1
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
2
|
Sachse K, Hölzer M, Vorimore F, Barf LM, Sachse C, Laroucau K, Marz M, Lamkiewicz K. Genomic analysis of 61 Chlamydia psittaci strains reveals extensive divergence associated with host preference. BMC Genomics 2023; 24:288. [PMID: 37248517 PMCID: PMC10226258 DOI: 10.1186/s12864-023-09370-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Chlamydia (C.) psittaci, the causative agent of avian chlamydiosis and human psittacosis, is a genetically heterogeneous species. Its broad host range includes parrots and many other birds, but occasionally also humans (via zoonotic transmission), ruminants, horses, swine and rodents. To assess whether there are genetic markers associated with host tropism we comparatively analyzed whole-genome sequences of 61 C. psittaci strains, 47 of which carrying a 7.6-kbp plasmid. RESULTS Following clean-up, reassembly and polishing of poorly assembled genomes from public databases, phylogenetic analyses using C. psittaci whole-genome sequence alignment revealed four major clades within this species. Clade 1 represents the most recent lineage comprising 40/61 strains and contains 9/10 of the psittacine strains, including type strain 6BC, and 10/13 of human isolates. Strains from different non-psittacine hosts clustered in Clades 2- 4. We found that clade membership correlates with typing schemes based on SNP types, ompA genotypes, multilocus sequence types as well as plasticity zone (PZ) structure and host preference. Genome analysis also revealed that i) sequence variation in the major outer membrane porin MOMP can result in 3D structural changes of immunogenic domains, ii) past host change of Clade 3 and 4 strains could be associated with loss of MAC/perforin in the PZ, rather than the large cytotoxin, iii) the distinct phylogeny of atypical strains (Clades 3 and 4) is also reflected in their repertoire of inclusion proteins (Inc family) and polymorphic membrane proteins (Pmps). CONCLUSIONS Our study identified a number of genomic features that can be correlated with the phylogeny and host preference of C. psittaci strains. Our data show that intra-species genomic divergence is associated with past host change and includes deletions in the plasticity zone, structural variations in immunogenic domains and distinct repertoires of virulence factors.
Collapse
Affiliation(s)
- Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Martin Hölzer
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch Institute, 13353, Berlin, Germany
| | - Fabien Vorimore
- Laboratory for Animal Health, Identypath, ANSES Maisons-Alfort, Paris-Est University, 94706, Paris, France
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre 3 / Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Institute for Biological Information Processing 6 / Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Karine Laroucau
- Laboratory for Animal Health, Bacterial Zoonosis Unit, ANSES Maisons-Alfort, Paris-Est University, 94706, Paris, France
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
- JRG Analytical MicroBioinformatics, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
3
|
Cheong HC, Sulaiman S, Looi CY, Chang LY, Wong WF. Chlamydia Infection Remodels Host Cell Mitochondria to Alter Energy Metabolism and Subvert Apoptosis. Microorganisms 2023; 11:1382. [PMID: 37374883 DOI: 10.3390/microorganisms11061382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Chlamydia infection represents an important cause for concern for public health worldwide. Chlamydial infection of the genital tract in females is mostly asymptomatic at the early stage, often manifesting as mucopurulent cervicitis, urethritis, and salpingitis at the later stage; it has been associated with female infertility, spontaneous abortion, ectopic pregnancy, and cervical cancer. As an obligate intracellular bacterium, Chlamydia depends heavily on host cells for nutrient acquisition, energy production, and cell propagation. The current review discusses various strategies utilized by Chlamydia in manipulating the cell metabolism to benefit bacterial propagation and survival through close interaction with the host cell mitochondrial and apoptotic pathway molecules.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K, Fondell JD, Lai Z, Wu X, Fan H. Robust Heat Shock Response in Chlamydia Lacking a Typical Heat Shock Sigma Factor. Front Microbiol 2022; 12:812448. [PMID: 35046926 PMCID: PMC8762339 DOI: 10.3389/fmicb.2021.812448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.
Collapse
Affiliation(s)
- Yehong Huang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Joseph D Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
5
|
Zaręba-Marchewka K, Szymańska-Czerwińska M, Livingstone M, Longbottom D, Niemczuk K. Whole Genome Sequencing and Comparative Genome Analyses of Chlamydia abortus Strains of Avian Origin Suggests That Chlamydia abortus Species Should Be Expanded to Include Avian and Mammalian Subgroups. Pathogens 2021; 10:1405. [PMID: 34832561 PMCID: PMC8623937 DOI: 10.3390/pathogens10111405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
A variety of Chlamydia species belonging to the Chlamydiaceae family have been reported in birds. Until recently, C. psittaci was considered to be the most common avian species, although found in both birds and mammals, while C. abortus has only been found in mammals. Recently, a new group of avian C. abortus strains with worldwide distribution in various wild bird families has been described. In this study, whole genome sequencing (WGS) of three of these strains (15-70d24, 15-49d3 and 15-58d44, representing genotypes G1, G2 and 1V, respectively) that were isolated from wild birds were analysed. Genome assemblies based on both short-read Illumina and long-read Nanopore data indicate that these avian C. abortus strains show features characteristic of both C. abortus and C. psittaci species, although phylogenetic analyses demonstrate a closer relationship with classical C. abortus strains. Currently, species classification established by the ICSP Subcommittee on the taxonomy of Chlamydiae, determines that these avian C. abortus strains 15-70d24, 15-49d3 and 15-58d44 should be classified as C. abortus. However, the authors of this study conclude that the current taxonomic definition of C. abortus is outdated and should be amended to include two subgroups, mammalian and avian, the latter of which would include all isolates so far referred to as atypical C. psittaci or C. psittaci/C. abortus intermediates.
Collapse
Affiliation(s)
- Kinga Zaręba-Marchewka
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.S.-C.); (K.N.)
| | - Monika Szymańska-Czerwińska
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.S.-C.); (K.N.)
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK; (M.L.); (D.L.)
| | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK; (M.L.); (D.L.)
| | - Krzysztof Niemczuk
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.S.-C.); (K.N.)
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| |
Collapse
|
6
|
Banerjee A, Nelson DE. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis. Pathog Dis 2021; 79:ftab025. [PMID: 33930127 PMCID: PMC8112481 DOI: 10.1093/femspd/ftab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple species of obligate intracellular bacteria in the genus Chlamydia are important veterinary and/or human pathogens. These pathogens all share similar biphasic developmental cycles and transition between intracellular vegetative reticulate bodies and infectious elementary forms, but vary substantially in their host preferences and pathogenic potential. A lack of tools for genetic engineering of these organisms has long been an impediment to the study of their biology and pathogenesis. However, the refinement of approaches developed in C. trachomatis over the last 10 years, and adaptation of some of these approaches to other Chlamydia spp. in just the last few years, has opened exciting new possibilities for studying this ubiquitous group of important pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
A Same-Genus Screening Approach Reveals Novel Effectors and New Possibilities for Investigating Chlamydia Pathogenesis. J Bacteriol 2021; 203:JB.00157-21. [PMID: 33753471 PMCID: PMC8117527 DOI: 10.1128/jb.00157-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chlamydiae are obligate intracellular pathogens that rely on secreted effector proteins to establish their intracellular niche. In this issue of the Journal of Bacteriology, Yanatori et al describe a screen for C. pneumoniae effectors, performed in C. trachomatis, which identified several new proteins that are translocated during infection (Yanatori, Miura et al. 2021). More broadly, they demonstrate how new genetic approaches in C. trachomatis can be used to characterize the virulence factors of other Chlamydia species.
Collapse
|
8
|
Longbottom D, Livingstone M, Ribeca P, Beeckman DSA, van der Ende A, Pannekoek Y, Vanrompay D. Whole genome de novo sequencing and comparative genomic analyses suggests that Chlamydia psittaci strain 84/2334 should be reclassified as Chlamydia abortus species. BMC Genomics 2021; 22:159. [PMID: 33676404 PMCID: PMC7937271 DOI: 10.1186/s12864-021-07477-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia abortus and Chlamydia psittaci are important pathogens of livestock and avian species, respectively. While C. abortus is recognized as descended from C. psittaci species, there is emerging evidence of strains that are intermediary between the two species, suggesting they are recent evolutionary ancestors of C. abortus. Such strains include C. psittaci strain 84/2334 that was isolated from a parrot. Our aim was to classify this strain by sequencing its genome and explore its evolutionary relationship to both C. abortus and C. psittaci. RESULTS In this study, methods based on multi-locus sequence typing (MLST) of seven housekeeping genes and on typing of five species discriminant proteins showed that strain 84/2334 clustered with C. abortus species. Furthermore, whole genome de novo sequencing of the strain revealed greater similarity to C. abortus in terms of GC content, while 16S rRNA and whole genome phylogenetic analysis, as well as network and recombination analysis showed that the strain clusters more closely with C. abortus strains. The analysis also suggested a closer evolutionary relationship between this strain and the major C. abortus clade, than to two other intermediary avian C. abortus strains or C. psittaci strains. Molecular analyses of genes (polymorphic membrane protein and transmembrane head protein genes) and loci (plasticity zone), found in key virulence-associated regions that exhibit greatest diversity within and between chlamydial species, reveal greater diversity than present in sequenced C. abortus genomes as well as similar features to both C. abortus and C. psittaci species. The strain also possesses an extrachromosomal plasmid, as found in most C. psittaci species but absent from all sequenced classical C. abortus strains. CONCLUSION Overall, the results show that C. psittaci strain 84/2334 clusters very closely with C. abortus strains, and are consistent with the strain being a recent C. abortus ancestral species. This suggests that the strain should be reclassified as C. abortus. Furthermore, the identification of a C. abortus strain bearing an extra-chromosomal plasmid has implications for plasmid-based transformation studies to investigate gene function as well as providing a potential route for the development of a next generation vaccine to protect livestock from C. abortus infection.
Collapse
Affiliation(s)
- David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK.
| | - Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Paolo Ribeca
- Biomathematics and Statistics Scotland, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Delphine Sylvie Anne Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium.,Current address: BASF Belgium Coordination Center CommV - Innovation Center Gent, Ghent, Belgium
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daisy Vanrompay
- Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
9
|
A Genital Infection-Attenuated Chlamydia muridarum Mutant Infects the Gastrointestinal Tract and Protects against Genital Tract Challenge. mBio 2020; 11:mBio.02770-20. [PMID: 33144378 PMCID: PMC7642681 DOI: 10.1128/mbio.02770-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chlamydia spp. productively infect mucosal epithelial cells of multiple anatomical sites, including the conjunctiva, lungs, gastrointestinal (GI) tract, and urogenital tract. We, and others, previously established that chlamydial GI tropism is mediated by distinct chromosomal and plasmid factors. In this study, we describe a genital infection-attenuated Chlamydia muridarum mutant (GIAM-1) that is profoundly and specifically attenuated in the murine genital tract. GIAM-1 infected the murine GI tract similarly to wild-type (WT) Chlamydia muridarum but did not productively infect the lower genital tract of female mice, ascend to infect the upper genital tract, or cause hydrosalpinx. However, GI infection of mice with GIAM-1 elicited a transmucosal immune response that protected against subsequent genital challenge with WT Chlamydia muridarum Collectively, our results demonstrate that chlamydia mutants that are profoundly attenuated for specific organ tissues can be derived and demonstrate that live-attenuated vaccine strains that infect the GI tract, but do not elicit genital tract disease, could be used to protect against chlamydia genital tract infection and disease.IMPORTANCE Chlamydia is the most common sexually transmitted bacterial infection in the United States. Most chlamydia genital infections resolve without serious consequences; however, untreated infection in women can cause pelvic inflammatory disease and infertility. Antibiotics are very effective in treating chlamydia, but most genital infections in both men and women are asymptomatic and go undiagnosed. Therefore, there is a critical need for an effective vaccine. In this work, we show that a mutant chlamydia strain, having substantially reduced virulence for genital infection, colonizes the gastrointestinal tract and produces robust immunity to genital challenge with fully virulent wild-type chlamydia. These results are an important advance in understanding chlamydial virulence and provide compelling evidence that safe and effective live-attenuated chlamydia vaccines may be feasible.
Collapse
|
10
|
Hölzer M, Barf LM, Lamkiewicz K, Vorimore F, Lataretu M, Favaroni A, Schnee C, Laroucau K, Marz M, Sachse K. Comparative Genome Analysis of 33 Chlamydia Strains Reveals Characteristic Features of Chlamydia Psittaci and Closely Related Species. Pathogens 2020; 9:E899. [PMID: 33126635 PMCID: PMC7694038 DOI: 10.3390/pathogens9110899] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
To identify genome-based features characteristic of the avian and human pathogen Chlamydia(C.) psittaci and related chlamydiae, we analyzed whole-genome sequences of 33 strains belonging to 12 species. Using a novel genome analysis tool termed Roary ILP Bacterial Annotation Pipeline (RIBAP), this panel of strains was shown to share a large core genome comprising 784 genes and representing approximately 80% of individual genomes. Analyzing the most variable genomic sites, we identified a set of features of C. psittaci that in its entirety is characteristic of this species: (i) a relatively short plasticity zone of less than 30,000 nt without a tryptophan operon (also in C. abortus, C. avium, C. gallinacea, C. pneumoniae), (ii) a characteristic set of of Inc proteins comprising IncA, B, C, V, X, Y (with homologs in C. abortus, C. caviae and C. felis as closest relatives), (iii) a 502-aa SinC protein, the largest among Chlamydia spp., and (iv) an elevated number of Pmp proteins of subtype G (14 in C. psittaci, 14 in Cand. C. ibidis). In combination with future functional studies, the common and distinctive criteria revealed in this study provide important clues for understanding the complexity of host-specific behavior of individual Chlamydia spp.
Collapse
Affiliation(s)
- Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Fabien Vorimore
- Animal Health Laboratory, Bacterial Zoonoses Unit, University Paris-Est, Anses, 94706 Maisons-Alfort, France; (F.V.); (K.L.)
| | - Marie Lataretu
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Alison Favaroni
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), 07743 Jena, Germany; (A.F.); (C.S.)
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), 07743 Jena, Germany; (A.F.); (C.S.)
| | - Karine Laroucau
- Animal Health Laboratory, Bacterial Zoonoses Unit, University Paris-Est, Anses, 94706 Maisons-Alfort, France; (F.V.); (K.L.)
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| |
Collapse
|
11
|
Szabo KV, O’Neill CE, Clarke IN. Diversity in Chlamydial plasmids. PLoS One 2020; 15:e0233298. [PMID: 32469898 PMCID: PMC7259575 DOI: 10.1371/journal.pone.0233298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/01/2020] [Indexed: 11/30/2022] Open
Abstract
Background Evolutionary studies have been conducted that have investigated the chromosomal variance in the genus of Chlamydia. However, no all-encompassing genus-wide comparison has been performed on the plasmid. Therefore, there is a gap in the current knowledge on Chlamydia plasmid diversity. Aims This project is aimed to investigate and establish the nature and extent of diversity across the entire genus of Chlamydia, by comparing the sequences of all currently available plasmid carrying strains. Methods The PUBMED database was used to identify plasmid sequences from all available strains that met the set quality criteria for their inclusion in the study. Alignments were performed on the 51 strains that fulfilled the criteria using MEGA X software. Following that Maximum Likelihood estimation was used to construct 11 phylogenetic trees of the whole plasmid sequence, the individual 8 coding sequences, the iteron and a chromosomal gene ompA as a comparator. Results The genus-wide plasmid phylogeny produced three distinct lineages labelled as alpha, beta and gamma. Nineteen genotypes were found in the initial whole plasmid analysis. Their distribution was allocated as six C. pecorum, two C. pneumoniae, one C. gallinacea, one C. avium, one C. caviae, one C. felis, two C. psittaci, one C. trachomatis, one C. muridarum, and two C. suis. The chromosomal comparative gene ompA supported this distribution, with the same number of primary clades with the same species distribution. However, ompA sequence comparison resulted in fewer genotypes due to a reduced amount of available sequences (33 out of 51). All results were statistically significant. Conclusion The results of this study indicate that the common bacterial ancestor of all the species had a plasmid, which has diverged over time. Moreover, it suggests that there is a strong evolutionary selection towards these species retaining their plasmids due to its high level of conservation across the genus, with the notable exception of C. pneumoniae. Furthermore, the evolutionary analysis showed that the plasmid and the chromosome have co-evolved.
Collapse
Affiliation(s)
- Kolos V. Szabo
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
- * E-mail:
| | - Colette E. O’Neill
- Molecular Microbiology Group, Clinical and Experimental Sciences, University Hospital Southampton, Southampton, Hampshire, United Kingdom
| | - Ian N. Clarke
- Molecular Microbiology Group, Clinical and Experimental Sciences, University Hospital Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
12
|
Inhibition of tRNA Synthetases Induces Persistence in Chlamydia. Infect Immun 2020; 88:IAI.00943-19. [PMID: 31964747 DOI: 10.1128/iai.00943-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections, and Chlamydia pneumoniae causes community-acquired respiratory infections. In vivo, the host immune system will release gamma interferon (IFN-γ) to combat infection. IFN-γ activates human cells to produce the tryptophan (Trp)-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). Consequently, there is a reduction in cytosolic Trp in IFN-γ-activated host cells. In evolving to obligate intracellular dependence, Chlamydia has significantly reduced its genome size and content, as it relies on the host cell for various nutrients. Importantly, C. trachomatis and C. pneumoniae are Trp auxotrophs and are starved for this essential nutrient when the human host cell is exposed to IFN-γ. To survive this, chlamydiae enter an alternative developmental state referred to as persistence. Chlamydial persistence is characterized by a halt in the division cycle, aberrant morphology, and, in the case of IFN-γ-induced persistence, Trp codon-dependent changes in transcription. We hypothesize that these changes in transcription are dependent on the particular amino acid starvation state. To investigate the chlamydial response mechanisms acting when other amino acids become limiting, we tested the efficacy of prokaryote-specific tRNA synthetase inhibitors, indolmycin and AN3365, to mimic starvation of Trp and leucine, respectively. We show that these drugs block chlamydial growth and induce changes in morphology and transcription consistent with persistence. Importantly, growth inhibition was reversed when the compounds were removed from the medium. With these data, we find that indolmycin and AN3365 are valid tools that can be used to mimic the persistent state independently of IFN-γ.
Collapse
|
13
|
Gitsels A, Van Lent S, Sanders N, Vanrompay D. Chlamydia: what is on the outside does matter. Crit Rev Microbiol 2020; 46:100-119. [PMID: 32093536 DOI: 10.1080/1040841x.2020.1730300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review summarises major highlights on the structural biology of the chlamydial envelope. Chlamydiae are obligate intracellular bacteria, characterised by a unique biphasic developmental cycle. Depending on the stage of their lifecycle, they appear in the form of elementary or reticulate bodies. Since these particles have distinctive functions, it is not surprising that their envelope differs in lipid as well as in protein content. Vice versa, by identifying surface proteins, specific characteristics of the particles such as rigidity or immunogenicity may be deduced. Detailed information on the bacterial membranes will increase our understanding on the host-pathogen interactions chlamydiae employ to survive and grow and might lead to new strategies to battle chlamydial infections.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Van Lent
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Insertional mutagenesis in the zoonotic pathogen Chlamydia caviae. PLoS One 2019; 14:e0224324. [PMID: 31697687 PMCID: PMC6837515 DOI: 10.1371/journal.pone.0224324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022] Open
Abstract
The ability to introduce targeted genetic modifications in microbial genomes has revolutionized our ability to study the role and mode of action of individual bacterial virulence factors. Although the fastidious lifestyle of obligate intracellular bacterial pathogens poses a technical challenge to such manipulations, the last decade has produced significant advances in our ability to conduct molecular genetic analysis in Chlamydia trachomatis, a major bacterial agent of infertility and blindness. Similar approaches have not been established for the closely related veterinary Chlamydia spp., which cause significant economic damage, as well as rare but potentially life-threatening infections in humans. Here we demonstrate the feasibility of conducting site-specific mutagenesis for disrupting virulence genes in C. caviae, an agent of guinea pig inclusion conjunctivitis that was recently identified as a zoonotic agent in cases of severe community-acquired pneumonia. Using this approach, we generated C. caviae mutants deficient for the secreted effector proteins IncA and SinC. We demonstrate that C. caviae IncA plays a role in mediating fusion of the bacteria-containing vacuoles inhabited by C. caviae. Moreover, using a chicken embryo infection model, we provide first evidence for a role of SinC in C. caviae virulence in vivo.
Collapse
|
15
|
Proteomic characterisation of the Chlamydia abortus outer membrane complex (COMC) using combined rapid monolithic column liquid chromatography and fast MS/MS scanning. PLoS One 2019; 14:e0224070. [PMID: 31647835 PMCID: PMC6812762 DOI: 10.1371/journal.pone.0224070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022] Open
Abstract
Data are presented on the identification and partial characterisation of proteins comprising the chlamydial outer membrane complex (COMC) fraction of Chlamydia abortus (C. abortus)—the aetiological agent of ovine enzootic abortion. Inoculation with the COMC fraction is known to be highly effective in protecting sheep against experimental challenge and its constituent proteins are therefore of interest as potential vaccine candidates. Sodium N-lauroylsarcosine (sarkosyl) insoluble COMC proteins resolved by SDS-PAGE were interrogated by mass spectrometry using combined rapid monolithic column liquid chromatography and fast MS/MS scanning. Downstream database mining of processed tandem MS data revealed the presence of 67 proteins in total, including putative membrane associated proteins (n = 36), such as porins, polymorphic membrane proteins (Pmps), chaperonins and hypothetical membrane proteins, in addition to others (n = 22) that appear more likely to have originated from other subcellular compartments. Electrophoretic mobility data combined with detailed amino acid sequence information derived from secondary fragmentation spectra for 8 Pmps enabled peptides originating from protein cleavage fragments to be mapped to corresponding regions of parent precursor molecules yielding preliminary evidence in support of endogenous post-translational processing of outer membrane proteins in C. abortus. The data presented here will facilitate a deeper understanding of the pathogenesis of C. abortus infection and represent an important step towards the elucidation of the mechanisms of immunoprotection against C. abortus infection and the identification of potential target vaccine candidate antigens.
Collapse
|
16
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Sigalova OM, Chaplin AV, Bochkareva OO, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics 2019; 20:710. [PMID: 31510914 PMCID: PMC6740158 DOI: 10.1186/s12864-019-6059-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/22/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Chlamydia are ancient intracellular pathogens with reduced, though strikingly conserved genome. Despite their parasitic lifestyle and isolated intracellular environment, these bacteria managed to avoid accumulation of deleterious mutations leading to subsequent genome degradation characteristic for many parasitic bacteria. RESULTS We report pan-genomic analysis of sixteen species from genus Chlamydia including identification and functional annotation of orthologous genes, and characterization of gene gains, losses, and rearrangements. We demonstrate the overall genome stability of these bacteria as indicated by a large fraction of common genes with conserved genomic locations. On the other hand, extreme evolvability is confined to several paralogous gene families such as polymorphic membrane proteins and phospholipase D, and likely is caused by the pressure from the host immune system. CONCLUSIONS This combination of a large, conserved core genome and a small, evolvable periphery likely reflect the balance between the selective pressure towards genome reduction and the need to adapt to escape from the host immunity.
Collapse
Affiliation(s)
- Olga M. Sigalova
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- current address: European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrei V. Chaplin
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga O. Bochkareva
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- current address: Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Pavel V. Shelyakin
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Vavilov Institute of General Genetics, RAS, Moscow, Russia
| | | | - Evgeny E. Akkuratov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- current address: Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Valentina Burskaia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail S. Gelfand
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| |
Collapse
|
18
|
Hadfield J, Bénard A, Domman D, Thomson N. The Hidden Genomics of Chlamydia trachomatis. Curr Top Microbiol Immunol 2019; 412:107-131. [PMID: 29071471 DOI: 10.1007/82_2017_39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of whole-genome sequencing has moved us on from sequencing single genomes to defining unravelling population structures in different niches, and at the -species, -serotype or even -genus level, and in local, national and global settings. This has been instrumental in cataloguing and revealing a huge a range of diversity in this bacterium, when at first we thought there was little. Genomics has challenged assumptions, added insight, as well as confusion and glimpses of truths. What is clear is that at a time when we start to realise the extent and nature of the diversity contained within a genus or a species like this, the huge depth of knowledge communities have developed, through cell biology, as well as the new found molecular approaches will be more precious than ever to link genotype to phenotype. Here we detail the technological developments and insights we have seen during the relatively short time since we began to see the hidden genome of Chlamydia trachomatis.
Collapse
Affiliation(s)
- James Hadfield
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
19
|
Morrison SG, Giebel AM, Toh EC, Spencer HJ, Nelson DE, Morrison RP. Chlamydia muridarum Genital and Gastrointestinal Infection Tropism Is Mediated by Distinct Chromosomal Factors. Infect Immun 2018; 86:e00141-18. [PMID: 29661932 PMCID: PMC6013670 DOI: 10.1128/iai.00141-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Some members of the genus Chlamydia, including the human pathogen Chlamydia trachomatis, infect multiple tissues, including the genital and gastrointestinal (GI) tracts. However, it is unknown if bacterial targeting to these sites is mediated by multifunctional or distinct chlamydial factors. We previously showed that disruption of individual large clostridial toxin homologs encoded within the Chlamydia muridarum plasticity zone were not critical for murine genital tract infection. Here, we assessed whether cytotoxin genes contribute to C. muridarum GI tropism. Infectivity and shedding of wild-type (WT) C. muridarum and three mutants containing nonsense mutations in different cytotoxin genes, tc0437, tc0438, and tc0439, were compared in mouse genital and GI infection models. One mutant, which had a nonsense mutation in tc0439, was highly attenuated for GI infection and had a GI 50% infectious dose (ID50) that was 1,000 times greater than that of the WT. GI inoculation with this mutant failed to elicit anti-chlamydial antibodies or to protect against subsequent genital tract infection. Genome sequencing of the tc0439 mutant revealed additional chromosomal mutations, and phenotyping of additional mutants suggested that the GI attenuation might be linked to a nonsense mutation in tc0600 The molecular mechanism underlying this dramatic difference in tissue-tropic virulence is not fully understood. However, isolation of these mutants demonstrates that distinct chlamydial chromosomal factors mediate chlamydial tissue tropism and provides a basis for vaccine initiatives to isolate chlamydia strains that are attenuated for genital infection but retain the ability to colonize the GI tract and elicit protective immune responses.
Collapse
Affiliation(s)
- Sandra G Morrison
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amanda M Giebel
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Evelyn C Toh
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - David E Nelson
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard P Morrison
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
20
|
Novel Chlamydia species isolated from snakes are temperature-sensitive and exhibit decreased susceptibility to azithromycin. Sci Rep 2018; 8:5660. [PMID: 29618824 PMCID: PMC5884828 DOI: 10.1038/s41598-018-23897-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Chlamydia species have recently been recognized as emerging pathogens in snakes. However, isolation of novel snake chlamydiae is critical and their growth characteristics are largely unknown. In this study, two novel chlamydial species are described: Chlamydia serpentis and Chlamydia poikilothermis, isolated after attempts on 23 cloacal and choanal swabs from 18 PCR-positive captive snakes originating from different Swiss snake collections. Isolation success, growth curve and infectivity rates over a 48-hour time period were dependent on temperature (37 °C for C. serpentis, 28 °C for C. poikilothermis). C. serpentis and C. poikilothermis were sensitive to tetracycline and moxifloxacin during evaluation by in vitro antibiotic susceptibility assay but intermediate to resistant (2–4 μg/ml) to azithromycin. Whole genome sequencing of the isolates provided proof of the novel species status, and gives insights into the evolution of these branches of genus Chlamydia.
Collapse
|
21
|
Characterization of the In Vitro Chlamydia pecorum Response to Gamma Interferon. Infect Immun 2018; 86:IAI.00714-17. [PMID: 29358337 DOI: 10.1128/iai.00714-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/14/2018] [Indexed: 12/12/2022] Open
Abstract
Chlamydia pecorum is an important intracellular bacterium that causes a range of diseases in animals, including a native Australian marsupial, the koala. In humans and animals, a gamma interferon (IFN-γ)-mediated immune response is important for the control of intracellular bacteria. The present study tested the hypotheses that C. pecorum can escape IFN-γ-mediated depletion of host cell tryptophan pools. In doing so, we demonstrated that, unlike Chlamydia trachomatis, C. pecorum is completely resistant to IFN-γ in human epithelial cells. While the growth of C. pecorum was inhibited in tryptophan-deficient medium, it could be restored by the addition of kynurenine, anthranilic acid, and indole, metabolites that could be exploited by the gene products of the C. pecorum tryptophan biosynthesis operon. We also found that expression of trp genes was detectable only when C. pecorum was grown in tryptophan-free medium, with gene repression occurring in response to the addition of kynurenine, anthranilic acid, and indole. When grown in bovine kidney epithelial cells, bovine IFN-γ also failed to restrict the growth of C. pecorum, while C. trachomatis was inhibited, suggesting that C. pecorum could use the same mechanisms to evade the immune response in vivo in its natural host. Highlighting the different mechanisms triggered by IFN-γ, however, both species failed to grow in murine McCoy cells treated with murine IFN-γ. This work confirms previous hypotheses about the potential survival of C. pecorum after IFN-γ-mediated host cell tryptophan depletion and raises questions about the immune pathways used by the natural hosts of C. pecorum to control the widespread pathogen.
Collapse
|
22
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
23
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
24
|
Seth-Smith HMB, Busó LS, Livingstone M, Sait M, Harris SR, Aitchison KD, Vretou E, Siarkou VI, Laroucau K, Sachse K, Longbottom D, Thomson NR. European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures. BMC Genomics 2017; 18:344. [PMID: 28472926 PMCID: PMC5415952 DOI: 10.1186/s12864-017-3657-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/24/2017] [Indexed: 11/15/2022] Open
Abstract
Background Chlamydia abortus (formerly Chlamydophila abortus) is an economically important livestock pathogen, causing ovine enzootic abortion (OEA), and can also cause zoonotic infections in humans affecting pregnancy outcome. Large-scale genomic studies on other chlamydial species are giving insights into the biology of these organisms but have not yet been performed on C. abortus. Our aim was to investigate a broad collection of European isolates of C. abortus, using next generation sequencing methods, looking at diversity, geographic distribution and genome dynamics. Results Whole genome sequencing was performed on our collection of 57 C. abortus isolates originating primarily from the UK, Germany, France and Greece, but also from Tunisia, Namibia and the USA. Phylogenetic analysis of a total of 64 genomes shows a deep structural division within the C. abortus species with a major clade displaying limited diversity, in addition to a branch carrying two more distantly related Greek isolates, LLG and POS. Within the major clade, seven further phylogenetic groups can be identified, demonstrating geographical associations. The number of variable nucleotide positions across the sampled isolates is significantly lower than those published for C. trachomatis and C. psittaci. No recombination was identified within C. abortus, and no plasmid was found. Analysis of pseudogenes showed lineage specific loss of some functions, notably with several Pmp and TMH/Inc proteins predicted to be inactivated in many of the isolates studied. Conclusions The diversity within C. abortus appears to be much lower compared to other species within the genus. There are strong geographical signatures within the phylogeny, indicating clonal expansion within areas of limited livestock transport. No recombination has been identified within this species, showing that different species of Chlamydia may demonstrate different evolutionary dynamics, and that the genome of C. abortus is highly stable. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3657-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H M B Seth-Smith
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Current Address: Universitätsspital Basel, 4031, Basel, Switzerland.,Current Address: Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Leonor Sánchez Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - M Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - M Sait
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK.,Current Address: Microbiological Diagnostic Unit, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - S R Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - K D Aitchison
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Evangelia Vretou
- Retired: Formerly Laboratory of Biotechnology, Department of Microbiology, Hellenic Pasteur Institute, Athens, 115 21, Greece
| | - V I Siarkou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - K Laroucau
- Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, University Paris-Est, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - K Sachse
- Friedrich-Loeffler-Institute (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743, Jena, Germany.,Current Address: RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität, Leutragraben 1, 07743, Jena, Germany
| | - D Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - N R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
25
|
Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence. Curr Top Microbiol Immunol 2017; 412:133-158. [PMID: 29090367 DOI: 10.1007/82_2017_76] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obligate intracellular pathogens in the family Chlamydiaceae infect taxonomically diverse eukaryotes ranging from amoebae to mammals. However, many fundamental aspects of chlamydial cell biology and pathogenesis remain poorly understood. Genetic dissection of chlamydial biology has historically been hampered by a lack of genetic tools. Exploitation of the ability of chlamydia to recombine genomic material by lateral gene transfer (LGT) ushered in a new era in chlamydia research. With methods to map mutations in place, genetic screens were able to assign functions and phenotypes to specific chlamydial genes. Development of an approach for stable transformation of chlamydia also provided a mechanism for gene delivery and platforms for disrupting chromosomal genes. Here, we explore how these and other tools have been used to test hypotheses concerning the functions of known chlamydial virulence factors and discover the functions of completely uncharacterized genes. Refinement and extension of the existing genetic tools to additional Chlamydia spp. will substantially advance understanding of the biology and pathogenesis of this important group of pathogens.
Collapse
|
26
|
Claywell JE, Matschke LM, Fisher DJ. The Impact of Protein Phosphorylation on Chlamydial Physiology. Front Cell Infect Microbiol 2016; 6:197. [PMID: 28066729 PMCID: PMC5177608 DOI: 10.3389/fcimb.2016.00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022] Open
Abstract
Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered.
Collapse
Affiliation(s)
- Ja E Claywell
- Department of Microbiology, Southern Illinois University Carbondale, IL, USA
| | - Lea M Matschke
- Department of Microbiology, Southern Illinois University Carbondale, IL, USA
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University Carbondale, IL, USA
| |
Collapse
|
27
|
Zhong G. Chlamydial Plasmid-Dependent Pathogenicity. Trends Microbiol 2016; 25:141-152. [PMID: 27712952 DOI: 10.1016/j.tim.2016.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Most Chlamydia species carry a 7.5kb plasmid encoding eight open reading frames conventionally called plasmid glycoproteins 1-8 or pGP1-8. Although the plasmid is not critical for chlamydial growth in vitro, its role in chlamydial pathogenesis is clearly demonstrated in the genital tracts of mice infected with Chlamydia muridarum, a model for investigating the human pathogen Chlamydia trachomatis. Plasmid-free C. trachomatis is also attenuated in both the mouse genital tract and nonhuman primate ocular tissue. Deficiency in pGP3 alone, which is regulated by pGP4, largely reproduced the in vivo but not in vitro phenotypes of the plasmid-free organisms, suggesting that pGP3 is a key in vivo virulence factor. The positive and negative regulations of some chromosomal genes by pGP4 and pGP5, respectively, may allow the plasmid to promote chlamydial adaptation to varied animal tissue environments. The focus of this review is to summarize the progress on the pathogenic functions of the plasmid-encoded open reading frames, which may motivate further investigation of the molecular mechanisms of chlamydial pathogenicity and development of medical utility of the chlamydial plasmid system.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
28
|
Joseph SJ, Marti H, Didelot X, Read TD, Dean D. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen. Genome Biol Evol 2016; 8:2613-23. [PMID: 27576537 PMCID: PMC5010913 DOI: 10.1093/gbe/evw182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2016] [Indexed: 12/22/2022] Open
Abstract
Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hanna Marti
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA Joint Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| |
Collapse
|
29
|
Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen. Microbiol Mol Biol Rev 2016; 80:411-27. [PMID: 27030552 DOI: 10.1128/mmbr.00071-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen.
Collapse
|
30
|
Roulis E, Bachmann N, Humphrys M, Myers G, Huston W, Polkinghorne A, Timms P. Phylogenetic analysis of human Chlamydia pneumoniae strains reveals a distinct Australian indigenous clade that predates European exploration of the continent. BMC Genomics 2015; 16:1094. [PMID: 26694618 PMCID: PMC4687280 DOI: 10.1186/s12864-015-2281-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/08/2015] [Indexed: 12/05/2022] Open
Abstract
Background The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key polymorphisms and additional coding capacity when human and animal strains are compared. Results In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains, with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these distinct strains. Conclusions Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains, and suggests that a wider range of strains may be circulating in the human population than current sampling indicates.
Collapse
Affiliation(s)
- Eileen Roulis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Nathan Bachmann
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Michael Humphrys
- Institute for Genomic Sciences, University of Maryland, Baltimore, MD, USA.
| | - Garry Myers
- i3 Institute, University of Technology, Sydney, NSW, Australia.
| | - Wilhelmina Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia. .,i3 Institute, University of Technology, Sydney, NSW, Australia.
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia. .,Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| |
Collapse
|
31
|
Pizzetti I, Schulz F, Tyml T, Fuchs BM, Amann R, Horn M, Fazi S. Chlamydial seasonal dynamics and isolation of 'Candidatus Neptunochlamydia vexilliferae' from a Tyrrhenian coastal lake. Environ Microbiol 2015; 18:2405-17. [PMID: 26530333 DOI: 10.1111/1462-2920.13111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/01/2022]
Abstract
The Chlamydiae are a phylum of obligate intracellular bacteria comprising important human and animal pathogens, yet their occurrence in the environment, their phylogenetic diversity and their host range has been largely underestimated. We investigated the seasonality of environmental chlamydiae in a Tyrrhenian coastal lake. By catalysed reporter deposition fluorescence in situ hybridization, we quantified the small planktonic cells and detected a peak in the abundance of environmental chlamydiae in early autumn with up to 5.9 × 10(4) cells ml(-1) . Super-resolution microscopy improved the visualization and quantification of these bacteria and enabled the detection of pleomorphic chlamydial cells in their protist host directly in an environmental sample. To isolate environmental chlamydiae together with their host, we applied a high-throughput limited dilution approach and successfully recovered a Vexillifera sp., strain harbouring chlamydiae (93% 16S rRNA sequence identity to Simkania negevensis), tentatively named 'Candidatus Neptunochlamydia vexilliferae'. Transmission electron microscopy in combination with fluorescence in situ hybridization was used to prove the intracellular location of these bacteria representing the first strain of marine chlamydiae stably maintained alongside with their host in a laboratory culture. Taken together, this study contributes to a better understanding of the distribution and diversity of environmental chlamydiae in previously neglected marine environments.
Collapse
Affiliation(s)
- Ilaria Pizzetti
- Water Research Institute, IRSA-CNR, via Salaria km 29,300, 00015 Monterotondo, Roma, Italy
| | - Frederik Schulz
- University of Vienna, Department of Microbiology and Ecosystem Science, Althanstrasse 14, A-1090, Vienna, Austria
| | - Tomáš Tyml
- University of South Bohemia, Faculty of Science, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Masaryk University, Department of Botany and Zoology, Faculty of Science, Kotlářská 2, 61137, Brno, Czech Republic
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Matthias Horn
- University of Vienna, Department of Microbiology and Ecosystem Science, Althanstrasse 14, A-1090, Vienna, Austria
| | - Stefano Fazi
- Water Research Institute, IRSA-CNR, via Salaria km 29,300, 00015 Monterotondo, Roma, Italy
| |
Collapse
|
32
|
Wu H, Wang C, Jiang C, Xie Y, Liu L, Song Y, Ma X, Wu Y. Localization and characterization of two putative TMH family proteins in Chlamydia psittaci. Microbiol Res 2015; 183:19-25. [PMID: 26805615 DOI: 10.1016/j.micres.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 12/23/2022]
Abstract
Chlamydia psittaci (C. psittaci), an obligate intracellular agent of psittacosis, causes an atypical pneumonia in humans. The transmembrane head proteins (TMH) of C. psittaci, putatively belong to the Inc family and presumably play similar roles. CPSIT_0844 and CPSIT_0846 were the putative TMH proteins of C. psittaci. To identify these two proteins, antisera were raised with fusion proteins which were prokaryotic expressed in Escherichia coli and purified. By immunofluorescence assay, CPSIT_0844 and CPSIT_0846 were localized in the inclusion membrane of C. psittaci-infected cells. By RT-PCR and western blot analysis to detect the temporal expression, CPSIT_0844 and CPSIT_0846 were detected as early as 12h post-infection (p.i.) and 6h p.i., separately; meanwhile, in secretions monitored with immunofluorescence assay, these proteins were observed in the inclusion membrane at 18h p.i. and remained in the inclusion membrane throughout the growth cycle. CPSIT_0844 and CPSIT_0846 could specifically be recognized by the antiserum of C. psittaci but failed to react with the antiserums of Chlamydia trachomatis and Chlamydia pneumoniae, which is consistent with the fact that they had no significant orthologs in C. trachomatis and C. pneumoniae. These results revealed that CPSIT_0844 and CPSIT_0846, the putative TMH family proteins, might be unique to C. psittaci and could be used to diagnose the infection caused by C. psittaci. Moreover, CPSIT_0844 and CPSIT_0846 could induce the expression of the inflammatory cytokines IL-1β, IL-6 and TNF-α in THP-1 cells, which might contribute to chlamydia-induced inflammatory pathologies.
Collapse
Affiliation(s)
- Haiying Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China; Department of Laboratory Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Chuanhao Jiang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Yafeng Xie
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Liangzhuan Liu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Ying Song
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Xiaohua Ma
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China.
| |
Collapse
|
33
|
Vasilevsky S, Stojanov M, Greub G, Baud D. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence 2015; 7:11-22. [PMID: 26580416 DOI: 10.1080/21505594.2015.1111509] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pmps (Polymorphic Membrane Proteins) are a group of membrane bound surface exposed chlamydial proteins that have been characterized as autotransporter adhesins and are important in the initial phase of chlamydial infection. These proteins all contain conserved GGA (I, L, V) and FxxN tetrapeptide motifs in the N-terminal portion of each protein. All chlamydial species express Pmps. Even in the chlamydia-related bacteria Waddlia chondrophila, a Pmp-like adhesin has been identified, demonstrating the importance of Pmps in Chlamydiales biology. Chlamydial species vary in the number of pmp genes and their differentially regulated expression during the infectious cycle or in response to stress. Studies have also demonstrated that Pmps are able to induce innate immune functional responses in infected cells, including production of IL-8, IL-6 and MCP-1, by activating the transcription factor NF-κB. Human serum studies have indicated that although anti-Pmp specific antibodies are produced in response to a chlamydial infection, the response is variable depending on the Pmp protein. In C. trachomatis, PmpB, PmpC, PmpD and PmpI were the proteins eliciting the strongest immune response among adolescents with and without pelvic inflammatory disease (PID). In contrast, PmpA and PmpE elicited the weakest antibody response. Interestingly, there seems to be a gender bias for Pmp recognition with a stronger anti-Pmp reactivity in male patients. Furthermore, anti-PmpA antibodies might contribute to adverse pregnancy outcomes, at least among women with PID. In vitro studies indicated that dendritic cells infected with C. muridarum were able to present PmpG and PmpF on their MHC class II receptors and T cells were able to recognize the MHC class-II bound peptides. In addition, vaccination with PmpEFGH and Major Outer Membrane Protein (MOMP) significantly protected mice against a genital tract C. muridarum infection, suggesting that Pmps may be an important component of a multi-subunit chlamydial vaccine. Thus, Pmps might be important not only for the pathogenesis of chlamydial infection, but also as potential candidate vaccine proteins.
Collapse
Affiliation(s)
- Sam Vasilevsky
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Milos Stojanov
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Gilbert Greub
- b Center for Research on Intracellular Bacteria; Institute of Microbiology; Faculty of Biology and Medicine; University of Lausanne and University Hospital ; Lausanne , Switzerland
| | - David Baud
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| |
Collapse
|
34
|
Joseph SJ, Marti H, Didelot X, Castillo-Ramirez S, Read TD, Dean D. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans. Genome Biol Evol 2015; 7:3070-84. [PMID: 26507799 PMCID: PMC4994753 DOI: 10.1093/gbe/evv201] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene phylogeny, five isolates previously classified as Chlamydia abortus were identified as members of Chlamydia psittaci and Chlamydia pecorum. Chlamydia abortus is the most recently emerged species and is a highly monomorphic group that lacks the conserved virulence-associated plasmid. Low-level recombination and evidence for adaptation to the placenta echo evolutionary processes seen in recently emerged, highly virulent niche-restricted pathogens, such as Bacillus anthracis. In contrast, gene flow occurred within C. psittaci and other Chlamydiaceae species. The C. psittaci strain RTH, isolated from a red-tailed hawk (Buteo jamaicensis), is an outlying strain with admixture of C. abortus, C. psittaci, and its own population markers. An average nucleotide identity of less than 94% compared with other Chlamydiaceae species suggests that RTH belongs to a new species intermediary between C. psittaci and C. abortus. Hawks, as scavengers and predators, have extensive opportunities to acquire multiple species in their intestinal tract. This could facilitate transformation and homologous recombination with the potential for new species emergence. Our findings indicate that incubator hosts such as birds-of-prey likely promote Chlamydiaceae evolution resulting in novel pathogenic lineages.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine
| | - Hanna Marti
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Santiago Castillo-Ramirez
- Programa de Genomica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine Department of Human Genetics, Emory University School of Medicine
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California Department of Medicine, University of California, San Francisco Joint Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley
| |
Collapse
|
35
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
36
|
Fisher DJ, Adams NE, Maurelli AT. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms. MICROBIOLOGY-SGM 2015; 161:1648-1658. [PMID: 25998263 DOI: 10.1099/mic.0.000116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB-RB transitions.
Collapse
Affiliation(s)
- Derek J Fisher
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | - Nancy E Adams
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | - Anthony T Maurelli
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| |
Collapse
|
37
|
Mutational Analysis of the Chlamydia muridarum Plasticity Zone. Infect Immun 2015; 83:2870-81. [PMID: 25939505 DOI: 10.1128/iai.00106-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed--and some may produce functional proteins--but are dispensable for infection of the murine genital tract.
Collapse
|
38
|
Wolff BJ, Morrison SS, Pesti D, Ganakammal SR, Srinivasamoorthy G, Changayil S, Weil MR, MacCannell D, Rowe L, Frace M, Ritchie BW, Dean D, Winchell JM. Chlamydia psittaci comparative genomics reveals intraspecies variations in the putative outer membrane and type III secretion system genes. MICROBIOLOGY-SGM 2015; 161:1378-91. [PMID: 25887617 PMCID: PMC4635502 DOI: 10.1099/mic.0.000097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chlamydia psittaci is an obligate intracellular bacterium that can cause significant disease among a broad range of hosts. In humans, this organism may cause psittacosis, a respiratory disease that can spread to involve multiple organs, and in rare untreated cases may be fatal. There are ten known genotypes based on sequencing the major outer-membrane protein gene, ompA, of C. psittaci. Each genotype has overlapping host preferences and virulence characteristics. Recent studies have compared C. psittaci among other members of the Chlamydiaceae family and showed that this species frequently switches hosts and has undergone multiple genomic rearrangements. In this study, we sequenced five genomes of C. psittaci strains representing four genotypes, A, B, D and E. Due to the known association of the type III secretion system (T3SS) and polymorphic outer-membrane proteins (Pmps) with host tropism and virulence potential, we performed a comparative analysis of these elements among these five strains along with a representative genome from each of the remaining six genotypes previously sequenced. We found significant genetic variation in the Pmps and tbl3SS genes that may partially explain differences noted in C. psittaci host infection and disease.
Collapse
Affiliation(s)
- Bernard J Wolff
- 1Infectious Diseases Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA 2Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shatavia S Morrison
- 2Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Denise Pesti
- 1Infectious Diseases Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Satishkumar Ranganathan Ganakammal
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ganesh Srinivasamoorthy
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shankar Changayil
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Ryan Weil
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Duncan MacCannell
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lori Rowe
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Frace
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Branson W Ritchie
- 1Infectious Diseases Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Deborah Dean
- 4Children's Hospital Oakland Research Institute, Oakland, CA 5UCSF and UC Berkeley Joint Graduate Program in Bioengineering, Oakland, CA
| | - Jonas M Winchell
- 2Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
39
|
Peters J, Byrne GI. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition. Pathog Dis 2015; 73:ftv028. [PMID: 25883118 DOI: 10.1093/femspd/ftv028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is auxotrophic for a variety of essential metabolites. Inhibitors that interrupt host cell catabolism may inhibit chlamydial growth and reveal Chlamydia metabolite requirements. We used the known indoleamine-2,3-dioxygenase (IDO)-inhibitor 4-phenyl imidazole (4-PI) to reverse Interferon (IFN)-γ-induced chlamydial growth inhibition. However, at elevated inhibitor concentrations chlamydial growth was arrested even in the absence of IFN-γ. Since 4-PI is known to interfere with cholesterol metabolism, the effect of cholesterol add-back was tested. Chlamydia growth was restored in the presence of cholesterol in serum-containing, but not serum-free medium suggesting that cholesterol and other serum components are required for growth recovery. When serum factors were tested, either cholesteryl linoleate or the combination of cholesterol and linoleic acid restored chlamydial growth. However, growth was not restored when either cholesterol or linoleic acid were added alone, suggesting that the production of cholesteryl esters from cholesterol and fatty acids was affected by 4-PI treatment. In eukaryotic cells, the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the production of cholesteryl esters. When HeLa cells were treated with the ACAT-specific inhibitor 4-hydroxycinnamicacid amide C. trachomatis growth was interrupted, but was restored by the addition of cholesteryl linoleate, suggesting that ACAT activity is necessary for intracellular Chlamydia growth.
Collapse
Affiliation(s)
- Jan Peters
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gerald I Byrne
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
40
|
Mojica SA, Hovis KM, Frieman MB, Tran B, Hsia RC, Ravel J, Jenkins-Houk C, Wilson KL, Bavoil PM. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol Biol Cell 2015; 26:1918-34. [PMID: 25788290 PMCID: PMC4436835 DOI: 10.1091/mbc.e14-11-1530] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/06/2015] [Indexed: 12/31/2022] Open
Abstract
SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci-infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP-transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear "lamina" structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci.
Collapse
Affiliation(s)
- Sergio A Mojica
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Kelley M Hovis
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 20201
| | - Bao Tran
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ru-ching Hsia
- Core Imaging Facility and Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Jacques Ravel
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD 20201
| | - Clifton Jenkins-Houk
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| |
Collapse
|
41
|
Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:539-52. [PMID: 25761461 DOI: 10.1128/cvi.00102-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens.
Collapse
|
42
|
Neuendorf E, Gajer P, Bowlin AK, Marques PX, Ma B, Yang H, Fu L, Humphrys MS, Forney LJ, Myers GSA, Bavoil PM, Rank RG, Ravel J. Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota. Pathog Dis 2015; 73:ftv019. [PMID: 25761873 PMCID: PMC4445005 DOI: 10.1093/femspd/ftv019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 01/09/2023] Open
Abstract
In humans, the vaginal microbiota is thought to be the first line of defense again pathogens including Chlamydia trachomatis. The guinea pig has been extensively used as a model to study chlamydial infection because it shares anatomical and physiological similarities with humans, such as a squamous vaginal epithelium as well as some of the long-term outcomes caused by chlamydial infection. In this study, we aimed to evaluate the guinea pig-C. caviae model of genital infection as a surrogate for studying the role of the vaginal microbiota in the early steps of C. trachomatis infection in humans. We used culture-independent molecular methods to characterize the relative and absolute abundance of bacterial phylotypes in the guinea pig vaginal microbiota in animals non-infected, mock-infected or infected by C. caviae. We showed that the guinea pig and human vaginal microbiotas are of different bacterial composition and abundance. Chlamydia caviae infection had a profound effect on the absolute abundance of bacterial phylotypes but not on the composition of the guinea pig vaginal microbiota. Our findings compromise the validity of the guinea pig-C. caviae model to study the role of the vaginal microbiota during the early steps of sexually transmitted infection. The vaginal microbiota of the guinea pig differs from that of humans and cannot prevent chlamydial infections efficiently.
Collapse
Affiliation(s)
- Elizabeth Neuendorf
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anne K Bowlin
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | - Patricia X Marques
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hongqiu Yang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Li Fu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Larry J Forney
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, USA
| | - Garry S A Myers
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrik M Bavoil
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, USA
| | - Roger G Rank
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
43
|
Chlamydia abortus: New Aspects of Infectious Abortion in Sheep and Potential Risk for Pregnant Women. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0014-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Jacquier N, Viollier PH, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 2015; 39:262-75. [PMID: 25670734 DOI: 10.1093/femsre/fuv001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine / CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
45
|
Rosenwald AG, Murray B, Toth T, Madupu R, Kyrillos A, Arora G. Evidence for horizontal gene transfer between Chlamydophila pneumoniae and Chlamydia phage. BACTERIOPHAGE 2014; 4:e965076. [PMID: 26713222 PMCID: PMC4589997 DOI: 10.4161/21597073.2014.965076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
Abstract
Chlamydia-infecting bacteriophages, members of the Microviridae family, specifically the Gokushovirinae subfamily, are small (4.5–5 kb) single-stranded circles with 8–10 open-reading frames similar to E. coli phage ϕX174. Using sequence information found in GenBank, we examined related genes in Chlamydophila pneumoniae and Chlamydia-infecting bacteriophages. The 5 completely sequenced C. pneumoniae strains contain a gene orthologous to a phage gene annotated as the putative replication initiation protein (PRIP, also called VP4), which is not found in any other members of the Chlamydiaceae family sequenced to date. The C. pneumoniae strain infecting koalas, LPCoLN, in addition contains another region orthologous to phage sequences derived from the minor capsid protein gene, VP3. Phylogenetically, the phage PRIP sequences are more diverse than the bacterial PRIP sequences; nevertheless, the bacterial sequences and the phage sequences each cluster together in their own clade. Finally, we found evidence for another Microviridae phage-related gene, the major capsid protein gene, VP1 in a number of other bacterial species and 2 eukaryotes, the woodland strawberry and a nematode. Thus, we find considerable evidence for DNA sequences related to genes found in bacteriophages of the Microviridae family not only in a variety of prokaryotic but also eukaryotic species.
Collapse
Affiliation(s)
- Anne G Rosenwald
- Department of Biology; Georgetown University ; Washington, DC USA
| | - Bradley Murray
- Department of Biology; Georgetown University ; Washington, DC USA
| | - Theodore Toth
- Department of Biology; Georgetown University ; Washington, DC USA
| | | | | | - Gaurav Arora
- Department of Biology; Georgetown University ; Washington, DC USA
| |
Collapse
|
46
|
Lacroix T, Loux V, Gendrault A, Hoebeke M, Gibrat JF. Insyght: navigating amongst abundant homologues, syntenies and gene functional annotations in bacteria, it's that symbol! Nucleic Acids Res 2014; 42:gku867. [PMID: 25249626 PMCID: PMC4245967 DOI: 10.1093/nar/gku867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 11/14/2022] Open
Abstract
High-throughput techniques have considerably increased the potential of comparative genomics whilst simultaneously posing many new challenges. One of those challenges involves efficiently mining the large amount of data produced and exploring the landscape of both conserved and idiosyncratic genomic regions across multiple genomes. Domains of application of these analyses are diverse: identification of evolutionary events, inference of gene functions, detection of niche-specific genes or phylogenetic profiling. Insyght is a comparative genomic visualization tool that combines three complementary displays: (i) a table for thoroughly browsing amongst homologues, (ii) a comparator of orthologue functional annotations and (iii) a genomic organization view designed to improve the legibility of rearrangements and distinctive loci. The latter display combines symbolic and proportional graphical paradigms. Synchronized navigation across multiple species and interoperability between the views are core features of Insyght. A gene filter mechanism is provided that helps the user to build a biologically relevant gene set according to multiple criteria such as presence/absence of homologues and/or various annotations. We illustrate the use of Insyght with scenarios. Currently, only Bacteria and Archaea are supported. A public instance is available at http://genome.jouy.inra.fr/Insyght. The tool is freely downloadable for private data set analysis.
Collapse
Affiliation(s)
- Thomas Lacroix
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Valentin Loux
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Annie Gendrault
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Mark Hoebeke
- CNRS, UPMC, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | |
Collapse
|
47
|
Becker E, Hegemann JH. All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. Microbiologyopen 2014; 3:544-56. [PMID: 24985494 PMCID: PMC4287181 DOI: 10.1002/mbo3.186] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/27/2023] Open
Abstract
The bacterial pathogens Chlamydia trachomatis and C. pneumoniae are obligate intracellular parasites, cause a number of serious diseases, and can infect various cell types in humans. Chlamydial infections are probably initiated by binding of the bacterial outer membrane protein OmcB to host cell glycosaminoglycans (GAGs). Here, we show that all nine members of the polymorphic membrane protein (Pmp) family of C. trachomatis mediate adhesion to human epithelial and endothelial cells. Importantly, exposure of infectious particles to soluble recombinant Pmps blocks subsequent infection, thus implicating an important function of the entire protein family in the infection process. Analogous experiments with pairs of recombinant Pmps or a combination of Pmp and OmcB revealed that all Pmps probably act in an adhesion pathway that is distinct from the OmcB-GAG pathway. Finally, we provide evidence that the Pmps of C. trachomatis and C. pneumoniae exhibit species and tissue specificity. These findings argue for the involvement of C. trachomatis Pmps in the initial phase of infection and suggest that they may interact with a receptor other than the epidermal growth factor receptor recently identified for their counterparts in C. pneumoniae.
Collapse
Affiliation(s)
- Elisabeth Becker
- Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
48
|
Brown HM, Knowlton AE, Snavely E, Nguyen BD, Richards TS, Grieshaber SS. Multinucleation during C. trachomatis infections is caused by the contribution of two effector pathways. PLoS One 2014; 9:e100763. [PMID: 24955832 PMCID: PMC4067387 DOI: 10.1371/journal.pone.0100763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen and the second leading cause of sexually transmitted infections in the US. Infections cause significant morbidity and can lead to serious reproductive sequelae, including an epidemiological link to increased rates of reproductive cancers. One of the overt changes that infected cells exhibit is the development of genomic instability leading to multinucleation. Here we demonstrate that the induction of multinucleation is not conserved equally across chlamydial species; C. trachomatis L2 caused high levels of multinucleation, C. muridarum intermediate levels, and C. caviae had very modest effects on multinucleation. Our data show that at least two effector pathways together cause genomic instability during infection leading to multinucleation. We find that the highly conserved chlamydial protease CPAF is a key effector for one of these pathways. CPAF secretion is required for the loss of centrosome duplication regulation as well as inducing early mitotic exit. The second effector pathway involves the induction of centrosome position errors. This function is not conserved in three chlamydial species tested. Together these two pathways contribute to the induction of high levels of genomic instability and multinucleation seen in C. trachomatis infections.
Collapse
Affiliation(s)
- Heather M. Brown
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Andrea E. Knowlton
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Emily Snavely
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bidong D. Nguyen
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Theresa S. Richards
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Scott S. Grieshaber
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bachmann NL, Polkinghorne A, Timms P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol 2014; 22:464-72. [PMID: 24882432 DOI: 10.1016/j.tim.2014.04.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Chlamydiaceae are obligate intracellular pathogens that have successfully evolved to colonize a diverse range of hosts. There are currently 11 described species of Chlamydia, most of which have a significant impact on the health of humans or animals. Expanding chlamydial genome sequence information has revolutionized our understanding of chlamydial biology, including aspects of their unique lifecycle, host-pathogen interactions, and genetic differences between Chlamydia strains associated with different host and tissue tropisms. This review summarizes the major highlights of chlamydial genomics and reflects on the considerable impact these have had on understanding the biology of chlamydial pathogens and the changing nature of genomics tools in the 'post-genomics' era.
Collapse
Affiliation(s)
- Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| |
Collapse
|
50
|
Genome Sequence of Chlamydia suis MD56, Isolated from the Conjunctiva of a Weaned Piglet. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00425-14. [PMID: 24812227 PMCID: PMC4014695 DOI: 10.1128/genomea.00425-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydia suis is a natural pathogen of pigs (Sus scrofa) and causes conjunctivitis, pneumonia, enteritis, and various reproductive disorders that adversely impact this economically important animal. Here, we report the first C. suis genome, that of C. suis MD56, isolated from a conjunctival swab of a weaned piglet.
Collapse
|