1
|
Barrault M, Leclair E, Kumeko EK, Jacquet E, Bouloc P. Staphylococcal sRNA IsrR downregulates methylthiotransferase MiaB under iron-deficient conditions. Microbiol Spectr 2024; 12:e0388823. [PMID: 39162503 PMCID: PMC11448259 DOI: 10.1128/spectrum.03888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Staphylococcus aureus is a major contributor to bacterial-associated mortality, owing to its exceptional adaptability across diverse environments. Iron is vital to most organisms but can be toxic in excess. To manage its intracellular iron, S. aureus, like many pathogens, employs intricate systems. We have recently identified IsrR as a key regulatory RNA induced during iron starvation. Its role is to reduce the synthesis of non-essential iron-containing proteins under iron-depleted conditions. In this study, we unveil IsrR's regulatory action on MiaB, an enzyme responsible for methylthio group addition to specific sites on transfer RNAs (tRNAs). We use predictive tools and reporter fusion assays to demonstrate IsrR's binding to the Shine-Dalgarno sequence of miaB RNA, thereby impeding its translation. The effectiveness of IsrR hinges on the integrity of a specific C-rich region. As MiaB is non-essential and has iron-sulfur clusters, IsrR induction spares iron by downregulating miaB. This may improve S. aureus fitness and aid in navigating the host's nutritional immune defenses.IMPORTANCEIn many biotopes, including those found within an infected host, bacteria confront the challenge of iron deficiency. They employ various strategies to adapt to this scarcity of nutrients, one of which involves regulating iron-containing proteins through the action of small regulatory RNAs. Our study shows how IsrR, a small RNA from S. aureus, prevents the production of MiaB, a tRNA-modifying enzyme containing iron-sulfur clusters. With this illustration, we propose a new substrate for an iron-sparing small RNA, which, when downregulated, should reduce the need for iron and save it to essential functions.
Collapse
Affiliation(s)
- Maxime Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elise Leclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Etornam Kofi Kumeko
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR2301, Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
2
|
Lin XN, Gai BX, Liu L, Cheng L. Advances in the investigation of N 6-isopentenyl adenosine i 6A RNA modification. Bioorg Med Chem 2024; 110:117838. [PMID: 39018794 DOI: 10.1016/j.bmc.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Prenylation (isopentenylation), a key post-transcriptional modification with a hydrophobic prenyl group onto the biomacromolecules such as RNA and proteins, influences their localization and function. Prenyltransferases mediate this process, while cytokinin oxidases degrade the prenylated adenosine in plants. This review summarizes current progress in detecting prenylation modifications in RNA across species and their effects on protein synthesis. Advanced methods have been developed to label and study these modifications in vitro and in vivo, despite challenges posed by the inert chemical properties of prenyl groups. Continued advancements in bioorthogonal chemistry promise new tools for understanding the precise biological functions of prenylated RNA modifications and other related proteins.
Collapse
Affiliation(s)
- Xiu-Na Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo-Xu Gai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Sun J, Wu J, Yuan Y, Fan L, Chua WLP, Ling YHS, Balamkundu S, priya D, Suen HCS, de Crécy-Lagard V, Dziergowska A, Dedon PC. tRNA modification profiling reveals epitranscriptome regulatory networks in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601603. [PMID: 39005467 PMCID: PMC11245014 DOI: 10.1101/2024.07.01.601603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there is extensive knowledge about the enzymes installing the dozens of post-transcriptional tRNA modifications - the tRNA epitranscriptome - very little is known about how metabolic, signaling, and other networks integrate to regulate tRNA modification levels. Here we took a comprehensive first step at understanding epitranscriptome regulatory networks by developing a high-throughput tRNA isolation and mass spectrometry-based modification profiling platform and applying it to a Pseudomonas aeruginosa transposon insertion mutant library comprising 5,746 strains. Analysis of >200,000 tRNA modification data points validated the annotations of predicted tRNA modification genes, uncovered novel tRNA-modifying enzymes, and revealed tRNA modification regulatory networks in P. aeruginosa. Platform adaptation for RNA-seq library preparation would complement epitranscriptome studies, while application to human cell and mouse tissue demonstrates its utility for biomarker and drug discovery and development.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Junzhou Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - Leon Fan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Wei Lin Patrina Chua
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yan Han Sharon Ling
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | | | - Dwija priya
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Hazel Chay Suen Suen
- Department of Food, Chemical & Biotechnology, Singapore of Institute of Technology, 138683 Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Genetic Institute, University of Florida, Gainesville, FL 32611 USA
| | | | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| |
Collapse
|
4
|
Carpentier P, van der Linden P, Mueller-Dieckmann C. The High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF. Acta Crystallogr D Struct Biol 2024; 80:80-92. [PMID: 38265873 PMCID: PMC10836400 DOI: 10.1107/s2059798323010707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure-temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its interactions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule-gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.
Collapse
Affiliation(s)
- Philippe Carpentier
- Université Grenoble Alpes CEA CNRS, IRIG–LCBM UMR 5249, 17 Avenue des Martyrs, 38000 Grenoble, France
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Peter van der Linden
- ESRF, PSCM (Partnership for Soft Condensed Matter), 71 Avenue des Martyrs, 38000 Grenoble, France
| | | |
Collapse
|
5
|
Zumsteg J, Hirschler A, Carapito C, Maurer L, Villette C, Heintz D, Dahl C, El Nayal A, Sangal V, Mahmoud H, Van Dorsselaer A, Ismail W. Mechanistic insights into sulfur source-driven physiological responses and metabolic reorganization in the fuel-biodesulfurizing Rhodococcus qingshengii IGTS8. Appl Environ Microbiol 2023; 89:e0082623. [PMID: 37655899 PMCID: PMC10537767 DOI: 10.1128/aem.00826-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Comparative proteomics and untargeted metabolomics were combined to study the physiological and metabolic adaptations of Rhodococcus qingshengii IGTS8 under biodesulfurization conditions. After growth in a chemically defined medium with either dibenzothiophene (DBT) or MgSO4 as the sulfur source, many differentially produced proteins and metabolites associated with several metabolic and physiological processes were detected including the metabolism of carbohydrates, amino acids, lipids, nucleotides, vitamins, protein synthesis, transcriptional regulation, cell envelope biogenesis, and cell division. Increased production of the redox cofactor mycofactocin and associated proteins was one of the most striking adaptations under biodesulfurization conditions. While most central metabolic enzymes were less abundant in the presence of DBT, a key enzyme of the glyoxylate shunt, isocitrate lyase, was up to 26-fold more abundant. Several C1 metabolism and oligotrophy-related enzymes were significantly more abundant in the biodesulfurizing culture. R. qingshengii IGTS8 exhibited oligotrophic growth in liquid and solid media under carbon starvation. Moreover, the oligotrophic growth was faster on the solid medium in the presence of DBT compared to MgSO4 cultures. In the DBT culture, the cell envelope and phospholipids were remodeled, with lower levels of phosphatidylethanolamine and unsaturated and short-chain fatty acids being the most prominent changes. Biodesulfurization increased the biosynthesis of osmoprotectants (ectoine and mannosylglycerate) as well as glutamate and induced the stringent response. Our findings reveal highly diverse and overlapping stress responses that could protect the biodesulfurizing culture not only from the associated sulfate limitation but also from chemical, oxidative, and osmotic stress, allowing efficient resource management. IMPORTANCE Despite decades of research, a commercially viable bioprocess for fuel desulfurization has not been developed yet. This is mainly due to lack of knowledge of the physiology and metabolism of fuel-biodesulfurizing bacteria. Being a stressful condition, biodesulfurization could provoke several stress responses that are not understood. This is particularly important because a thorough understanding of the microbial stress response is essential for the development of environmentally friendly and industrially efficient microbial biocatalysts. Our comparative systems biology studies provide a mechanistic understanding of the biology of biodesulfurization, which is crucial for informed developments through the rational design of recombinant biodesulfurizers and optimization of the bioprocess conditions. Our findings enhance the understanding of the physiology, metabolism, and stress response not only in biodesulfurizing bacteria but also in rhodococci, a precious group of biotechnologically important bacteria.
Collapse
Affiliation(s)
- Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Loïc Maurer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Département mécanique, ICube Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie, UNISTRA/CNRS/ENGEES/INSA, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ashraf El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Huda Mahmoud
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
6
|
Zboralski A, Filion M. Pseudomonas spp. can help plants face climate change. Front Microbiol 2023; 14:1198131. [PMID: 37426009 PMCID: PMC10326438 DOI: 10.3389/fmicb.2023.1198131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Climate change is increasingly affecting agriculture through droughts, high salinity in soils, heatwaves, and floodings, which put intense pressure on crops. This results in yield losses, leading to food insecurity in the most affected regions. Multiple plant-beneficial bacteria belonging to the genus Pseudomonas have been shown to improve plant tolerance to these stresses. Various mechanisms are involved, including alteration of the plant ethylene levels, direct phytohormone production, emission of volatile organic compounds, reinforcement of the root apoplast barriers, and exopolysaccharide biosynthesis. In this review, we summarize the effects of climate change-induced stresses on plants and detail the mechanisms used by plant-beneficial Pseudomonas strains to alleviate them. Recommendations are made to promote targeted research on the stress-alleviating potential of these bacteria.
Collapse
|
7
|
Landscape of Post-Transcriptional tRNA Modifications in Streptomyces albidoflavus J1074 as Portrayed by Mass Spectrometry and Genomic Data Mining. J Bacteriol 2023; 205:e0029422. [PMID: 36468867 PMCID: PMC9879100 DOI: 10.1128/jb.00294-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Actinobacterial genus Streptomyces (streptomycetes) represents one of the largest cultivable group of bacteria famous for their ability to produce valuable specialized (secondary) metabolites. Regulation of secondary metabolic pathways inextricably couples the latter to essential cellular processes that determine levels of amino acids, carbohydrates, phosphate, etc. Post-transcriptional tRNA modifications remain one of the least studied aspects of streptomycete physiology, albeit a few of them were recently shown to impact antibiotic production. In this study, we describe the diversity of post-transcriptional tRNA modifications in model strain Streptomyces albus (albidoflavus) J1074 by combining mass spectrometry and genomic data. Our results show that J1074 can produce more chemically distinct tRNA modifications than previously thought. An in silico approach identified orthologs for enzymes governing most of the identified tRNA modifications. Yet, genetic control of certain modifications remained elusive, suggesting early divergence of tRNA modification pathways in Streptomyces from the better studied model bacteria, such as Escherichia coli and Bacillus subtilis. As a first point in case, our data point to the presence of a non-canonical MiaE enzyme performing hydroxylation of prenylated adenosines. A further finding concerns the methylthiotransferase MiaB, which requires previous modification of adenosines by MiaA to i6A for thiomethylation to ms2i6A. We show here that the J1074 ortholog, when overexpressed, yields ms2A in a ΔmiaA background. Our results set the working ground for and justify a more detailed studies of biological significance of tRNA modification pathways in streptomycetes. IMPORTANCE Post-transcriptional tRNA modifications (PTTMs) play an important role in maturation and functionality of tRNAs. Little is known about tRNA modifications in the antibiotic-producing actinobacterial genus Streptomyces, even though peculiar tRNA-based regulatory mechanisms operate in this taxon. We provide a first detailed description of the chemical diversity of PTTMs in the model species, S. albidoflavus J1074, and identify most plausible genes for these PTTMs. Some of the PTTMs are described for the first time for Streptomyces. Production of certain PTTMs in J1074 appears to depend on enzymes that show no sequence similarity to known PTTM enzymes from model species. Our findings are of relevance for interrogation of genetic basis of PTTMs in pathogenic actinobacteria, such as M. tuberculosis.
Collapse
|
8
|
Jürgenstein K, Tagel M, Ilves H, Leppik M, Kivisaar M, Remme J. Variance in translational fidelity of different bacterial species is affected by pseudouridines in the tRNA anticodon stem-loop. RNA Biol 2022; 19:1050-1058. [PMID: 36093925 PMCID: PMC9481147 DOI: 10.1080/15476286.2022.2121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Delicate variances in the translational machinery affect how efficiently different organisms approach protein synthesis. Determining the scale of this effect, however, requires knowledge on the differences of mistranslation levels. Here, we used a dual-luciferase reporter assay cloned into a broad host range plasmid to reveal the translational fidelity profiles of Pseudomonas putida, Pseudomonas aeruginosa and Escherichia coli. We observed that these profiles are surprisingly different, whereas species more prone to translational frameshifting are not necessarily more prone to stop codon readthrough. As tRNA modifications are among the factors that have been implicated to affect translation accuracy, we also show that translational fidelity is context-specifically influenced by pseudouridines in the anticodon stem-loop of tRNA, but the effect is not uniform between species.
Collapse
Affiliation(s)
- Karl Jürgenstein
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mari Tagel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heili Ilves
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Frébortová J, Frébort I. Biochemical and Structural Aspects of Cytokinin Biosynthesis and Degradation in Bacteria. Microorganisms 2021; 9:microorganisms9061314. [PMID: 34208724 PMCID: PMC8234997 DOI: 10.3390/microorganisms9061314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
It has been known for quite some time that cytokinins, hormones typical of plants, are also produced and metabolized in bacteria. Most bacteria can only form the tRNA-bound cytokinins, but there are examples of plant-associated bacteria, both pathogenic and beneficial, that actively synthesize cytokinins to interact with their host. Similar to plants, bacteria produce diverse cytokinin metabolites, employing corresponding metabolic pathways. The identification of genes encoding the enzymes involved in cytokinin biosynthesis and metabolism facilitated their detailed characterization based on both classical enzyme assays and structural approaches. This review summarizes the present knowledge on key enzymes involved in cytokinin biosynthesis, modifications, and degradation in bacteria, and discusses their catalytic properties in relation to the presence of specific amino acid residues and protein structure.
Collapse
|