1
|
Hu X, Liu J, Xu T, Qin K, Feng Y, Jia Z, Zhao X. Research progress and application of the third-generation sequencing technologies in forensic medicine. Leg Med (Tokyo) 2024; 71:102532. [PMID: 39504855 DOI: 10.1016/j.legalmed.2024.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 11/08/2024]
Abstract
Third-generation sequencing technologies, exemplified by single-molecule real-time sequencing and nanopore sequencing, provide a constellation of advantages, including long read lengths, high throughput, real-time sequencing capabilities, and remarkable portability. These cutting-edge methodologies have provided new tools for genomic analysis in forensic medicine. To gain a comprehensive understanding of the current applications and cutting-edge trends of third-generation sequencing technologies in forensic medicine, this study retrieved relevant literature from the China National Knowledge Infrastructure (CNKI) database and the Web of Science (WOS) database. Using bibliometric software CiteSpace 6.1.R6, the study visualized publication volume, countries, and keywords related to the application of third-generation sequencing technologies in forensic medicine from 2014 to 2023. The review then summarized the foundational principles, characteristics, and promising prospects of third-generation sequencing technologies in forensic medicine. Notably, it highlights their remarkable contributions in forensic individual identification, body fluid identification, forensic epigenetic analysis, microbial analysis and forensic species identification.
Collapse
Affiliation(s)
- Xiaoxin Hu
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jinjie Liu
- Criminal Investigation Corps of Beijing Public Security Bureau, Beijing 100054, China
| | - Tingyu Xu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Kaiyue Qin
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Yunpeng Feng
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhenjun Jia
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
2
|
Luo X, Zhang L, Li Y, Li C, Sun G, Zhang C, Fu Y, Lv H, Liu M, Cui H, Cai D, Zou L, Ma J, Xiao F. Full-Length Immune Repertoire Reconstruction and Profiling at the Transcriptome Level Using Long-Read Sequencing. Clin Chem 2024:hvae138. [PMID: 39288005 DOI: 10.1093/clinchem/hvae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Due to the diversity of the immune repertoire (IR), reconstructing full-length IR using traditional short-read sequencing has proven challenging. METHODS A full-length IR sequencing (FLIRseq) work flow was developed with linear rolling circle amplification and nanopore sequencing. Its accuracy and quantification ability were verified by plasmid mixtures and commercial B-cell receptor/T-cell receptor sequencing (BCR/TCR-seq) based on short reads. IRs in tissues and the peripheral blood from 8 patients with acute lymphoblastic leukemia, 3 patients with allergic diseases, 4 patients with psoriasis, and 5 patients with prostate cancer were analyzed using FLIRseq. RESULTS FLIRseq reads had lower mismatch rates and gap rates, and higher identify rates than nanopore reads (all P < 2.2 × -16). The relative quantification of components by FLIRseq was consistent with the actual quantification (P > 0.05). FLIRseq had superiority over BCR/TCR-seq, providing the long complementarity-determining region 3, B-cell isotype, and the rarely used V gene sequence. FLIRseq observed an increase in clonotype diversity (P < 0.05) and a decrease in the percentage of abnormal BCRs/TCRs in patients with leukemia in remission. For patients with allergic diseases or psoriasis, FLIRseq provided direct insights into V(D)J recombination and specific immunoglobulin classes. Compared with that in prostate cancer tissues, the full-length V segment of the biased T-cell receptor β chain from lymphocytes in psoriatic tissues showed a more consistent AlphaFold2-predicted protein structure (P < 0.05). CONCLUSIONS FLIRseq enables unbiased and comprehensive analyses of direct V(D)J recombination and immunoglobulin classes, thereby contributing to characterizing pathogenic mechanisms, monitoring minimal residual disease, and customizing adoptive cell therapy.
Collapse
Affiliation(s)
- Xuanmei Luo
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifei Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Fu
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Haozhen Lv
- Department of Urology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongyuan Cui
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Dali Cai
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
3
|
Kolesnikov A, Cook D, Nattestad M, Brambrink L, McNulty B, Gorzynski J, Goenka S, Ashley EA, Jain M, Miga KH, Paten B, Chang PC, Carroll A, Shafin K. Local read haplotagging enables accurate long-read small variant calling. Nat Commun 2024; 15:5907. [PMID: 39003259 PMCID: PMC11246426 DOI: 10.1038/s41467-024-50079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/28/2024] [Indexed: 07/15/2024] Open
Abstract
Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy. However, using local haplotype information creates an overhead as variant calling needs to be performed multiple times which ultimately makes it difficult to extend to new data types and platforms as they get introduced. In this work, we have developed a local haplotype approximate method that enables state-of-the-art variant calling performance with multiple sequencing platforms including PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of local haplotype approximation simplifies long-read variant calling with DeepVariant.
Collapse
Affiliation(s)
| | - Daniel Cook
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
| | | | | | - Brandy McNulty
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | | | | | | | - Miten Jain
- Northeastern university, Boston, MA, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Pi-Chuan Chang
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
| | - Andrew Carroll
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA.
| | - Kishwar Shafin
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA.
| |
Collapse
|
4
|
Isaac RS, Tullius TW, Hansen KG, Dubocanin D, Couvillion M, Stergachis AB, Churchman LS. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA. Nat Struct Mol Biol 2024; 31:568-577. [PMID: 38347148 PMCID: PMC11370055 DOI: 10.1038/s41594-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
Cellular metabolism relies on the regulation and maintenance of mitochondrial DNA (mtDNA). Hundreds to thousands of copies of mtDNA exist in each cell, yet because mitochondria lack histones or other machinery important for nuclear genome compaction, it remains unresolved how mtDNA is packaged into individual nucleoids. In this study, we used long-read single-molecule accessibility mapping to measure the compaction of individual full-length mtDNA molecules at near single-nucleotide resolution. We found that, unlike the nuclear genome, human mtDNA largely undergoes all-or-none global compaction, with most nucleoids existing in an inaccessible, inactive state. Highly accessible mitochondrial nucleoids are co-occupied by transcription and replication components and selectively form a triple-stranded displacement loop structure. In addition, we showed that the primary nucleoid-associated protein TFAM directly modulates the fraction of inaccessible nucleoids both in vivo and in vitro, acting consistently with a nucleation-and-spreading mechanism to coat and compact mitochondrial nucleoids. Together, these findings reveal the primary architecture of mtDNA packaging and regulation in human cells.
Collapse
Affiliation(s)
- R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas W Tullius
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Katja G Hansen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mary Couvillion
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wang R, Yang Y, Lu T, Cui Y, Li B, Liu X. Circulating cell-free DNA-based methylation pattern in plasma for early diagnosis of esophagus cancer. PeerJ 2024; 12:e16802. [PMID: 38313016 PMCID: PMC10838104 DOI: 10.7717/peerj.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
With the increased awareness of early tumor detection, the importance of detecting and diagnosing esophageal cancer in its early stages has been underscored. Studies have consistently demonstrated the crucial role of methylation levels in circulating cell-free DNA (cfDNA) in identifying and diagnosing early-stage cancer. cfDNA methylation pertains to the methylation state within the genomic scope of cfDNA and is strongly associated with cancer development and progression. Several research teams have delved into the potential application of cfDNA methylation in identifying early-stage esophageal cancer and have achieved promising outcomes. Recent research supports the high sensitivity and specificity of cfDNA methylation in early esophageal cancer diagnosis, providing a more accurate and efficient approach for early detection and improved clinical management. Accordingly, this review aims to present an overview of methylation-based cfDNA research with a focus on the latest developments in the early detection of esophageal cancer. Additionally, this review summarizes advanced analytical technologies for cfDNA methylation that have significantly benefited from recent advancements in separation and detection techniques, such as methylated DNA immunoprecipitation sequencing (MeDIP-seq). Recent findings suggest that biomarkers based on cfDNA methylation may soon find successful applications in the early detection of esophageal cancer. However, large-scale prospective clinical trials are required to identify the potential of these biomarkers.
Collapse
Affiliation(s)
- Rui Wang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yue Yang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianyu Lu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Youbin Cui
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Kolesnikov A, Cook D, Nattestad M, McNulty B, Gorzynski J, Goenka S, Ashley EA, Jain M, Miga KH, Paten B, Chang PC, Carroll A, Shafin K. Local read haplotagging enables accurate long-read small variant calling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556731. [PMID: 37745389 PMCID: PMC10515762 DOI: 10.1101/2023.09.07.556731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford nanopore technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy. However, using local haplotype information creates an overhead as variant calling needs to be performed multiple times which ultimately makes it difficult to extend to new data types and platforms as they get introduced. In this work, we have developed a local haplotype approximate method that enables state-of-the-art variant calling performance with multiple sequencing platforms including PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of local haplotype approximation makes DeepVariant a universal variant calling solution for long-read sequencing platforms.
Collapse
Affiliation(s)
| | - Daniel Cook
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA
| | | | - Brandy McNulty
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA
| | | | | | | | - Miten Jain
- Northeastern university, Boston, MA, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA
| | | | | | | |
Collapse
|
7
|
Chen X, Xu H, Shu X, Song CX. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ 2023:10.1038/s41418-023-01213-1. [PMID: 37658169 DOI: 10.1038/s41418-023-01213-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
Collapse
Affiliation(s)
- Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Xiao Shu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
8
|
Colicchio JM, Amstutz CL, Garcia N, Prabhu KN, Cairns TM, Akman M, Gottilla T, Gollery T, Stricklin SL, Bayer TS. A tool for rapid, automated characterization of population epigenomics in plants. Sci Rep 2023; 13:12915. [PMID: 37591855 PMCID: PMC10435466 DOI: 10.1038/s41598-023-38356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023] Open
Abstract
Epigenetic variation in plant populations is an important factor in determining phenotype and adaptation to the environment. However, while advances have been made in the molecular and computational methods to analyze the methylation status of a given sample of DNA, tools to profile and compare the methylomes of multiple individual plants or groups of plants at high resolution and low cost are lacking. Here, we describe a computational approach and R package (sounDMR) that leverages the benefits of long read nanopore sequencing to enable robust identification of differential methylation from complex experimental designs, as well as assess the variability within treatment groups and identify individual plants of interest. We demonstrate the utility of this approach by profiling a population of Arabidopsis thaliana exposed to a demethylating agent and identify genomic regions of high epigenetic variability between individuals. Given the low cost of nanopore sequencing devices and the ease of sample preparation, these results show that high resolution epigenetic profiling of plant populations can be made more broadly accessible in plant breeding and biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | - Melis Akman
- Sound Agriculture Company, Emeryville, CA, USA
| | | | | | | | | |
Collapse
|
9
|
García-Campa L, Valledor L, Pascual J. The Integration of Data from Different Long-Read Sequencing Platforms Enhances Proteoform Characterization in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:511. [PMID: 36771596 PMCID: PMC9920879 DOI: 10.3390/plants12030511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The increasing availability of massive omics data requires improving the quality of reference databases and their annotations. The combination of full-length isoform sequencing (Iso-Seq) with short-read transcriptomics and proteomics has been successfully used for increasing proteoform characterization, which is a main ongoing goal in biology. However, the potential of including Oxford Nanopore Technologies Direct RNA Sequencing (ONT-DRS) data has not been explored. In this paper, we analyzed the impact of combining Iso-Seq- and ONT-DRS-derived data on the identification of proteoforms in Arabidopsis MS proteomics data. To this end, we selected a proteomics dataset corresponding to senescent leaves and we performed protein searches using three different protein databases: AtRTD2 and AtRTD3, built from the homonymous transcriptomes, regarded as the most complete and up-to-date available for the species; and a custom hybrid database combining AtRTD3 with publicly available ONT-DRS transcriptomics data generated from Arabidopsis leaves. Our results show that the inclusion and combination of long-read sequencing data from Iso-Seq and ONT-DRS into a proteogenomic workflow enhances proteoform characterization and discovery in bottom-up proteomics studies. This represents a great opportunity to further investigate biological systems at an unprecedented scale, although it brings challenges to current protein searching algorithms.
Collapse
Affiliation(s)
- Lara García-Campa
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| | - Jesús Pascual
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
10
|
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Bacterial DNA methyltransferase: A key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 2023; 14:1129437. [PMID: 37032876 PMCID: PMC10073500 DOI: 10.3389/fmicb.2023.1129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Epigenetics modulates expression levels of various important genes in both prokaryotes and eukaryotes. These epigenetic traits are heritable without any change in genetic DNA sequences. DNA methylation is a universal mechanism of epigenetic regulation in all kingdoms of life. In bacteria, DNA methylation is the main form of epigenetic regulation and plays important roles in affecting clinically relevant phenotypes, such as virulence, host colonization, sporulation, biofilm formation et al. In this review, we survey bacterial epigenomic studies and focus on the recent developments in the structure, function, and mechanism of several highly conserved bacterial DNA methylases. These methyltransferases are relatively common in bacteria and participate in the regulation of gene expression and chromosomal DNA replication and repair control. Recent advances in sequencing techniques capable of detecting methylation signals have enabled the characterization of genome-wide epigenetic regulation. With their involvement in critical cellular processes, these highly conserved DNA methyltransferases may emerge as promising targets for developing novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Wang
- Key Laboratory of Livestock and Poultry Provenance Disease Research in Mianyang, Sichuan, China
| | - Longgui He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|