1
|
McCann H, Meade C, Williams L, Petrov A, Johnson P, Simon A, Hoksza D, Nawrocki E, Chan P, Lowe T, Ribas C, Sweeney B, Madeira F, Anyango S, Appasamy S, Deshpande M, Varadi M, Velankar S, Zirbel C, Naiden A, Jossinet F, Petrov A. R2DT: a comprehensive platform for visualizing RNA secondary structure. Nucleic Acids Res 2025; 53:gkaf032. [PMID: 39921562 PMCID: PMC11806352 DOI: 10.1093/nar/gkaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/10/2025] Open
Abstract
RNA secondary (2D) structure visualization is an essential tool for understanding RNA function. R2DT is a software package designed to visualize RNA 2D structures in consistent, recognizable, and reproducible layouts. The latest release, R2DT 2.0, introduces multiple significant features, including the ability to display position-specific information, such as single nucleotide polymorphisms or SHAPE reactivities. It also offers a new template-free mode allowing visualization of RNAs without pre-existing templates, alongside a constrained folding mode and support for animated visualizations. Users can interactively modify R2DT diagrams, either manually or using natural language prompts, to generate new templates or create publication-quality images. Additionally, R2DT features faster performance, an expanded template library, and a growing collection of compatible tools and utilities. Already integrated into multiple biological databases, R2DT has evolved into a comprehensive platform for RNA 2D visualization, accessible at https://r2dt.bio.
Collapse
Affiliation(s)
- Holly McCann
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- Department of Biomedical Data Science, Stanford University, Palo Alto, CA, 94305-5102, United States
| | - Caeden D Meade
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | - Loren Dean Williams
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | - Anton S Petrov
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | - Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - David Hoksza
- Department of Software Engineering, Charles University, Prague 118 00, Czech Republic
| | - Eric P Nawrocki
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, United States
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, United States
| | - Carlos Eduardo Ribas
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Blake A Sweeney
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Fábio Madeira
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stephen Anyango
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sri Devan Appasamy
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mandar Deshpande
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mihaly Varadi
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sameer Velankar
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, United States
| | | | - Fabrice Jossinet
- Faculty of Life Sciences, University of Strasbourg, Strasbourg 67000, France
| | - Anton I Petrov
- Riboscope Ltd, 23 King Street, Cambridge CB1 1AH, United Kingdom
| |
Collapse
|
2
|
Munsayac A, Leite WC, Hopkins JB, Hall I, O'Neill HM, Keane SC. Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. Structure 2025:S0969-2126(25)00017-6. [PMID: 39933513 DOI: 10.1016/j.str.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof of principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.
Collapse
Affiliation(s)
- Aldrex Munsayac
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Lee S, Yan S, Dey A, Laederach A, Schlick T. A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements. Biochemistry 2025. [PMID: 39907285 DOI: 10.1021/acs.biochem.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Targeting ribosomal frameshifting has emerged as a potential therapeutic intervention strategy against COVID-19. In this process, a -1 shift in the ribosomal reading frame encodes alternative viral proteins. Any interference with this process profoundly affects viral replication and propagation. For SARS-CoV-2, two RNA sites associated with ribosomal frameshifting are positioned on the 5' and 3' of the frameshifting residues. Although much attention has been focused on the 3' frameshift element (FSE), the 5' stem-loop (attenuator hairpin, AH) can play a role. Yet the relationship between the two regions is unknown. In addition, multiple folds of the FSE and FSE-containing RNA regions have been discovered. To gain more insight into these RNA folds in the larger sequence context that includes AH, we apply our graph-theory-based modeling tools to represent RNA secondary structures, "RAG" (RNA-As-Graphs), to generate conformational landscapes that suggest length-dependent conformational distributions. We show that the AH region can coexist as a stem-loop with main and alternative 3-stem pseudoknots of the FSE (dual graphs 3_6 and 3_3 in our notation) but that an alternative stem 1 (AS1) can disrupt the FSE pseudoknots and trigger other folds. A critical length for AS1 of 10-bp regulates key folding transitions. Together with designed mutants and available experimental data, we present a sequential view of length-dependent folds during frameshifting and suggest their mechanistic roles. These structural and mutational insights into both ends of the FSE advance our understanding of the SARS-CoV-2 frameshifting mechanism by suggesting how alternative folds play a role in frameshifting and defining potential therapeutic intervention techniques that target specific folds.
Collapse
Affiliation(s)
- Samuel Lee
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Shuting Yan
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttar Pradesh 226002, India
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, United States
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, PR China
- NYU Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
4
|
Lambert GS, Maldonado RJK, Parent LJ. Role of the Psi Packaging Signal and Dimerization Initiation Sequence in the Organization of Rous Sarcoma Virus Gag-gRNA Co-Condensates. Viruses 2025; 17:97. [PMID: 39861886 PMCID: PMC11769450 DOI: 10.3390/v17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization. We observed that the psi (Ψ) packaging signal and the dimerization initiation sequence (DIS) had stabilizing effects on RSV Gag condensates, while RNAs lacking these features promoted or antagonized condensation, depending on local protein concentration and condensate architecture. An RNA containing Ψ, DIS, and the dimerization linkage structure (DLS) that is capable of stable dimer formation was observed to act as a bridge between RSV Gag condensates. These observations suggest additional, condensate-related roles for Gag-Ψ binding, gRNA dimerization, and Gag dimerization/multimerization in gRNA selection and packaging, representing a significant step forward in our understanding of how these interactions collectively facilitate efficient genome packaging.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Quinodoz M, Rodenburg K, Cvackova Z, Kaminska K, de Bruijn SE, Iglesias-Romero AB, Boonen EGM, Ullah M, Zomer N, Folcher M, Bijon J, Holtes LK, Tsang SH, Corradi Z, Freund KB, Shliaga S, Panneman DM, Hitti-Malin RJ, Ali M, AlTalbishi A, Andréasson S, Ansari G, Arno G, Astuti GDN, Ayuso C, Ayyagari R, Banfi S, Banin E, Barboni MTS, Bauwens M, Ben-Yosef T, Birch DG, Biswas P, Blanco-Kelly F, Bocquet B, Boon CJF, Branham K, Britten-Jones AC, Bujakowska KM, Cadena EL, Calzetti G, Cancellieri F, Cattaneo L, Issa PC, Chadderton N, Coutinho-Santos L, Daiger SP, De Baere E, de la Cerda B, De Roach JN, De Zaeytijd J, Derks R, Dhaenens CM, Dudakova L, Duncan JL, Farrar GJ, Feltgen N, Fernández-Caballero L, Sallum JMF, Gana S, Garanto A, Gardner JC, Gilissen C, Goto K, Gonzàlez-Duarte R, Griffiths-Jones S, Haack TB, Haer-Wigman L, Hardcastle AJ, Hayashi T, Héon E, Hoischen A, Holtan JP, Hoyng CB, Ibanez MBB, Inglehearn CF, Iwata T, Jones K, Kalatzis V, Kamakari S, Karali M, Kellner U, Knézy K, Klaver CCW, Koenekoop RK, Kohl S, Kominami T, Kühlewein L, Lamey TM, Leroy BP, Martín-Gutiérrez MP, Martins N, Mauring L, Leibu R, Lin S, Liskova P, Lopez I, López-Rodríguez VRDJ, Mahroo OA, Manes G, McKibbin M, McLaren TL, Meunier I, Michaelides M, Millán JM, Mizobuchi K, Mukherjee R, Nagy ZZ, Neveling K, Ołdak M, Oorsprong M, Pan Y, Papachristou A, Percesepe A, Pfau M, Pierce EA, Place E, Ramesar R, Rasquin FA, Rice GI, Roberts L, Rodríguez-Hidalgo M, Ruiz-Eddera J, Sabir AH, Sajiki AF, Sánchez-Barbero AI, Sarma AS, Sangermano R, Santos CM, Scarpato M, Scholl HPN, Sharon D, Signorini SG, Simonelli F, Sousa AB, Stefaniotou M, Stingl K, Suga A, Sullivan LS, Szabó V, Szaflik JP, Taurina G, Toomes C, Tran VH, Tsilimbaris MK, Tsoka P, Vaclavik V, Vajter M, Valeina S, Valente EM, Valentine C, Valero R, van Aerschot J, van den Born LI, Webster AR, Whelan L, Wissinger B, Yioti GG, Yoshitake K, Zenteno JC, Zeuli R, Zuleger T, Landau C, Jacob AI, Cremers FPM, Lee W, Ellingford JM, Stanek D, Rivolta C, Roosing S. De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.24317169. [PMID: 39830270 PMCID: PMC11741465 DOI: 10.1101/2025.01.06.24317169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The U4 small nuclear RNA (snRNA) forms a duplex with the U6 snRNA and, together with U5 and ~30 proteins, is part of the U4/U6.U5 tri-snRNP complex, located at the core of the major spliceosome. Recently, recurrent de novo variants in the U4 RNA, transcribed from the RNU4-2 gene, and in at least two other RNU genes were discovered to cause neurodevelopmental disorder. We detected inherited and de novo heterozygous variants in RNU4-2 (n.18_19insA and n.56T>C) and in four out of the five RNU6 paralogues (n.55_56insG and n.56_57insG) in 135 individuals from 62 families with non-syndromic retinitis pigmentosa (RP), a rare form of hereditary blindness. We show that these variants are recurrent among RP families and invariably cluster in close proximity within the three-way junction (between stem-I, the 5' stem-loop and stem-II) of the U4/U6 duplex, affecting its natural conformation. Interestingly, this region binds to numerous splicing factors of the tri-snRNP complex including PRPF3, PRPF8 and PRPF31, previously associated with RP as well. The U4 and U6 variants identified seem to affect snRNP biogenesis, namely the U4/U6 di-snRNP, which is an assembly intermediate of the tri-snRNP. Based on the number of positive cases observed, deleterious variants in RNU4-2 and in RNU6 paralogues could be a significant cause of isolated or dominant RP, accounting for up to 1.2% of all undiagnosed RP cases. This study highlights the role of non-coding genes in rare Mendelian disorders and uncovers pleiotropy in RNU4-2, where different variants underlie neurodevelopmental disorder and RP.
Collapse
Affiliation(s)
- Mathieu Quinodoz
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zuzana Cvackova
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Kaminska
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ana Belén Iglesias-Romero
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Erica G M Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- The Rotterdam Eye Hospital, Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
| | - Mukhtar Ullah
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Nick Zomer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc Folcher
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Jacques Bijon
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
- Department of Ophthalmology, Rothschild Foundation Hospital, Paris, France
| | - Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons Columbia University Irving Medical Center, New York, NY, USA
- Edward S. Harkness Eye Institute, Jonas Children’s Vision Care (JCVC), Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Stefanida Shliaga
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan M Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rebekkah J Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manir Ali
- University of Leeds, Leeds, UK
- Division of Molecular Medicine, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
| | - Ala’a AlTalbishi
- Molecular Biology Research Unit, St John Eye Hospital Group, Jerusalem, Palestine
| | - Sten Andréasson
- Department of Ophthalmology, University Hospital of Lund, Lund, Sweden
| | - Georg Ansari
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gavin Arno
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Radha Ayyagari
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Sandro Banfi
- Department of Precision Medicine, Medical Genetics, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Genomic Medicine, Telethon Institute of Genetics and Medicine, Pozzuoli, NA, Italy
| | - Eyal Banin
- Hadassah Medical Center, Division of Ophthalmology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Miriam Bauwens
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Pooja Biswas
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatrice Bocquet
- Institute for Neurosciences of Montpellier (INM), Montpellier University, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kari Branham
- Department of Ophthalmology and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Victoria, Australia
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Elizabeth L Cadena
- Department of Epidemiology and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giacomo Calzetti
- Vista Vision Eye Clinic, Brescia, Italy
- Clinical Translation Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Francesca Cancellieri
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Luca Cattaneo
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Peter Charbel Issa
- Department of Ophthalmology, TUM University Hospital, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Naomi Chadderton
- Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | | | - Stephen P Daiger
- Department of Epidemiology and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Berta de la Cerda
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre, CABIMER, Seville, Spain
| | - John N De Roach
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Julie De Zaeytijd
- Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Université de Lille, INSERM U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, Wayne and Gladys Valley Center for Vision, San Francisco, CA, USA
| | - G Jane Farrar
- Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Nicolas Feltgen
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lidia Fernández-Caballero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Juliana M Ferraz Sallum
- Department of Ophthalmology, Federal University of São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jessica C Gardner
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kensuke Goto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Roser Gonzàlez-Duarte
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sam Griffiths-Jones
- School of Biological Sciences, Division of Evolution, Infection, and Genomics, The University of Manchester, Manchester, UK
| | - Tobias B Haack
- Institute for Medical Genetics and Applied Genomics, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
- Center for Rare Disease, University of Tübingen, Tübingen, Germany
- Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE)
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, Ocular Genetics Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manuel Benjamin B Ibanez
- Department of Ophthalmology, Section of Pediatric Ophthalmology, Strabismus, and Ocular Genetics, DOH Eye Center, East Avenue Medical Center, Quezon City, Metro Manila, Philippines
- Section of Pediatric Ophthalmology, Strabismus, and Ocular Genetics, Makati Medical Center, Makati City, Philippines
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Kaylie Jones
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), Montpellier University, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Smaragda Kamakari
- Department of Inherited Retinal Dystrophies, Ophthalmic Genetics group, OMMA, Ophthalmological Institute of Athens, Athens, Greece
| | - Marianthi Karali
- Department of Precision Medicine, Medical Genetics, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ulrich Kellner
- Center for Rare Retinal Diseases, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany
| | - Krisztina Knézy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Caroline C W Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Robert K Koenekoop
- Department of Pediatric Surgery, Division of Pediatric Ophthalmology, Montreal Children’s Hospital, McGill University Health Center (MUHC), Montreal, Quebec, Canada
| | - Susanne Kohl
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laura Kühlewein
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Bart P Leroy
- Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent, Belgium
| | - María Pilar Martín-Gutiérrez
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Nelson Martins
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, Belgium
| | - Laura Mauring
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Eye Clinic, Tartu University Hospital, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Rina Leibu
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Siying Lin
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary’s Hospital, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Irma Lopez
- Department of Pediatric Surgery, Division of Pediatric Ophthalmology, Montreal Children’s Hospital, McGill University Health Center (MUHC), Montreal, Quebec, Canada
| | - Victor R de J López-Rodríguez
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- Section of Ophthalmology, King’s College London, St. Thomas’ Hospital Campus, London, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gaël Manes
- INSERM U1298, Montpellier University, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
- Department of Ophthalmology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds, UK
| | - Terri L McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), Montpellier University, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - José M Millán
- Instituto de Investigación Sanitaria La Fe (IIS La Fe) and CIBERER, Valencia, Spain
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Rajarshi Mukherjee
- Department of Ophthalmology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds, UK
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monika Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Michiel Oorsprong
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Pan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Anastasia Papachristou
- Department of Ophthalmology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Antonio Percesepe
- Department of Medicine and Surgery, Medical Genetics, University of Parma, Parma, Italy
| | - Maximilian Pfau
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Eric A Pierce
- Ocular Genomics institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Emily Place
- Ocular Genomics institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Raj Ramesar
- Department of Pathology, UCT/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Gillian I Rice
- School of Biological Sciences, Division of Evolution, Infection, and Genomics, The University of Manchester, Manchester, UK
| | - Lisa Roberts
- Department of Pathology, UCT/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - María Rodríguez-Hidalgo
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Department of Genetic, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Javier Ruiz-Eddera
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Department of Ophthalmology, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Ataf H Sabir
- West Midlands Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ai Fujita Sajiki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ana Isabel Sánchez-Barbero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Asodu Sandeep Sarma
- Hadassah Medical Center, Division of Ophthalmology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Riccardo Sangermano
- Ocular Genomics institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Cristina M Santos
- Serviço de Oftalmologia, Instituto de Oftalmologia Dr. Gama Pinto, Lisboa, Portugal
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Margherita Scarpato
- Department of Precision Medicine, Medical Genetics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Hendrik P N Scholl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Pallas Kliniken AG, Pallas Klinik Zürich, Zürich, Switzerland
- European Vision Institute, Basel, Switzerland
| | - Dror Sharon
- Hadassah Medical Center, Division of Ophthalmology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ana Berta Sousa
- Department of Medical Genetics, ULS St Maria, Lisboa, Portugal
- Laboratory of Basic Immunology, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Stefaniotou
- Department of Ophthalmology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Katarina Stingl
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Lori S Sullivan
- Department of Epidemiology and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Viktória Szabó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
- SPKSO Ophthalmic University Hospital in Warsaw, Warsaw, Poland
| | - Gita Taurina
- Medical Genetics and Prenatal Diagnostics Clinic, Children’s Clinical University Hospital, Riga, Latvia
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
| | - Viet H Tran
- Department of Ophthalmology; Oculogenetics Unit, Jules Gonin University Hospital; University of Lausanne, Lausanne, Vaud, Switzerland
- Centre for Gene Therapy & Regenerative Medicine, King’s College London, London, UK
| | - Miltiadis K Tsilimbaris
- Department of Ophthalmology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Pavlina Tsoka
- Department of Ophthalmology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Veronika Vaclavik
- Department of Ophthalmology; Oculogenetics Unit, Jules Gonin University Hospital; University of Lausanne, Lausanne, Vaud, Switzerland
| | - Marie Vajter
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Sandra Valeina
- Eye Disease Clinic, Children’s University Hospital Riga, Riga, Latvia
| | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Casey Valentine
- Department of Pathology, UCT/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rebeca Valero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joseph van Aerschot
- Department of Ophthalmology, Pediatric ophthalmology and Ophthalmogenetics, Leuven, Belgium
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Laura Whelan
- Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Pharmacy and Biomolecular Sciences (PBS), RCSI University of Medicine and Health Sciences, Dublin 2, Leinster, Ireland
- FutureNeuro Research Ireland Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Leinster, Ireland
| | - Bernd Wissinger
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - Georgia G Yioti
- Department of Ophthalmology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Roberta Zeuli
- Department of Precision Medicine, Medical Genetics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Theresia Zuleger
- Institute for Medical Genetics and Applied Genomics, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - Chaim Landau
- Bonei Olam - Center for Rare Jewish Genetic Diseases, Brooklyn, NY, USA
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Winston Lee
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jamie M Ellingford
- School of Biological Sciences, Division of Evolution, Infection, and Genomics, The University of Manchester, Manchester, UK
- Genomics England Ltd, London, UK
| | - David Stanek
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Carlo Rivolta
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Berger KD, Puthenpeedikakkal AMK, Mathews DH, Fu D. Structural impact of 3-methylcytosine modification on the anticodon stem of a neuronally-enriched arginine tRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624017. [PMID: 39605410 PMCID: PMC11601484 DOI: 10.1101/2024.11.18.624017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
All tRNAs undergo a series of chemical modifications to fold and function correctly. In mammals, the C32 nucleotide in the anticodon loop of tRNA-Arg-CCU and UCU is methylated to form 3-methylcytosine (m3C). Deficiency of m3C in arginine tRNAs has been linked to human neurodevelopmental disorders, indicating a critical biological role for m3C modification. However, the structural repercussions of m3C modification are not well understood. Here, we examine the structural effects of m3C32 modification on the anticodon stem loop (ASL) of human tRNA-Arg-UCU-4-1, a unique tRNA with enriched expression in the central nervous system. Optical melting experiments demonstrate that m3C modification can locally disrupt nearby base pairing within the ASL while simultaneously stabilizing the ASL electrostatically, resulting in little net change thermodynamically. The isoenergetic nature of the C32 - A38 pair vs the m3C32 - A38 pair may help discriminate against structures not adopting canonical C32 - A38 pairings, as most other m3C pairings are unfavorable. Furthermore, multidimensional NMR reveals that after m3C modification there are changes in hairpin loop structure and dynamics, the structure of A37, and the neighboring A31 - U39 base pair. However, these structural changes after modification are made while maintaining the shape of the C32 - A38 pairing, which is essential for efficient tRNA function in translation. These findings suggests that m3C32 modification could alter interactions of tRNA-Arg isodecoders with one or more binding partners while simultaneously maintaining the tRNA's ability to function in translation.
Collapse
Affiliation(s)
- Kyle D. Berger
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States
| | - Anees M. K. Puthenpeedikakkal
- Department of Biochemistry & Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David H. Mathews
- Department of Biochemistry & Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
7
|
Silver K, Smith A, Colling HV, Tenorio N, Rowland TJ, Bonham AJ. Electrochemical Aptamer-Based Biosensor for Detecting Pap31, a Biomarker for Carrion's Disease. SENSORS (BASEL, SWITZERLAND) 2024; 24:7295. [PMID: 39599072 PMCID: PMC11598354 DOI: 10.3390/s24227295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Carrion's disease, caused by infection with the bacterium Bartonella bacilliformis (B. bacilliformis), is effectively treated with antibiotics, but reaches fatality rates of ~90% if untreated. Current diagnostic methods are limited, insufficiently sensitive, or require laboratory technology unavailable in endemic areas. Electrochemical aptamer-based (E-AB) biosensors provide a potential solution for this unmet need, as these biosensors are portable, sensitive, and can rapidly report the detection of small molecule targets. Here, we developed an E-AB biosensor to detect Pap31, a biomarker of Carrion's disease and an outer membrane protein in B. bacilliformis. We identified an aptamer with Pap31-specific binding affinity using a magnetic pull-down assay with magnetic bead-bound Pap31 and an aptamer library followed by electrophoretic mobility shift assays. We incorporated the Pap31-binding aptamer into a DNA oligonucleotide that changes conformation upon binding Pap31. The resultant Pap31 E-AB biosensor produced a rapid, significant, and target-specific electrical current readout in the buffer, demonstrating an apparent KD of 0.95 nM with a limit of detection of 0.1 nM, and no significant signal change when challenged with off-target proteins. This proof-of-concept Pap31 biosensor design is a first step toward the development of more rapid, sensitive, and portable diagnostic tools for detecting Carrion's disease.
Collapse
Affiliation(s)
- Keaton Silver
- Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80204, USA; (K.S.); (H.V.C.); (N.T.)
| | - Andrew Smith
- Department of Biology, University of Kansas Medical Center, Kansas City, KS 66061, USA;
| | - Haley V. Colling
- Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80204, USA; (K.S.); (H.V.C.); (N.T.)
| | - Nico Tenorio
- Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80204, USA; (K.S.); (H.V.C.); (N.T.)
| | | | - Andrew J. Bonham
- Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80204, USA; (K.S.); (H.V.C.); (N.T.)
| |
Collapse
|
8
|
Hall I, Zablock K, Sobetski R, Weidmann CA, Keane SC. Functional Validation of SAM Riboswitch Element A from Listeria monocytogenes. Biochemistry 2024; 63:2621-2631. [PMID: 39323220 DOI: 10.1021/acs.biochem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
SreA is one of seven candidate S-adenosyl methionine (SAM) class I riboswitches identified in Listeria monocytogenes, a saprophyte and opportunistic foodborne pathogen. SreA precedes genes encoding a methionine ATP-binding cassette (ABC) transporter, which imports methionine and is presumed to regulate transcription of its downstream genes in a SAM-dependent manner. The proposed role of SreA in controlling the transcription of genes encoding an ABC transporter complex may have important implications for how the bacteria senses and responds to the availability of the metabolite SAM in the diverse environments in which L. monocytogenes persists. Here we validate SreA as a functional SAM-I riboswitch through ligand binding studies, structure characterization, and transcription termination assays. We determined that SreA has both a structure and SAM binding properties similar to those of other well-characterized SAM-I riboswitches. Despite the apparent structural similarities to previously described SAM-I riboswitches, SreA induces transcription termination in response to comparatively lower (nanomolar) ligand concentrations. Furthermore, SreA is a leaky riboswitch that permits some transcription of the downstream gene even in the presence of millimolar SAM, suggesting that L. monocytogenes may "dampen" the expression of genes for methionine import but likely does not turn them "OFF".
Collapse
Affiliation(s)
- Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaitlyn Zablock
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Raeleen Sobetski
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
O'Brien BM, Moulick R, Jiménez-Avalos G, Rajasekaran N, Kaiser CM, Woodson SA. Stick-slip unfolding favors self-association of expanded HTT mRNA. Nat Commun 2024; 15:8738. [PMID: 39384800 PMCID: PMC11464812 DOI: 10.1038/s41467-024-52764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024] Open
Abstract
In Huntington's Disease (HD) and related disorders, expansion of CAG trinucleotide repeats produces a toxic gain of function in affected neurons. Expanded huntingtin (expHTT) mRNA forms aggregates that sequester essential RNA binding proteins, dysregulating mRNA processing and translation. The physical basis of RNA aggregation has been difficult to disentangle owing to the heterogeneous structure of the CAG repeats. Here, we probe the folding and unfolding pathways of expHTT mRNA using single-molecule force spectroscopy. Whereas normal HTT mRNAs unfold reversibly and cooperatively, expHTT mRNAs with 20 or 40 CAG repeats slip and unravel non-cooperatively at low tension. Slippage of CAG base pairs is punctuated by concerted rearrangement of adjacent CCG trinucleotides, trapping partially folded structures that readily base pair with another RNA strand. We suggest that the conformational entropy of the CAG repeats, combined with stable CCG base pairs, creates a stick-slip behavior that explains the aggregation propensity of expHTT mRNA.
Collapse
Affiliation(s)
- Brett M O'Brien
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD, USA
| | - Roumita Moulick
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| | - Sarah A Woodson
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD, USA.
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Tang S, Conte V, Zhang DJ, Žedaveinytė R, Lampe GD, Wiegand T, Tang LC, Wang M, Walker MWG, George JT, Berchowitz LE, Jovanovic M, Sternberg SH. De novo gene synthesis by an antiviral reverse transcriptase. Science 2024; 386:eadq0876. [PMID: 39116258 PMCID: PMC11758365 DOI: 10.1126/science.adq0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. We show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis through rolling circle reverse transcription of a noncoding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection. This DNA product constitutes a protein-coding, nearly endless open reading frame (neo) gene whose expression leads to potent cell growth arrest, restricting the viral infection. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Valentin Conte
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Dennis J. Zhang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Megan Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W. G. Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Zoladek J, El Kazzi P, Caval V, Vivet-Boudou V, Cannac M, Davies EL, Rossi S, Bribes I, Rouilly L, Simonin Y, Jouvenet N, Decroly E, Paillart JC, Wilson SJ, Nisole S. A specific domain within the 3' untranslated region of Usutu virus confers resistance to the exonuclease ISG20. Nat Commun 2024; 15:8528. [PMID: 39358425 PMCID: PMC11447015 DOI: 10.1038/s41467-024-52870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are two closely related emerging mosquito-borne flaviviruses. Their natural hosts are wild birds, but they can also cause severe neurological disorders in humans. Both viruses are efficiently suppressed by type I interferon (IFN), which interferes with viral replication, dissemination, pathogenesis and transmission. Here, we show that the replication of USUV and WNV are inhibited through a common set of IFN-induced genes (ISGs), with the notable exception of ISG20, which USUV is resistant to. Strikingly, USUV was the only virus among all the other tested mosquito-borne flaviviruses that demonstrated resistance to the 3'-5' exonuclease activity of ISG20. Our findings highlight that the intrinsic resistance of the USUV genome, irrespective of the presence of cellular or viral proteins or protective post-transcriptional modifications, relies on a unique sequence present in its 3' untranslated region. Importantly, this genomic region alone can confer ISG20 resistance to a susceptible flavivirus, without compromising its infectivity, suggesting that it could be acquired by other flaviviruses. This study provides new insights into the strategy employed by emerging flaviviruses to overcome host defense mechanisms.
Collapse
Affiliation(s)
- Jim Zoladek
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Priscila El Kazzi
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Vincent Caval
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Marion Cannac
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Emma L Davies
- MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Soléna Rossi
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Inès Bribes
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Lucile Rouilly
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections (PCCEI), INSERM, Etablissement Français du Sang, Université de Montpellier, Montpellier, France
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Sam J Wilson
- MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, Glasgow, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France.
| |
Collapse
|
12
|
McCann H, Meade CD, Williams LD, Petrov AS, Johnson PZ, Simon AE, Hoksza D, Nawrocki EP, Chan PP, Lowe TM, Ribas CE, Sweeney BA, Madeira F, Anyango S, Appasamy SD, Deshpande M, Varadi M, Velankar S, Zirbel CL, Naiden A, Jossinet F, Petrov AI. R2DT: A COMPREHENSIVE PLATFORM FOR VISUALISING RNA SECONDARY STRUCTURE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.29.611006. [PMID: 39803519 PMCID: PMC11722224 DOI: 10.1101/2024.09.29.611006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
RNA secondary (2D) structure visualisation is an essential tool for understanding RNA function. R2DT is a software package designed to visualise RNA 2D structures in consistent, recognisable, and reproducible layouts. The latest release, R2DT 2.0, introduces multiple significant features, including the ability to display position-specific information, such as single nucleotide polymorphisms (SNPs) or SHAPE reactivities. It also offers a new template-free mode allowing visualisation of RNAs without pre-existing templates, alongside a constrained folding mode and support for animated visualisations. Users can interactively modify R2DT diagrams, either manually or using natural language prompts, to generate new templates or create publication-quality images. Additionally, R2DT features faster performance, an expanded template library, and a growing collection of compatible tools and utilities. Already integrated into multiple biological databases, R2DT has evolved into a comprehensive platform for RNA 2D visualisation, accessible at https://r2dt.bio.
Collapse
Affiliation(s)
- Holly McCann
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Caeden D. Meade
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Loren Dean Williams
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Anton S. Petrov
- NASA Center for Integration of the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Philip Z. Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - David Hoksza
- Department of Software Engineering, Charles University, Prague, 118 00, Czech Republic
| | - Eric P. Nawrocki
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Patricia P. Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Carlos Eduardo Ribas
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Blake A. Sweeney
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Fábio Madeira
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Stephen Anyango
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Sri Devan Appasamy
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Mandar Deshpande
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Mihaly Varadi
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | - Fabrice Jossinet
- Faculty of Life Sciences, University of Strasbourg, Strasbourg, 67000, France
| | | |
Collapse
|
13
|
Terasaki K, Makino S. Requirement of the N-terminal region of nonstructural protein 1 in cis for SARS-CoV-2 defective RNA replication. J Virol 2024; 98:e0090024. [PMID: 39194239 PMCID: PMC11406973 DOI: 10.1128/jvi.00900-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
SARS-CoV-2 belongs to the family Coronaviridae and carries a single-stranded positive-sense RNA genome. During coronavirus (CoV) replication, defective or defective interfering RNAs that lack a large portion of the genome often emerge. These defective RNAs typically carry the necessary RNA elements that are required for replication and packaging. We identified the minimum requirement of the 5' proximal region necessary for viral RNA replication by using artificially generated SARS-CoV-2 minigenomes. The minigenomes consist of the 5'-proximal region, an open reading frame (ORF) that encodes a fusion protein consisting of the N-terminal of viral NSP1 and a reporter gene, and the 3' untranslated region of the SARS-CoV-2 genome. We used a modified SARS-CoV-2 variant to support replication of the minigenomes. A minigenome carrying the 5' proximal 634 nucleotides replicated, whereas those carrying shorter than 634 nucleotides did not, demonstrating that the entire 265 nt-long 5' untranslated region and N-terminal portion of the NSP1 coding region are required for the minigenome replication. Minigenome RNAs carrying a specific amino acid substitution or frame shift insertions in the partial NSP1 coding sequence abrogated minigenome replication. Introduction of synonymous mutations in the minigenome RNAs also affected the replication efficiency of the minigenomes. These data suggest that the expression of the N-terminal portion of NSP1 and the primary sequence of the 5' proximal 634 nucleotides are important for minigenome replication.IMPORTANCESARS-CoV-2, the causative agent of COVID-19, is highly transmissible and continues to have a significant impact on public health and the global economy. While several vaccines mitigate the severe consequences of SARS-CoV-2 infection, mutant viruses with reduced reactivity to current vaccines continue to emerge and circulate. This study aimed to identify the minimal 5' proximal region of SARS-CoV-2 genomic RNA required for SARS-CoV-2 defective RNA replication and investigate the importance of an ORF encoded in these defective RNAs. Identifying cis-acting replication signals of SARS-CoV-2 genomic RNA is critical for the development of antivirals that target these signals. Additionally, replication-competent defective RNAs can serve as therapeutic reagents to interfere with SARS-CoV-2 replication. Our findings provide valuable insights into the mechanisms of SARS-CoV-2 RNA replication and the development of reagents that suppress SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
14
|
Marogi JG, Murphy CT, Myhrvold C, Gitai Z. Pseudomonas aeruginosa modulates both Caenorhabditis elegans attraction and pathogenesis by regulating nitrogen assimilation. Nat Commun 2024; 15:7927. [PMID: 39256376 PMCID: PMC11387622 DOI: 10.1038/s41467-024-52227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like many animals, C. elegans use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing C. elegans attraction to bacteria and the physiological importance of these compounds to bacteria. Here, we address these questions by investigating the function of a small RNA, P11, in the pathogen, Pseudomonas aeruginosa, that was previously shown to mediate learned pathogen avoidance. We discovered that this RNA also affects the attraction of untrained C. elegans to P. aeruginosa and does so by controlling production of ammonia, a volatile odorant produced during nitrogen assimilation. We describe the complex regulation of P. aeruginosa nitrogen assimilation, which is mediated by a partner-switching mechanism involving environmental nitrates, sensor proteins, and P11. In addition to mediating C. elegans attraction, we demonstrate that nitrogen assimilation mutants perturb bacterial fitness and pathogenesis during C. elegans infection by P. aeruginosa. These studies define ammonia as a major mediator of trans-kingdom signaling, implicate nitrogen assimilation as important for both bacteria and host organisms, and highlight how a bacterial metabolic pathway can either benefit or harm a host in different contexts.
Collapse
Affiliation(s)
- Jacob G Marogi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Munsayac A, Leite WC, Hopkins JB, Hall I, O’Neill HM, Keane SC. Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612093. [PMID: 39314299 PMCID: PMC11419110 DOI: 10.1101/2024.09.09.612093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally-determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs in their free state and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof-of-principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.
Collapse
Affiliation(s)
- Aldrex Munsayac
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Sarah C. Keane
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
16
|
McCann HM, Meade CD, Banerjee B, Penev PI, Dean Williams L, Petrov AS. RiboVision2: A Web Server for Advanced Visualization of Ribosomal RNAs. J Mol Biol 2024; 436:168556. [PMID: 39237196 DOI: 10.1016/j.jmb.2024.168556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 09/07/2024]
Abstract
RiboVision2 is a web server designed to visualize phylogenetic, structural, and evolutionary properties of ribosomal RNAs simultaneously at the levels of primary, secondary, and three-dimensional structure and in the context of full ribosomal complexes. RiboVision2 instantly computes and displays a broad variety of data; it has no login requirements, is open-source, free for all users, and available at https://ribovision2.chemistry.gatech.edu.
Collapse
Affiliation(s)
- Holly M McCann
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Caeden D Meade
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Biswajit Banerjee
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Petar I Penev
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anton S Petrov
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
17
|
Shalamova L, Barth P, Pickin MJ, Kouti K, Ott B, Humpert K, Janssen S, Lorenzo G, Brun A, Goesmann A, Hain T, Hartmann RK, Rossbach O, Weber F. Nucleocapsids of the Rift Valley fever virus ambisense S segment contain an exposed RNA element in the center that overlaps with the intergenic region. Nat Commun 2024; 15:7602. [PMID: 39217162 PMCID: PMC11365940 DOI: 10.1038/s41467-024-52058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen. Its RNA genome consists of two negative-sense segments (L and M) with one gene each, and one ambisense segment (S) with two opposing genes separated by the noncoding "intergenic region" (IGR). These vRNAs and the complementary cRNAs are encapsidated by nucleoprotein (N). Using iCLIP2 (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to map all N-vRNA and N-cRNA interactions, we detect N coverage along the L and M segments. However, the S segment vRNA and cRNA each contain approximately 100 non-encapsidated nucleotides stretching from the IGR into the 5'-adjacent reading frame. These exposed regions are RNase-sensitive and predicted to form stem-loop structures with the mRNA transcription termination motif positioned near the top. Moreover, optimal S segment transcription and replication requires the entire exposed region rather than only the IGR. Thus, the RVFV S segment contains a central, non-encapsidated RNA region with a functional role.
Collapse
Affiliation(s)
- Lyudmila Shalamova
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Patrick Barth
- Bioinformatics & Systems Biology, Justus-Liebig University, Giessen, Germany
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Matthew J Pickin
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Kiriaki Kouti
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Benjamin Ott
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
| | - Katharina Humpert
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
- Institute of Molecular Oncology, Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus-Liebig University, Giessen, Germany
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Madrid, Spain
| | - Alexander Goesmann
- Bioinformatics & Systems Biology, Justus-Liebig University, Giessen, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Oliver Rossbach
- Institute for Biochemistry, FB 08-Biology and Chemistry, Justus-Liebig University, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
18
|
Johnson P, Needham J, Lim N, Simon A. Direct nanopore RNA sequencing of umbra-like virus-infected plants reveals long non-coding RNAs, specific cleavage sites, D-RNAs, foldback RNAs, and temporal- and tissue-specific profiles. NAR Genom Bioinform 2024; 6:lqae104. [PMID: 39157584 PMCID: PMC11327873 DOI: 10.1093/nargab/lqae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The traditional view of plus (+)-strand RNA virus transcriptomes is that infected cells contain a limited variety of viral RNAs, such as full-length (+)-strand genomic RNA(s), (-)-strand replication intermediate(s), 3' co-terminal subgenomic RNA(s), and viral recombinant defective (D)-RNAs. To ascertain the full complement of viral RNAs associated with the simplest plant viruses, long-read direct RNA nanopore sequencing was used to perform transcriptomic analyses of two related umbra-like viruses: citrus yellow vein-associated virus (CY1) from citrus and CY2 from hemp. Analysis of different timepoints/tissues in CY1- and CY2-infected Nicotiana benthamiana plants and CY2-infected hemp revealed: (i) three 5' co-terminal RNAs of 281 nt, 442 nt and 671 nt, each generated by a different mechanism; (ii) D-RNA populations containing the 671 fragment at their 5'ends; (iii) many full-length genomic RNAs and D-RNAs with identical 3'end 61 nt truncations; (iv) virtually all (-)-strand reads missing 3 nt at their 3' termini; (v) (±) foldback RNAs comprising about one-third of all (-)-strand reads and (vi) a higher proportion of full-length gRNAs in roots than in leaves, suggesting that roots may be functioning as a gRNA reservoir. These findings suggest that viral transcriptomes are much more complex than previously thought.
Collapse
Affiliation(s)
- Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Jason M Needham
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Natalie K Lim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| |
Collapse
|
19
|
Nennig K, Murthy S, Maloney S, Shaw TM, Sharobim M, Matkovic E, Fadiran S, Larsen M, Ramuta MD, Kim AS, Teijaro JR, Grove J, Stremlau M, Sharma H, Trivedi S, Blum MJ, O’Connor DH, Hyde JL, Stapleton JT, Kapoor A, Bailey AL. Determinants of pegivirus persistence, cross-species infection, and adaptation in the laboratory mouse. PLoS Pathog 2024; 20:e1012436. [PMID: 39196893 PMCID: PMC11355568 DOI: 10.1371/journal.ppat.1012436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024] Open
Abstract
Viruses capable of causing persistent infection have developed sophisticated mechanisms for evading host immunity, and understanding these processes can reveal novel features of the host immune system. One such virus, human pegivirus (HPgV), infects ~15% of the global human population, but little is known about its biology beyond the fact that it does not cause overt disease. We passaged a pegivirus isolate of feral brown rats (RPgV) in immunodeficient laboratory mice to develop a mouse-adapted virus (maPgV) that established persistent high-titer infection in a majority of wild-type laboratory mice. maRPgV viremia was detected in the blood of mice for >300 days without apparent disease, closely recapitulating the hallmarks of HPgV infection in humans. We found a pro-viral role for type-I interferon in chronic infection; a lack of PD-1-mediated tolerance to PgV infection; and multiple mechanisms by which PgV immunity can be achieved by an immunocompetent host. These data indicate that the PgV immune evasion strategy has aspects that are both common and unique among persistent viral infections. The creation of maPgV represents the first PgV infection model in wild-type mice, thus opening the entire toolkit of the mouse host to enable further investigation of this persistent RNA virus infections.
Collapse
Affiliation(s)
- Kylie Nennig
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sara Maloney
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Teressa M. Shaw
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mark Sharobim
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eduard Matkovic
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Simi Fadiran
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Malorie Larsen
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell D. Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Arthur S. Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California, United States of America
- Department of Chemistry, The Scripps Research Institute, San Diego, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California, United States of America
| | - Joe Grove
- MRC-University of Glasgow Center for Virus Research, Glasgow, United Kingdom
| | - Matthew Stremlau
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Himanshu Sharma
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Michael J. Blum
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jack T. Stapleton
- Department of Internal Medicine, Microbiology & Immunology, University of Iowa and Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, Ohio, United States of America
| | - Adam L. Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Toews S, Wacker A, Faison EM, Duchardt-Ferner E, Richter C, Mathieu D, Bottaro S, Zhang Q, Schwalbe H. The 5'-terminal stem-loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH. Nucleic Acids Res 2024; 52:7971-7986. [PMID: 38842942 PMCID: PMC11260494 DOI: 10.1093/nar/gkae477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/23/2024] Open
Abstract
We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5'-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5'- and 3'-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12-C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5'-UTR of SARS-CoV-2.
Collapse
Affiliation(s)
- Sabrina Toews
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Anna Wacker
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Edgar M Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Elke Duchardt-Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Christian Richter
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Daniel Mathieu
- Bruker BioSpin GmbH, Ettlingen, Baden-Württemberg 76275, Germany
| | - Sandro Bottaro
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| |
Collapse
|
21
|
Žedaveinytė R, Meers C, Le HC, Mortman EE, Tang S, Lampe GD, Pesari SR, Gelsinger DR, Wiegand T, Sternberg SH. Antagonistic conflict between transposon-encoded introns and guide RNAs. Science 2024; 385:eadm8189. [PMID: 38991068 PMCID: PMC11758368 DOI: 10.1126/science.adm8189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 07/13/2024]
Abstract
TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life. IS605-family TnpB homologs function as programmable RNA-guided homing endonucleases in bacteria, driving transposon maintenance through DNA double-strand break-stimulated homologous recombination. In this work, we uncovered molecular mechanisms of the transposition life cycle of IS607-family elements that, notably, also encode group I introns. We identified specific features for a candidate "IStron" from Clostridium botulinum that allow the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts evolved an ability to balance competing and mutually exclusive activities that promote selfish transposon spread while limiting adverse fitness costs on the host. Collectively, this work highlights molecular innovation in the multifunctional utility of transposon-encoded noncoding RNAs.
Collapse
Affiliation(s)
- Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Hoang C. Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edan E. Mortman
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sanjana R. Pesari
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Diego R. Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
22
|
Mitra R, Cohen AS, Rohs R. RNAscape: geometric mapping and customizable visualization of RNA structure. Nucleic Acids Res 2024; 52:W354-W361. [PMID: 38630617 PMCID: PMC11223802 DOI: 10.1093/nar/gkae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Analyzing and visualizing the tertiary structure and complex interactions of RNA is essential for being able to mechanistically decipher their molecular functions in vivo. Secondary structure visualization software can portray many aspects of RNA; however, these layouts are often unable to preserve topological correspondence since they do not consider tertiary interactions between different regions of an RNA molecule. Likewise, quaternary interactions between two or more interacting RNA molecules are not considered in secondary structure visualization tools. The RNAscape webserver produces visualizations that can preserve topological correspondence while remaining both visually intuitive and structurally insightful. RNAscape achieves this by designing a mathematical structural mapping algorithm which prioritizes the helical segments, reflecting their tertiary organization. Non-helical segments are mapped in a way that minimizes structural clutter. RNAscape runs a plotting script that is designed to generate publication-quality images. RNAscape natively supports non-standard nucleotides, multiple base-pairing annotation styles and requires no programming experience. RNAscape can also be used to analyze RNA/DNA hybrid structures and DNA topologies, including G-quadruplexes. Users can upload their own three-dimensional structures or enter a Protein Data Bank (PDB) ID of an existing structure. The RNAscape webserver allows users to customize visualizations through various settings as desired. URL: https://rnascape.usc.edu/.
Collapse
Affiliation(s)
- Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ari S Cohen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Lee S, Yan S, Dey A, Laederach A, Schlick T. An intricate balancing act: Upstream and downstream frameshift co-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.599960. [PMID: 38979256 PMCID: PMC11230384 DOI: 10.1101/2024.06.27.599960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeting ribosomal frameshifting has emerged as a potential therapeutic intervention strategy against Covid-19. During ribosomal translation, a fraction of elongating ribosomes slips by one base in the 5' direction and enters a new reading frame for viral protein synthesis. Any interference with this process profoundly affects viral replication and propagation. For Covid-19, two RNA sites associated with ribosomal frameshifting for SARS-CoV-2 are positioned on the 5' and 3' of the frameshifting residues. Although much attention has been on the 3' frameshift element (FSE), the 5' stem-loop (attenuator hairpin, AH) can play a role. The formation of AH has been suggested to occur as refolding of the 3' RNA structure is triggered by ribosomal unwinding. However, the attenuation activity and the relationship between the two regions are unknown. To gain more insight into these two related viral RNAs and to further enrich our understanding of ribosomal frameshifting for SARS-CoV-2, we explore the RNA folding of both 5' and 3' regions associated with frameshifting. Using our graph-theory-based modeling tools to represent RNA secondary structures, "RAG" (RNA- As-Graphs), and conformational landscapes to analyze length-dependent conformational distributions, we show that AH coexists with the 3-stem pseudoknot of the 3' FSE (graph 3_6 in our dual graph notation) and alternative pseudoknot (graph 3_3) but less likely with other 3' FSE alternative folds (such as 3-way junction 3_5). This is because an alternative length-dependent Stem 1 (AS1) can disrupt the FSE pseudoknots and trigger other folds. In addition, we design four mutants for long lengths that stabilize or disrupt AH, AS1 or FSE pseudoknot to illustrate the deduced AH/AS1 roles and favor the 3_5, 3_6 or stem-loop. These mutants further show how a strengthened pseudoknot can result from a weakened AS1, while a dominant stem-loop occurs with a strengthened AS1. These structural and mutational insights into both ends of the FSE in SARS-CoV-2 advance our understanding of the SARS-CoV-2 frameshifting mechanism by suggesting a sequence of length-dependent folds, which in turn define potential therapeutic intervention techniques involving both elements. Our work also highlights the complexity of viral landscapes with length-dependent folds, and challenges in analyzing these multiple conformations.
Collapse
Affiliation(s)
- Samuel Lee
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
| | - Shuting Yan
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, 226002, Uttar Pradesh, India
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, U.S.A
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
- Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY, U.S.A
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, 200062, P.R.China
- NYU Simons Center for Computational Physical Chemistry, New York University, New York, 10003, NY, U.S.A
| |
Collapse
|
24
|
Tang S, Conte V, Zhang DJ, Žedaveinytė R, Lampe GD, Wiegand T, Tang LC, Wang M, Walker MW, George JT, Berchowitz LE, Jovanovic M, Sternberg SH. De novo gene synthesis by an antiviral reverse transcriptase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593200. [PMID: 38766058 PMCID: PMC11100668 DOI: 10.1101/2024.05.08.593200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bacteria defend themselves from viral infection using diverse immune systems, many of which sense and target foreign nucleic acids. Defense-associated reverse transcriptase (DRT) systems provide an intriguing counterpoint to this immune strategy by instead leveraging DNA synthesis, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems execute an unprecedented immunity mechanism that involves de novo gene synthesis via rolling-circle reverse transcription of a non-coding RNA (ncRNA). Unbiased profiling of RT-associated RNA and DNA ligands in DRT2-expressing cells revealed that reverse transcription generates concatenated cDNA repeats through programmed template jumping on the ncRNA. The presence of phage then triggers second-strand cDNA synthesis, leading to the production of long double-stranded DNA. Remarkably, this DNA product is efficiently transcribed, generating messenger RNAs that encode a stop codon-less, never-ending ORF (neo) whose translation causes potent growth arrest. Phylogenetic analyses and screening of diverse DRT2 homologs further revealed broad conservation of rolling-circle reverse transcription and Neo protein function. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation, and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Valentin Conte
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Dennis J. Zhang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Megan Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W.G. Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Bozděchová L, Havlová K, Fajkus P, Fajkus J. Analysis of Telomerase RNA Structure in Physcomitrium patens Indicates Functionally Relevant Transitions Between OPEN and CLOSED Conformations. J Mol Biol 2024; 436:168417. [PMID: 38143018 DOI: 10.1016/j.jmb.2023.168417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Telomerase RNA (TR) conformation determines its function as a template for telomere synthesis and as a scaffold for the assembly of the telomerase nucleoprotein complex. Experimental analyses of TR secondary structure using DMS-Map Seq and SHAPE-Map Seq techniques show its CLOSED conformation as the consensus structure where the template region cannot perform its function. Our data show that the apparent discrepancy between experimental results and predicted TR functional conformation, mostly ignored in published studies, can be explained using data analysis based on single-molecule structure prediction from individual sequencing reads by the recently established DaVinci method. This method results in several clusters of secondary structures reflecting the structural dynamics of TR, possibly related to its multiple functional states. Interestingly, the presumed active (OPEN) conformation of TR corresponds to a minor fraction of TR under in vivo conditions. Therefore, structural polymorphism and dynamic TR transitions between CLOSED and OPEN conformations may be involved in telomerase activity regulation as a switch that functions independently of total TR transcript levels.
Collapse
Affiliation(s)
- Lucie Bozděchová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Kateřina Havlová
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Institute of Biophysics, Czech Acad Sci, Královopolská 135, 61200 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Institute of Biophysics, Czech Acad Sci, Královopolská 135, 61200 Brno, Czech Republic.
| |
Collapse
|
26
|
Truniger V, Pechar GS, Aranda MA. Advances in Understanding the Mechanism of Cap-Independent Cucurbit Aphid-Borne Yellows Virus Protein Synthesis. Int J Mol Sci 2023; 24:17598. [PMID: 38139425 PMCID: PMC10744285 DOI: 10.3390/ijms242417598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Non-canonical translation mechanisms have been described for many viral RNAs. In the case of several plant viruses, their protein synthesis is controlled by RNA elements in their genomic 3'-ends that are able to enhance cap-independent translation (3'-CITE). The proposed general mechanism of 3'-CITEs includes their binding to eukaryotic translation initiation factors (eIFs) that reach the 5'-end and AUG start codon through 5'-3'-UTR-interactions. It was previously shown that cucurbit aphid-borne yellows virus (CABYV) has a 3'-CITE, which varies in sequence and structure depending on the phylogenetic group to which the isolate belongs, possibly as a result of adaptation to the different geographical regions. In this work, the cap-independent translation mechanisms of two CABYV 3'-CITEs belonging to the Mediterranean (CMTE) and Asian (CXTE) groups, respectively, were studied. In vivo cap-independent translation assays show that these 3'-CITEs require the presence of the CABYV short genomic 5'-UTR with at least 40% adenines in cis and an accessible 5'-end for its activity. Additionally, they suggest that the eIF4E-independent CABYV 3'-CITE activities may not require either eIF4A or the eIF4F complex, but may depend on eIF4G and PABP. By pulling down host proteins using RNA baits containing both 5'- and 3'-CABYV-UTRs, 80 RNA binding proteins were identified. These interacted preferentially with either CMTE, CXTE, or both. One of these proteins, specifically interacting with the RNA containing CMTE, was HSP70.2. Preliminary results suggested that HSP70.2 may be involved in CMTE- but not CXTE-mediated cap-independent translation activity.
Collapse
Affiliation(s)
- Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain; (G.S.P.); (M.A.A.)
| | | | | |
Collapse
|
27
|
Žedaveinytė R, Meers C, Le HC, Mortman EE, Tang S, Lampe GD, Pesari SR, Gelsinger DR, Wiegand T, Sternberg SH. Antagonistic conflict between transposon-encoded introns and guide RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567912. [PMID: 38045383 PMCID: PMC10690162 DOI: 10.1101/2023.11.20.567912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life, presumably due to the critical roles they play in transposon proliferation. IS605family TnpB homologs function in bacteria as programmable homing endonucleases by exploiting transposon-encoded guide RNAs to cleave vacant genomic sites, thereby driving transposon maintenance through DSB-stimulated homologous recombination. Whether this pathway is conserved in other genetic contexts, and in association with other transposases, is unknown. Here we uncover molecular mechanisms of transposition and RNA-guided DNA cleavage by IS607-family elements that, remarkably, also encode catalytic, self-splicing group I introns. After reconstituting and systematically investigating each of these biochemical activities for a candidate 'IStron' derived from Clostridium botulinum, we discovered sequence and structural features of the transposon-encoded RNA that satisfy molecular requirements of a group I intron and TnpB guide RNA, while still retaining the ability to be faithfully mobilized at the DNA level by the TnpA transposase. Strikingly, intron splicing was strongly repressed not only by TnpB, but also by the secondary structure of ωRNA alone, allowing the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts have evolved a sensitive equilibrium to balance competing and mutually exclusive activities that promote transposon maintenance while limiting adverse fitness costs on the host. Collectively, this work explains how diverse enzymatic activities emerged during the selfish spread of IS607-family elements and highlights molecular innovation in the multi-functional utility of transposon-encoded noncoding RNAs.
Collapse
Affiliation(s)
- Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Hoang C. Le
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Edan E. Mortman
- Department of Genetics and Development, Columbia University; New York, NY 10032, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Sanjana R. Pesari
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
- Present address: Biochemistry and Molecular Biophysics Program, University of California, San Diego, CA, USA
| | - Diego R. Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| |
Collapse
|
28
|
Ma J, Dissanayaka Mudiyanselage SD, Hao J, Wang Y. Cellular roadmaps of viroid infection. Trends Microbiol 2023; 31:1179-1191. [PMID: 37349206 PMCID: PMC10592528 DOI: 10.1016/j.tim.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. According to the International Committee on Taxonomy of Viruses, there are 44 viroids known to date. Notably, more than 20 000 distinct viroid-like RNA sequences have recently been identified in existing sequencing datasets, suggesting an unprecedented complexity in biological roles of viroids and viroid-like RNAs. Interestingly, a human pathogen, hepatitis delta virus (HDV), also replicates via a rolling circle mechanism like viroids. Therefore, knowledge of viroid infection is informative for research on HDV and other viroid-like RNAs reported from various organisms. Here, we summarize recent advancements in understanding viroid shuttling among subcellular compartments for completing replication cycles, emphasizing regulatory roles of RNA motifs and structural dynamics in diverse biological processes. We also compare the knowledge of viroid intracellular trafficking with known pathways governing cellular RNA movement in cells. Future investigations on regulatory RNA structures and cognate factors in regulating viroid subcellular trafficking and replication will likely provide new insights into RNA structure-function relationships and facilitate the development of strategies controlling RNA localization and function in cells.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Jie Hao
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
29
|
Mikkelsen AA, Gao F, Carino E, Bera S, Simon A. -1 Programmed ribosomal frameshifting in Class 2 umbravirus-like RNAs uses multiple long-distance interactions to shift between active and inactive structures and destabilize the frameshift stimulating element. Nucleic Acids Res 2023; 51:10700-10718. [PMID: 37742076 PMCID: PMC10602861 DOI: 10.1093/nar/gkad744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023] Open
Abstract
Plus-strand RNA viruses frequently employ -1 programmed ribosomal frameshifting (-1 PRF) to maximize their coding capacity. Ribosomes can frameshift at a slippery sequence if progression is impeded by a frameshift stimulating element (FSE), which is generally a stable, complex, dynamic structure with multiple conformations that contribute to the efficiency of -1 PRF. As FSE are usually analyzed separate from the viral genome, little is known about cis-acting long-distance interactions. Using full-length genomic RNA of umbravirus-like (ula)RNA citrus yellow vein associated virus (CY1) and translation in wheat germ extracts, six tertiary interactions were found associated with the CY1 FSE that span nearly three-quarters of the 2.7 kb genomic RNA. All six tertiary interactions are conserved in other Class 2 ulaRNAs and two are conserved in all ulaRNAs. Two sets of interactions comprise local and distal pseudoknots that involve overlapping FSE nucleotides and thus are structurally incompatible, suggesting that Class 2 FSEs assume multiple conformations. Importantly, two long-distance interactions connect with sequences on opposite sides of the critical FSE central stem, which would unzip the stem and destabilize the FSE. These latter interactions could allow a frameshifting ribosome to translate through a structurally disrupted upstream FSE that no longer blocks ribosome progression.
Collapse
Affiliation(s)
- Anna A Mikkelsen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth Carino
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|