1
|
Fasken MB, Leung SW, Cureton LA, Al-Awadi M, Al-Kindy A, van Hoof A, Khoshnevis S, Ghalei H, Al-Maawali A, Corbett AH. A biallelic variant of the RNA exosome gene, EXOSC4, associated with neurodevelopmental defects impairs RNA exosome function and translation. J Biol Chem 2024; 300:107571. [PMID: 39009343 PMCID: PMC11357806 DOI: 10.1016/j.jbc.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The RNA exosome is an evolutionarily conserved complex required for both precise RNA processing and decay. Pathogenic variants in EXOSC genes, which encode structural subunits of this complex, are linked to several autosomal recessive disorders. Here, we describe a missense allele of the EXOSC4 gene that causes a collection of clinical features in two affected siblings. This missense variant (NM_019037.3: exon3:c.560T>C) changes a leucine residue within a conserved region of EXOSC4 to proline (p.Leu187Pro). The two affected individuals show prenatal growth restriction, failure to thrive, global developmental delay, intracerebral and basal ganglia calcifications, and kidney failure. Homozygosity for the damaging variant was identified by exome sequencing with Sanger sequencing to confirm segregation. To explore the functional consequences of this amino acid change, we modeled EXOSC4-L187P in the corresponding budding yeast protein, Rrp41 (Rrp41-L187P). Cells that express Rrp41-L187P as the sole copy of the essential Rrp41 protein show growth defects. Steady-state levels of both Rrp41-L187P and EXOSC4-L187P are decreased compared to controls, and EXOSC4-L187P shows decreased copurification with other RNA exosome subunits. RNA exosome target transcripts accumulate in rrp41-L187P cells, including the 7S precursor of 5.8S rRNA. Polysome profiles show a decrease in actively translating ribosomes in rrp41-L187P cells as compared to control cells with the incorporation of 7S pre-rRNA into polysomes. This work adds EXOSC4 to the structural subunits of the RNA exosome that have been linked to human disease and defines foundational molecular defects that could contribute to the adverse phenotypes caused by EXOSC pathogenic variants.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia USA.
| | - Sara W Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia USA
| | - Lauryn A Cureton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Maha Al-Awadi
- Sultan Qaboos Hospital, Ministry of Health, Salalah, Oman
| | - Adila Al-Kindy
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia USA.
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman; Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman.
| | - Anita H Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia USA.
| |
Collapse
|
2
|
Soukup AA, Bresnick EH. Gata2 noncoding genetic variation as a determinant of hematopoietic stem/progenitor cell mobilization efficiency. Blood Adv 2023; 7:7564-7575. [PMID: 37871305 PMCID: PMC10761364 DOI: 10.1182/bloodadvances.2023011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Germline genetic variants alter the coding and enhancer sequences of GATA2, which encodes a master regulator of hematopoiesis. The conserved murine Gata2 enhancer (+9.5) promotes hematopoietic stem cell (HSC) genesis during embryogenesis. Heterozygosity for a single-nucleotide Ets motif variant in the human enhancer creates a bone marrow failure and acute myeloid leukemia predisposition termed GATA2 deficiency syndrome. The homozygous murine variant attenuates chemotherapy- and transplantation-induced hematopoietic regeneration, hematopoietic stem and progenitor cell (HSPC) response to inflammation, and HSPC mobilization with the therapeutic mobilizer granulocyte colony-stimulating factor (G-CSF). Because a Gata2 +9.5 variant attenuated G-CSF-induced HSPC expansion and mobilization, and HSC transplantation therapies require efficacious mobilization, we tested whether variation affects mechanistically distinct mobilizers or only those operating through select pathways. In addition to affecting G-CSF activity, Gata2 variation compromised IL-8/CXCR2- and VLA-4/VCAM1-induced mobilization. Although the variation did not disrupt HSPC mobilization mediated by plerixafor, which functions through CXCR4/CXCL12, homozygous and heterozygous variation attenuated mobilization efficacy of the clinically used plerixafor/G-CSF combination. The influence of noncoding variation on HSPC mobilization efficacy and function is important clinically because comprehensive noncoding variation is not commonly analyzed in patients. Furthermore, our mobilization-defective system offers unique utility for elucidating fundamental HSPC mechanisms.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
3
|
Fasken MB, Leung SW, Cureton LA, Al-Awadi M, Al-Kindy A, Khoshnevis S, Ghalei H, Al-Maawali A, Corbett AH. A Biallelic Variant of the RNA Exosome Gene EXOSC4 Causes Translational Defects Associated with a Neurodevelopmental Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.24.23297197. [PMID: 37961665 PMCID: PMC10635191 DOI: 10.1101/2023.10.24.23297197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The RNA exosome is an evolutionarily conserved complex required for both precise RNA processing and decay. Mutations in EXOSC genes encoding structural subunits of the complex are linked to several autosomal recessive disorders. Here, we describe a missense allele of the EXOSC4 gene, which causes a collection of clinical features in two affected siblings. This missense mutation (NM_019037.3: exon3:c.560T>C), changes a leucine residue within a highly conserved region of EXOSC4 to proline (p.Leu187Pro). The two affected individuals presented with prenatal growth restriction, failure to thrive, global developmental delay, intracerebral and basal ganglia calcifications, and kidney failure. Homozygosity for the damaging variant was identified through exome sequencing and Sanger sequencing confirmed segregation. To explore the functional consequences of this amino acid change, we modeled EXOSC4-L187P in the corresponding budding yeast protein, Rrp41 (Rrp41-L187P). Cells that express Rrp41-L187P as the sole copy of the essential Rrp41 protein show significant growth defects. The steady-state level of both the Rrp41-L187P and the EXOSC4-L187P proteins is significantly decreased compared to control Rrp41/EXOSC4. Consistent with this observation, targets of the RNA exosome accumulate in rrp41-L187P cells, including the 7S precursor of 5.8S rRNA. Polysome profiles show a significant decrease in translation in rrp41-L187P cells as compared to control cells with apparent incorporation of 7S pre-rRNA into polysomes. Taken together, this work adds the EXOSC4 subunit of the RNA exosome to the structural subunits of this complex that have been linked to human disease and defines foundational molecular defects that could contribute to the adverse growth phenotypes caused by this novel EXOSC4 pathogenic variant.
Collapse
Affiliation(s)
- Milo B. Fasken
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA USA 30322
| | - Sara W. Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA USA 30322
| | - Lauryn A. Cureton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA USA 30322
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322
| | - Maha Al-Awadi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Adila Al-Kindy
- Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA USA 30322
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA USA 30322
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA USA 30322
| |
Collapse
|
4
|
Jin Y, Lu Y, Lin L, Liu C, Ma X, Chen X, Zhou Z, Hu Z, Pu J, Chen G, Deng Q, Jiang L, Li Y, Zhao Y, Wang H, Fu J, Li W, Zhu S. Harnessing endogenous transcription factors directly by small molecules for chemically induced pluripotency inception. Proc Natl Acad Sci U S A 2023; 120:e2215155120. [PMID: 37192170 PMCID: PMC10214147 DOI: 10.1073/pnas.2215155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/27/2023] [Indexed: 05/18/2023] Open
Abstract
Chemistry-alone approach has recently been applied for incepting pluripotency in somatic cells, representing a breakthrough in biology. However, chemical reprogramming is hampered by low efficiency, and the underlying molecular mechanisms remain unclear. Particularly, chemical compounds do not have specific DNA-recognition domains or transcription regulatory domains, and then how do small molecules work as a driving force for reinstating pluripotency in somatic cells? Furthermore, how to efficiently clear materials and structures of an old cell to prepare the rebuilding of a new one? Here, we show that small molecule CD3254 activates endogenous existing transcription factor RXRα to significantly promote mouse chemical reprogramming. Mechanistically, CD3254-RXRα axis can directly activate all the 11 RNA exosome component genes (Exosc1-10 and Dis3) at transcriptional level. Unexpectedly, rather than degrading mRNAs as its substrates, RNA exosome mainly modulates the degradation of transposable element (TE)-associated RNAs, particularly MMVL30, which is identified as a new barrier for cell-fate determination. In turn, MMVL30-mediated inflammation (IFN-γ and TNF-α pathways) is reduced, contributing to the promotion of successful reprogramming. Collectively, our study provides conceptual advances for translating environmental cues into pluripotency inception, particularly, identifies that CD3254-RXRα-RNA exosome axis can promote chemical reprogramming, and suggests modulation of TE-mediated inflammation via CD3254-inducible RNA exosome as important opportunities for controlling cell fates and regenerative medicine.
Collapse
Affiliation(s)
- Yan Jin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yunkun Lu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Lianyu Lin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Xiaojie Ma
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Xi Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Ziyu Zhou
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Zhensheng Hu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Jiaqi Pu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou310052, China
| | - Guo Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Qian Deng
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Liling Jiang
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yuhan Li
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yulong Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Hao Wang
- Hangzhou Women’s Hospital, Prenatal Diagnosis Center, Zhejiang University, Hangzhou310008, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou310052, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Saiyong Zhu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
5
|
Ohguchi Y, Ohguchi H. DIS3: The Enigmatic Gene in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24044079. [PMID: 36835493 PMCID: PMC9958658 DOI: 10.3390/ijms24044079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Recent studies have revealed the genetic aberrations involved in the initiation and progression of various cancers, including multiple myeloma (MM), via next-generation sequencing analysis. Notably, DIS3 mutations have been identified in approximately 10% of patients with MM. Moreover, deletions of the long arm of chromosome 13, that includes DIS3, are present in approximately 40% of patients with MM. Regardless of the high incidence of DIS3 mutations and deletions, their contribution to the pathogenesis of MM has not yet been determined. Herein, we summarize the molecular and physiological functions of DIS3, focusing on hematopoiesis, and discuss the characteristics and potential roles of DIS3 mutations in MM. Recent findings highlight the essential roles of DIS3 in RNA homeostasis and normal hematopoiesis and suggest that the reduced activity of DIS3 may be involved in myelomagenesis by increasing genome instability.
Collapse
Affiliation(s)
- Yasuyo Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
6
|
RNA-regulatory exosome complex suppresses an apoptotic program to confer erythroid progenitor cell survival in vivo. Blood Adv 2022; 7:586-601. [PMID: 36161469 PMCID: PMC9984454 DOI: 10.1182/bloodadvances.2022008481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
The RNA-regulatory exosome complex (EC) posttranscriptionally and cotranscriptionally processes and degrades RNAs in a context-dependent manner. Although the EC functions in diverse cell types, its contributions to stem and progenitor cell development are not well understood. Previously, we demonstrated that the transcriptional regulator of erythrocyte development, GATA1, represses EC subunit genes, and the EC maintains erythroid progenitors in vitro. To determine if this mechanism operates in vivo, we used the hematopoietic-specific Vav1-Cre and "conditional by inversion" mouse system to ablate Exosc3, encoding an EC structural subunit. Although Exosc3C/C Cre+ embryos developed normally until embryonic day 14.5, Exosc3 ablation was embryonic lethal and severely reduced erythromyeloid progenitor activity. RNA sequencing analysis of Exosc3-ablated burst-forming unit-erythroid revealed elevated transcripts encoding multiple proapoptotic factors, and the mutant erythroid progenitors exhibited increased apoptosis. We propose that the EC controls an ensemble of apoptosis-regulatory RNAs, thereby promoting erythroid progenitor survival and developmental erythropoiesis in vivo.
Collapse
|
7
|
Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, Ono Y, Tamamura N, Takahashi K, Wada Y, Mizukami Y, Akimitsu N. RNA Exosome Component EXOSC4 Amplified in Multiple Cancer Types Is Required for the Cancer Cell Survival. Int J Mol Sci 2022; 23:496. [PMID: 35008922 PMCID: PMC8745236 DOI: 10.3390/ijms23010496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The RNA exosome is a multi-subunit ribonuclease complex that is evolutionally conserved and the major cellular machinery for the surveillance, processing, degradation, and turnover of diverse RNAs essential for cell viability. Here we performed integrated genomic and clinicopathological analyses of 27 RNA exosome components across 32 tumor types using The Cancer Genome Atlas PanCancer Atlas Studies' datasets. We discovered that the EXOSC4 gene, which encodes a barrel component of the RNA exosome, was amplified across multiple cancer types. We further found that EXOSC4 alteration is associated with a poor prognosis of pancreatic cancer patients. Moreover, we demonstrated that EXOSC4 is required for the survival of pancreatic cancer cells. EXOSC4 also repressed BIK expression and destabilized SESN2 mRNA by promoting its degradation. Furthermore, knockdown of BIK and SESN2 could partially rescue pancreatic cells from the reduction in cell viability caused by EXOSC4 knockdown. Our study provides evidence for EXOSC4-mediated regulation of BIK and SESN2 mRNA in the survival of pancreatic tumor cells.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Tanzina Tanu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Shuhei Mitsutomi
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Han Han
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Rika Kakisaka
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Nobue Tamamura
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Kenji Takahashi
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yusuke Mizukami
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| |
Collapse
|
8
|
Petit FG, Jamin SP, Kernanec PY, Becker E, Halet G, Primig M. EXOSC10/Rrp6 is essential for the eight-cell embryo/morula transition. Dev Biol 2021; 483:58-65. [PMID: 34965385 DOI: 10.1016/j.ydbio.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 is required for gametogenesis, brain development, erythropoiesis and blood cell enhancer function. The human ortholog is essential for mitosis in cultured cancer cells. Little is known, however, about the role of Exosc10 during embryo development and organogenesis. We generated an Exosc10 knockout model and find that Exosc10-/- mice show an embryonic lethal phenotype. We demonstrate that Exosc10 maternal wild type mRNA is present in mutant oocytes and that the gene is expressed during all stages of early embryogenesis. Furthermore, we observe that EXOSC10 early on localizes to the periphery of nucleolus precursor bodies in blastomeres, which is in keeping with the protein's role in rRNA processing and may indicate a function in the establishment of chromatin domains during initial stages of embryogenesis. Finally, we infer from genotyping data for embryonic days e7.5, e6.5 and e4.5 and embryos cultured in vitro that Exosc10-/- mutants arrest at the eight-cell embryo/morula transition. Our results demonstrate a novel essential role for Exosc10 during early embryogenesis, and they are consistent with earlier work showing that impaired ribosome biogenesis causes a developmental arrest at the morula stage.
Collapse
Affiliation(s)
- Fabrice G Petit
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Soazik P Jamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Pierre-Yves Kernanec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Guillaume Halet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|