1
|
Zhong L, Zheng J, Wang Z, Lin L, Cong Q, Qiao L. Metabolomics and proteomics reveal the inhibitory effect of Lactobacillus crispatus on cervical cancer. Talanta 2025; 281:126839. [PMID: 39265423 DOI: 10.1016/j.talanta.2024.126839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cervical cancer remains a significant global health issue due to its high morbidity and mortality rates. Recently, Lactobacillus crispatus has been recognized for its crucial role in maintaining cervical health. While some studies have explored the use of L. crispatus to mitigate cervical cancer, the underlying mechanisms remain largely unknown. In this study, we employed non-targeted proteomics and metabolomics to investigate how L. crispatus affects the growth of cervical cancer cells (SiHa) and normal cervical cells (Ect1/E6E7). Our findings indicated that the inhibitory effect of L. crispatus on SiHa cells was associated with various biological processes, notably the ferroptosis pathway. Specifically, L. crispatus was found to regulate the expression of proteins such as HMOX1, SLC39A14, VDAC2, ACSL4, and LPCAT3 by SiHa cells, which are closely related to ferroptosis. Additionally, it activated the tricarboxylic acid (TCA) cycle in SiHa cells, leading to increased levels of reactive oxygen species (ROS) and lipid peroxides (LPO). These results revealed the therapeutic potential of L. crispatus in targeting the ferroptosis pathway for cervical cancer treatment, opening new avenues for research and therapy in cervical cancer.
Collapse
Affiliation(s)
- Lingyan Zhong
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Jianxujie Zheng
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Zengyu Wang
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| | - Qing Cong
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
2
|
Kim Y, Kokkinias K, Sabag-Daigle A, Leleiwi I, Borton M, Shaffer M, Baniasad M, Daly R, Ahmer BMM, Wrighton KC, Wysocki VH. Time-Resolved Multiomics Illustrates Host and Gut Microbe Interactions during Salmonella Infection. J Proteome Res 2024; 23:4864-4877. [PMID: 39374136 DOI: 10.1021/acs.jproteome.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Salmonella infection, also known as Salmonellosis, is one of the most common food-borne illnesses. Salmonella infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, Salmonella competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between Salmonella and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a Salmonella infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during Salmonella infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of Salmonella infection (days -2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.
Collapse
Affiliation(s)
- Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ikaia Leleiwi
- Department of Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mikayla Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rebecca Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Rivera ES, LeBrun ES, Breidenbach JD, Solomon E, Sanders CK, Harvey T, Tseng CY, Thornhill MG, Blackwell BR, McBride EM, Luchini KA, Alvarez M, Williams RF, Norris JL, Mach PM, Glaros TG. Feature-agnostic metabolomics for determining effective subcytotoxic doses of common pesticides in human cells. Toxicol Sci 2024; 202:85-95. [PMID: 39110521 DOI: 10.1093/toxsci/kfae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Although classical molecular biology assays can provide a measure of cellular response to chemical challenges, they rely on a single biological phenomenon to infer a broader measure of cellular metabolic response. These methods do not always afford the necessary sensitivity to answer questions of subcytotoxic effects, nor do they work for all cell types. Likewise, boutique assays such as cardiomyocyte beat rate may indirectly measure cellular metabolic response, but they too, are limited to measuring a specific biological phenomenon and are often limited to a single cell type. For these reasons, toxicological researchers need new approaches to determine metabolic changes across various doses in differing cell types, especially within the low-dose regime. The data collected herein demonstrate that LC-MS/MS-based untargeted metabolomics with a feature-agnostic view of the data, combined with a suite of statistical methods including an adapted environmental threshold analysis, provides a versatile, robust, and holistic approach to directly monitoring the overall cellular metabolomic response to pesticides. When employing this method in investigating two different cell types, human cardiomyocytes and neurons, this approach revealed separate subcytotoxic metabolomic responses at doses of 0.1 and 1 µM of chlorpyrifos and carbaryl. These findings suggest that this agnostic approach to untargeted metabolomics can provide a new tool for determining effective dose by metabolomics of chemical challenges, such as pesticides, in a direct measurement of metabolomic response that is not cell type-specific or observable using traditional assays.
Collapse
Affiliation(s)
- Emilio S Rivera
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Erick S LeBrun
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Joshua D Breidenbach
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Emilia Solomon
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Claire K Sanders
- Microbial and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Tara Harvey
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Chi Yen Tseng
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - M Grace Thornhill
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Brett R Blackwell
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Ethan M McBride
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Kes A Luchini
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Marc Alvarez
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Robert F Williams
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Jeremy L Norris
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Phillip M Mach
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| | - Trevor G Glaros
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 84545, United States
| |
Collapse
|
4
|
Culp EJ, Nelson NT, Verdegaal AA, Goodman AL. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 2024; 187:6327-6345.e20. [PMID: 39321800 PMCID: PMC11531382 DOI: 10.1016/j.cell.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions may contribute to variation in their health consequences. To mechanistically understand these relationships, here we map interactions between ∼150 small-molecule dietary xenobiotics and the gut microbiome, including the impacts of these compounds on community composition, the metabolic activities of human gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can toxify and detoxify these compounds, producing emergent interactions that explain community-specific remodeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in community remodeling by resveratrol. Together, these results systematically map interactions between dietary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differences in microbiome response to diet.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Nora T Nelson
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Hoogerland L, van den Berg SPH, Suo Y, Moriuchi YW, Zoumaro-Djayoon A, Geurken E, Yang F, Bruggeman F, Burkart MD, Bokinsky G. A temperature-sensitive metabolic valve and a transcriptional feedback loop drive rapid homeoviscous adaptation in Escherichia coli. Nat Commun 2024; 15:9386. [PMID: 39477942 PMCID: PMC11525553 DOI: 10.1038/s41467-024-53677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
All free-living microorganisms homeostatically maintain the fluidity of their membranes by adapting lipid composition to environmental temperatures. Here, we quantify enzymes and metabolic intermediates of the Escherichia coli fatty acid and phospholipid synthesis pathways, to describe how this organism measures temperature and restores optimal membrane fluidity within a single generation after a temperature shock. A first element of this regulatory system is a temperature-sensitive metabolic valve that allocates flux between the saturated and unsaturated fatty acid synthesis pathways via the branchpoint enzymes FabI and FabB. A second element is a transcription-based negative feedback loop that counteracts the temperature-sensitive valve. The combination of these elements accelerates membrane adaptation by causing a transient overshoot in the synthesis of saturated or unsaturated fatty acids following temperature shocks. This strategy is comparable to increasing the temperature of a water bath by adding water that is excessively hot rather than adding water at the desired temperature. These properties are captured in a mathematical model, which we use to show how hard-wired parameters calibrate the system to generate membrane compositions that maintain constant fluidity across temperatures. We hypothesize that core features of the E. coli system will prove to be ubiquitous features of homeoviscous adaptation systems.
Collapse
Affiliation(s)
- Loles Hoogerland
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Pieter Hendrik van den Berg
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Immunopathology, Sanquin Research Amsterdam, Amsterdam, The Netherlands
| | - Yixing Suo
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Yuta W Moriuchi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Adja Zoumaro-Djayoon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Esther Geurken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Flora Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Frank Bruggeman
- Systems Biology Lab, AIMMS/ALIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
6
|
Simone M, Iorio M, Monciardini P, Santini M, Cantù N, Tocchetti A, Serina S, Brunati C, Vernay T, Gentile A, Aracne M, Cozzi M, van der Hooft JJJ, Sosio M, Donadio S, Maffioli SI. The Molecules Gateway: A Homogeneous, Searchable Database of 150k Annotated Molecules from Actinomycetes. JOURNAL OF NATURAL PRODUCTS 2024. [PMID: 39455415 DOI: 10.1021/acs.jnatprod.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Natural products are a sustainable resource for drug discovery, but their identification in complex mixtures remains a daunting task. We present an automated pipeline that compares, harmonizes and ranks the annotations of LC-HRMS data by different tools. When applied to 7,400 extracts derived from 6,566 strains belonging to 86 actinomycete genera, it yielded 150,000 molecules after processing over 50 million MS features. The web-based Molecules Gateway provides a highly interactive access to experimental and calculated data for these molecules, along with the metadata related to extracts and producer strains. We show how the Molecules Gateway can be used to rapidly identify known hard to find microbial products, unreported analogs of known families and not yet described metabolites. The Molecules Gateway, which complements available repositories, contains annotated MS data, both acquired and computationally processed under an identical workflow, making it suitable for global analyses which reveal a large and untapped chemical diversity afforded by actinomycetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thomas Vernay
- NAICONS SRL, 20139 Milan, Italy
- University of Milano-Bicocca, 20126 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Xing S, Charron-Lamoureux V, El Abiead Y, Dorrestein PC. Annotating full-scan MS data using tandem MS libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618269. [PMID: 39464143 PMCID: PMC11507738 DOI: 10.1101/2024.10.14.618269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Full-scan mass spectrometry (MS) data from both liquid chromatography (LC) and MS imaging capture multiple ion forms, including their in-source fragments. Here we leverage such fragments to structurally annotate full-scan data from LC-MS or MS imaging by matching against peak intensity scaled tandem MS spectral libraries using precursor-tolerant reverse match scoring. Applied to inflammatory bowel disease and imaging datasets, we show the approach facilitates re-analyses of data in public repositories.
Collapse
Affiliation(s)
- Shipei Xing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vincent Charron-Lamoureux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Price E, Feyertag F, Evans T, Miskin J, Mitrophanous K, Dikicioglu D. What is the real value of omics data? Enhancing research outcomes and securing long-term data excellence. Nucleic Acids Res 2024:gkae901. [PMID: 39417504 DOI: 10.1093/nar/gkae901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
A wealth of high-throughput biological data, of which omics constitute a significant fraction, has been made publicly available in repositories over the past decades. These data come in various formats and cover a range of species and research areas providing insights into the complexities of biological systems; the public repositories hosting these data serve as multifaceted resources. The potentially greater value of these data lies in their secondary utilization as the deployment of data science and artificial intelligence in biology advances. Here, we critically evaluate challenges in secondary data use, focusing on omics data of human embryonic kidney cell lines available in public repositories. The emerging issues are obstacles faced by secondary data users across diverse domains as they concern platforms and repositories, which accept deposition of data irrespective of their species type. The evolving landscape of data-driven research in biology prompts re-evaluation of open access data curation and submission procedures to ensure that these challenges do not impede novel research opportunities through data exploitation. This paper aims to draw attention to widespread issues with data reporting and encourages data owners to meticulously curate submissions to maximize not only their immediate research impact but also the long-term legacy of datasets.
Collapse
Affiliation(s)
- Eva Price
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Felix Feyertag
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Thomas Evans
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - James Miskin
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | | | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
Liu Y, Yoshizawa AC, Ling Y, Okuda S. Insights into predicting small molecule retention times in liquid chromatography using deep learning. J Cheminform 2024; 16:113. [PMID: 39375739 PMCID: PMC11460055 DOI: 10.1186/s13321-024-00905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
In untargeted metabolomics, structures of small molecules are annotated using liquid chromatography-mass spectrometry by leveraging information from the molecular retention time (RT) in the chromatogram and m/z (formerly called ''mass-to-charge ratio'') in the mass spectrum. However, correct identification of metabolites is challenging due to the vast array of small molecules. Therefore, various in silico tools for mass spectrometry peak alignment and compound prediction have been developed; however, the list of candidate compounds remains extensive. Accurate RT prediction is important to exclude false candidates and facilitate metabolite annotation. Recent advancements in artificial intelligence (AI) have led to significant breakthroughs in the use of deep learning models in various fields. Release of a large RT dataset has mitigated the bottlenecks limiting the application of deep learning models, thereby improving their application in RT prediction tasks. This review lists the databases that can be used to expand training datasets and concerns the issue about molecular representation inconsistencies in datasets. It also discusses the application of AI technology for RT prediction, particularly in the 5 years following the release of the METLIN small molecule RT dataset. This review provides a comprehensive overview of the AI applications used for RT prediction, highlighting the progress and remaining challenges. SCIENTIFIC CONTRIBUTION: This article focuses on the advancements in small molecule retention time prediction in computational metabolomics over the past five years, with a particular emphasis on the application of AI technologies in this field. It reviews the publicly available datasets for small molecule retention time, the molecular representation methods, the AI algorithms applied in recent studies. Furthermore, it discusses the effectiveness of these models in assisting with the annotation of small molecule structures and the challenges that must be addressed to achieve practical applications.
Collapse
Affiliation(s)
- Yuting Liu
- Medical AI Center, Niigata University School of Medicine, Niigata City, Niigata, 951-8514, Japan
| | - Akiyasu C Yoshizawa
- Medical AI Center, Niigata University School of Medicine, Niigata City, Niigata, 951-8514, Japan
| | - Yiwei Ling
- Medical AI Center, Niigata University School of Medicine, Niigata City, Niigata, 951-8514, Japan
| | - Shujiro Okuda
- Medical AI Center, Niigata University School of Medicine, Niigata City, Niigata, 951-8514, Japan.
| |
Collapse
|
10
|
Sykes EME, Mateo-Estrada V, Muzaleva A, Zhanel G, Dettman J, Chapados J, Gerdis S, Akineden Ö, Castillo-Ramírez S, Khan IUH, Kumar A. Characterization of a colistin resistant, hypervirulent hospital isolate of Acinetobacter courvalinii from Canada. Eur J Clin Microbiol Infect Dis 2024; 43:1939-1949. [PMID: 39073669 DOI: 10.1007/s10096-024-04873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Non-baumannii Acinetobacter spp. are becoming more prevalent in clinical settings including those that present resistance to last-resort antibiotics such as colistin. AB222-IK40 is an Acinetobacter courvalinii strain isolated from the Ottawa Hospital Research Institute located in Ottawa, Canada. To our knowledge, it is the first report of clinical A. courvalinii in Canada. Based on the susceptibility profile, AB222-IK40 is resistant to colistin and non-susceptible to ertapenem. Whole-genome sequencing allowed for genomic investigation into colistin resistance mechanisms. No previously identified mechanism(s) were observed, but a mobile colistin resistance (mcr)-like gene and a UDP-glucose dehydrogenase gene were identified. Based on phylogenomic analyses, the mcr-like gene is an intrinsic phosphoethanolamine transferase. This gene family is implicated in one of the many mechanisms responsible for colistin resistance in Acinetobacter baumannii as well as Acinetobacter modestus. UDP-glucose dehydrogenase is involved in colistin resistance in Enterobacterales and has been shown to be involved in capsule formation in A. baumannii. Global lipidomics revealed greater abundance of phosphatidyl-myo-inositol and lyso-phosphatidyl ethanolamine moieties in the membrane of A. courvalinii than in A. baumannii. Lipidomic profiles showed differences that were probably responsible for the colistin resistance phenotype in AB222-IK40. This isolate was also hypervirulent based on survival assays in Galleria mellonella. As this is the first report of A. courvalinii from a hospital in Canada, this species may be an emerging clinical pathogen, and therefore, it is important to understand this mechanism of its colistin resistance and hypervirulence.
Collapse
Affiliation(s)
- Ellen M E Sykes
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Anna Muzaleva
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Jeremy Dettman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Suzanne Gerdis
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Ömer Akineden
- Dairy Sciences, Institute of Veterinary Food Science, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
11
|
Xu J, Liu Y, Cao X, Guo X, Wang J, Liu Y, Zhou H, Ma B, Peng S. Modulation of liver metabolism and gut microbiota by Alhagi-honey alleviated heat stress-induced liver damage. STRESS BIOLOGY 2024; 4:41. [PMID: 39347852 PMCID: PMC11442815 DOI: 10.1007/s44154-024-00178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/26/2024] [Indexed: 10/01/2024]
Abstract
Alhagi-honey (AH) is a well-established traditional ethnic medicine with advantageous effects against diarrhea and headaches. We aimed to explore the preventive effect of AH on liver damage induced by heat stress (HS) and its underlying mechanism. HS models were established by thermostat, and mice were treated at 39 ℃ for 10 h, lasting for 7 days. Hematoxylin-eosin (H&E) staining and Periodic Acid-Schiff (PAS) staining were used for histological observation, and transmission electron microscopy (TEM) was used for ultrastructure examination of hepatocytes. Gut microbiota (GM) composition and liver metabolites were respectively analyzed by 16S rRNA sequencing and non-targeted metabolome sequencing. AH pretreatment alleviated liver damage caused by heat stress in mice. The main manifestation was that AH alleviated serum aspartate transferase (AST) and aspartate transaminase (ALT). It was found that AH improved symptoms of hepatocyte damage. In addition, the relative abundance of f_Rikenellaceae, g_Incertae_Sedis and s_Staphylococcus_Orisratti, g_Lachnoclostridium, g_GCA-900066575, and s_Alistipes_inops were modified by AH and these bacterial genera showed association with 6 metabolites (2- (3,4-dihydroxyphenyl) acetamide, 3-hydroxy-3-methylpentanedioic acid, PC (17:0/17:1), Y-L-Glutamy-L-glutamic acid, L-Isoleucine, 5-Methyluridine, 8,8-dimethyl-2-phenyl-4H,8H-pyrano [2, 3-h] chromen-4-one). The Pearson analysis also showed a strong correlation between these microbes and 2 risk indicators (AST and ALT) of liver damage. AH alleviated HS-induced liver damage by regulating liver metabolism and maintaining normal GM. It demonstrated that AH held potential as a prophylactic drug for the prevention of HS-induced liver damage.
Collapse
Affiliation(s)
- Jing Xu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yundie Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xuanhong Cao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xinrui Guo
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yang Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Hongda Zhou
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Sha Peng
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Pak HH, Grossberg AN, Sanderfoot RR, Babygirija R, Green CL, Koller M, Dzieciatkowska M, Paredes DA, Lamming DW. Non-canonical metabolic and molecular effects of calorie restriction are revealed by varying temporal conditions. Cell Rep 2024; 43:114663. [PMID: 39167490 PMCID: PMC11427179 DOI: 10.1016/j.celrep.2024.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Calorie restriction (CR) extends lifespan and healthspan in diverse species. Comparing ad libitum- and CR-fed mice is challenging due to their significantly different feeding patterns, with CR-fed mice consuming their daily meal in 2 h and then subjecting themselves to a prolonged daily fast. Here, we examine how ad libitum- and CR-fed mice respond to tests performed at various times and fasting durations and find that the effects of CR-insulin sensitivity, circulating metabolite levels, and mechanistic target of rapamycin 1 (mTORC1) activity-result from the specific temporal conditions chosen, with CR-induced improvements in insulin sensitivity observed only after a prolonged fast, and the observed differences in mTORC1 activity between ad libitum- and CR-fed mice dependent upon both fasting duration and the specific tissue examined. Our results demonstrate that much of our understanding of the effects of CR are related to when, relative to feeding, we choose to examine the mice.
Collapse
Affiliation(s)
- Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison N Grossberg
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA; Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Rachel R Sanderfoot
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mikaela Koller
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Daniel A Paredes
- Department of Biological Sciences, University of Denver, Denver, CO, USA; Department of Electrical and Computer Engineering, University of Denver, Denver, CO, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Xue J, Li S, Wang L, Zhao Y, Zhang L, Zheng Y, Zhang W, Chen Z, Jiang T, Sun Y. Enhanced fatty acid biosynthesis by Sigma28 in stringent responses contributes to multidrug resistance and biofilm formation in Helicobacter pylori. Antimicrob Agents Chemother 2024; 68:e0085024. [PMID: 39046242 PMCID: PMC11373199 DOI: 10.1128/aac.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
The metabolic state of bacteria significantly contributes to their resistance to antibiotics; however, the specific metabolic mechanisms conferring antimicrobial resistance in Helicobacter pylori remain largely understudied. Employing transcriptomic and non-targeted metabolomics, we characterized the metabolic reprogramming of H. pylori when challenged with antibiotic agents. We observed a notable increase in both genetic and key proteomic components involved in fatty acid biosynthesis. Inhibition of this pathway significantly enhanced the antibiotic susceptibility of the sensitive and multidrug-resistant H. pylori strains while also disrupting their biofilm-forming capacities. Further analysis revealed that antibiotic treatment induced a stringent response, triggering the expression of the hp0560-hp0557 operon regulated by Sigma28 (σ28). This activation in turn stimulated the fatty acid biosynthetic pathway, thereby enhancing the antibiotic tolerance of H. pylori. Our findings reveal a novel adaptive strategy employed by H. pylori to withstand antibiotic stress.
Collapse
Affiliation(s)
- Junyuan Xue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Shutong Li
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yican Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wenxin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Fitz V, Panzenboeck L, Schoeny H, Foels E, Koellensperger G. Isotope dilution with isotopically labeled biomass: An effective alternative for quantitative metabolomics. Anal Chim Acta 2024; 1318:342909. [PMID: 39067910 DOI: 10.1016/j.aca.2024.342909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND State-of-the-art quantitative metabolomics relies on isotope dilution using internal standards (IS) derived from fully 13C labeled biomass. By spiking samples and external standards with known amounts of IS, the spike characterization demands are kept to a minimum. In fact, it is sufficient to experimentally assess the isotopic enrichment of the IS. This study develops the yeast derived IS toolbox further, (1) by characterizing the concentration levels of hydrophilic metabolites in a yeast fermentation batch and (2) by exploring the analytical figures of merit of one-point IS versus multipoint external calibration using IS, the established gold-standard for quantitative metabolomics. RESULTS Independent reverse isotope dilution experiments using different chromatographic methods over a period of several months, delivered a list of 83 13C-labeled metabolites with fully characterized concentration and their uncertainty, covering 5 orders of magnitude, from the nanomolar to the low millimolar range. The 13C-labeled yeast-derived IS showed excellent intermediate stability with 92 % of molecules showing inter-method RSDs ≤30 % (75 % of molecules showed RSDs ≤15 %) over a timeframe of five months. One-point internal standardization with the characterized labeled biomass achieved figures of merit equivalent to multipoint calibrations for the majority of metabolites. SIGNIFICANCE The proposed calibration workflow rationalizes time and standard expenditure and is particularly beneficial for laboratories dealing with wide-target assays and small analysis batches. The present assessment serves as a seminal study for further developments of the concept towards absolute quantification from archive high-resolution MS data of U13C-biomass-spiked samples and the implementation of quick biomass recalibration with each experiment, promising seamless transition between internal standards derived from different fermentation batches.
Collapse
Affiliation(s)
- Veronika Fitz
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Waehringer Str. 42, 1090, Vienna, Austria
| | - Lisa Panzenboeck
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Waehringer Str. 42, 1090, Vienna, Austria
| | - Harald Schoeny
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria
| | - Elisabeth Foels
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Waehringer Str. 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- University of Vienna, Faculty of Chemistry, Institute of Analytical Chemistry, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria; Chemistry Meets Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Hellweg L, Pfeifer M, Tarnawski M, Thing-Teoh S, Chang L, Bergner A, Kress J, Hiblot J, Wiedmer T, Superti-Furga G, Reinhardt J, Johnsson K, Leippe P. AspSnFR: A genetically encoded biosensor for real-time monitoring of aspartate in live cells. Cell Chem Biol 2024; 31:1529-1541.e12. [PMID: 38806058 DOI: 10.1016/j.chembiol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Aspartate is crucial for nucleotide synthesis, ammonia detoxification, and maintaining redox balance via the malate-aspartate-shuttle (MAS). To disentangle these multiple roles of aspartate metabolism, tools are required that measure aspartate concentrations in real time and in live cells. We introduce AspSnFR, a genetically encoded green fluorescent biosensor for intracellular aspartate, engineered through displaying and screening biosensor libraries on mammalian cells. In live cells, AspSnFR is able to precisely and quantitatively measure cytosolic aspartate concentrations and dissect its production from glutamine. Combining high-content imaging of AspSnFR with pharmacological perturbations exposes differences in metabolic vulnerabilities of aspartate levels based on nutrient availability. Further, AspSnFR facilitates tracking of aspartate export from mitochondria through SLC25A12, the MAS' key transporter. We show that SLC25A12 is a rapidly responding and direct route to couple Ca2+ signaling with mitochondrial aspartate export. This establishes SLC25A12 as a crucial link between cellular signaling, mitochondrial respiration, and metabolism.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Heidelberg University, Heidelberg, Germany
| | - Martin Pfeifer
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Shao Thing-Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lena Chang
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jana Kress
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jürgen Reinhardt
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
16
|
Chaleckis R, Ito Y, Wasada H, Wheelock CE, Oishi H, Tomizawa M, Kamijima M. Fungicide Metabolite MS2 Spectral Libraries for Comprehensive Human Biomonitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18247-18256. [PMID: 39101478 DOI: 10.1021/acs.jafc.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Fungicides undergo rapid metabolism and are excreted in the urine. There are few methods for screening these ubiquitous compounds, which have a high potential for human exposure. High-resolution mass spectrometry (HRMS) is a suitable technique to assess fungicide exposures; however, there is a lack of spectral libraries for fungicide annotation and in particular for downstream metabolites. We created spectral libraries for 32 fungicides for suspect screening. Fungicide standards were administered to mice, and 24-h urine was analyzed using hydrophilic interaction and reversed-phase chromatography coupled to hybrid quadrupole-orbitrap mass spectrometry. Suspect metabolite MS2 spectra for library creation were selected based on the ratio of exposed-to-control mouse urine. MS2 libraries were applied to urine collected from female university students (n = 73). Several tetraconazole and tebuconazole metabolites were detected in 3% (2/73) of the samples. The creation of comprehensive suspect screening MS2 libraries is a useful tool to detect fungicide exposure for human biomonitoring.
Collapse
Affiliation(s)
- Romanas Chaleckis
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hitomi Wasada
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Motohiro Tomizawa
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
17
|
Martinez K, Agirre J, Akune Y, Aoki-Kinoshita KF, Arighi C, Axelsen KB, Bolton E, Bordeleau E, Edwards NJ, Fadda E, Feizi T, Hayes C, Ives CM, Joshi HJ, Krishna Prasad K, Kossida S, Lisacek F, Liu Y, Lütteke T, Ma J, Malik A, Martin M, Mehta AY, Neelamegham S, Panneerselvam K, Ranzinger R, Ricard-Blum S, Sanou G, Shanker V, Thomas PD, Tiemeyer M, Urban J, Vita R, Vora J, Yamamoto Y, Mazumder R. Functional implications of glycans and their curation: insights from the workshop held at the 16th Annual International Biocuration Conference in Padua, Italy. Database (Oxford) 2024; 2024:baae073. [PMID: 39137905 PMCID: PMC11321244 DOI: 10.1093/database/baae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Dynamic changes in protein glycosylation impact human health and disease progression. However, current resources that capture disease and phenotype information focus primarily on the macromolecules within the central dogma of molecular biology (DNA, RNA, proteins). To gain a better understanding of organisms, there is a need to capture the functional impact of glycans and glycosylation on biological processes. A workshop titled "Functional impact of glycans and their curation" was held in conjunction with the 16th Annual International Biocuration Conference to discuss ongoing worldwide activities related to glycan function curation. This workshop brought together subject matter experts, tool developers, and biocurators from over 20 projects and bioinformatics resources. Participants discussed four key topics for each of their resources: (i) how they curate glycan function-related data from publications and other sources, (ii) what type of data they would like to acquire, (iii) what data they currently have, and (iv) what standards they use. Their answers contributed input that provided a comprehensive overview of state-of-the-art glycan function curation and annotations. This report summarizes the outcome of discussions, including potential solutions and areas where curators, data wranglers, and text mining experts can collaborate to address current gaps in glycan and glycosylation annotations, leveraging each other's work to improve their respective resources and encourage impactful data sharing among resources. Database URL: https://wiki.glygen.org/Glycan_Function_Workshop_2023.
Collapse
Affiliation(s)
- Karina Martinez
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 I St. NW, Washington, DC 20052, United States
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Yukie Akune
- The Glycosciences Laboratory, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Kiyoko F Aoki-Kinoshita
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Cecilia Arighi
- Department of Computer and Information Sciences, University of Delaware, 18 Amstel Ave, Newark, DE 19716, United States
| | - Kristian B Axelsen
- Swiss-Prot Group, Swiss Institute of Bioinformatics (SIB), CMU, 1 rue Michel Servet, Geneva 4 1211, Switzerland
| | - Evan Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Emily Bordeleau
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nathan J Edwards
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 2115 Wisconsin Ave NW, Washington, DC 20007, United States
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Kilcock Road, Maynooth, Co. Kildare W23 AH3Y, Ireland
| | - Ten Feizi
- The Glycosciences Laboratory, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics (SIB), route de Drize 7, Geneva CH-1227, Switzerland
| | - Callum M Ives
- Department of Chemistry and Hamilton Institute, Maynooth University, Kilcock Road, Maynooth, Co. Kildare W23 AH3Y, Ireland
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Khakurel Krishna Prasad
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, Dolní Břežany 25241, Czech Republic
| | - Sofia Kossida
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 141 rue de la Cardonille, Montpellier 34 090, France
| | - Frederique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics (SIB), route de Drize 7, Geneva CH-1227, Switzerland
| | - Yan Liu
- The Glycosciences Laboratory, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Gießen, Frankfurter Str. 100, Gießen 35392, Germany
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservior Road NW, Washington, DC 20007, United States
| | - Adnan Malik
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maria Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Sriram Neelamegham
- Departments of Chemical & Biological Engineering, Biomedical Engineering and Medicine, University at Buffalo, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, United States
| | - Kalpana Panneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - René Ranzinger
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Sylvie Ricard-Blum
- Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, University Lyon 1, CNRS, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex F-69622, France
| | - Gaoussou Sanou
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 141 rue de la Cardonille, Montpellier 34 090, France
| | - Vijay Shanker
- Department of Computer and Information Sciences, University of Delaware, 18 Amstel Ave, Newark, DE 19716, United States
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California, 2001 N Soto Street, Los Angeles, CA 90032, United States
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - James Urban
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7 B, Gothenburg 41390, Sweden
| | - Randi Vita
- Immune Epitope Database and Analysis Project, La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Jeet Vora
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 I St. NW, Washington, DC 20052, United States
| | - Yasunori Yamamoto
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Raja Mazumder
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 I St. NW, Washington, DC 20052, United States
| |
Collapse
|
18
|
Xu P, Wang J, Wang J, Hu X, Wang W, Lu S, Sheng Y. Anoectochilus roxburghii Extract Extends the Lifespan of Caenorhabditis elegans through Activating the daf-16/FoxO Pathway. Antioxidants (Basel) 2024; 13:945. [PMID: 39199191 PMCID: PMC11351832 DOI: 10.3390/antiox13080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
As a significant global issue, aging is prompting people's interest in the potential anti-aging properties of Anoectochilus roxburghii (A. roxburghii), a plant traditionally utilized in various Asian countries for its purported benefits in treating diabetes and combating aging. However, the specific anti-aging components and mechanisms of A. roxburghii remain unclear. This study aims to investigate the anti-aging effects and mechanisms of A. roxburghii extract E (ARE). Caenorhabditis elegans (C. elegans) were exposed to media containing different concentrations of ARE whose superior in vitro radical scavenging capacity was thus identified. Lifespan assays, stress resistance tests, and RT-qPCR analyses were conducted to evaluate anti-aging efficacy, reactive oxygen species (ROS) levels, antioxidant enzyme activity, and daf-16, sod-3, and gst-4 levels. Additionally, transcriptomic and metabolomic analyses were performed to elucidate the potential anti-aging mechanisms of ARE. Fluorescence protein assays and gene knockout experiments were employed to validate the impacts of ARE on anti-aging mechanisms. Our results revealed that ARE not only prolonged the lifespan of C. elegans but also mitigated ROS and lipofuscin accumulation, and boosted resistance to UV and heat stress. Furthermore, ARE modulated the expression of pivotal anti-aging genes including daf-16, sod-3, and gst-4, facilitating the nuclear translocation of DAF-16. Significantly, ARE failed to extend the lifespan of daf-16-deficient C. elegans (CF1038), indicating its dependency on the daf-16/FoxO signaling pathway. These results underscored the effectiveness of ARE as a natural agent for enhancing longevity and stress resilience to C. elegans, potentially to human.
Collapse
Affiliation(s)
- Peng Xu
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (P.X.); (J.W.); (X.H.)
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianfeng Wang
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (P.X.); (J.W.); (X.H.)
| | - Junyi Wang
- Life Sciences, Zhejiang Normal University, Jinhua 321017, China;
| | - Xiaoxiao Hu
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (P.X.); (J.W.); (X.H.)
| | - Wei Wang
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317700, China;
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingkun Sheng
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (P.X.); (J.W.); (X.H.)
| |
Collapse
|
19
|
Gutmann F, Fritsche-Guenther R, Dias DB, Kirwan JA. Comparing the Extraction Performance in Mouse Plasma of Different Biphasic Methods for Polar and Nonpolar Compounds. J Proteome Res 2024; 23:2961-2969. [PMID: 38318665 PMCID: PMC11301682 DOI: 10.1021/acs.jproteome.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Many metabolomic studies are interested in both polar and nonpolar analyses. However, the available sample volume often precludes multiple separate extractions. Therefore, there are major advantages in performing a biphasic extraction and retaining both phases for subsequent separate analyses. To be successful, such approaches require the method to be robust and repeatable for both phases. Hence, we determined the performance of three extraction protocols, plus two variant versions, using 25 μL of commercially available mouse plasma. The preferred option for nonpolar lipids was a modified diluted version of a method employing methyl tert-butyl ether (MTBE) suggested by Matyash and colleagues due to its high repeatability for nonpolar compounds. For polar compounds, the Bligh-Dyer method performs best for sensitivity but with consequentially poorer lipid performance. Overall, the scaled-down version of the MTBE method gave the best overall performance, with high sensitivity for both polar and nonpolar compounds and good repeatability for polar compounds in particular.
Collapse
Affiliation(s)
- Friederike Gutmann
- Metabolomics
Platform, Berlin Institute of Health at
Charité − Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Max-Delbrück-Center
for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße
10, 13125 Berlin, Germany
- Charité
− Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charitéplatz
1, 10117 Berlin, Germany
- Experimental
and Clinical Research Center, a cooperation
between the Max-Delbrück-Center for Molecular Medicine in the
Helmholtz Association and the Charité − Universitätsmedizin
Berlin, Lindenberger
Weg 80, 13125 Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Metabolomics
Platform, Berlin Institute of Health at
Charité − Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Daniela B. Dias
- Metabolomics
Platform, Berlin Institute of Health at
Charité − Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin
Institute of Health at Charité − Universitätsmedizin
Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jennifer A. Kirwan
- Metabolomics
Platform, Berlin Institute of Health at
Charité − Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Max-Delbrück-Center
for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße
10, 13125 Berlin, Germany
| |
Collapse
|
20
|
Li XL, Zhang JQ, Shen XJ, Zhang Y, Guo DA. Overview and limitations of database in global traditional medicines: A narrative review. Acta Pharmacol Sin 2024:10.1038/s41401-024-01353-1. [PMID: 39095509 DOI: 10.1038/s41401-024-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
The study of traditional medicine has garnered significant interest, resulting in various research areas including chemical composition analysis, pharmacological research, clinical application, and quality control. The abundance of available data has made databases increasingly essential for researchers to manage the vast amount of information and explore new drugs. In this article we provide a comprehensive overview and summary of 182 databases that are relevant to traditional medicine research, including 73 databases for chemical component analysis, 70 for pharmacology research, and 39 for clinical application and quality control from published literature (2000-2023). The review categorizes the databases by functionality, offering detailed information on websites and capacities to facilitate easier access. Moreover, this article outlines the primary function of each database, supplemented by case studies to aid in database selection. A practical test was conducted on 68 frequently used databases using keywords and functionalities, resulting in the identification of highlighted databases. This review serves as a reference for traditional medicine researchers to choose appropriate databases and also provides insights and considerations for the function and content design of future databases.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan-Jing Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Godbole S, Voß H, Gocke A, Schlumbohm S, Schumann Y, Peng B, Mynarek M, Rutkowski S, Dottermusch M, Dorostkar MM, Korshunov A, Mair T, Pfister SM, Kwiatkowski M, Hotze M, Neumann P, Hartmann C, Weis J, Liesche-Starnecker F, Guan Y, Moritz M, Siebels B, Struve N, Schlüter H, Schüller U, Krisp C, Neumann JE. Multiomic profiling of medulloblastoma reveals subtype-specific targetable alterations at the proteome and N-glycan level. Nat Commun 2024; 15:6237. [PMID: 39043693 PMCID: PMC11266559 DOI: 10.1038/s41467-024-50554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and clinically heterogenous. The application of omics technologies-mainly studying nucleic acids-has significantly improved MB classification and stratification, but treatment options are still unsatisfactory. The proteome and their N-glycans hold the potential to discover clinically relevant phenotypes and targetable pathways. We compile a harmonized proteome dataset of 167 MBs and integrate findings with DNA methylome, transcriptome and N-glycome data. We show six proteome MB subtypes, that can be assigned to two main molecular programs: transcription/translation (pSHHt, pWNT and pG3myc), and synapses/immunological processes (pSHHs, pG3 and pG4). Multiomic analysis reveals different conservation levels of proteome features across MB subtypes at the DNA methylome level. Aggressive pGroup3myc MBs and favorable pWNT MBs are most similar in cluster hierarchies concerning overall proteome patterns but show different protein abundances of the vincristine resistance-associated multiprotein complex TriC/CCT and of N-glycan turnover-associated factors. The N-glycome reflects proteome subtypes and complex-bisecting N-glycans characterize pGroup3myc tumors. Our results shed light on targetable alterations in MB and set a foundation for potential immunotherapies targeting glycan structures.
Collapse
Affiliation(s)
- Shweta Godbole
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Gocke
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Schlumbohm
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Yannis Schumann
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Bojia Peng
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Dottermusch
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mario M Dorostkar
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Mair
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Madlen Hotze
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Philipp Neumann
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Hannover Medical School (MHH), Hannover, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Yudong Guan
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuela Moritz
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bente Siebels
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Christoph Krisp
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
22
|
Perry CE, Halawani SM, Mukherjee S, Ngaba LV, Lieu M, Lee WD, Davis JG, Adzika GK, Bebenek AN, Bazianos DD, Chen B, Mercado-Ayon E, Flatley LP, Suryawanshi AP, Ho I, Rabinowitz JD, Serai SD, Biko DM, Tamaroff J, DeDio A, Wade K, Lin KY, Livingston DJ, McCormack SE, Lynch DR, Baur JA. NAD+ precursors prolong survival and improve cardiac phenotypes in a mouse model of Friedreich's Ataxia. JCI Insight 2024; 9:e177152. [PMID: 39171530 PMCID: PMC11343603 DOI: 10.1172/jci.insight.177152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.
Collapse
Affiliation(s)
- Caroline E. Perry
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah M. Halawani
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lucie V. Ngaba
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Melissa Lieu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - James G. Davis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabriel K. Adzika
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa N. Bebenek
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Bazianos
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beishan Chen
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Mercado-Ayon
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liam P. Flatley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arjun P. Suryawanshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabelle Ho
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Suraj D. Serai
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - David M. Biko
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - Jaclyn Tamaroff
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna DeDio
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristin Wade
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kimberly Y. Lin
- Division of Pediatric Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Shana E. McCormack
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A. Baur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Nash W, Ngere JB, Najdekr L, Dunn WB. Characterization of Electrospray Ionization Complexity in Untargeted Metabolomic Studies. Anal Chem 2024; 96:10935-10942. [PMID: 38917347 PMCID: PMC11238156 DOI: 10.1021/acs.analchem.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
The annotation of metabolites detected in LC-MS-based untargeted metabolomics studies routinely applies accurate m/z of the intact metabolite (MS1) as well as chromatographic retention time and MS/MS data. Electrospray ionization and transfer of ions through the mass spectrometer can result in the generation of multiple "features" derived from the same metabolite with different m/z values but the same retention time. The complexity of the different charged and neutral adducts, in-source fragments, and charge states has not been previously and deeply characterized. In this paper, we report the first large-scale characterization using publicly available data sets derived from different research groups, instrument manufacturers, LC assays, sample types, and ion modes. 271 m/z differences relating to different metabolite feature pairs were reported, and 209 were annotated. The results show a wide range of different features being observed with only a core 32 m/z differences reported in >50% of the data sets investigated. There were no patterns reporting specific m/z differences that were observed in relation to ion mode, instrument manufacturer, LC assay type, and mammalian sample type, although some m/z differences were related to study group (mammal, microbe, plant) and mobile phase composition. The results provide the metabolomics community with recommendations of adducts, in-source fragments, and charge states to apply in metabolite annotation workflows.
Collapse
Affiliation(s)
- William
J. Nash
- School
of Biosciences, University of Birmingham, Birmingham, West Midlands B15 2TT, United
Kingdom
| | - Judith B. Ngere
- School
of Biosciences, University of Birmingham, Birmingham, West Midlands B15 2TT, United
Kingdom
| | - Lukas Najdekr
- Institute
of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic
| | - Warwick B. Dunn
- School
of Biosciences, University of Birmingham, Birmingham, West Midlands B15 2TT, United
Kingdom
- Centre
for Metabolomics Research, Department of Biochemistry, Cell and Systems
Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
24
|
Wang Z, Zhang D, Wu J, Zhang W, Xia Y. Illuminating the dark space of neutral glycosphingolipidome by selective enrichment and profiling at multi-structural levels. Nat Commun 2024; 15:5627. [PMID: 38965283 PMCID: PMC11224418 DOI: 10.1038/s41467-024-50014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Glycosphingolipids (GSLs) are essential components of cell membranes, particularly enriched in the nervous system. Altered molecular distributions of GSLs are increasingly associated with human diseases, emphasizing the significance of lipidomic profiling. Traditional GSL analysis methods are hampered by matrix effect from phospholipids and the difficulty in distinguishing structural isomers. Herein, we introduce a highly sensitive workflow that harnesses magnetic TiO2 nanoparticle-based selective enrichment, charge-tagging Paternò-Büchi reaction, and liquid chromatography-tandem mass spectrometry. This approach enables mapping over 300 distinct GSLs in brain tissues by defining sugar types, long chain bases, N-acyl chains, and the locations of desaturation and hydroxylation. Relative quantitation of GSLs across multiple structural levels provides evidence of dysregulated gene and protein expressions of FA2H and CerS2 in human glioma tissue. Based on the structural features of GSLs, our method accurately differentiates human glioma with/without isocitrate dehydrogenase genetic mutation, and normal brain tissue.
Collapse
Affiliation(s)
- Zidan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Junhan Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Wang T, Yang J, Zhu Y, Niu N, Ding B, Wang P, Zhao H, Li N, Chao Y, Gao S, Dong X, Wang Z. Evaluation of metabolomics-based urinary biomarker models for recognizing major depression disorder and bipolar disorder. J Affect Disord 2024; 356:1-12. [PMID: 38548210 DOI: 10.1016/j.jad.2024.03.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and bipolar disorder (BD) are psychiatric disorders with overlapping symptoms, leading to high rates of misdiagnosis due to the lack of biomarkers for differentiation. This study aimed to identify metabolic biomarkers in urine samples for diagnosing MDD and BD, as well as to establish unbiased differential diagnostic models. METHODS We utilized a metabolomics approach employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) to analyze the metabolic profiles of urine samples from individuals with MDD (n = 50), BD (n = 12), and healthy controls (n = 50). The identification of urine metabolites was verified using MS data analysis tools and online metabolite databases. RESULTS Two diagnostic panels consisting of a combination of metabolites and clinical indicators were identified-one for MDD and another for BD. The discriminative capacity of these panels was assessed using the area under the receiver operating characteristic (ROC) curve, yielding an area under the curve (AUC) of 0.9084 for MDD and an AUC value of 0.9017 for BD. CONCLUSIONS High-resolution mass spectrometry-based assays show promise in identifying urinary biomarkers for depressive disorders. The combination of urine metabolites and clinical indicators is effective in differentiating healthy controls from individuals with MDD and BD. The metabolic pathway indicating oxidative stress is seen to significantly contribute to depressive disorders.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuncheng Zhu
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Na Niu
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Binbin Ding
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Ping Wang
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Hongxia Zhao
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China.
| | - Zuowei Wang
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China.
| |
Collapse
|
26
|
Graça AT, Lihavainen J, Hussein R, Schröder WP. Obscurity of chlorophyll tails - Is chlorophyll with farnesyl tail incorporated into PSII complexes? PHYSIOLOGIA PLANTARUM 2024; 176:e14428. [PMID: 38981693 DOI: 10.1111/ppl.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Chlorophyll is essential in photosynthesis, converting sunlight into chemical energy in plants, algae, and certain bacteria. Its structure, featuring a porphyrin ring enclosing a central magnesium ion, varies in forms like chlorophyll a, b, c, d, and f, allowing light absorption at a broader spectrum. With a 20-carbon phytyl tail (except for chlorophyll c), chlorophyll is anchored to proteins. Previous findings suggested the presence of chlorophyll with a modified farnesyl tail in thermophilic cyanobacteria Thermosynechoccocus vestitus. In our Arabidopsis thaliana PSII cryo-EM map, specific chlorophylls showed incomplete phytyl tails, suggesting potential farnesyl modifications. However, further high-resolution mass spectrometry (HRMS) analysis in A. thaliana and T. vestitus did not confirm the presence of any farnesyl tails. Instead, we propose the truncated tails in PSII models may result from binding pocket flexibility rather than actual modifications.
Collapse
Affiliation(s)
- André T Graça
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jenna Lihavainen
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | - Rana Hussein
- Humboldt-Universität zu Berlin, Department of Biology, Berlin, Germany
| | - Wolfgang P Schröder
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Gao J, Zhang P, Nie X, Tang M, Yuan Y, He L, Wang X, Ma J, Li L. Proteomic and metabolomic profiling of plasma predicts immune-related adverse events in older patients with advanced non-small cell lung cancer. iScience 2024; 27:109946. [PMID: 38827402 PMCID: PMC11141140 DOI: 10.1016/j.isci.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/12/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
The clinical success of immune checkpoint inhibitors is compromised by the fact of immune-related adverse events (irAEs), especially for older patients. To identify predictive biomarkers for older patients with irAEs, we used multiplex immunoassay and flow cytometry and liquid chromatography-tandem mass spectrometry to test immune factors and plasma protein and metabolites levels in non-small cell lung cancer (NSCLC) patients. The results showed that older patients with irAEs displayed lower CD28, CD4+ T cell, and B cell and higher interleukin (IL)-10 and CCL2 levels at baseline. Besides, lower aldolase, fructose-bisphosphate B (ALDOB), higher ST6GAL1, and lower lactate/pyruvate ratio at baseline were found in older patients with irAEs. Based on metabolomic markers, predictive models were developed to distinguish patients with grade 2-4 irAEs from grade 0-1 (Area under curve, AUC = 0.831) and to distinguish patients with grade 3-4 irAEs from grade 2 (AUC = 1). Our results confirmed the predictive value of plasma metabolites for irAEs in older patients with NSCLC.
Collapse
Affiliation(s)
- Jiayi Gao
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Graduate School Peking Union Medical College, Beijing 100730, China
| | - Ping Zhang
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xin Nie
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yue Yuan
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Liuer He
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xue Wang
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Junling Ma
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Graduate School Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
28
|
Shaikh RQ, Das S, Chaurasiya A, Ashtamy MG, Sheikh AB, Fernandes M, Tiwari S, Unnikrishnan AG, Kulkarni MJ. Discovery of Free Glycated Amines and Glycated Urea in Diabetic Plasma: Potential Implications in Diabetes. ACS OMEGA 2024; 9:24907-24915. [PMID: 38882103 PMCID: PMC11171088 DOI: 10.1021/acsomega.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024]
Abstract
The role of protein glycation in the pathogenesis of diabetes has been well established. Akin to proteins, free amino acids and other small-molecule amines are also susceptible to glycation in hyperglycemic conditions and may have a role in the pathogenesis of the disease. However, information about glycation of free amino acids and other small-molecule amines is relatively obscure. In the quest to discover small-molecule glycated amines in the plasma, we have synthesized glycated amino acids, glycated creatine, and glycated urea, and by using a high-resolution accurate mass spectrometer, a mass spectral library was developed comprising the precursor and predominant fragment masses of glycated amines. Using this information, we report the discovery of the glycation of free lysine, arginine, and leucine/isoleucine from the plasma of diabetic patients. This has great physiological significance as glycation of these amino acids may create their deficiency and affect vital physiological processes such as protein synthesis, cell signaling, and insulin secretion. Also, these glycated amino acids could serve as potential markers of diabetes and its complications. While other amines, such as creatinine and urea, accumulate in the plasma and act as biomarkers of diabetic nephropathy. For the first time, we report the detection of glycated urea in diabetic plasma, which is confirmed by matching the precursor and fragment masses with the in vitro synthesized glycated urea by using 12C6 and 13C6-glucose. Further, we quantified glycated urea detected in two forms, monoglycated urea (MGU) and diglycated urea (DGU), by a targeted mass spectrometric approach in the plasma of healthy, diabetic, and diabetic nephropathy subjects. Both MGU and DGU showed a positive correlation with clinical parameters, such as blood glucose and HbA1c. Given that urea gets converted to glycated urea in hyperglycemic conditions, it is crucial to quantify MGU and DGU along with the urea for the diagnosis of diabetic nephropathy and study their physiological role in diabetes.
Collapse
Affiliation(s)
- Rashdajabeen Q Shaikh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sancharini Das
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | | | - Murali G Ashtamy
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Amreen B Sheikh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Moneesha Fernandes
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Shalbha Tiwari
- Department of Diabetes and Endocrine Research, Chellaram Diabetes Institute, Pune 411021, India
| | - Ambika G Unnikrishnan
- Department of Diabetes and Endocrine Research, Chellaram Diabetes Institute, Pune 411021, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
29
|
Gallage S, Ali A, Barragan Avila JE, Seymen N, Ramadori P, Joerke V, Zizmare L, Aicher D, Gopalsamy IK, Fong W, Kosla J, Focaccia E, Li X, Yousuf S, Sijmonsma T, Rahbari M, Kommoss KS, Billeter A, Prokosch S, Rothermel U, Mueller F, Hetzer J, Heide D, Schinkel B, Machauer T, Pichler B, Malek NP, Longerich T, Roth S, Rose AJ, Schwenck J, Trautwein C, Karimi MM, Heikenwalder M. A 5:2 intermittent fasting regimen ameliorates NASH and fibrosis and blunts HCC development via hepatic PPARα and PCK1. Cell Metab 2024; 36:1371-1393.e7. [PMID: 38718791 DOI: 10.1016/j.cmet.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/21/2023] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
The role and molecular mechanisms of intermittent fasting (IF) in non-alcoholic steatohepatitis (NASH) and its transition to hepatocellular carcinoma (HCC) are unknown. Here, we identified that an IF 5:2 regimen prevents NASH development as well as ameliorates established NASH and fibrosis without affecting total calorie intake. Furthermore, the IF 5:2 regimen blunted NASH-HCC transition when applied therapeutically. The timing, length, and number of fasting cycles as well as the type of NASH diet were critical parameters determining the benefits of fasting. Combined proteome, transcriptome, and metabolome analyses identified that peroxisome-proliferator-activated receptor alpha (PPARα) and glucocorticoid-signaling-induced PCK1 act co-operatively as hepatic executors of the fasting response. In line with this, PPARα targets and PCK1 were reduced in human NASH. Notably, only fasting initiated during the active phase of mice robustly induced glucocorticoid signaling and free-fatty-acid-induced PPARα signaling. However, hepatocyte-specific glucocorticoid receptor deletion only partially abrogated the hepatic fasting response. In contrast, the combined knockdown of Ppara and Pck1 in vivo abolished the beneficial outcomes of fasting against inflammation and fibrosis. Moreover, overexpression of Pck1 alone or together with Ppara in vivo lowered hepatic triglycerides and steatosis. Our data support the notion that the IF 5:2 regimen is a promising intervention against NASH and subsequent liver cancer.
Collapse
Affiliation(s)
- Suchira Gallage
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen.
| | - Adnan Ali
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jose Efren Barragan Avila
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nogayhan Seymen
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Denmark Hill, London, UK
| | - Pierluigi Ramadori
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Vera Joerke
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - David Aicher
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Indresh K Gopalsamy
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Winnie Fong
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Jan Kosla
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Enrico Focaccia
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xin Li
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Suhail Yousuf
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tjeerd Sijmonsma
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mohammad Rahbari
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katharina S Kommoss
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Adrian Billeter
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Prokosch
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Rothermel
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Florian Mueller
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Benjamin Schinkel
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen
| | - Tim Machauer
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Nisar P Malek
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen; Department Internal Medicine I, University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, Universitätsklinikum Heidelberg, Pathologisches Institut, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Adam J Rose
- Nutrient Metabolism and Signalling Laboratory, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Mohammad M Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Denmark Hill, London, UK
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, 72076 Tübingen; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard-Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
30
|
Wu W, Song W, Zhao J, Guo S, Hong M, Zheng J, Hua Y, Cao P, Liu R, Duan JA. Saiga antelope horn suppresses febrile seizures in rats by regulating neurotransmitters and the arachidonic acid pathway. Chin Med 2024; 19:78. [PMID: 38831318 PMCID: PMC11149251 DOI: 10.1186/s13020-024-00949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Saiga antelope horn (SAH) is a traditional Chinese medicine for treating febrile seizure (FS) with precise efficacy, but its mechanism of action and functional substances are still unclear. Given the need for further research on SAH, our group conducted studies to elucidate its mechanisms and active substances. METHODS An FS rat pup model was constructed through intraperitoneal injection of LPS and hyperthermia induction. Behavioural indicators of seizures, hippocampal histopathological alterations, serum levels of inflammatory cytokines and hippocampal levels of neurotransmitters were observed and measured to investigate the effects of SAH on FS model rats. Hippocampal metabolomics and network pharmacology analyses were conducted to reveal the differential metabolites, key peptides and pathways involved in the suppression of FS by SAH. RESULTS SAH suppressed FS, decreased the inflammatory response and regulated the Glu-GABA balance. Metabolomic analysis revealed 13 biomarkers of FS, of which SAH improved the levels of 8 differential metabolites. Combined with network pharmacology, a "biomarker-core target-key peptide" network was constructed. The peptides of SAH, such as YGQL and LTGGF, could exert therapeutic effects via the arachidonic acid pathway. Molecular docking and ELISA results indicated that functional peptides of SAH could bind to PTGS2 target, inhibiting the generation of AA and its metabolites in hippocampal samples. CONCLUSION In summary, the functional peptides contained in SAH are the main material basis for the treatment of FS, potentially acting through neurotransmitter regulation and the arachidonic acid pathway.
Collapse
Affiliation(s)
- Wenxing Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, No 138 Xianlin Road, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing, 210023, China
| | - Wencong Song
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, No 138 Xianlin Road, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, No 138 Xianlin Road, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, No 138 Xianlin Road, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongqing Hua
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, No 138 Xianlin Road, Nanjing, 210023, China
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing, 210023, China
| | - Rui Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, No 138 Xianlin Road, Nanjing, 210023, China.
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, No 138 Xianlin Road, Nanjing, 210023, China.
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing, 210023, China.
| |
Collapse
|
31
|
Wu S, Zhou H, Chen D, Lu Y, Li Y, Qiao J. Multi-omic analysis tools for microbial metabolites prediction. Brief Bioinform 2024; 25:bbae264. [PMID: 38859767 PMCID: PMC11165163 DOI: 10.1093/bib/bbae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
How to resolve the metabolic dark matter of microorganisms has long been a challenging problem in discovering active molecules. Diverse omics tools have been developed to guide the discovery and characterization of various microbial metabolites, which make it gradually possible to predict the overall metabolites for individual strains. The combinations of multi-omic analysis tools effectively compensates for the shortcomings of current studies that focus only on single omics or a broad class of metabolites. In this review, we systematically update, categorize and sort out different analysis tools for microbial metabolites prediction in the last five years to appeal for the multi-omic combination on the understanding of the metabolic nature of microbes. First, we provide the general survey on different updated prediction databases, webservers, or software that based on genomics, transcriptomics, proteomics, and metabolomics, respectively. Then, we discuss the essentiality on the integration of multi-omics data to predict metabolites of different microbial strains and communities, as well as stressing the combination of other techniques, such as systems biology methods and data-driven algorithms. Finally, we identify key challenges and trends in developing multi-omic analysis tools for more comprehensive prediction on diverse microbial metabolites that contribute to human health and disease treatment.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Haonan Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Yutong Lu
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
32
|
Montironi C, Chen Z, Derks IA, Cretenet G, Krap EA, Eldering E, Simon-Molas H. Metabolic signature and response to glutamine deprivation are independent of p53 status in B cell malignancies. iScience 2024; 27:109640. [PMID: 38680661 PMCID: PMC11053310 DOI: 10.1016/j.isci.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/03/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
The tumor suppressor p53 has been described to control various aspects of metabolic reprogramming in solid tumors, but in B cell malignancies that role is as yet unknown. We generated pairs of p53 functional and knockout (KO) clones from distinct B cell malignancies (acute lymphoblastic leukemia, chronic lymphocytic leukemia, diffuse large B cell lymphoma, and multiple myeloma). Metabolomics and isotope tracing showed that p53 loss did not drive a common metabolic signature. Instead, cell lines segregated according to cell of origin. Next, we focused on glutamine as a crucial energy source in the B cell tumor microenvironment. In both TP53 wild-type and KO cells, glutamine deprivation induced cell death through the integrated stress response, via CHOP/ATF4. Lastly, combining BH3 mimetic drugs with glutamine starvation emerged as a possibility to target resistant clones. In conclusion, our analyses do not support a common metabolic signature of p53 deficiency in B cell malignancies and suggest therapeutic options for exploration based on glutamine dependency.
Collapse
Affiliation(s)
- Chiara Montironi
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Zhenghao Chen
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Ingrid A.M. Derks
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Gaspard Cretenet
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Esmée A. Krap
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
| | - Eric Eldering
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Helga Simon-Molas
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Hematology, Amsterdam, the Netherlands
| |
Collapse
|
33
|
He T, Xiong L, Lin K, Yi J, Duan C, Zhang J. Functional metabolomics reveals arsenic-induced inhibition of linoleic acid metabolism in mice kidney in drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123949. [PMID: 38636836 DOI: 10.1016/j.envpol.2024.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Arsenic (As) is a heavy metal known for its detrimental effects on the kidneys, but the precise mechanisms underlying its toxicity remain unclear. In this study, we employed an integrated approach combining traditional toxicology methods with functional metabolomics to explore the nephrotoxicity induced by As in mice. Our findings demonstrated that after 28 days of exposure to sodium arsenite, blood urea nitrogen, serum creatinine levels were significantly increased, and pathological examination of the kidneys revealed dilation of renal tubules and glomerular injury. Additionally, uric acid, total cholesterol, and low-density lipoprotein cholesterol levels were significant increased while triglyceride level was decreased, resulting in renal insufficiency and lipid disorders. Subsequently, the kidney metabolomics analysis revealed that As exposure disrupted 24 differential metabolites, including 14 up-regulated and 10 down-regulated differential metabolites. Ten metabolic pathways including linoleic acid and glycerophospholipid metabolism were significantly enriched. Then, 80 metabolic targets and 168 predicted targets were identified using metabolite network pharmacology analysis. Of particular importance, potential toxicity targets, such as glycine amidinotransferase, mitochondrial (GATM), and nitric oxide synthase, and endothelial (NOS3), were prioritized through the "metabolite-target-pathway" network. Receiver operating characteristics curve and molecular docking analyses suggested that 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, linoleic acid, and L-hydroxyarginine might be functional metabolites associated with GATM and NOS3. Moreover, targeted verification result showed that the level of linoleic acid in As group was 0.4951 μg/mL, which was significantly decreased compared with the control group. And in vivo and in vitro protein expression experiments confirmed that As exposure inhibited the expression of GATM and NOS3. In conclusion, these results suggest that As-induced renal injury may be associated with the inhibition of linoleic acid metabolism through the down-regulation of GATM and NOS3, resulting in decreased levels of linoleic acid, 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, and L-hydroxyarginine metabolites.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jing Yi
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
34
|
Mukadam H, Gaikwad SV, Kutty NN, Gaikwad VD. Bioformulation of Bacillus proteolyticus MITWPUB1 and its biosurfactant to control the growth of phytopathogen Sclerotium rolfsii for the crop Brassica juncea var local, as a sustainable approach. Front Bioeng Biotechnol 2024; 12:1362679. [PMID: 38707507 PMCID: PMC11066288 DOI: 10.3389/fbioe.2024.1362679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 05/07/2024] Open
Abstract
Bacillus proteolyticus MITWPUB1 is a potential producer of biosurfactants (BSs), and the organism is also found to be a producer of plant growth promoting traits, such as hydrogen cyanide and indole acetic acid (IAA), and a solubilizer of phosphate. The BSs were reportedly a blend of two classes, namely glycolipids and lipopeptides, as found by thin layer chromatography and Fourier-transform infrared spectroscopy analysis. Furthermore, semi-targeted metabolite profiling via liquid chromatography mass spectroscopy revealed the presence of phospholipids, lipopeptides, polyamines, IAA derivatives, and carotenoids. The BS showed dose-dependent antagonistic activity against Sclerotium rolfsii; scanning electron microscopy showed the effects of the BS on S. rolfsii in terms of mycelial deformations and reduced branching patterns. In vitro studies showed that the application of B. proteolyticus MITWPUB1 and its biosurfactant to seeds of Brassica juncea var local enhanced the seed germination rate. However, sawdust-carrier-based bioformulation with B. proteolyticus MITWPUB1 and its BS showed increased growth parameters for B. juncea var L. This study highlights a unique bioformulation combination that controls the growth of the phytopathogen S. rolfsii and enhances the plant growth of B. juncea var L. Bacillus proteolyticus MITWPUB1 was also shown for the first time to be a prominent BS producer with the ability to control the growth of the phytopathogen S. rolfsii.
Collapse
Affiliation(s)
- Humaira Mukadam
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Shikha V. Gaikwad
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Nithya N. Kutty
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Vikrant D. Gaikwad
- Department of Chemical Engineering, School of Engineering and Technology, Faculty of Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| |
Collapse
|
35
|
Bae G, Berezhnoy G, Flores A, Cannet C, Schäfer H, Dahlke MH, Michl P, Löffler MW, Königsrainer A, Trautwein C. Quantitative Metabolomics and Lipoprotein Analysis of PDAC Patients Suggests Serum Marker Categories for Pancreatic Function, Pancreatectomy, Cancer Metabolism, and Systemic Disturbances. J Proteome Res 2024; 23:1249-1262. [PMID: 38407039 PMCID: PMC11003419 DOI: 10.1021/acs.jproteome.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose in the early stages and lacks reliable biomarkers. The scope of this project was to establish quantitative nuclear magnetic resonance (NMR) spectroscopy to comprehensively study blood serum alterations in PDAC patients. Serum samples from 34 PDAC patients obtained before and after pancreatectomy as well as 83 age- and sex-matched control samples from healthy donors were analyzed with in vitro diagnostics research (IVDr) proton NMR spectroscopy at 600 MHz. Uni- and multivariate statistics were applied to identify significant biofluid alterations. We identified 29 significantly changed metabolites and 98 lipoproteins when comparing serum from healthy controls with those of PDAC patients. The most prominent features were assigned to (i) markers of pancreatic function (e.g., glucose and blood triglycerides), (ii) markers related to surgery (e.g., ketone bodies and blood cholesterols), (iii) PDAC-associated markers (e.g., amino acids and creatine), and (iv) markers for systemic disturbances in PDAC (e.g., gut metabolites DMG, TMAO, DMSO2, and liver lipoproteins). Quantitative serum NMR spectroscopy is suited as a diagnostic tool to investigate PDAC. Remarkably, 2-hydroxybutyrate (2-HB) as a previously suggested marker for insulin resistance was found in extraordinarily high levels only after pancreatectomy, suggesting this metabolite is the strongest marker for pancreatic loss of function.
Collapse
Affiliation(s)
- Gyuntae Bae
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
| | - Georgy Berezhnoy
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
| | - Alejandra Flores
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
| | - Claire Cannet
- Bruker
BioSpin GmbH & Co. KG, BioPharma and Applied Division, Ettlingen 76275, Germany
| | - Hartmut Schäfer
- Bruker
BioSpin GmbH & Co. KG, BioPharma and Applied Division, Ettlingen 76275, Germany
| | - Marc H. Dahlke
- Department
of General and Visceral Surgery, Robert-Bosch-Krankenhaus, Stuttgart 70376, Germany
| | - Patrick Michl
- Dept
of Internal Medicine IV, University Hospital
Heidelberg, Heidelberg 69120, Germany
| | - Markus W. Löffler
- Department
of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
- German Cancer
Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner
Site Tübingen, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
- Department
of Immunology, University of Tübingen, Tübingen 72076, Germany
- Department
of Clinical Pharmacology, University Hospital
Tübingen, Tübingen 72076, Germany
| | - Alfred Königsrainer
- Department
of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
- German Cancer
Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner
Site Tübingen, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
| | - Christoph Trautwein
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
- M3
Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine University Tübingen, Tübingen 72076, Germany
| |
Collapse
|
36
|
Liu Y, Wang YJ, Du Y, Liu W, Huang X, Fan Z, Lu J, Yi R, Xiang XW, Xia X, Gu H, Liu YJ, Liu B. DNA nanomachines reveal an adaptive energy mode in confinement-induced amoeboid migration powered by polarized mitochondrial distribution. Proc Natl Acad Sci U S A 2024; 121:e2317492121. [PMID: 38547056 PMCID: PMC10998588 DOI: 10.1073/pnas.2317492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Ya-Jun Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yang Du
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Wei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Zihui Fan
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Runqiu Yi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xiao-Wei Xiang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xinwei Xia
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Hongzhou Gu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| |
Collapse
|
37
|
Ratley G, Zeldin J, Chaudhary PP, Yadav M, Paller AS, Zee P, Myles IA, Fishbein A. The circadian metabolome of atopic dermatitis. J Allergy Clin Immunol 2024; 153:1148-1154. [PMID: 38262502 PMCID: PMC10999347 DOI: 10.1016/j.jaci.2023.11.926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by dry, pruritic skin. Several studies have described nocturnal increases in itching behavior, suggesting a role for the circadian rhythm in modulating symptom severity. However, the circadian rhythm of metabolites in the skin and serum of patients with AD is yet to be described. OBJECTIVE We sought to assess circadian patterns of skin and serum metabolism in patients with AD. METHODS Twelve patients with moderate to severe AD and 5 healthy volunteers were monitored for 28 hours in a controlled environment. Serum was collected every 2 hours and tape strips every 4 hours from both lesional and nonlesional skin in participants with AD and location-, sex-, and age-matched healthy skin of controls. We then performed an untargeted metabolomics analysis, examining the circadian peaks of metabolism in patients with AD. RESULTS Distinct metabolic profiles were observed in AD versus control samples. When accounting for time of collection, the greatest differences in serum metabolic pathways were observed in arachidonic acid, steroid biosynthesis, and terpenoid backbone biosynthesis. We identified 42 circadian peaks in AD or control serum and 17 in the skin. Pathway enrichment and serum-skin metabolite correlation varied throughout the day. Differences were most evident in the late morning and immediately after sleep onset. CONCLUSIONS Although limited by a small sample size and observational design, our findings suggest that accounting for sample collection time could improve biomarker detection studies in AD and highlight that metabolic changes may be associated with nocturnal differences in symptom severity.
Collapse
Affiliation(s)
- Grace Ratley
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Jordan Zeldin
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Prem Prashant Chaudhary
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Manoj Yadav
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Phyllis Zee
- Department of Neurology, Center for Sleep & Circadian Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md.
| | - Anna Fishbein
- Division of Allergy & Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
38
|
Doshi P, Bhalaiya C, Suthar V, Patidar V, Joshi C, Patel A, Raval I. Untargeted metabolomics of buffalo urine reveals hydracyrlic acid, 3-bromo-1-propanol and benzyl serine as potential estrus biomarkers. J Proteomics 2024; 296:105124. [PMID: 38364903 DOI: 10.1016/j.jprot.2024.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Buffalo is a silent heat animal and doesn't show prominent signs of estrous like cattle so it becomes difficult for farmers to determine the receptivity of the animal based purely on the animal behaviour. India, having a huge population size, needs to produce more milk for the population. Successful artificial insemination greatly depends on the receptivity of the animal. Hence the present study aimed to identify the changes in the metabolome of the buffalo. GC-MS based mass spectrometric analysis was deployed for the determination of estrous by differential expression of metabolites. It was found that hydracrylic acid, 3-bromo-1-propanol and benzyl serine were significantly upregulated in the estrous phase of buffalo (p.value ≤0.05, FC ≥ 2). The pathway enrichment analysis also supported the same as pathways related to amino acid metabolism and fatty acid metabolism were up regulated along with the Warburg effect which is linked to the rapid cell proliferation which might help prepare animals to meet the energy requirement during the estrous. Further analysis of the metabolic biomarkers using ROC analysis also supported these three metabolites as probable biomarkers as they were identified with AUC values of 0.7 or greater. SIGNIFICANCE: The present study focuses on the untargeted metabolomics studies of buffalo urine with special reference to the estrous phase of reproductive cycle. The estrous signals are more prominent in cattle, where animals show clear estrous signals such as mounting and discharge along with vocal signals. Buffalo is a silent heat animal and it becomes difficult for farmers to detect the estrous based on the physical and behavioral signals. Hence the present study focuses on GC-MS based untargeted metabolomics to identify differentially expressed urine metabolites. In this study, hydracrylic acid, 3-bromo-1-propanol and benzyl serine were found to be significantly upregulated in the estrous phase of buffalo (p-value ≤0.05, FC ≥ 2). Further confirmation of the metabolic biomarkers was done using Receiver operating characteristics (ROC) analysis which also supported these three metabolites as probable biomarkers as they had AUC values of 0.7 or greater. Hence, this study will be of prime importance for the people working in the area of animal metabolomics.
Collapse
Affiliation(s)
- Pooja Doshi
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India
| | - Chetana Bhalaiya
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India
| | - Vishal Suthar
- Kamdhenu University, Gandhinagar, Karmayogi Bhavan, Block-1, B1-Wing, 4th Floor, Sector-10-A, Gandhinagar, Gujarat 382010, India
| | - Vikas Patidar
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India.
| | - Amrutlal Patel
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India.
| | - Ishan Raval
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India.
| |
Collapse
|
39
|
Zwirner S, Abu Rmilah AA, Klotz S, Pfaffenroth B, Kloevekorn P, Moschopoulou AA, Schuette S, Haag M, Selig R, Li K, Zhou W, Nelson E, Poso A, Chen H, Amiot B, Jia Y, Minshew A, Michalak G, Cui W, Rist E, Longerich T, Jung B, Felgendreff P, Trompak O, Premsrirut PK, Gries K, Muerdter TE, Heinkele G, Wuestefeld T, Shapiro D, Weissbach M, Koenigsrainer A, Sipos B, Ab E, Zacarias MO, Theisgen S, Gruenheit N, Biskup S, Schwab M, Albrecht W, Laufer S, Nyberg S, Zender L. First-in-class MKK4 inhibitors enhance liver regeneration and prevent liver failure. Cell 2024; 187:1666-1684.e26. [PMID: 38490194 PMCID: PMC11011246 DOI: 10.1016/j.cell.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.
Collapse
Affiliation(s)
- Stefan Zwirner
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; HepaRegeniX GmbH, Tübingen 72072, Germany
| | - Anan A Abu Rmilah
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Sabrina Klotz
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Bent Pfaffenroth
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Philip Kloevekorn
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Athina A Moschopoulou
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Svenja Schuette
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Roland Selig
- HepaRegeniX GmbH, Tübingen 72072, Germany; Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Kewei Li
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Zhou
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Erek Nelson
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Antti Poso
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany
| | - Harvey Chen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Bruce Amiot
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Yao Jia
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Minshew
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Michalak
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Cui
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Elke Rist
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | | - Philipp Felgendreff
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Omelyan Trompak
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | | | - Katharina Gries
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Thomas E Muerdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Georg Heinkele
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Torsten Wuestefeld
- Laboratory for In Vivo Genetics & Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University of Singapore, Singapore 637551, Singapore
| | | | | | - Alfred Koenigsrainer
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of General-, Visceral, and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
| | - Bence Sipos
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Eiso Ab
- ZoBio B.V., Leiden 2333 CH, the Netherlands
| | | | | | | | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; Department of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | | | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD(2)), Tübingen 72076, Germany.
| | - Scott Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA.
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD(2)), Tübingen 72076, Germany.
| |
Collapse
|
40
|
Liao P, Chen L, Zhou H, Mei J, Chen Z, Wang B, Feng JQ, Li G, Tong S, Zhou J, Zhu S, Qian Y, Zong Y, Zou W, Li H, Zhang W, Yao M, Ma Y, Ding P, Pang Y, Gao C, Mei J, Zhang S, Zhang C, Liu D, Zheng M, Gao J. Osteocyte mitochondria regulate angiogenesis of transcortical vessels. Nat Commun 2024; 15:2529. [PMID: 38514612 PMCID: PMC10957947 DOI: 10.1038/s41467-024-46095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.
Collapse
Affiliation(s)
- Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jerry Q Feng
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Zhu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qian
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Weiguo Zou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenkan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senyao Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
41
|
Phan MD, Schirra HJ, Nhu NTK, Peters KM, Sarkar S, Allsopp LP, Achard MES, Kappler U, Schembri MA. Combined functional genomic and metabolomic approaches identify new genes required for growth in human urine by multidrug-resistant Escherichia coli ST131. mBio 2024; 15:e0338823. [PMID: 38353545 PMCID: PMC10936160 DOI: 10.1128/mbio.03388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 03/14/2024] Open
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.
Collapse
Affiliation(s)
- Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Horst Joachim Schirra
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M. Peters
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Sohinee Sarkar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Luke P. Allsopp
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maud E. S. Achard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Zhang D, Zhang Y, Xia S, Shen P, Yang C. Metabolic profiling of synovial fluid in human temporomandibular joint osteoarthritis. Front Immunol 2024; 15:1335181. [PMID: 38529278 PMCID: PMC10961395 DOI: 10.3389/fimmu.2024.1335181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Temporomandibular joint (TMJ) osteoarthritis (OA) is a common TMJ degenerative disease with an unclear mechanism. Synovial fluid (SF), an important component of TMJ, contains various proteins and metabolites that may directly contribute to OA. The present study aimed to investigate the influence of SF in TMJOA at the metabolite level. Methods Untargeted and widely targeted metabolic profiling were employed to identify metabolic changes in SF of 90 patients with different TMJOA grades according to TMJ magnetic resonance imaging. Results A total 1498 metabolites were detected. Most of the metabolites were amino acids and associated metabolites, benzene and substituted derivatives, and lipids. Among patients with mild, moderate and severe TMJOA, 164 gradually increasing and 176 gradually decreasing metabolites were identified, indicating that biosynthesis of cofactors, choline metabolism, mineral absorption and selenocompound metabolism are closely related to TMJOA grade. Combined metabolomics and clinical examination revealed 37 upregulated metabolites and 16 downregulated metabolites in patients with pain, of which 19 and 26 metabolites were positively and negatively correlated, respectively, with maximum interincisal opening. A model was constructed to diagnose TMJOA grade and nine biomarkers were identified. The identified metabolites are key to exploring the mechanism of TMJOA. Discussion In the present study, a metabolic profile was constructed and assessed using a much larger number of human SF samples from patients with TMJOA, and a model was established to contribute to the diagnosis of TMJOA grade. The findings expand our knowledge of metabolites in human SF of TMJOA patients, and provide an important basis for further research on the pathogenesis and treatment of TMJOA.
Collapse
Affiliation(s)
- Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
43
|
Kumar B, Lorusso E, Fosso B, Pesole G. A comprehensive overview of microbiome data in the light of machine learning applications: categorization, accessibility, and future directions. Front Microbiol 2024; 15:1343572. [PMID: 38419630 PMCID: PMC10900530 DOI: 10.3389/fmicb.2024.1343572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Metagenomics, Metabolomics, and Metaproteomics have significantly advanced our knowledge of microbial communities by providing culture-independent insights into their composition and functional potential. However, a critical challenge in this field is the lack of standard and comprehensive metadata associated with raw data, hindering the ability to perform robust data stratifications and consider confounding factors. In this comprehensive review, we categorize publicly available microbiome data into five types: shotgun sequencing, amplicon sequencing, metatranscriptomic, metabolomic, and metaproteomic data. We explore the importance of metadata for data reuse and address the challenges in collecting standardized metadata. We also, assess the limitations in metadata collection of existing public repositories collecting metagenomic data. This review emphasizes the vital role of metadata in interpreting and comparing datasets and highlights the need for standardized metadata protocols to fully leverage metagenomic data's potential. Furthermore, we explore future directions of implementation of Machine Learning (ML) in metadata retrieval, offering promising avenues for a deeper understanding of microbial communities and their ecological roles. Leveraging these tools will enhance our insights into microbial functional capabilities and ecological dynamics in diverse ecosystems. Finally, we emphasize the crucial metadata role in ML models development.
Collapse
Affiliation(s)
- Bablu Kumar
- Università degli Studi di Milano, Milan, Italy
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
| | - Erika Lorusso
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
44
|
Rigden DJ, Fernández XM. The 2024 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res 2024; 52:D1-D9. [PMID: 38035367 PMCID: PMC10767945 DOI: 10.1093/nar/gkad1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
The 2024 Nucleic Acids Research database issue contains 180 papers from across biology and neighbouring disciplines. There are 90 papers reporting on new databases and 83 updates from resources previously published in the Issue. Updates from databases most recently published elsewhere account for a further seven. Nucleic acid databases include the new NAKB for structural information and updates from Genbank, ENA, GEO, Tarbase and JASPAR. The Issue's Breakthrough Article concerns NMPFamsDB for novel prokaryotic protein families and the AlphaFold Protein Structure Database has an important update. Metabolism is covered by updates from Reactome, Wikipathways and Metabolights. Microbes are covered by RefSeq, UNITE, SPIRE and P10K; viruses by ViralZone and PhageScope. Medically-oriented databases include the familiar COSMIC, Drugbank and TTD. Genomics-related resources include Ensembl, UCSC Genome Browser and Monarch. New arrivals cover plant imaging (OPIA and PlantPAD) and crop plants (SoyMD, TCOD and CropGS-Hub). The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). Over the last year the NAR online Molecular Biology Database Collection has been updated, reviewing 1060 entries, adding 97 new resources and eliminating 388 discontinued URLs bringing the current total to 1959 databases. It is available at http://www.oxfordjournals.org/nar/database/c/.
Collapse
Affiliation(s)
- Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | |
Collapse
|