identified six SNPs with a significant linear relationship to SAD scores throughout developmental progression, suggesting that these SNPs could play a temporal regulatory role. Furthermore, our cell-type specificity analysis pinpointed the trophoblast cell as having the highest enrichment of risk signals associated with OFCs. Overall, DeepFace can harness distal regulatory signals from extensive epigenomic assays, offering new perspectives for prioritizing OFC variants using contextualized functional genomic features. We expect DeepFace to be instrumental in accessing and predicting the regulatory roles of variants associated with OFCs, and the model can be extended to study other complex diseases or traits.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Toshiyuki Itai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fangfang Yan
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yan Chu
- Center for Secure Artificial Intelligence for Healthcare, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nandita Mukhopadhyay
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Zhao X, Hu C, Chen X, Ren S, Gao F. Drug Repositioning of Inflammatory Bowel Disease Based on Co-Target Gene Expression Signature of Glucocorticoid Receptor and TET2. BIOLOGY 2024; 13:82. [PMID: 38392301 PMCID: PMC10886832 DOI: 10.3390/biology13020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The glucocorticoid receptor (GR) and ten-eleven translocation 2 (TET2), respectively, play a crucial role in regulating immunity and inflammation, and GR interacts with TET2. However, their synergetic roles in inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), remain unclear. This study aimed to investigate the co-target gene signatures of GR and TET2 in IBD and provide potential therapeutic interventions for IBD. By integrating public data, we identified 179 GR- and TET2-targeted differentially expressed genes (DEGs) in CD and 401 in UC. These genes were found to be closely associated with immunometabolism, inflammatory responses, and cell stress pathways. In vitro inflammatory cellular models were constructed using LPS-treated HT29 and HCT116 cells, respectively. Drug repositioning based on the co-target gene signatures of GR and TET2 derived from transcriptomic data of UC, CD, and the in vitro model was performed using the Connectivity Map (CMap). BMS-536924 emerged as a top therapeutic candidate, and its validation experiment within the in vitro inflammatory model confirmed its efficacy in mitigating the LPS-induced inflammatory response. This study sheds light on the pathogenesis of IBD from a new perspective and may accelerate the development of novel therapeutic agents for inflammatory diseases including IBD.
Collapse
Affiliation(s)
- Xianglin Zhao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Henan University, Shenzhen 518000, China
| | - Chenghao Hu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xinyu Chen
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuqiang Ren
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Kim K, Oh SJ, Lee J, Kwon A, Yu CY, Kim S, Choi CH, Kang SB, Kim TO, Park DI, Lee CK. Regulatory Variants on the Leukocyte Immunoglobulin-Like Receptor Gene Cluster are Associated with Crohn's Disease and Interact with Regulatory Variants for TAP2. J Crohns Colitis 2024; 18:47-53. [PMID: 37523193 DOI: 10.1093/ecco-jcc/jjad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] has a complex polygenic aetiology with high heritability. There is ongoing effort to identify novel variants associated with susceptibility to CD through a genome-wide association study [GWAS] in large Korean populations. METHODS Genome-wide variant data from 902 Korean patients with CD and 72 179 controls were used to assess the genetic associations in a meta-analysis with previous Korean GWAS results from 1621 patients with CD and 4419 controls. Epistatic interactions between CD-risk variants of interest were tested using a multivariate logistic regression model with an interaction term. RESULTS We identified two novel genetic associations with the risk of CD near ZBTB38 and within the leukocyte immunoglobulin-like receptor [LILR] gene cluster [p < 5 × 10-8], with highly consistent effect sizes between the two independent Korean cohorts. CD-risk variants in the LILR locus are known quantitative trait loci [QTL] for multiple LILR genes, of which LILRB2 directly interacts with various ligands including MHC class I molecules. The LILR lead variant exhibited a significant epistatic interaction with CD-associated regulatory variants for TAP2 involved in the antigen presentation of MHC class I molecules [p = 4.11 × 10-4], showing higher CD-risk effects of the TAP2 variant in individuals carrying more risk alleles of the LILR lead variant (odds ratio [OR] = 0.941, p = 0.686 in non-carriers; OR = 1.45, p = 2.51 × 10-4 in single-copy carriers; OR = 2.38, p = 2.76 × 10-6 in two-copy carriers). CONCLUSIONS This study demonstrated that genetic variants at two novel susceptibility loci and the epistatic interaction between variants in LILR and TAP2 loci confer a risk of CD.
Collapse
Affiliation(s)
- Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Shin Ju Oh
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Junho Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Ayeong Kwon
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Chae-Yeon Yu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sangsoo Kim
- Department of Bioinformatics, Soongsil University, Seoul, Republic of Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sang-Bum Kang
- Department of Internal Medicine, College of Medicine, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Tae Oh Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Il Park
- Division of Gastroenterology, Department of Internal Medicine and Inflammatory Bowel Disease Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang Kyun Lee
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Hekselman I, Vital A, Ziv-Agam M, Kerber L, Yairi I, Yeger-Lotem E. Affected cell types for hundreds of Mendelian diseases revealed by analysis of human and mouse single-cell data. eLife 2024; 13:e84613. [PMID: 38197427 PMCID: PMC10830129 DOI: 10.7554/elife.84613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Mendelian diseases tend to manifest clinically in certain tissues, yet their affected cell types typically remain elusive. Single-cell expression studies showed that overexpression of disease-associated genes may point to the affected cell types. Here, we developed a method that infers disease-affected cell types from the preferential expression of disease-associated genes in cell types (PrEDiCT). We applied PrEDiCT to single-cell expression data of six human tissues, to infer the cell types affected in Mendelian diseases. Overall, we inferred the likely affected cell types for 328 diseases. We corroborated our findings by literature text-mining, expert validation, and recapitulation in mouse corresponding tissues. Based on these findings, we explored characteristics of disease-affected cell types, showed that diseases manifesting in multiple tissues tend to affect similar cell types, and highlighted cases where gene functions could be used to refine inference. Together, these findings expand the molecular understanding of disease mechanisms and cellular vulnerability.
Collapse
Affiliation(s)
- Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the NegevBe’er ShevaIsrael
| | - Assaf Vital
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the NegevBe’er ShevaIsrael
| | - Maya Ziv-Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the NegevBe’er ShevaIsrael
| | - Lior Kerber
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the NegevBe’er ShevaIsrael
| | - Ido Yairi
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the NegevBe’er ShevaIsrael
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the NegevBe’er ShevaIsrael
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBe’er ShevaIsrael
| |
Collapse
|
8
|
Zhang Y, Sun H, Zhang W, Fu T, Huang S, Mou M, Zhang J, Gao J, Ge Y, Yang Q, Zhu F. CellSTAR: a comprehensive resource for single-cell transcriptomic annotation. Nucleic Acids Res 2024; 52:D859-D870. [PMID: 37855686 PMCID: PMC10767908 DOI: 10.1093/nar/gkad874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Large-scale studies of single-cell sequencing and biological experiments have successfully revealed expression patterns that distinguish different cell types in tissues, emphasizing the importance of studying cellular heterogeneity and accurately annotating cell types. Analysis of gene expression profiles in these experiments provides two essential types of data for cell type annotation: annotated references and canonical markers. In this study, the first comprehensive database of single-cell transcriptomic annotation resource (CellSTAR) was thus developed. It is unique in (a) offering the comprehensive expertly annotated reference data for annotating hundreds of cell types for the first time and (b) enabling the collective consideration of reference data and marker genes by incorporating tens of thousands of markers. Given its unique features, CellSTAR is expected to attract broad research interests from the technological innovations in single-cell transcriptomics, the studies of cellular heterogeneity & dynamics, and so on. It is now publicly accessible without any login requirement at: https://idrblab.org/cellstar.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yichao Ge
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
9
|
Dai Y, Hsu YC, Fernandes BS, Zhang K, Li X, Enduru N, Liu A, Manuel AM, Jiang X, Zhao Z. Disentangling Accelerated Cognitive Decline from the Normal Aging Process and Unraveling Its Genetic Components: A Neuroimaging-Based Deep Learning Approach. J Alzheimers Dis 2024; 97:1807-1827. [PMID: 38306043 PMCID: PMC11649026 DOI: 10.3233/jad-231020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background The progressive cognitive decline, an integral component of Alzheimer's disease (AD), unfolds in tandem with the natural aging process. Neuroimaging features have demonstrated the capacity to distinguish cognitive decline changes stemming from typical brain aging and AD between different chronological points. Objective To disentangle the normal aging effect from the AD-related accelerated cognitive decline and unravel its genetic components using a neuroimaging-based deep learning approach. Methods We developed a deep-learning framework based on a dual-loss Siamese ResNet network to extract fine-grained information from the longitudinal structural magnetic resonance imaging (MRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We then conducted genome-wide association studies (GWAS) and post-GWAS analyses to reveal the genetic basis of AD-related accelerated cognitive decline. Results We used our model to process data from 1,313 individuals, training it on 414 cognitively normal people and predicting cognitive assessment for all participants. In our analysis of accelerated cognitive decline GWAS, we identified two genome-wide significant loci: APOE locus (chromosome 19 p13.32) and rs144614292 (chromosome 11 p15.1). Variant rs144614292 (G > T) has not been reported in previous AD GWA studies. It is within the intronic region of NELL1, which is expressed in neurons and plays a role in controlling cell growth and differentiation. The cell-type-specific enrichment analysis and functional enrichment of GWAS signals highlighted the microglia and immune-response pathways. Conclusions Our deep learning model effectively extracted relevant neuroimaging features and predicted individual cognitive decline. We reported a novel variant (rs144614292) within the NELL1 gene.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
| | - Yu-Chun Hsu
- Center for Secure Artificial Intelligence for Healthcare,
School of Biomedical Informatics, The University of Texas Health Science Center at
Houston, Houston, TX, USA
| | - Brisa S. Fernandes
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
| | - Kai Zhang
- Center for Secure Artificial Intelligence for Healthcare,
School of Biomedical Informatics, The University of Texas Health Science Center at
Houston, Houston, TX, USA
| | - Xiaoyang Li
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
- Department of Biostatistics and Data Science, School of
Public Health, The University of Texas Health Science Center at Houston, Houston,
TX, USA
| | - Nitesh Enduru
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
- Department of Epidemiology, Human Genetics and
Environmental Sciences, School of Public Health, The University of Texas Health
Science Center at Houston, Houston, TX, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
- Department of Epidemiology, Human Genetics and
Environmental Sciences, School of Public Health, The University of Texas Health
Science Center at Houston, Houston, TX, USA
| | - Astrid M. Manuel
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare,
School of Biomedical Informatics, The University of Texas Health Science Center at
Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of
Biomedical Informatics, The University of Texas Health Science Center at Houston,
Houston, TX, USA
- Department of Epidemiology, Human Genetics and
Environmental Sciences, School of Public Health, The University of Texas Health
Science Center at Houston, Houston, TX, USA
- Department of Biomedical Informatics, Vanderbilt University
Medical enter, Nashville, TN, USA
| |
Collapse
|
10
|
Pei G, Yan F, Simon LM, Dai Y, Jia P, Zhao Z. deCS: A Tool for Systematic Cell Type Annotations of Single-cell RNA Sequencing Data among Human Tissues. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:370-384. [PMID: 35470070 PMCID: PMC10626171 DOI: 10.1016/j.gpb.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex and dynamic cellular mechanisms. However, cell type annotation remains a main challenge as it largely relies on a priori knowledge and manual curation, which is cumbersome and subjective. The increasing number of scRNA-seq datasets, as well as numerous published genetic studies, has motivated us to build a comprehensive human cell type reference atlas.Here, we present decoding Cell type Specificity (deCS), an automatic cell type annotation method augmented by a comprehensive collection of human cell type expression profiles and marker genes. We used deCS to annotate scRNA-seq data from various tissue types and systematically evaluated the annotation accuracy under different conditions, including reference panels, sequencing depth, and feature selection strategies. Our results demonstrate that expanding the references is critical for improving annotation accuracy. Compared to many existing state-of-the-art annotation tools, deCS significantly reduced computation time and increased accuracy. deCS can be integrated into the standard scRNA-seq analytical pipeline to enhance cell type annotation. Finally, we demonstrated the broad utility of deCS to identify trait-cell type associations in 51 human complex traits, providing deep insights into the cellular mechanisms underlying disease pathogenesis. All documents for deCS, including source code, user manual, demo data, and tutorials, are freely available at https://github.com/bsml320/deCS.
Collapse
Affiliation(s)
- Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| |
Collapse
|
11
|
Manuel AM, Dai Y, Jia P, Freeman LA, Zhao Z. A gene regulatory network approach harmonizes genetic and epigenetic signals and reveals repurposable drug candidates for multiple sclerosis. Hum Mol Genet 2023; 32:998-1009. [PMID: 36282535 PMCID: PMC9991005 DOI: 10.1093/hmg/ddac265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a complex dysimmune disorder of the central nervous system. Genome-wide association studies (GWAS) have identified 233 genetic variations associated with MS at the genome-wide significant level. Epigenetic studies have pinpointed differentially methylated CpG sites in MS patients. However, the interplay between genetic risk factors and epigenetic regulation remains elusive. Here, we employed a network model to integrate GWAS summary statistics of 14 802 MS cases and 26 703 controls with DNA methylation profiles from 140 MS cases and 139 controls and the human interactome. We identified differentially methylated genes by aggregating additive effects of differentially methylated CpG sites within promoter regions. We reconstructed a gene regulatory network (GRN) using literature-curated transcription factor knowledge. Colocalization of the MS GWAS and methylation quantitative trait loci (mQTL) was performed to assess the GRN. The resultant MS-associated GRN highlighted several single nucleotide polymorphisms with GWAS-mQTL colocalization: rs6032663, rs6065926 and rs2024568 of CD40 locus, rs9913597 of STAT3 locus, and rs887864 and rs741175 of CIITA locus. Moreover, synergistic mQTL and expression QTL signals were identified in CD40, suggesting gene expression alteration was likely induced by epigenetic changes. Web-based Cell-type Specific Enrichment Analysis of Genes (WebCSEA) indicated that the GRN was enriched in T follicular helper cells (P-value = 0.0016). Drug target enrichment analysis of annotations from the Therapeutic Target Database revealed the GRN was also enriched with drug target genes (P-value = 3.89 × 10-4), revealing repurposable candidates for MS treatment. These candidates included vorinostat (HDAC1 inhibitor) and sivelestat (ELANE inhibitor), which warrant further investigation.
Collapse
Affiliation(s)
- Astrid M Manuel
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Leorah A Freeman
- Department of Neurology, Dell Medical School, The University of Texas, Austin, TX 78712, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Chen Y, Zhang X, Peng X, Jin Y, Ding P, Xiao J, Li C, Wang F, Chang A, Yue Q, Pu M, Chen P, Shen J, Li M, Jia T, Wang H, Huang L, Guo G, Zhang W, Liu H, Wang X, Chen D. SPEED: Single-cell Pan-species atlas in the light of Ecology and Evolution for Development and Diseases. Nucleic Acids Res 2023; 51:D1150-D1159. [PMID: 36305818 PMCID: PMC9825432 DOI: 10.1093/nar/gkac930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 01/30/2023] Open
Abstract
It is a challenge to efficiently integrate and present the tremendous amounts of single-cell data generated from multiple tissues of various species. Here, we create a new database named SPEED for single-cell pan-species atlas in the light of ecology and evolution for development and diseases (freely accessible at http://8.142.154.29 or http://speedatlas.net). SPEED is an online platform with 4 data modules, 7 function modules and 2 display modules. The 'Pan' module is applied for the interactive analysis of single cell sequencing datasets from 127 species, and the 'Evo', 'Devo', and 'Diz' modules provide comprehensive analysis of single-cell atlases on 18 evolution datasets, 28 development datasets, and 85 disease datasets. The 'C2C', 'G2G' and 'S2S' modules explore intercellular communications, genetic regulatory networks, and cross-species molecular evolution. The 'sSearch', 'sMarker', 'sUp', and 'sDown' modules allow users to retrieve specific data information, obtain common marker genes for cell types, freely upload, and download single-cell datasets, respectively. Two display modules ('HOME' and 'HELP') offer easier access to the SPEED database with informative statistics and detailed guidelines. All in all, SPEED is an integrated platform for single-cell RNA sequencing (scRNA-seq) and single-cell whole-genome sequencing (scWGS) datasets to assist the deep-mining and understanding of heterogeneity among cells, tissues, and species at multi-levels, angles, and orientations, as well as provide new insights into molecular mechanisms of biological development and pathogenesis.
Collapse
Affiliation(s)
- Yangfeng Chen
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xingliang Zhang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, China
- Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xi Peng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yicheng Jin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Peiwen Ding
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Jiedan Xiao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Changxiao Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Fei Wang
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Ashley Chang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Qizhen Yue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyi Pu
- Department of Medicine, Sun Yat-sen University, Shenzhen 518106, China
| | - Peixin Chen
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Jiayi Shen
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Mengrou Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou 215123, China
| | - Tengfei Jia
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou 215123, China
| | - Haoyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Huang
- The Future Laboratory, Tsinghua University, Beijing 100084, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou 215123, China
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai 200032, China
| | - Dongsheng Chen
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| |
Collapse
|
13
|
Jia P, Hu R, Yan F, Dai Y, Zhao Z. scGWAS: landscape of trait-cell type associations by integrating single-cell transcriptomics-wide and genome-wide association studies. Genome Biol 2022; 23:220. [PMID: 36253801 PMCID: PMC9575201 DOI: 10.1186/s13059-022-02785-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The rapid accumulation of single-cell RNA sequencing (scRNA-seq) data presents unique opportunities to decode the genetically mediated cell-type specificity in complex diseases. Here, we develop a new method, scGWAS, which effectively leverages scRNA-seq data to achieve two goals: (1) to infer the cell types in which the disease-associated genes manifest and (2) to construct cellular modules which imply disease-specific activation of different processes. RESULTS scGWAS only utilizes the average gene expression for each cell type followed by virtual search processes to construct the null distributions of module scores, making it scalable to large scRNA-seq datasets. We demonstrated scGWAS in 40 genome-wide association studies (GWAS) datasets (average sample size N ≈ 154,000) using 18 scRNA-seq datasets from nine major human/mouse tissues (totaling 1.08 million cells) and identified 2533 trait and cell-type associations, each with significant modules for further investigation. The module genes were validated using disease or clinically annotated references from ClinVar, OMIM, and pLI variants. CONCLUSIONS We showed that the trait-cell type associations identified by scGWAS, while generally constrained to trait-tissue associations, could recapitulate many well-studied relationships and also reveal novel relationships, providing insights into the unsolved trait-tissue associations. Moreover, in each specific cell type, the associations with different traits were often mediated by different sets of risk genes, implying disease-specific activation of driving processes. In summary, scGWAS is a powerful tool for exploring the genetic basis of complex diseases at the cell type level using single-cell expression data.
Collapse
Affiliation(s)
- Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| |
Collapse
|
14
|
Wei L, Ding M, Zhang Y, Wang H. Decoding transcriptional signatures of the association between free water and macroscale organizations in healthy adolescents. Neuroimage 2022; 261:119514. [PMID: 35901916 DOI: 10.1016/j.neuroimage.2022.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
We leveraged a novel index of diffusion MRI to investigate the relationships among cortical free water, macro-organizations and gene expression in healthy adults. Few research has been conducted to investigate the role of free water in the healthy adults due to it can easily be affected also by aging diseases. High quality data of 350 subjects from Human Connectome Project were used in our study. Cortical free water was estimated by using a bi-tensor model. The free water was high in the limbic, insular and somatosensory cortex, while being lower in motor and association cortex. The negative correlation between the free water and cortical thickness has been consistently identified in almost all the cortical regions. Negative correlation between the cortical free water and structural covariance (rho=-0.38, pspin=0.005) revealed the free water was sensitive to cortical heterogeneity. Using human gene expression dataset, we found the gene expression pattern of the relationship between the free water and cortical thickness spatially coupled with primary gradient of structural covariance network (rho=0.40, pspin=0.004). Our findings indicated the free water was sensitive to the cortical cellular status. The relationship between free water and macroscale organization also reflected hierarchal structures of cerebral cortex.
Collapse
Affiliation(s)
- Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Ming Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China; Human Phenome Institute, Fudan University, Shanghai, PR China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
15
|
Drug-Target Network Study Reveals the Core Target-Protein Interactions of Various COVID-19 Treatments. Genes (Basel) 2022; 13:genes13071210. [PMID: 35885993 PMCID: PMC9316565 DOI: 10.3390/genes13071210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused a dramatic loss of human life and devastated the worldwide economy. Numerous efforts have been made to mitigate COVID-19 symptoms and reduce the death rate. We conducted literature mining of more than 250 thousand published works and curated the 174 most widely used COVID-19 medications. Overlaid with the human protein-protein interaction (PPI) network, we used Steiner tree analysis to extract a core subnetwork that grew from the pharmacological targets of ten credible drugs ascertained by the CTD database. The resultant core subnetwork consisted of 34 interconnected genes, which were associated with 36 drugs. Immune cell membrane receptors, the downstream cellular signaling cascade, and severe COVID-19 symptom risk were significantly enriched for the core subnetwork genes. The lung mast cell was most enriched for the target genes among 1355 human tissue-cell types. Human bronchoalveolar lavage fluid COVID-19 single-cell RNA-Seq data highlighted the fact that T cells and macrophages have the most overlapping genes from the core subnetwork. Overall, we constructed an actionable human target-protein module that mainly involved anti-inflammatory/antiviral entry functions and highly overlapped with COVID-19-severity-related genes. Our findings could serve as a knowledge base for guiding drug discovery or drug repurposing to confront the fast-evolving SARS-CoV-2 virus and other severe infectious diseases.
Collapse
|
16
|
Liu Y, Qu HQ, Chang X, Qu J, Mentch FD, Nguyen K, Tian L, Glessner J, Sleiman PMA, Hakonarson H. Mutation Burden Analysis of Six Common Mental Disorders in African Americans by Whole Genome Sequencing. Hum Mol Genet 2022; 31:3769-3776. [PMID: 35642741 DOI: 10.1093/hmg/ddac129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
Mental disorders present a global health concern, with limited treatment options. In today's medical practice, medications such as antidepressants are prescribed not only for depression, but also for conditions such as anxiety and attention deficit hyperactivity disorder (ADHD). Therefore, identifying gene targets for specific disorders is important and offers improved precision. In this study, we performed a genetic analysis of six common mental disorders, ADHD, anxiety, depression, delays in mental developments, intellectual disabilities (ID), and speech/language disorder in the ethnic minority of African Americans (AA) using whole genome sequencing (WGS). WGS data was generated from blood-derived DNA from 4178 AA individuals, including 1384 patients with the diagnosis of at least one mental disorder. Mutation burden analysis was applied based on rare and deleterious mutations in the AA population between cases and controls, and further analyzed in the context of patients with single mental disorder diagnosis. Certain genes uncovered demonstrated significant p values in mutation burden analysis. In addition, exclusive recurrences in specific type of disorder were scanned through gene-drug interaction databases to assess for availability of potential medications. We uncovered 15 genes harboring deleterious mutations, including HMGCR and UST for ADHD; FNTB for anxiety, XIRP2, NPPC, , STK33, PANX1 and NTS for depression; RUNX3, TACR1, and NDUFS7 for delays in mental developments; HPN for ID; COL6A3, DDB1, and NDUFA11 for speech/language disorder. Taken together, we have established critical insight into the development of new precision medicine approaches for mental disorders in African Americans.
Collapse
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Jingchun Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Lifeng Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA.,Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
17
|
Dai Y, Hu R, Liu A, Cho KS, Manuel AM, Li X, Dong X, Jia P, Zhao Z. WebCSEA: web-based cell-type-specific enrichment analysis of genes. Nucleic Acids Res 2022; 50:W782-W790. [PMID: 35610053 DOI: 10.1093/nar/gkac392] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 02/02/2023] Open
Abstract
Human complex traits and common diseases show tissue- and cell-type- specificity. Recently, single-cell RNA sequencing (scRNA-seq) technology has successfully depicted cellular heterogeneity in human tissue, providing an unprecedented opportunity to understand the context-specific expression of complex trait-associated genes in human tissue-cell types (TCs). Here, we present the first web-based application to quickly assess the cell-type-specificity of genes, named Web-based Cell-type Specific Enrichment Analysis of Genes (WebCSEA, available at https://bioinfo.uth.edu/webcsea/). Specifically, we curated a total of 111 scRNA-seq panels of human tissues and 1,355 TCs from 61 different general tissues across 11 human organ systems. We adapted our previous decoding tissue-specificity (deTS) algorithm to measure the enrichment for each tissue-cell type (TC). To overcome the potential bias from the number of signature genes between different TCs, we further developed a permutation-based method that accurately estimates the TC-specificity of a given inquiry gene list. WebCSEA also provides an interactive heatmap that displays the cell-type specificity across 1355 human TCs, and other interactive and static visualizations of cell-type specificity by human organ system, developmental stage, and top-ranked tissues and cell types. In short, WebCSEA is a one-click application that provides a comprehensive exploration of the TC-specificity of genes among human major TC map.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andi Liu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kyung Serk Cho
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Astrid Marilyn Manuel
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyang Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xianjun Dong
- Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
18
|
Hou S, Zhang P, Yang K, Wang L, Ma C, Li Y, Li S. Decoding multilevel relationships with the human tissue-cell-molecule network. Brief Bioinform 2022; 23:6585388. [PMID: 35551347 DOI: 10.1093/bib/bbac170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the biological functions of molecules in specific human tissues or cell types is crucial for gaining insights into human physiology and disease. To address this issue, it is essential to systematically uncover associations among multilevel elements consisting of disease phenotypes, tissues, cell types and molecules, which could pose a challenge because of their heterogeneity and incompleteness. To address this challenge, we describe a new methodological framework, called Graph Local InfoMax (GLIM), based on a human multilevel network (HMLN) that we established by introducing multiple tissues and cell types on top of molecular networks. GLIM can systematically mine the potential relationships between multilevel elements by embedding the features of the HMLN through contrastive learning. Our simulation results demonstrated that GLIM consistently outperforms other state-of-the-art algorithms in disease gene prediction. Moreover, GLIM was also successfully used to infer cell markers and rewire intercellular and molecular interactions in the context of specific tissues or diseases. As a typical case, the tissue-cell-molecule network underlying gastritis and gastric cancer was first uncovered by GLIM, providing systematic insights into the mechanism underlying the occurrence and development of gastric cancer. Overall, our constructed methodological framework has the potential to systematically uncover complex disease mechanisms and mine high-quality relationships among phenotypical, tissue, cellular and molecular elements.
Collapse
Affiliation(s)
- Siyu Hou
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Kuo Yang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, 100084 Beijing, China.,School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Lan Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Changzheng Ma
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Yanda Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
19
|
Liu A, Manuel AM, Dai Y, Zhao Z. Prioritization of risk genes in multiple sclerosis by a refined Bayesian framework followed by tissue-specificity and cell type feature assessment. BMC Genomics 2022; 23:362. [PMID: 35545758 PMCID: PMC9092676 DOI: 10.1186/s12864-022-08580-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating immune-mediated disease of the central nervous system that affects over 2 million people worldwide, resulting in a heavy burden to families and entire communities. Understanding the genetic basis underlying MS could help decipher the pathogenesis and shed light on MS treatment. We refined a recently developed Bayesian framework, Integrative Risk Gene Selector (iRIGS), to prioritize risk genes associated with MS by integrating the summary statistics from the largest GWAS to date (n = 115,803), various genomic features, and gene-gene closeness. RESULTS We identified 163 MS-associated prioritized risk genes (MS-PRGenes) through the Bayesian framework. We replicated 35 MS-PRGenes through two-sample Mendelian randomization (2SMR) approach by integrating data from GWAS and Genotype-Tissue Expression (GTEx) expression quantitative trait loci (eQTL) of 19 tissues. We demonstrated that MS-PRGenes had more substantial deleterious effects and disease risk. Moreover, single-cell enrichment analysis indicated MS-PRGenes were more enriched in activated macrophages and microglia macrophages than non-activated ones in control samples. Biological and drug enrichment analyses highlighted inflammatory signaling pathways. CONCLUSIONS In summary, we predicted and validated a high-confidence MS risk gene set from diverse genomic, epigenomic, eQTL, single-cell, and drug data. The MS-PRGenes could further serve as a benchmark of MS GWAS risk genes for future validation or genetic studies.
Collapse
Affiliation(s)
- Andi Liu
- grid.267308.80000 0000 9206 2401Department of Epidemiology, School of Public Health, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Astrid M. Manuel
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Yulin Dai
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Zhongming Zhao
- grid.267308.80000 0000 9206 2401Department of Epidemiology, School of Public Health, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
20
|
Hekselman I, Kerber L, Ziv M, Gruber G, Yeger-Lotem E. The Organ-Disease Annotations (ODiseA) database of hereditary diseases and inflicted tissues. J Mol Biol 2022; 434:167619. [PMID: 35504357 DOI: 10.1016/j.jmb.2022.167619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Hereditary diseases tend to manifest clinically in few selected tissues. Knowledge of those tissues is important for better understanding of disease mechanisms, which often remain elusive. However, information on the tissues inflicted by each disease is not easily obtainable. Well-established resources, such as the Online Mendelian Inheritance in Man (OMIM) database and Human Phenotype Ontology (HPO), report on a spectrum of disease manifestations, yet do not highlight the main inflicted tissues. The Organ-Disease Annotations (ODiseA) database contains 4,357 thoroughly-curated annotations for 2,181 hereditary diseases and 45 inflicted tissues. Additionally, ODiseA reports 692 annotations of 635 diseases and the pathogenic tissues where they emerge. ODiseA can be queried by disease, disease gene, or inflicted tissue. Owing to its expansive, high-quality annotations, ODiseA serves as a valuable and unique tool for biomedical and computational researchers studying genotype-phenotype relationships of hereditary diseases. ODiseA is available at https://netbio.bgu.ac.il/odisea.
Collapse
Affiliation(s)
- Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Lior Kerber
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Maya Ziv
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Gil Gruber
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| |
Collapse
|
21
|
Association of CXCR6 with COVID-19 severity: delineating the host genetic factors in transcriptomic regulation. Hum Genet 2021; 140:1313-1328. [PMID: 34155559 PMCID: PMC8216591 DOI: 10.1007/s00439-021-02305-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is an infectious disease that mainly affects the host respiratory system with ~ 80% asymptomatic or mild cases and ~ 5% severe cases. Recent genome-wide association studies (GWAS) have identified several genetic loci associated with the severe COVID-19 symptoms. Delineating the genetic variants and genes is important for better understanding its biological mechanisms. We implemented integrative approaches, including transcriptome-wide association studies (TWAS), colocalization analysis, and functional element prediction analysis, to interpret the genetic risks using two independent GWAS datasets in lung and immune cells. To understand the context-specific molecular alteration, we further performed deep learning-based single-cell transcriptomic analyses on a bronchoalveolar lavage fluid (BALF) dataset from moderate and severe COVID-19 patients. We discovered and replicated the genetically regulated expression of CXCR6 and CCR9 genes. These two genes have a protective effect on lung, and a risk effect on whole blood, respectively. The colocalization analysis of GWAS and cis-expression quantitative trait loci highlighted the regulatory effect on CXCR6 expression in lung and immune cells. In the lung-resident memory CD8+ T (TRM) cells, we found a 2.24-fold decrease of cell proportion among CD8+ T cells and lower expression of CXCR6 in the severe patients than moderate patients. Pro-inflammatory transcriptional programs were highlighted in the TRM cellular trajectory from moderate to severe patients. CXCR6 from the 3p21.31 locus is associated with severe COVID-19. CXCR6 tends to have a lower expression in lung TRM cells of severe patients, which aligns with the protective effect of CXCR6 from TWAS analysis.
Collapse
|
22
|
Jeong HH, Jia J, Dai Y, Simon LM, Zhao Z. Investigating Cellular Trajectories in the Severity of COVID-19 and Their Transcriptional Programs Using Machine Learning Approaches. Genes (Basel) 2021; 12:635. [PMID: 33923155 PMCID: PMC8145325 DOI: 10.3390/genes12050635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing of the bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients has enabled us to examine gene expression changes of human tissue in response to the SARS-CoV-2 virus infection. However, the underlying mechanisms of COVID-19 pathogenesis at single-cell resolution, its transcriptional drivers, and dynamics require further investigation. In this study, we applied machine learning algorithms to infer the trajectories of cellular changes and identify their transcriptional programs. Our study generated cellular trajectories that show the COVID-19 pathogenesis of healthy-to-moderate and healthy-to-severe on macrophages and T cells, and we observed more diverse trajectories in macrophages compared to T cells. Furthermore, our deep-learning algorithm DrivAER identified several pathways (e.g., xenobiotic pathway and complement pathway) and transcription factors (e.g., MITF and GATA3) that could be potential drivers of the transcriptomic changes for COVID-19 pathogenesis and the markers of the COVID-19 severity. Moreover, macrophages-related functions corresponded more to the disease severity compared to T cells-related functions. Our findings more proficiently dissected the transcriptomic changes leading to the severity of a COVID-19 infection.
Collapse
Affiliation(s)
- Hyun-Hwan Jeong
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.-H.J.); (J.J.); (Y.D.); (L.M.S.)
| | - Johnathan Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.-H.J.); (J.J.); (Y.D.); (L.M.S.)
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.-H.J.); (J.J.); (Y.D.); (L.M.S.)
| | - Lukas M. Simon
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.-H.J.); (J.J.); (Y.D.); (L.M.S.)
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.-H.J.); (J.J.); (Y.D.); (L.M.S.)
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
23
|
Dai Y, Wang J, Jeong HH, Chen W, Jia P, Zhao Z. Association of CXCR6 with COVID-19 severity: Delineating the host genetic factors in transcriptomic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33619490 PMCID: PMC7899454 DOI: 10.1101/2021.02.17.431554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: The coronavirus disease 2019 (COVID-19) is an infectious disease that mainly affects the host respiratory system with ~80% asymptomatic or mild cases and ~5% severe cases. Recent genome-wide association studies (GWAS) have identified several genetic loci associated with the severe COVID-19 symptoms. Delineating the genetic variants and genes is important for better understanding its biological mechanisms. Methods: We implemented integrative approaches, including transcriptome-wide association studies (TWAS), colocalization analysis and functional element prediction analysis, to interpret the genetic risks using two independent GWAS datasets in lung and immune cells. To understand the context-specific molecular alteration, we further performed deep learning-based single cell transcriptomic analyses on a bronchoalveolar lavage fluid (BALF) dataset from moderate and severe COVID-19 patients. Results: We discovered and replicated the genetically regulated expression of CXCR6 and CCR9 genes. These two genes have a protective effect on the lung and a risk effect on whole blood, respectively. The colocalization analysis of GWAS and cis-expression quantitative trait loci highlighted the regulatory effect on CXCR6 expression in lung and immune cells. In the lung resident memory CD8+ T (TRM) cells, we found a 3.32-fold decrease of cell proportion and lower expression of CXCR6 in the severe than moderate patients using the BALF transcriptomic dataset. Pro-inflammatory transcriptional programs were highlighted in TRM cells trajectory from moderate to severe patients. Conclusions: CXCR6 from the 3p21.31 locus is associated with severe COVID-19. CXCR6 tends to have a lower expression in lung TRM cells of severe patients, which aligns with the protective effect of CXCR6 from TWAS analysis. We illustrate one potential mechanism of host genetic factor impacting the severity of COVID-19 through regulating the expression of CXCR6 and TRM cell proportion and stability. Our results shed light on potential therapeutic targets for severe COVID-19.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junke Wang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hyun-Hwan Jeong
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenhao Chen
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute and Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.,Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|