1
|
Mertinkus KR, Oxenfarth A, Richter C, Wacker A, Mata CP, Carazo JM, Schlundt A, Schwalbe H. Dissecting the Conformational Heterogeneity of Stem-Loop Substructures of the Fifth Element in the 5'-Untranslated Region of SARS-CoV-2. J Am Chem Soc 2024. [PMID: 39442924 DOI: 10.1021/jacs.4c08406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Throughout the family of coronaviruses, structured RNA elements within the 5' region of the genome are highly conserved. The fifth stem-loop element from SARS-CoV-2 (5_SL5) represents an example of an RNA structural element, repeatedly occurring in coronaviruses. It contains a conserved, repetitive fold within its substructures SL5a and SL5b. We herein report the detailed characterization of the structure and dynamics of elements SL5a and SL5b that are located immediately upstream of the SARS-CoV-2 ORF1a/b start codon. Exploiting the unique ability of solution NMR methods, we show that the structures of both apical loops are modulated by structural differences in the remote parts located in their stem regions. We further integrated our high-resolution models of SL5a/b into the context of full-length 5_SL5 structures by combining different structural biology methods. Finally, we evaluated the impact of the two most common VoC mutations within 5_SL5 with respect to individual base-pair stability.
Collapse
Affiliation(s)
- Klara R Mertinkus
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Carlos P Mata
- Biocomputing Unit, Department of Macromolecular Structures, National Centre for Biotechnology (CSIC), Darwin 3, Madrid 28049, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, Department of Macromolecular Structures, National Centre for Biotechnology (CSIC), Darwin 3, Madrid 28049, Spain
| | - Andreas Schlundt
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald 17489, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| |
Collapse
|
2
|
Favetta B, Wang H, Cubuk J, Barai M, Ramirez C, Gormley AJ, Murthy S, Soranno A, Shi Z, Schuster BS. Phosphorylation Toggles the SARS-CoV-2 Nucleocapsid Protein Between Two Membrane-Associated Condensate States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618867. [PMID: 39464032 PMCID: PMC11507936 DOI: 10.1101/2024.10.17.618867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The SARS-CoV-2 Nucleocapsid protein (N) performs several functions during the viral lifecycle, including transcription regulation and viral genome encapsulation. We hypothesized that N toggles between these functions via phosphorylation-induced conformational change, thereby altering N interactions with membranes and RNA. We found that phosphorylation changes how biomolecular condensates composed of N and RNA interact with membranes: phosphorylated N (pN) condensates form thin films, while condensates with unmodified N are engulfed. This partly results from changes in material properties, with pN forming less viscous and elastic condensates. The weakening of protein-RNA interaction in condensates upon phosphorylation is driven by a decrease in binding between pN and unstructured RNA. We show that phosphorylation induces a conformational change in the serine/arginine-rich region of N that increases interaction between pN monomers and decreases nonspecific interaction with RNA. These findings connect the conformation, material properties, and membrane-associated states of N, with potential implications for COVID-19 treatment.
Collapse
|
3
|
Bezerra PR, Almeida FCL. Structural basis for the participation of the SARS-CoV-2 nucleocapsid protein in the template switch mechanism and genomic RNA reorganization. J Biol Chem 2024; 300:107834. [PMID: 39343000 DOI: 10.1016/j.jbc.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The COVID-19 pandemic has resulted in a significant toll of deaths worldwide, exceeding seven million individuals, prompting intensive research efforts aimed at elucidating the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 infection. Despite the rapid development of effective vaccines and therapeutic interventions, COVID-19 remains a threat to humans due to the emergence of novel variants and largely unknown long-term consequences. Among the viral proteins, the nucleocapsid protein (N) stands out as the most conserved and abundant, playing the primary role in nucleocapsid assembly and genome packaging. The N protein is promiscuous for the recognition of RNA, yet it can perform specific functions. Here, we discuss the structural basis of specificity, which is directly linked to its regulatory role. Notably, the RNA chaperone activity of N is central to its multiple roles throughout the viral life cycle. This activity encompasses double-stranded RNA (dsRNA) annealing and melting and facilitates template switching, enabling discontinuous transcription. N also promotes the formation of membrane-less compartments through liquid-liquid phase separation, thereby facilitating the congregation of the replication and transcription complex. Considering the information available regarding the catalytic activities and binding signatures of the N protein-RNA interaction, this review focuses on the regulatory role of the SARS-CoV-2 N protein. We emphasize the participation of the N protein in discontinuous transcription, template switching, and RNA chaperone activity, including double-stranded RNA melting and annealing activities.
Collapse
Affiliation(s)
- Peter R Bezerra
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Zhu Y, Chaubey B, Olsen GL, Varani G. Structure of Essential RNA Regulatory Elements in the West Nile Virus 3'-Terminal Stem Loop. J Mol Biol 2024; 436:168767. [PMID: 39214284 DOI: 10.1016/j.jmb.2024.168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Flaviviruses, such as West Nile and Dengue Virus, pose a significant and growing threat to global health. Central to the flavivirus life cycle are highly structured 5'- and 3'-untranslated regions (UTRs), which harbor conserved cis-acting RNA elements critical for viral replication and host adaptation. Despite their essential roles, detailed molecular insights into these RNA elements have been limited. By employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with SAXS experiments, we determined the three-dimensional structure of the West Nile Virus (WNV) 3'-terminal stem-loop core, a highly conserved element critical for viral genome cyclization and replication. Single nucleotide mutations at several sites within this RNA abolish the ability of the virus to replicate. These critical sites are located within a short 18-nucleotide hairpin stem, a substructure notable for its conformational flexibility, while the adjoining main stem-loop adopts a well-defined extended helix interrupted by three non-Watson-Crick pairs. This study enhances our understanding of several metastable RNA structures that play key roles in regulating the flavivirus lifecycle, and thereby also opens up potential new avenues for the development of antivirals targeting these conserved RNA structures. In particular, the structure we observe suggests that the plastic junction between the small hairpin and the tail of the longer stem-loop could provide a binding pocket for small molecules, for example potentially stabilizing the RNA in a conformation which hinders the conformational rearrangements critical for viral replication.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Bhawna Chaubey
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gregory L Olsen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Toews S, Wacker A, Faison EM, Duchardt-Ferner E, Richter C, Mathieu D, Bottaro S, Zhang Q, Schwalbe H. The 5'-terminal stem-loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH. Nucleic Acids Res 2024; 52:7971-7986. [PMID: 38842942 PMCID: PMC11260494 DOI: 10.1093/nar/gkae477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/23/2024] Open
Abstract
We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5'-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5'- and 3'-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12-C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5'-UTR of SARS-CoV-2.
Collapse
Affiliation(s)
- Sabrina Toews
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Anna Wacker
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Edgar M Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Elke Duchardt-Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Christian Richter
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Daniel Mathieu
- Bruker BioSpin GmbH, Ettlingen, Baden-Württemberg 76275, Germany
| | - Sandro Bottaro
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| |
Collapse
|
6
|
Matzel T, Martin MW, Herr A, Wacker A, Richter C, Sreeramulu S, Schwalbe H. NMR characterization and ligand binding site of the stem-loop 2 motif from the Delta variant of SARS-CoV-2. RNA (NEW YORK, N.Y.) 2024; 30:779-794. [PMID: 38565242 PMCID: PMC11182009 DOI: 10.1261/rna.079902.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The stem-loop 2 motif (s2m) in SARS-CoV-2 (SCoV-2) is located in the 3'-UTR. Although s2m has been reported to display characteristics of a mobile genomic element that might lead to an evolutionary advantage, its function has remained unknown. The secondary structure of the original SCoV-2 RNA sequence (Wuhan-Hu-1) was determined by NMR in late 2020, delineating the base-pairing pattern and revealing substantial differences in secondary structure compared to SARS-CoV-1 (SCoV-1). The existence of a single G29742-A29756 mismatch in the upper stem of s2m leads to its destabilization and impedes a complete NMR analysis. With Delta, a variant of concern has evolved with one mutation compared to the original sequence that replaces G29742 by U29742. We show here that this mutation results in a more defined structure at ambient temperature accompanied by a rise in melting temperature. Consequently, we were able to identify >90% of the relevant NMR resonances using a combination of selective RNA labeling and filtered 2D NOESY as well as 4D NMR experiments. We present a comprehensive NMR analysis of the secondary structure, (sub)nanosecond dynamics, and ribose conformation of s2m Delta based on heteronuclear 13C NOE and T 1 measurements and ribose carbon chemical shift-derived canonical coordinates. We further show that the G29742U mutation in Delta has no influence on the druggability of s2m compared to the Wuhan-Hu-1 sequence. With the assignment at hand, we identify the flexible regions of s2m as the primary site for small molecule binding.
Collapse
Affiliation(s)
- Tobias Matzel
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Maria Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Alexander Herr
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Kathe NC, Novakovic M, Allain FHT. Buffer choice and pH strongly influence phase separation of SARS-CoV-2 nucleocapsid with RNA. Mol Biol Cell 2024; 35:ar73. [PMID: 38568799 PMCID: PMC11151101 DOI: 10.1091/mbc.e23-12-0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is crucial for virus replication and genome packaging. N protein forms biomolecular condensates both in vitro and in vivo in a process known as liquid-liquid phase separation (LLPS), but the exact factors regulating LLPS of N protein are not fully understood. Here, we show that pH and buffer choice have a profound impact on LLPS of N protein. The degree of phase separation is highly dependent on the pH of the solution, which is correlated with histidine protonation in N protein. Specifically, we demonstrate that protonation of H356 is essential for LLPS in phosphate buffer. Moreover, electrostatic interactions of buffer molecules with specific amino acid residues are able to alter the net charge of N protein, thus influencing its ability to undergo phase separation in the presence of RNA. Overall, these findings reveal that even subtle changes in amino acid protonation or surface charge caused by the pH and buffer system can strongly influence the LLPS behavior, and point to electrostatic interactions as the main driving forces of N protein phase separation. Further, our findings emphasize the importance of these experimental parameters when studying phase separation of biomolecules, especially in the context of viral infections where the intracellular milieu undergoes drastic changes and intracellular pH normally decreases.
Collapse
Affiliation(s)
- Nina C. Kathe
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Mihajlo Novakovic
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
8
|
Kretsch RC, Xu L, Zheludev IN, Zhou X, Huang R, Nye G, Li S, Zhang K, Chiu W, Das R. Tertiary folds of the SL5 RNA from the 5' proximal region of SARS-CoV-2 and related coronaviruses. Proc Natl Acad Sci U S A 2024; 121:e2320493121. [PMID: 38427602 PMCID: PMC10927501 DOI: 10.1073/pnas.2320493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/05/2024] [Indexed: 03/03/2024] Open
Abstract
Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2), resolved at 4.7 Å resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T's "arms." Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4 to 6.9 Å resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across these human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9 to 8.0 Å resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4 to 9.0 Å resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped arms, but with a phylogenetically distinct crossing angle, an X-shape. As such, all SL5 domains studied herein fold into stable tertiary structures with cross-genus similarities and notable differences, with implications for potential protein-binding modes and therapeutic targets.
Collapse
Affiliation(s)
| | - Lily Xu
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305
| | - Ivan N. Zheludev
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Xueting Zhou
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA94305
| | - Rui Huang
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Grace Nye
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Wah Chiu
- Biophysics Program, Stanford University, Stanford, CA94305
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA94305
- CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| |
Collapse
|
9
|
Sundar Rajan V, Wypijewska Del Nogal A, Levin S, Wilhelmsson LM, Westerlund F. Exploring the conformational dynamics of the SARS-CoV-2 SL4 hairpin by combining optical tweezers and base analogues. NANOSCALE 2024; 16:752-764. [PMID: 38087988 PMCID: PMC10763987 DOI: 10.1039/d3nr04110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Abstract
The parasitic nature of the SARS-CoV-2 virus demands selective packaging of its RNA genome (gRNA) from the abundance of other nucleic acids present in infected cells. Despite increasing evidence that stem-loop 4 (SL4) of the gRNA 5' UTR is involved in the initiation of this process by binding the nucleocapsid (N) protein, little is known about its conformational dynamics. Here, we unravel the stability, dynamics and (un)folding pathways of SL4 using optical tweezers and a base analogue, tCO, that provides a local and subtle increase in base stacking without perturbing hydrogen bonding. We find that SL4 (un)folds mainly in a single step or through an intermediate, encompassing nucleotides from the central U bulge to the hairpin loop. Due to an upper-stem CU mismatch, SL4 is prone to misfold, the extent of which can be tuned by incorporating tCO at different positions. Our study contributes to a better understanding of SARS-CoV-2 packaging and the design of drugs targeting SL4. We also highlight the generalizability of using base analogues in optical tweezers experiments for probing intramolecular states and conformational transitions of various nucleic acids at the level of single molecules and with base-pair resolution.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
- Division of Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - Anna Wypijewska Del Nogal
- Division of Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - Sune Levin
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - L Marcus Wilhelmsson
- Division of Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| |
Collapse
|
10
|
Kretsch RC, Xu L, Zheludev IN, Zhou X, Huang R, Nye G, Li S, Zhang K, Chiu W, Das R. Tertiary folds of the SL5 RNA from the 5' proximal region of SARS-CoV-2 and related coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.567964. [PMID: 38076883 PMCID: PMC10705266 DOI: 10.1101/2023.11.22.567964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically-determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus SARS-CoV-2, resolved at 4.7 Å resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T's "arms." Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4-6.9 Å resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across the studied human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9-8.0 Å resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4-9.0 Å resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped arms, but with a phylogenetically distinct crossing angle, an X-shape. As such, all SL5 domains studied herein fold into stable tertiary structures with cross-genus similarities, with implications for potential protein-binding modes and therapeutic targets.
Collapse
Affiliation(s)
| | - Lily Xu
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Ivan N. Zheludev
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Xueting Zhou
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Rui Huang
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Grace Nye
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wah Chiu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
- CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| |
Collapse
|