1
|
Hu YX, Huang A, Li Y, Molloy DP, Huang C. Emerging roles of the C-to-U RNA editing in plant stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112263. [PMID: 39299521 DOI: 10.1016/j.plantsci.2024.112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
RNA editing is an important post-transcriptional event in all living cells. Within chloroplasts and mitochondria of higher plants, RNA editing involves the deamination of specific cytosine (C) residues in precursor RNAs to uracil (U). An increasing number of recent studies detail specificity of C-to-U RNA editing as an essential prerequisite for several plant stress-related responses. In this review, we summarize the current understanding of responses and functions of C-to-U RNA editing in plants under various stress conditions to provide theoretical reference for future research.
Collapse
Affiliation(s)
- Yu-Xuan Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - An Huang
- College of Communication and Art Design, Swan College, Central South University of Forestry and Technology, Changsha 410128, China.
| | - Yi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Hayes ML, Garcia ET, Chun SO, Selke M. Crosslinking of base-modified RNAs by synthetic DYW-KP base editors implicates an enzymatic lysine as the nitrogen donor for U-to-C RNA editing. J Biol Chem 2024; 300:107454. [PMID: 38852885 PMCID: PMC11332814 DOI: 10.1016/j.jbc.2024.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
Sequence-specific cytidine to uridine (C-to-U) and adenosine to inosine editing tools can alter RNA and DNA sequences and utilize a hydrolytic deamination mechanism requiring an active site zinc ion and a glutamate residue. In plant organelles, DYW-PG domain containing enzymes catalyze C-to-U edits through the canonical deamination mechanism. Proteins developed from consensus sequences of the related DYW-KP domain family catalyze what initially appeared to be uridine to cytidine (U-to-C) edits leading to this investigation into the U-to-C editing mechanism. The synthetic DYW-KP enzyme KP6 was found sufficient for C-to-U editing activity stimulated by the addition of carboxylic acids in vitro. Despite addition of putative amine/amide donors, U-to-C editing by KP6 could not be observed in vitro. C-to-U editing was found not to be concomitant with U-to-C editing, discounting a pyrimidine transaminase mechanism. RNAs containing base modifications were highly enriched in interphase fractions consistent with covalent crosslinks to KP6, KP2, and KP3 proteins. Mass spectrometry of purified KP2 and KP6 proteins revealed secondary peaks with mass shifts of 319 Da. A U-to-C crosslinking mechanism was projected to explain the link between crosslinking, RNA base changes, and the ∼319 Da mass. In this model, an enzymatic lysine attacks C4 of uridine to form a Schiff base RNA-protein conjugate. Sequenced RT-PCR products from the fern Ceratopteris richardii indicate U-to-C base edits do not preserve proteinaceous crosslinks in planta. Hydrolysis of a protonated Schiff base conjugate releasing cytidine is hypothesized to explain the completed pathway in plants.
Collapse
Affiliation(s)
- Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA.
| | - Elvin T Garcia
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| | - Skellie O Chun
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Kwok van der Giezen FM, Viljoen A, Campbell-Clause L, Dao NT, Colas des Francs-Small C, Small I. Insights into U-to-C RNA editing from the lycophyte Phylloglossum drummondii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:445-459. [PMID: 38652016 DOI: 10.1111/tpj.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The lycophyte Phylloglossum drummondii is the sole inhabitant of its genus in the Huperzioideae group and one of a small minority of plants which perform uridine to cytidine RNA editing. We assembled the P. drummondii chloroplast and mitochondrial genomes and used RNA sequence data to build a comprehensive profile of organellar RNA editing events. In addition to many C-to-U editing events in both organelles, we found just four U-to-C editing events in the mitochondrial transcripts cob, nad1, nad5 and rpl2. These events are conserved in related lycophytes in the genera Huperzia and Phlegmariurus. De novo transcriptomes for three of these lycophytes were assembled to search for putative U-to-C RNA editing enzymes. Four putative U-to-C editing factors could be matched to the four mitochondrial U-to-C editing sites. Due to the unusually few numbers of U-to-C RNA editing sites, P. drummondii and related lycophytes are useful models for studying this poorly understood mechanism.
Collapse
Affiliation(s)
- Farley M Kwok van der Giezen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Amy Viljoen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Leni Campbell-Clause
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nhan Trong Dao
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
4
|
Gao C, Li T, Zhao X, Wu C, Zhang Q, Zhao X, Wu M, Lian Y, Li Z. Comparative analysis of the chloroplast genomes of Rosa species and RNA editing analysis. BMC PLANT BIOLOGY 2023; 23:318. [PMID: 37316771 DOI: 10.1186/s12870-023-04338-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The genus Rosa (Rosaceae) contains approximately 200 species, most of which have high ecological and economic values. Chloroplast genome sequences are important for studying species differentiation, phylogeny, and RNA editing. RESULTS In this study, the chloroplast genomes of three Rosa species, Rosa hybrida, Rosa acicularis, and Rosa rubiginosa, were assembled and compared with other reported Rosa chloroplast genomes. To investigate the RNA editing sites in R. hybrida (commercial rose cultivar), we mapped RNA-sequencing data to the chloroplast genome and analyzed their post-transcriptional features. Rosa chloroplast genomes presented a quadripartite structure and had highly conserved gene order and gene content. We identified four mutation hotspots (ycf3-trnS, trnT-trnL, psbE-petL, and ycf1) as candidate molecular markers for differentiation in the Rosa species. Additionally, 22 chloroplast genomic fragments with a total length of 6,192 bp and > 90% sequence similarity with their counterparts were identified in the mitochondrial genome, representing 3.96% of the chloroplast genome. Phylogenetic analysis including all sections and all subgenera revealed that the earliest divergence in the chloroplast phylogeny roughly distinguished species of sections Pimpinellifoliae and Rosa and subgenera Hulthemia. Moreover, DNA- and RNA-sequencing data revealed 19 RNA editing sites, including three synonymous and 16 nonsynonymous, in the chloroplast genome of R. hybrida that were distributed among 13 genes. CONCLUSIONS The genome structure and gene content of Rosa chloroplast genomes are similar across various species. Phylogenetic analysis based on the Rosa chloroplast genomes has high resolution. Additionally, a total of 19 RNA editing sites were validated by RNA-Seq mapping in R. hybrida. The results provide valuable information for RNA editing and evolutionary studies of Rosa and a basis for further studies on genomic breeding of Rosa species.
Collapse
Affiliation(s)
- Chengwen Gao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China.
| | - Teng Li
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China
- School of Public Health, Qingdao University, Qingdao, 266000, Shangdong, China
| | - Xia Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China
| | - Chuanhong Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China
| | - Qian Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China
| | - Mingxuan Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China
| | - Yihong Lian
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China
| | - Zhiqiang Li
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shangdong, China.
| |
Collapse
|
5
|
Qu XJ, Zou D, Zhang RY, Stull GW, Yi TS. Progress, challenge and prospect of plant plastome annotation. FRONTIERS IN PLANT SCIENCE 2023; 14:1166140. [PMID: 37324662 PMCID: PMC10266425 DOI: 10.3389/fpls.2023.1166140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
The plastome (plastid genome) represents an indispensable molecular data source for studying phylogeny and evolution in plants. Although the plastome size is much smaller than that of nuclear genome, and multiple plastome annotation tools have been specifically developed, accurate annotation of plastomes is still a challenging task. Different plastome annotation tools apply different principles and workflows, and annotation errors frequently occur in published plastomes and those issued in GenBank. It is therefore timely to compare available annotation tools and establish standards for plastome annotation. In this review, we review the basic characteristics of plastomes, trends in the publication of new plastomes, the annotation principles and application of major plastome annotation tools, and common errors in plastome annotation. We propose possible methods to judge pseudogenes and RNA-editing genes, jointly consider sequence similarity, customed algorithms, conserved domain or protein structure. We also propose the necessity of establishing a database of reference plastomes with standardized annotations, and put forward a set of quantitative standards for evaluating plastome annotation quality for the scientific community. In addition, we discuss how to generate standardized GenBank annotation flatfiles for submission and downstream analysis. Finally, we prospect future technologies for plastome annotation integrating plastome annotation approaches with diverse evidences and algorithms of nuclear genome annotation tools. This review will help researchers more efficiently use available tools to achieve high-quality plastome annotation, and promote the process of standardized annotation of the plastome.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Dan Zou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Rui-Yu Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
7
|
Frangedakis E, Marron AO, Waller M, Neubauer A, Tse SW, Yue Y, Ruaud S, Waser L, Sakakibara K, Szövényi P. What can hornworts teach us? FRONTIERS IN PLANT SCIENCE 2023; 14:1108027. [PMID: 36968370 PMCID: PMC10030945 DOI: 10.3389/fpls.2023.1108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The hornworts are a small group of land plants, consisting of only 11 families and approximately 220 species. Despite their small size as a group, their phylogenetic position and unique biology are of great importance. Hornworts, together with mosses and liverworts, form the monophyletic group of bryophytes that is sister to all other land plants (Tracheophytes). It is only recently that hornworts became amenable to experimental investigation with the establishment of Anthoceros agrestis as a model system. In this perspective, we summarize the recent advances in the development of A. agrestis as an experimental system and compare it with other plant model systems. We also discuss how A. agrestis can help to further research in comparative developmental studies across land plants and to solve key questions of plant biology associated with the colonization of the terrestrial environment. Finally, we explore the significance of A. agrestis in crop improvement and synthetic biology applications in general.
Collapse
Affiliation(s)
| | - Alan O. Marron
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Yuling Yue
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Stephanie Ruaud
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Lucas Waser
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
8
|
Loiacono FV, Walther D, Seeger S, Thiele W, Gerlach I, Karcher D, Schöttler MA, Zoschke R, Bock R. Emergence of Novel RNA-Editing Sites by Changes in the Binding Affinity of a Conserved PPR Protein. Mol Biol Evol 2022; 39:6760358. [PMID: 36227729 PMCID: PMC9750133 DOI: 10.1093/molbev/msac222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023] Open
Abstract
RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.
Collapse
Affiliation(s)
- F Vanessa Loiacono
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stefanie Seeger
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
9
|
Huang KY, Kan SL, Shen TT, Gong P, Feng YY, Du H, Zhao YP, Wan T, Wang XQ, Ran JH. A Comprehensive Evolutionary Study of Chloroplast RNA Editing in Gymnosperms: A Novel Type of G-to-A RNA Editing Is Common in Gymnosperms. Int J Mol Sci 2022; 23:ijms231810844. [PMID: 36142757 PMCID: PMC9505161 DOI: 10.3390/ijms231810844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics. In contrast to that noted in angiosperms, the density of RNA editing sites in ndh genes was not the highest in the sampled gymnosperms, and both loss and gain events at editing sites occurred frequently during the evolution of gymnosperms. In addition, GC content and plastomic size were positively correlated with the number of chloroplast RNA editing sites in gymnosperms, suggesting that the increase in GC content could provide more materials for RNA editing and facilitate the evolution of RNA editing in land plants or vice versa. Interestingly, novel G-to-A RNA editing events were commonly found in all sampled gymnosperm species, and G-to-A RNA editing exhibits many different characteristics from C-to-U RNA editing in gymnosperms. This study revealed a comprehensive evolutionary scenario for chloroplast RNA editing sites in gymnosperms, and reported that a novel type of G-to-A RNA editing is prevalent in gymnosperms.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Pin Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yun-Peng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
10
|
Yang Y, Yu X, Wei P, Liu C, Chen Z, Li X, Liu X. Comparative chloroplast genome and transcriptome analysis on the ancient genus Isoetes from China. FRONTIERS IN PLANT SCIENCE 2022; 13:924559. [PMID: 35968088 PMCID: PMC9372280 DOI: 10.3389/fpls.2022.924559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Isoetes is a famous living fossil that plays a significant role in the evolutionary studies of the plant kingdom. To explore the adaptive evolution of the ancient genus Isoetes from China, we focused on Isoetes yunguiensis (Q.F. Wang and W.C. Taylor), I. shangrilaensis (X. Li, Y.Q. Huang, X.K. Dai & X. Liu), I. taiwanensis (DeVol), I. sinensis (T.C. Palmer), I. hypsophila_GHC (Handel-Mazzetti), and I. hypsophila_HZS in this study. We sequenced, assembled, and annotated six individuals' chloroplast genomes and transcriptomes, and performed a series of analyses to investigate their chloroplast genome structures, RNA editing events, and adaptive evolution. The six chloroplast genomes of Isoetes exhibited a typical quadripartite structure with conserved genome sequence and structure. Comparative analyses of Isoetes species demonstrated that the gene organization, genome size, and GC contents of the chloroplast genome are highly conserved across the genus. Besides, our positive selection analyses suggested that one positively selected gene was statistically supported in Isoetes chloroplast genomes using the likelihood ratio test (LRT) based on branch-site models. Moreover, we detected positive selection signals using transcriptome data, suggesting that nuclear-encoded genes involved in the adaption of Isoetes species to the extreme environment of the Qinghai-Tibetan Plateau (QTP). In addition, we identified 291-579 RNA editing sites in the chloroplast genomes of six Isoetes based on transcriptome data, well above the average of angiosperms. RNA editing in protein-coding transcripts results from amino acid changes to increase their hydrophobicity and conservation in Isoetes, which may help proteins form functional three-dimensional structure. Overall, the results of this study provide comprehensive transcriptome and chloroplast genome resources and contribute to a better understanding of adaptive evolutionary and molecular biology in Isoetes.
Collapse
Affiliation(s)
- Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, China
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Chen Q, Shen P, Bock R, Li S, Zhang J. Comprehensive analysis of plastid gene expression during fruit development and ripening of kiwifruit. PLANT CELL REPORTS 2022; 41:1103-1114. [PMID: 35226116 DOI: 10.1007/s00299-022-02840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Global survey of plastid gene expression during fruit ripening in kiwifruit provides cis-elements for the future engineering of the plastid genome of kiwifruit. A limitation in the application of plastid biotechnology for molecular farming is the low-level expression of transgenes in non-green plastids compared with photosynthetically active chloroplasts. Unlike other fruits, not all chloroplasts are transformed into chromoplasts during ripening of red-fleshed kiwifruit (Actinidia chinensis cv. Hongyang) fruits, which may make kiwifruit an ideal horticultural plant for recombinant protein production by plastid engineering. To identify cis-elements potentially triggering high-level transgene expression in edible tissues of the 'Hongyang' kiwifruit, here we report a comprehensive analysis of kiwifruit plastid gene transcription in green leaves and fruits at three different developmental stages. While transcripts of a few photosynthesis-related genes and most genetic system genes were substantially upregulated in green fruits compared with leaves, nearly all plastid genes were significantly downregulated at the RNA level during fruit development. Expression of a few genes remained unchanged, including psbA, the gene encoding the D1 polypeptide of photosystem II. However, PsbA protein accumulation decreased continuously during chloroplast-to-chromoplast differentiation. Analysis of post-transcriptional steps in mRNA maturation, including intron splicing and RNA editing, revealed that splicing and editing may contribute to regulation of plastid gene expression. Altogether, 40 RNA editing sites were verified, and 5 of them were newly discovered. Taken together, this study has generated a valuable resource for the analysis of plastid gene expression and provides cis-elements for future efforts to engineer the plastid genome of kiwifruit.
Collapse
Affiliation(s)
- Qiqi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
12
|
Frangedakis E, Waller M, Nishiyama T, Tsukaya H, Xu X, Yue Y, Tjahjadi M, Gunadi A, Van Eck J, Li F, Szövényi P, Sakakibara K. An Agrobacterium-mediated stable transformation technique for the hornwort model Anthoceros agrestis. THE NEW PHYTOLOGIST 2021; 232:1488-1505. [PMID: 34076270 PMCID: PMC8717380 DOI: 10.1111/nph.17524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/20/2021] [Indexed: 05/03/2023]
Abstract
Despite their key phylogenetic position and their unique biology, hornworts have been widely overlooked. Until recently there was no hornwort model species amenable to systematic experimental investigation. Anthoceros agrestis has been proposed as the model species to study hornwort biology. We have developed an Agrobacterium-mediated method for the stable transformation of A. agrestis, a hornwort model species for which a genetic manipulation technique was not yet available. High transformation efficiency was achieved by using thallus tissue grown under low light conditions. We generated a total of 274 transgenic A. agrestis lines expressing the β-glucuronidase (GUS), cyan, green, and yellow fluorescent proteins under control of the CaMV 35S promoter and several endogenous promoters. Nuclear and plasma membrane localization with multiple color fluorescent proteins was also confirmed. The transformation technique described here should pave the way for detailed molecular and genetic studies of hornwort biology, providing much needed insight into the molecular mechanisms underlying symbiosis, carbon-concentrating mechanism, RNA editing and land plant evolution in general.
Collapse
Affiliation(s)
| | - Manuel Waller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurich8008Switzerland
- Zurich‐Basel Plant Science CenterZurich8092Switzerland
| | - Tomoaki Nishiyama
- Advanced Science Research CenterKanazawa UniversityIshikawa920‐8640Japan
| | - Hirokazu Tsukaya
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyo113‐0033Japan
| | - Xia Xu
- Boyce Thompson InstituteIthacaNY14853‐1801USA
| | - Yuling Yue
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurich8008Switzerland
- Zurich‐Basel Plant Science CenterZurich8092Switzerland
| | | | | | - Joyce Van Eck
- Boyce Thompson InstituteIthacaNY14853‐1801USA
- Plant Breeding and Genetics SectionCornell UniversityIthacaNY14853‐1801USA
| | - Fay‐Wei Li
- Boyce Thompson InstituteIthacaNY14853‐1801USA
- Plant Biology SectionCornell UniversityIthacaNY14853‐1801USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurich8008Switzerland
- Zurich‐Basel Plant Science CenterZurich8092Switzerland
| | | |
Collapse
|
13
|
Takenaka M, Takenaka S, Barthel T, Frink B, Haag S, Verbitskiy D, Oldenkott B, Schallenberg-Rüdinger M, Feiler CG, Weiss MS, Palm GJ, Weber G. DYW domain structures imply an unusual regulation principle in plant organellar RNA editing catalysis. Nat Catal 2021; 4:510-522. [PMID: 34712911 PMCID: PMC7611903 DOI: 10.1038/s41929-021-00633-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA editosomes selectively deaminate cytidines to uridines in plant organellar transcripts–mostly to restore protein functionality and consequently facilitate mitochondrial and chloroplast function. The RNA editosomal pentatricopeptide repeat proteins serve target RNA recognition, whereas the intensively studied DYW domain elicits catalysis. Here we present structures and functional data of a DYW domain in an inactive ground state and activated. DYW domains harbour a cytidine deaminase fold and a C-terminal DYW motif, with catalytic and structural zinc atoms, respectively. A conserved gating domain within the deaminase fold regulates the active site sterically and mechanistically in a process that we termed gated zinc shutter. Based on the structures, an autoinhibited ground state and its activation are cross-validated by RNA editing assays and differential scanning fluorimetry. We anticipate that, in vivo, the framework of an active plant RNA editosome triggers the release of DYW autoinhibition to ensure a controlled and coordinated cytidine deamination playing a key role in mitochondrial and chloroplast homeostasis.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sachi Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan.,These authors contributed equally: Sachi Takenaka, Tatjana Barthel
| | - Tatjana Barthel
- University of Greifswald, Molecular Structural Biology, Greifswald, Germany.,Present address: Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.,These authors contributed equally: Sachi Takenaka, Tatjana Barthel
| | - Brody Frink
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, Ulm, Germany
| | | | - Bastian Oldenkott
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, University of Bonn, Bonn, Germany
| | | | - Christian G Feiler
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Manfred S Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Gottfried J Palm
- University of Greifswald, Molecular Structural Biology, Greifswald, Germany
| | - Gert Weber
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
14
|
Fan R, Ma W, Liu S, Huang Q. Integrated analysis of three newly sequenced fern chloroplast genomes: Genome structure and comparative analysis. Ecol Evol 2021; 11:4550-4563. [PMID: 33976830 PMCID: PMC8093657 DOI: 10.1002/ece3.7350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Some ferns have medicinal properties and are used in therapeutic interventions. However, the classification and phylogenetic relationships of ferns remain incompletely reported. Considering that chloroplast genomes provide ideal information for species identification and evolution, in this study, three unpublished and one published ferns were sequenced and compared with other ferns to obtain comprehensive information on their classification and evolution. MATERIALS AND METHODS The complete chloroplast genomes of Dryopteris goeringiana (Kunze) Koidz, D. crassirhizoma Nakai, Athyrium brevifrons Nakai ex Kitagawa, and Polystichum tripteron (Kunze) Presl were sequenced using the Illumina HiSeq 4,000 platform. Simple sequence repeats (SSRs), nucleotide diversity analysis, and RNA editing were investigated in all four species. Genome comparison and inverted repeats (IR) boundary expansion and contraction analyses were also performed. The relationships among the ferns were studied by phylogenetic analysis based on the whole chloroplast genomes. RESULTS The whole chloroplast genomes ranged from 148,539 to 151,341 bp in size and exhibited typical quadripartite structures. Ten highly variable loci with parsimony informative (Pi) values of > 0.02 were identified. A total of 75-108 SSRs were identified, and only six SSRs were present in all four ferns. The SSRs contained a higher number of A + T than G + C bases. C-to-U conversion was the most common type of RNA editing event. Genome comparison analysis revealed that single-copy regions were more highly conserved than IR regions. IR boundary expansion and contraction varied among the four ferns. Phylogenetic analysis showed that species in the same genus tended to cluster together with and had relatively close relationships. CONCLUSION The results provide valuable information on fern chloroplast genomes that will be useful to identify and classify ferns, and study their phylogenetic relationships and evolution.
Collapse
Affiliation(s)
- Ruifeng Fan
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Wei Ma
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Shilei Liu
- Experimental Teaching & Practical Training CenterHeilongjiang University of Chinese MedicineHarbinChina
| | - Qingyang Huang
- Department of EcologyInstitute of Natural Resources and EcologyHeilongjiang Academy of ScienceHarbinChina
| |
Collapse
|
15
|
Fauskee BD, Sigel EM, Pryer KM, Grusz AL. Variation in frequency of plastid RNA editing within Adiantum implies rapid evolution in fern plastomes. AMERICAN JOURNAL OF BOTANY 2021; 108:820-827. [PMID: 33969475 DOI: 10.1002/ajb2.1649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Recent studies of plant RNA editing have demonstrated that the number of editing sites can vary widely among large taxonomic groups (orders, families). Yet, very little is known about intrageneric variation in frequency of plant RNA editing, and no study has been conducted in ferns. METHODS We determined plastid RNA-editing counts for two species of Adiantum (Pteridaceae), A. shastense and A. aleuticum, by implementing a pipeline that integrated read-mapping and SNP-calling software to identify RNA-editing sites. We then compared the edits found in A. aleuticum and A. shastense with previously published edits from A. capillus-veneris by generating alignments for each plastid gene. RESULTS We found direct evidence for 505 plastid RNA-editing sites in A. aleuticum and 509 in A. shastense, compared with 350 sites in A. capillus-veneris. We observed striking variation in the number and location of the RNA-editing sites among the three species, with reverse (U-to-C) editing sites showing a higher degree of conservation than forward (C-to-U) sites. Additionally, sites involving start and stop codons were highly conserved. CONCLUSIONS Variation in the frequency of RNA editing within Adiantum implies that RNA-editing sites can be rapidly gained or lost throughout evolution. However, varying degrees of conservation between both C-to-U and U-to-C sites and sites in start or stop codons, versus other codons, hints at the likely independent origin of both types of edits and a potential selective advantage conferred by RNA editing.
Collapse
Affiliation(s)
- Blake D Fauskee
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Erin M Sigel
- Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | | | - Amanda L Grusz
- Department of Biology, University of Minnesota Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
16
|
Frangedakis E, Shimamura M, Villarreal JC, Li FW, Tomaselli M, Waller M, Sakakibara K, Renzaglia KS, Szövényi P. The hornworts: morphology, evolution and development. THE NEW PHYTOLOGIST 2021; 229:735-754. [PMID: 32790880 PMCID: PMC7881058 DOI: 10.1111/nph.16874] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 05/12/2023]
Abstract
Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species, Anthoceros agrestis, is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plant A. agrestis to highlight its potential in answering key questions of land plant biology and evolution.
Collapse
Affiliation(s)
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 739-8528, Japan
| | - Juan Carlos Villarreal
- Department of Biology, Laval University, Quebec City, Quebec, G1V 0A6, Canada
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panamá
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, 14853-1801, USA
- Plant Biology Section, Cornell University, Ithaca, New York, 14853-1801, USA
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge, CB3 EA, UK
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008, Switzerland
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Illinois, 62901, USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008, Switzerland
- Zurich-Basel Plant Science Center, Zurich, 8092, Switzerland
| |
Collapse
|
17
|
Tian G, Li G, Liu Y, Liu Q, Wang Y, Xia G, Wang M. Polyploidization is accompanied by synonymous codon usage bias in the chloroplast genomes of both cotton and wheat. PLoS One 2020; 15:e0242624. [PMID: 33211753 PMCID: PMC7676672 DOI: 10.1371/journal.pone.0242624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/05/2020] [Indexed: 11/27/2022] Open
Abstract
Synonymous codon usage bias (SCUB) of both nuclear and organellar genes can mirror the evolutionary specialization of plants. The polyploidization process exposes the nucleus to genomic shock, a syndrome which promotes, among other genetic variants, SCUB. Its effect on organellar genes has not, however, been widely addressed. The present analysis targeted the chloroplast genomes of two leading polyploid crop species, namely cotton and bread wheat. The frequency of codons in the chloroplast genomes ending in either adenosine (NNA) or thymine (NNT) proved to be higher than those ending in either guanidine or cytosine (NNG or NNC), and this difference was conserved when comparisons were made between polyploid and diploid forms in both the cotton and wheat taxa. Preference for NNA/T codons was heterogeneous among genes with various numbers of introns and was also differential among the exons. SCUB patterns distinguished tetraploid cotton from its diploid progenitor species, as well as bread wheat from its diploid/tetraploid progenitor species, indicating that SCUB in the chloroplast genome partially mirrors the formation of polyploidies.
Collapse
Affiliation(s)
- Geng Tian
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Guoqing Li
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yanling Liu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Qinghua Liu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
18
|
Transcriptome and complete chloroplast genome of Glycyrrhiza inflata and comparative analyses with the other two licorice species. Genomics 2020; 112:4179-4188. [PMID: 32650098 DOI: 10.1016/j.ygeno.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022]
Abstract
In this study, we characterized the transcriptome and chloroplast genome of Glycyrrhiza inflata and performed comparative analyses with G. uralensis and G. glabra. 60,541unigenes were obtained from the transcriptome of G. inflata. The results of function annotation revealed a similar distribution of functional categories among three licorice species. By comparing chloroplast genomes of licorice species, it was demonstrated that the structure and the length of genome as well as gene content and gene order were highly similar. The phylogenetic tree, constructed with the mixed data of transcriptome and chloroplast genome, elucidated that G. inflata and G. glabra had a closer relationship than G. uralensis. Six regions were suggested as potential markers for the identification of three licorice species. In each licorice species, two unigenes were homologous to reference flavonol synthase. For G. inflata, 48 and 21 RNA editing sites were detected by PREP-Cp program and RNA-Seq data mapping, respectively.
Collapse
|
19
|
Koo HJ, Yang TJ. RNA editing may stabilize membrane-embedded proteins by increasing phydrophobicity: A study of Zanthoxylum piperitum and Z. schinifolium chloroplast NdhG. Gene 2020; 746:144638. [PMID: 32244054 DOI: 10.1016/j.gene.2020.144638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Most chloroplast genes in Zanthoxylum schinifolium (Korean pepper) and Z. piperitum (Japanese pepper) are subject to neutral or purifying selection (Ka/Ks values < 1); however, NAD(P)H dehydrogenase subunit G (ndhG) has a Ka/Ks value of 1.43, which may indicate positive selection. Here, we modeled the ZsNdhG and ZpNdhG structures by comparing them with the NuoJ subunit of respiratory complex I in Escherichia coli, revealing the locations of four amino acid differences between ZsNdhG and ZpNdhG. As these polymorphisms were located at the end of a membrane-spanning α-helix or in peptide loops external to the membrane, they are not expected to have major effects on the membrane-embedding properties of these proteins. However, we found that C-to-U RNA editing occurred at the ndhG-50 sites of ndhG (uCa to uUa, Ser to Leu) in both species, resulting in changes to an amino acid located in the middle of a membrane-spanning α-helix, which may maintain its hydrophobicity. RNA editing at the ndhG-50 site was conserved in many plant species, and the modeled structures of Anthoceros formosae NdhG and Spirodela polyrhiza NdhB provided further evidence that RNA editing increases the hydrophobicity of membrane-embedded proteins. We also speculate that the polar residues inside membrane-spanning α-helices serve to support the protein structure. This report represents the first RNA-editing site identified in Zanthoxylum and points to the importance of considering RNA editing when identifying positively selected genes based on Ka/Ks values.
Collapse
Affiliation(s)
- Hyun Jo Koo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
20
|
Orton LM, Fitzek E, Feng X, Grayburn WS, Mower JP, Liu K, Zhang C, Duvall MR, Yin Y. Zygnema circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3361-3373. [PMID: 32206790 DOI: 10.1093/jxb/eraa149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 05/22/2023]
Abstract
The complete chloroplast and mitochondrial genomes of Charophyta have shed new light on land plant terrestrialization. Here, we report the organellar genomes of the Zygnema circumcarinatum strain UTEX 1559, and a comparative genomics investigation of 33 plastomes and 18 mitogenomes of Chlorophyta, Charophyta (including UTEX 1559 and its conspecific relative SAG 698-1a), and Embryophyta. Gene presence/absence was determined across these plastomes and mitogenomes. A comparison between the plastomes of UTEX 1559 (157 548 bp) and SAG 698-1a (165 372 bp) revealed very similar gene contents, but substantial genome rearrangements. Surprisingly, the two plastomes share only 85.69% nucleotide sequence identity. The UTEX 1559 mitogenome size is 215 954 bp, the largest among all sequenced Charophyta. Interestingly, this large mitogenome contains a 50 kb region without homology to any other organellar genomes, which is flanked by two 86 bp direct repeats and contains 15 ORFs. These ORFs have significant homology to proteins from bacteria and plants with functions such as primase, RNA polymerase, and DNA polymerase. We conclude that (i) the previously published SAG 698-1a plastome is probably from a different Zygnema species, and (ii) the 50 kb region in the UTEX 1559 mitogenome might be recently acquired as a mobile element.
Collapse
Affiliation(s)
- Lauren M Orton
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Elisabeth Fitzek
- Biology/Computational Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld, Germany
| | - Xuehuan Feng
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - W Scott Grayburn
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Kan Liu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Yanbin Yin
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
21
|
Dong S, Zhao C, Zhang S, Wu H, Mu W, Wei T, Li N, Wan T, Liu H, Cui J, Zhu R, Goffinet B, Liu Y. The Amount of RNA Editing Sites in Liverwort Organellar Genes Is Correlated with GC Content and Nuclear PPR Protein Diversity. Genome Biol Evol 2020; 11:3233-3239. [PMID: 31651960 PMCID: PMC6865856 DOI: 10.1093/gbe/evz232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
RNA editing occurs in the organellar mRNAs of all land plants but the marchantioid liverworts, making liverworts a perfect group for studying the evolution of RNA editing. Here, we profiled the RNA editing of 42 exemplars spanning the ordinal phylogenetic diversity of liverworts, and screened for the nuclear-encoded pentatricopeptide repeat (PPR) proteins in the transcriptome assemblies of these taxa. We identified 7,428 RNA editing sites in 128 organellar genes from 31 non-marchantioid liverwort species, and characterized 25,059 PPR protein sequences. The abundance of organellar RNA editing sites varies greatly among liverwort lineages, genes, and codon positions, and shows strong positive correlations with the GC content of protein-coding genes, and the diversity of the PLS class of nuclear PPR proteins.
Collapse
Affiliation(s)
- Shanshan Dong
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Chaoxian Zhao
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,Department of Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shouzhou Zhang
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | | | | | - Na Li
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tao Wan
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | | | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
22
|
Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1040-1056. [PMID: 31630458 DOI: 10.1111/tpj.14578] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 05/21/2023]
Abstract
The central dogma in biology defines the flow of genetic information from DNA to RNA to protein. Accordingly, RNA molecules generally accurately follow the sequences of the genes from which they are transcribed. This rule is transgressed by RNA editing, which creates RNA products that differ from their DNA templates. Analyses of the RNA landscapes of terrestrial plants have indicated that RNA editing (in the form of C-U base transitions) is highly prevalent within organelles (that is, mitochondria and chloroplasts). Numerous C→U conversions (and in some plants also U→C) alter the coding sequences of many of the organellar transcripts and can also produce translatable mRNAs by creating AUG start sites or eliminating premature stop codons, or affect the RNA structure, influence splicing and alter the stability of RNAs. RNA-binding proteins are at the heart of post-transcriptional RNA expression. The C-to-U RNA editing process in plant mitochondria involves numerous nuclear-encoded factors, many of which have been identified as pentatricopeptide repeat (PPR) proteins that target editing sites in a sequence-specific manner. In this review we report on major discoveries on RNA editing in plant organelles, since it was first documented 30 years ago.
Collapse
Affiliation(s)
- Ian D Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
23
|
Gerke P, Szövényi P, Neubauer A, Lenz H, Gutmann B, McDowell R, Small I, Schallenberg-Rüdinger M, Knoop V. Towards a plant model for enigmatic U-to-C RNA editing: the organelle genomes, transcriptomes, editomes and candidate RNA editing factors in the hornwort Anthoceros agrestis. THE NEW PHYTOLOGIST 2020; 225:1974-1992. [PMID: 31667843 DOI: 10.1111/nph.16297] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Hornworts are crucial to understand the phylogeny of early land plants. The emergence of 'reverse' U-to-C RNA editing accompanying the widespread C-to-U RNA editing in plant chloroplasts and mitochondria may be a molecular synapomorphy of a hornwort-tracheophyte clade. C-to-U RNA editing is well understood after identification of many editing factors in models like Arabidopsis thaliana and Physcomitrella patens, but there is no plant model yet to investigate U-to-C RNA editing. The hornwort Anthoceros agrestis is now emerging as such a model system. We report on the assembly and analyses of the A. agrestis chloroplast and mitochondrial genomes, their transcriptomes and editomes, and a large nuclear gene family encoding pentatricopeptide repeat (PPR) proteins likely acting as RNA editing factors. Both organelles in A. agrestis feature high amounts of RNA editing, with altogether > 1100 sites of C-to-U and 1300 sites of U-to-C editing. The nuclear genome reveals > 1400 genes for PPR proteins with variable carboxyterminal DYW domains. We observe significant variants of the 'classic' DYW domain, in the meantime confirmed as the cytidine deaminase for C-to-U editing, and discuss the first attractive candidates for reverse editing factors given their excellent matches to U-to-C editing targets according to the PPR-RNA binding code.
Collapse
Affiliation(s)
- Philipp Gerke
- Institut für Zelluläre und Molekulare Botanik (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zürich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zürich, Switzerland
| | - Henning Lenz
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Bernard Gutmann
- EditForce Inc., West Zone #429, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Rose McDowell
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia at Crawley, Perth, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia at Crawley, Perth, WA, 6009, Australia
| | | | - Volker Knoop
- Institut für Zelluläre und Molekulare Botanik (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
24
|
Gutmann B, Royan S, Schallenberg-Rüdinger M, Lenz H, Castleden IR, McDowell R, Vacher MA, Tonti-Filippini J, Bond CS, Knoop V, Small ID. The Expansion and Diversification of Pentatricopeptide Repeat RNA-Editing Factors in Plants. MOLECULAR PLANT 2020; 13:215-230. [PMID: 31760160 DOI: 10.1016/j.molp.2019.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/10/2019] [Accepted: 11/11/2019] [Indexed: 05/08/2023]
Abstract
The RNA-binding pentatricopeptide repeat (PPR) family comprises hundreds to thousands of genes in most plants, but only a few dozen in algae, indicating massive gene expansions during land plant evolution. The nature and timing of these expansions has not been well defined due to the sparse sequence data available from early-diverging land plant lineages. In this study, we exploit the comprehensive OneKP datasets of over 1000 transcriptomes from diverse plants and algae toward establishing a clear picture of the evolution of this massive gene family, focusing on the proteins typically associated with RNA editing, which show the most spectacular variation in numbers and domain composition across the plant kingdom. We characterize over 2 250 000 PPR motifs in over 400 000 proteins. In lycophytes, polypod ferns, and hornworts, nearly 10% of expressed protein-coding genes encode putative PPR editing factors, whereas they are absent from algae and complex-thalloid liverworts. We show that rather than a single expansion, most land plant lineages with high numbers of editing factors have continued to generate novel sequence diversity. We identify sequence variations that imply functional differences between PPR proteins in seed plants versus non-seed plants and variations we propose to be linked to seed-plant-specific editing co-factors. Finally, using the sequence variations across the datasets, we develop a structural model of the catalytic DYW domain associated with C-to-U editing and identify a clade of unique DYW variants that are strong candidates as U-to-C RNA-editing factors, given their phylogenetic distribution and sequence characteristics.
Collapse
Affiliation(s)
- Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Santana Royan
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Henning Lenz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ian R Castleden
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Rose McDowell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Michael A Vacher
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Julian Tonti-Filippini
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia.
| |
Collapse
|
25
|
Bell D, Lin Q, Gerelle WK, Joya S, Chang Y, Taylor ZN, Rothfels CJ, Larsson A, Villarreal JC, Li FW, Pokorny L, Szövényi P, Crandall-Stotler B, DeGironimo L, Floyd SK, Beerling DJ, Deyholos MK, von Konrat M, Ellis S, Shaw AJ, Chen T, Wong GKS, Stevenson DW, Palmer JD, Graham SW. Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution. AMERICAN JOURNAL OF BOTANY 2020; 107:91-115. [PMID: 31814117 DOI: 10.1002/ajb2.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.
Collapse
Affiliation(s)
- David Bell
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Qianshi Lin
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Wesley K Gerelle
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Steve Joya
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ying Chang
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Z Nathan Taylor
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94702, USA
| | - Anders Larsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Juan Carlos Villarreal
- Department of Biology, Université Laval, Québec, G1V 0A6, Canada
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Plant Biology Section, Cornell University, Ithaca, New York, 14853, USA
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, TW9 3DS, Surrey, UK
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | | | - Lisa DeGironimo
- Department of Biology, College of Arts and Science, New York University, New York, New York, 10003, USA
| | - Sandra K Floyd
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada
| | - Matt von Konrat
- Field Museum of Natural History, Chicago, Illinois, 60605, USA
| | - Shona Ellis
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, Guangdong, 518004, China
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | | | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
26
|
Loiacono FV, Thiele W, Schöttler MA, Tillich M, Bock R. Establishment of a Heterologous RNA Editing Event in Chloroplasts. PLANT PHYSIOLOGY 2019; 181:891-900. [PMID: 31519789 PMCID: PMC6836845 DOI: 10.1104/pp.19.00922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/31/2019] [Indexed: 05/18/2023]
Abstract
In chloroplasts and plant mitochondria, specific cytidines in mRNAs are posttranscriptionally converted to uridines by RNA editing. Editing sites are recognized by nucleus-encoded RNA-binding proteins of the pentatricopeptide repeat (PPR) family, which bind upstream of the editing site in a sequence-specific manner and direct the editing activity to the target position. Editing sites have been lost many times during evolution by C-to-T mutations. Loss of an editing site is thought to be accompanied by loss or degeneration of its cognate PPR protein. Consequently, foreign editing sites are usually not recognized when introduced into species lacking the site. Previously, the spinach (Spinacia oleracea) psbF-26 editing site was introduced into the tobacco (Nicotiana tabacum) plastid genome. Tobacco lacks the psbF-26 site and cannot edit it. Expression of the "unedited" PsbF protein resulted in impaired PSII function. In Arabidopsis (Arabidopsis thaliana), the PPR protein LPA66 is required for editing at psbF-26. Here, we show that introduction of the Arabidopsis LPA66 reconstitutes editing of the spinach psbF-26 site in tobacco and restores a wild-type-like phenotype. Our findings define the minimum requirements for establishing new RNA editing sites and suggest that the evolutionary dynamics of editing patterns is largely explained by coevolution of editing sites and PPR proteins.
Collapse
Affiliation(s)
- Filomena Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
27
|
Ishibashi K, Small I, Shikanai T. Evolutionary Model of Plastidial RNA Editing in Angiosperms Presumed from Genome-Wide Analysis of Amborella trichopoda. PLANT & CELL PHYSIOLOGY 2019; 60:2141-2151. [PMID: 31150097 DOI: 10.1093/pcp/pcz111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
Amborella trichopoda is placed close to the base of the angiosperm lineage (basal angiosperm). By genome-wide RNA sequencing, we identified 184C-to-U RNA editing sites in the plastid genome of Amborella. This number is much higher than that observed in other angiosperms including maize (44 sites), rice (39 sites) and grape (115 sites). Despite the high frequency of RNA editing, the biased distribution of RNA editing sites in the genome, target codon preference and nucleotide preference adjacent to the edited cytidine are similar to that in other angiosperms, suggesting a common editing machinery. Consistent with this idea, the Amborella nuclear genome encodes 2-3 times more of the E- and DYW-subclass members of pentatricopeptide repeat proteins responsible for RNA editing site recognition in plant organelles. Among 165 editing sites in plastid protein coding sequences in Amborella, 100 sites were conserved at least in one out of 38 species selected to represent key branching points of the angiosperm phylogenetic tree. We assume these 100 sites represent at least a subset of the sites in the plastid editotype of ancestral angiosperms. We then mapped the loss and gain of editing sites on the phylogenetic tree of angiosperms. Our results support the idea that the evolution of angiosperms has led to the loss of RNA editing sites in plastids.
Collapse
Affiliation(s)
- Kota Ishibashi
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
28
|
Marks RA, Smith JJ, Cronk Q, Grassa CJ, McLetchie DN. Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance. Sci Rep 2019; 9:8722. [PMID: 31217536 PMCID: PMC6584576 DOI: 10.1038/s41598-019-45039-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/29/2019] [Indexed: 01/29/2023] Open
Abstract
We present a draft genome assembly for the tropical liverwort, Marchantia inflexa, which adds to a growing body of genomic resources for bryophytes and provides an important perspective on the evolution and diversification of land plants. We specifically address questions related to sex chromosome evolution, sexual dimorphisms, and the genomic underpinnings of dehydration tolerance. This assembly leveraged the recently published genome of related liverwort, M. polymorpha, to improve scaffolding and annotation, aid in the identification of sex-linked sequences, and quantify patterns of sequence differentiation within Marchantia. We find that genes on sex chromosomes are under greater diversifying selection than autosomal and organellar genes. Interestingly, this is driven primarily by divergence of male-specific genes, while divergence of other sex-linked genes is similar to autosomal genes. Through analysis of sex-specific read coverage, we identify and validate genetic sex markers for M. inflexa, which will enable diagnosis of sex for non-reproductive individuals. To investigate dehydration tolerance, we capitalized on a difference between genetic lines, which allowed us to identify multiple dehydration associated genes two of which were sex-linked, suggesting that dehydration tolerance may be impacted by sex-specific genes.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA.
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| | - Quentin Cronk
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher J Grassa
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - D Nicholas McLetchie
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| |
Collapse
|
29
|
Williams AM, Friso G, van Wijk KJ, Sloan DB. Extreme variation in rates of evolution in the plastid Clp protease complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:243-259. [PMID: 30570818 DOI: 10.1111/tpj.14208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 05/08/2023]
Abstract
Eukaryotic cells represent an intricate collaboration between multiple genomes, even down to the level of multi-subunit complexes in mitochondria and plastids. One such complex in plants is the caseinolytic protease (Clp), which plays an essential role in plastid protein turnover. The proteolytic core of Clp comprises subunits from one plastid-encoded gene (clpP1) and multiple nuclear genes. TheclpP1 gene is highly conserved across most green plants, but it is by far the fastest evolving plastid-encoded gene in some angiosperms. To better understand these extreme and mysterious patterns of divergence, we investigated the history ofclpP1 molecular evolution across green plants by extracting sequences from 988 published plastid genomes. We find thatclpP1 has undergone remarkably frequent bouts of accelerated sequence evolution and architectural changes (e.g. a loss of introns andRNA-editing sites) within seed plants. AlthoughclpP1 is often assumed to be a pseudogene in such cases, multiple lines of evidence suggest that this is rarely true. We applied comparative native gel electrophoresis of chloroplast protein complexes followed by protein mass spectrometry in two species within the angiosperm genusSilene, which has highly elevated and heterogeneous rates ofclpP1 evolution. We confirmed thatclpP1 is expressed as a stable protein and forms oligomeric complexes with the nuclear-encoded Clp subunits, even in one of the most divergentSilene species. Additionally, there is a tight correlation between amino acid substitution rates inclpP1 and the nuclear-encoded Clp subunits across a broad sampling of angiosperms, suggesting continuing selection on interactions within this complex.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Daniel B Sloan
- Department of Biology, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
30
|
Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis. SCIENCE CHINA-LIFE SCIENCES 2019; 62:498-506. [DOI: 10.1007/s11427-018-9450-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 10/27/2022]
|
31
|
Robison TA, Wolf PG. ReFernment: An R package for annotating RNA editing in plastid genomes. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01216. [PMID: 30828503 PMCID: PMC6384294 DOI: 10.1002/aps3.1216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/14/2018] [Indexed: 05/15/2023]
Abstract
PREMISE OF THE STUDY In the absence of cDNA, the annotation of RNA editing in plastomes must be done manually, representing a significant time cost to those studying the organellar genomes of ferns and hornworts. METHODS AND RESULTS We developed an R package to automatically annotate apparent nonsense mutations in plastid genomes. The software successfully annotates such sites and results in no false positives for data with no sequencing or assembly errors. CONCLUSIONS Compared to manual annotation, ReFernment offers greater speed and accuracy for annotating RNA editing sites. This software should be especially useful for researchers generating large numbers of plastome sequences for taxa with high levels of RNA editing.
Collapse
Affiliation(s)
| | - Paul G. Wolf
- Department of BiologyUtah State UniversityLoganUtahUSA
| |
Collapse
|
32
|
Takenaka M, Jörg A, Burger M, Haag S. RNA editing mutants as surrogates for mitochondrial SNP mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:310-321. [PMID: 30599308 DOI: 10.1016/j.plaphy.2018.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
In terrestrial plants, RNA editing converts specific cytidines to uridines in mitochondrial and plastidic transcripts. Most of these events appear to be important for proper function of organellar encoded genes, since translated proteins from edited mRNAs show higher similarity with evolutionary conserved polypeptide sequences. So far about 100 nuclear encoded proteins have been characterized as RNA editing factors in plant organelles. Respective RNA editing mutants reduce or lose editing activity at different sites and display various macroscopic phenotypes from pale or albino in the case of chloroplasts to growth retardation or even embryonic lethality. Therefore, RNA editing mutants can be a useful resource of surrogate mutants for organellar encoded genes, especially for mitochondrially encoded genes that it is so far unfeasible to manipulate. However, connections between RNA editing defects and observed phenotypes in the mutants are often hard to elucidate, since RNA editing factors often target multiple RNA sites in different genes simultaneously. In this review article, we summarize the physiological aspects of respective RNA editing mutants and discuss them as surrogate mutants for functional analysis of mitochondrially encoded genes.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Matthias Burger
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| |
Collapse
|
33
|
Ruiz-Ruano FJ, Navarro-Domínguez B, Camacho JPM, Garrido-Ramos MA. Full plastome sequence of the fern Vandenboschia speciosa (Hymenophyllales): structural singularities and evolutionary insights. JOURNAL OF PLANT RESEARCH 2019; 132:3-17. [PMID: 30552526 DOI: 10.1007/s10265-018-1077-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 05/14/2023]
Abstract
We provide here the first full chloroplast genome sequence, i.e., the plastome, for a species belonging to the fern order Hymenophyllales. The phylogenetic position of this order within leptosporangiate ferns, together with the general scarcity of information about fern plastomes, places this research as a valuable study on the analysis of the diversity of plastomes throughout fern evolution. Gene content of V. speciosa plastome was similar to that in most ferns, although there were some characteristic gene losses and lineage-specific differences. In addition, an important number of genes required U to C RNA editing for proper protein translation and two genes showed start codons alternative to the canonical AUG (AUA). Concerning gene order, V. speciosa shared the specific 30-kb inversion of euphyllophytes plastomes and the 3.3-kb inversion of fern plastomes, keeping the ancestral gene order shared by eusporangiate and early leptosporangiate ferns. Conversely, V. speciosa has expanded IR regions comprising the rps7, rps12, ndhB and trnL genes in addition to rRNA and other tRNA genes, a condition shared with several eusporangiate ferns, lycophytes and hornworts, as well as most seed plants.
Collapse
Affiliation(s)
- F J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - B Navarro-Domínguez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - J P M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
34
|
Wang S, Yang C, Zhao X, Chen S, Qu GZ. Complete chloroplast genome sequence of Betula platyphylla: gene organization, RNA editing, and comparative and phylogenetic analyses. BMC Genomics 2018; 19:950. [PMID: 30572840 PMCID: PMC6302522 DOI: 10.1186/s12864-018-5346-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Betula platyphylla is a common tree species in northern China that has high economic and medicinal value. Our laboratory has been devoted to genome research on B. platyphylla for approximately 10 years. As primary organelle genomes, the complete genome sequences of chloroplasts are important to study the divergence of species, RNA editing and phylogeny. In this study, we sequenced and analyzed the complete chloroplast (cp) genome sequence of B. platyphylla. RESULTS The complete cp genome of B. platyphylla was 160,518 bp in length, which included a pair of inverted repeats (IRs) of 26,056 bp that separated a large single copy (LSC) region of 89,397 bp and a small single copy (SSC) region of 19,009 bp. The annotation contained a total of 129 genes, including 84 protein-coding genes, 37 tRNA genes and 8 rRNA genes. There were 3 genes using alternative initiation codons. Comparative genomics showed that the sequence of the Fagales species cp genome was relatively conserved, but there were still some high variation regions that could be used as molecular markers. The IR expansion event of B. platyphylla resulted in larger cp genomes and rps19 pseudogene formation. The simple sequence repeat (SSR) analysis showed that there were 105 SSRs in the cp genome of B. platyphylla. RNA editing sites recognition indicated that at least 80 RNA editing events occurred in the cp genome. Most of the substitutions were C to U, while a small proportion of them were not. In particular, three editing loci on the rRNA were converted to more than two other bases that had never been reported. For synonymous conversion, most of them increased the relative synonymous codon usage (RSCU) value of the codons. The phylogenetic analysis suggested that B. platyphylla had a closer evolutionary relationship with B. pendula than B. nana. CONCLUSIONS In this study, we not only obtained and annotated the complete cp genome sequence of B. platyphylla, but we also identified new RNA editing sites and predicted the phylogenetic relationships among Fagales species. These findings will facilitate genomic, genetic engineering and phylogenetic studies of this important species.
Collapse
Affiliation(s)
- Sui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| | - Guan-Zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 China
| |
Collapse
|
35
|
Villarreal A. JC, Turmel M, Bourgouin-Couture M, Laroche J, Salazar Allen N, Li FW, Cheng S, Renzaglia K, Lemieux C. Genome-wide organellar analyses from the hornwort Leiosporoceros dussii show low frequency of RNA editing. PLoS One 2018; 13:e0200491. [PMID: 30089117 PMCID: PMC6082510 DOI: 10.1371/journal.pone.0200491] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023] Open
Abstract
Because hornworts occupy a pivotal position in early land colonization as sister to other bryophytes, sister to tracheophytes, or sister to all other land plants, a renewed interest has arisen in their phylogenetic diversity, morphology, and genomes. To date, only five organellar genome sequences are available for hornworts. We sequenced the plastome (155,956 bp) and mitogenome (212,153 bp) of the hornwort Leiosporoceros dussii, the sister taxon to all hornworts. The Leiosporoceros organellar genomes show conserved gene structure and order with respect to the other hornworts and other bryophytes. Additionally, using RNA-seq data we quantified the frequency of RNA-editing events (the canonical C-to-U and the reverse editing U-to-C) in both organellar genomes. In total, 109 sites were found in the plastome and 108 in the mitogenome, respectively. The proportion of edited sites corresponds to 0.06% of the plastome and 0.05% of the mitogenome (in reference to the total genome size), in contrast to 0.58% of edited sites in the plastome of Anthoceros angustus (161,162 bp). All edited sites in the plastome and 88 of 108 sites in the mitogenome are C-to-U conversions. Twenty reverse edited sites (U-to-C conversions) were found in the mitogenome (17.8%) and none in the plastome. The low frequency of RNA editing in Leiosporoceros, which is nearly 88% less than in the plastome of Anthoceros and the mitogenome of Nothoceros, indicates that the frequency of RNA editing has fluctuated during hornwort diversification. Hornworts are a pivotal land plant group to unravel the genomic implications of RNA editing and its maintenance despite the evident evolutionary disadvantages.
Collapse
Affiliation(s)
- Juan Carlos Villarreal A.
- Département de Biologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Smithsonian Tropical Research Institute, Panama City, Panama
- * E-mail:
| | - Monique Turmel
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | | | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | | | - Fay-Wei Li
- Plant Biology Section, Cornell University, Ithaca, New York, United States of America
| | - Shifeng Cheng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Karen Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| |
Collapse
|
36
|
Edera AA, Gandini CL, Sanchez-Puerta MV. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. PLANT MOLECULAR BIOLOGY 2018; 97:215-231. [PMID: 29761268 DOI: 10.1007/s11103-018-0734-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Our understanding of the dynamic and evolution of RNA editing in angiosperms is in part limited by the few editing sites identified to date. This study identified 10,217 editing sites from 17 diverse angiosperms. Our analyses confirmed the universality of certain features of RNA editing, and offer new evidence behind the loss of editing sites in angiosperms. RNA editing is a post-transcriptional process that substitutes cytidines (C) for uridines (U) in organellar transcripts of angiosperms. These substitutions mostly take place in mitochondrial messenger RNAs at specific positions called editing sites. By means of publicly available RNA-seq data, this study identified 10,217 editing sites in mitochondrial protein-coding genes of 17 diverse angiosperms. Even though other types of mismatches were also identified, we did not find evidence of non-canonical editing processes. The results showed an uneven distribution of editing sites among species, genes, and codon positions. The analyses revealed that editing sites were conserved across angiosperms but there were some species-specific sites. Non-synonymous editing sites were particularly highly conserved (~ 80%) across the plant species and were efficiently edited (80% editing extent). In contrast, editing sites at third codon positions were poorly conserved (~ 30%) and only partially edited (~ 40% editing extent). We found that the loss of editing sites along angiosperm evolution is mainly occurring by replacing editing sites with thymidines, instead of a degradation of the editing recognition motif around editing sites. Consecutive and highly conserved editing sites had been replaced by thymidines as result of retroprocessing, by which edited transcripts are reverse transcribed to cDNA and then integrated into the genome by homologous recombination. This phenomenon was more pronounced in eudicots, and in the gene cox1. These results suggest that retroprocessing is a widespread driving force underlying the loss of editing sites in angiosperm mitochondria.
Collapse
Affiliation(s)
- Alejandro A Edera
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina.
| | - Carolina L Gandini
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
37
|
Chen TC, Liu YC, Wang X, Wu CH, Huang CH, Chang CC. Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana. BOTANICAL STUDIES 2017; 58:38. [PMID: 28916985 PMCID: PMC5602750 DOI: 10.1186/s40529-017-0193-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/08/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND RNA editing is a process of post-transcriptional level of gene regulation by nucleotide modification. Previously, the chloroplast DNA of Taiwan endemic moth orchid, P. aphrodite subsp. formosana was determined, and 44 RNA editing sites were identified from 24 plastid protein-coding transcripts of leaf tissue via RT-PCR and then conventional Sanger sequencing. However, the RNA editing status of whole-plastid transcripts in leaf and other distinct tissue types in moth orchids has not been addressed. To sensitively and extensively examine the plastid RNA editing status of moth orchid, RNA-Seq was used to investigate the editing status of whole-plastid transcripts from leaf and floral tissues by mapping the sequence reads to the corresponding cpDNA template. With the threshold of at least 5% C-to-U or U-to-C conversion events observed in sequence reads considered as RNA editing sites. RESULTS In total, 137 edits with 126 C-to-U and 11 U-to-C conversions, including 93 newly discovered edits, were identified in plastid transcripts, representing an average of 0.09% of the nucleotides examined in moth orchid. Overall, 110 and 106 edits were present in leaf and floral tissues, respectively, with 79 edits in common. As well, 79 edits were involved in protein-coding transcripts, and the 58 nucleotide conversions caused the non-synonymous substitution. At least 32 edits showed significant (≧20%) differential editing between leaf and floral tissues. Finally, RNA editing in trnM is required for the formation of a standard clover-leaf structure. CONCLUSIONS We identified 137 edits in plastid transcripts of moth orchid, the highest number reported so far in monocots. The consequence of RNA editing in protein-coding transcripts mainly cause the amino acid change and tend to increase the hydrophobicity as well as conservation among plant phylogeny. RNA editing occurred in non-protein-coding transcripts such as tRNA, introns and untranslated regulatory regions could affect the formation and stability of secondary structure, which might play an important role in the regulation of gene expression. Furthermore, some unidentified tissue-specific factors might be required for regulating RNA editing in moth orchid.
Collapse
Affiliation(s)
- Ting-Chieh Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yu-Chang Liu
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Chi-Hsuan Wu
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Chih-Hao Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Ching-Chun Chang
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|
38
|
Hassani D, Khalid M, Bilal M, Zhang YD, Huang D. Pentatricopeptide Repeat-directed RNA Editing and Their Biomedical Applications. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.762.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Myszczyński K, Bączkiewicz A, Buczkowska K, Ślipiko M, Szczecińska M, Sawicki J. The extraordinary variation of the organellar genomes of the Aneura pinguis revealed advanced cryptic speciation of the early land plants. Sci Rep 2017; 7:9804. [PMID: 28852146 PMCID: PMC5575236 DOI: 10.1038/s41598-017-10434-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Aneura pinguis is known as a species complex with several morphologically indiscernible species, which are often reproductively isolated from each other and show distinguishable genetic differences. Genetic dissimilarity of cryptic species may be detected by genomes comparison. This study presents the first complete sequences of chloroplast and mitochondrial genomes of six cryptic species of A. pinguis complex: A. pinguis A, B, C, E, F, J. These genomes have been compared to each other in order to reconstruct phylogenetic relationships and to gain better understanding of the evolutionary process of cryptic speciation in this complex. The chloroplast genome with the nucleotide diversity 0.05111 and 1537 indels is by far more variable than mitogenome with π value 0.00233 and number of indels 1526. Tests of selection evidenced that on about 36% of chloroplast genes and on 10% of mitochondrial genes of A. pinguis acts positive selection. It suggests an advanced speciation of species. The phylogenetic analyses based on genomes show that A. pinguis is differentiated and forms three distinct clades. Moreover, on the cpDNA trees, Aneura mirabilis is nested among the cryptic species of A. pinguis. This indicates that the A. pinguis cryptic species do not derive directly from one common ancestor.
Collapse
Affiliation(s)
- Kamil Myszczyński
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Alina Bączkiewicz
- Department of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Katarzyna Buczkowska
- Department of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Monika Ślipiko
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| |
Collapse
|
40
|
Functional divergence and origin of the DAG-like gene family in plants. Sci Rep 2017; 7:5688. [PMID: 28720816 PMCID: PMC5515838 DOI: 10.1038/s41598-017-05961-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
The nuclear-encoded DAG-like (DAL) gene family plays critical roles in organelle C-to-U RNA editing in Arabidopsis thaliana. However, the origin, diversification and functional divergence of DAL genes remain unclear. Here, we analyzed the genomes of diverse plant species and found that: DAL genes are specific to spermatophytes, all DAL genes share a conserved gene structure and protein similarity with the inhibitor I9 domain of subtilisin genes found in ferns and mosses, suggesting that DAL genes likely arose from I9-containing proproteases via exon shuffling. Based on phylogenetic inference, DAL genes can be divided into five subfamilies, each composed of putatively orthologous and paralogous genes from different species, suggesting that all DAL genes originated from a common ancestor in early seed plants. Significant type I functional divergence was observed in 6 of 10 pairwise comparisons, indicating that shifting functional constraints have contributed to the evolution of DAL genes. This inference is supported by the finding that functionally divergent amino acids between subfamilies are predominantly located in the DAL domain, a critical part of the RNA editosome. Overall, these findings shed light on the origin of DAL genes in spermatophytes and outline functionally important residues involved in the complexity of the RNA editosome.
Collapse
|
41
|
Yurina NP, Sharapova LS, Odintsova MS. Structure of Plastid Genomes of Photosynthetic Eukaryotes. BIOCHEMISTRY (MOSCOW) 2017; 82:678-691. [PMID: 28601077 DOI: 10.1134/s0006297917060049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents current views on the plastid genomes of higher plants and summarizes data on the size, structural organization, gene content, and other features of plastid DNAs. Special emphasis is placed on the properties of organization of land plant plastid genomes (nucleoids) that distinguish them from bacterial genomes. The prospects of genetic engineering of chloroplast genomes are discussed.
Collapse
Affiliation(s)
- N P Yurina
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
42
|
Tonti-Filippini J, Nevill PG, Dixon K, Small I. What can we do with 1000 plastid genomes? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:808-818. [PMID: 28112435 DOI: 10.1111/tpj.13491] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 05/21/2023]
Abstract
The plastid genome of plants is the smallest and most gene-rich of the three genomes in each cell and the one generally present in the highest copy number. As a result, obtaining plastid DNA sequence is a particularly cost-effective way of discovering genetic information about a plant. Until recently, the sequence information gathered in this way was generally limited to small portions of the genome amplified by polymerase chain reaction, but recent advances in sequencing technology have stimulated a substantial rate of increase in the sequencing of complete plastid genomes. Within the last year, the number of complete plastid genomes accessible in public sequence repositories has exceeded 1000. This sudden flood of data raises numerous challenges in data analysis and interpretation, but also offers the keys to potential insights across large swathes of plant biology. We examine what has been learnt so far, what more could be learnt if we look at the data in the right way, and what we might gain from the tens of thousands more genome sequences that will surely arrive in the next few years. The most exciting new discoveries are likely to be made at the interdisciplinary interfaces between molecular biology and ecology.
Collapse
Affiliation(s)
- Julian Tonti-Filippini
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Paul G Nevill
- Department of Environment and Agriculture, ARC Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Kingsley Dixon
- Department of Environment and Agriculture, ARC Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
43
|
Cahoon AB, Nauss JA, Stanley CD, Qureshi A. Deep Transcriptome Sequencing of Two Green Algae, Chara vulgaris and Chlamydomonas reinhardtii, Provides No Evidence of Organellar RNA Editing. Genes (Basel) 2017; 8:genes8020080. [PMID: 28230734 PMCID: PMC5333069 DOI: 10.3390/genes8020080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 11/16/2022] Open
Abstract
Nearly all land plants post-transcriptionally modify specific nucleotides within RNAs, a process known as RNA editing. This adaptation allows the correction of deleterious mutations within the asexually reproducing and presumably non-recombinant chloroplast and mitochondrial genomes. There are no reports of RNA editing in any of the green algae so this phenomenon is presumed to have originated in embryophytes either after the invasion of land or in the now extinct algal ancestor of all land plants. This was challenged when a recent in silico screen for RNA edit sites based on genomic sequence homology predicted edit sites in the green alga Chara vulgaris, a multicellular alga found within the Streptophyta clade and one of the closest extant algal relatives of land plants. In this study, the organelle transcriptomes of C. vulgaris and Chlamydomonas reinhardtii were deep sequenced for a comprehensive assessment of RNA editing. Initial analyses based solely on sequence comparisons suggested potential edit sites in both species, but subsequent high-resolution melt analysis, RNase H-dependent PCR (rhPCR), and Sanger sequencing of DNA and complementary DNAs (cDNAs) from each of the putative edit sites revealed them to be either single-nucleotide polymorphisms (SNPs) or spurious deep sequencing results. The lack of RNA editing in these two lineages is consistent with the current hypothesis that RNA editing evolved after embryophytes split from its ancestral algal lineage.
Collapse
Affiliation(s)
- A Bruce Cahoon
- Department of Natural Sciences, University of Virginia's College at Wise, 1 College Ave., Wise, VA 24293, USA.
| | - John A Nauss
- Department of Natural Sciences, University of Virginia's College at Wise, 1 College Ave., Wise, VA 24293, USA.
| | - Conner D Stanley
- Department of Natural Sciences, University of Virginia's College at Wise, 1 College Ave., Wise, VA 24293, USA.
| | - Ali Qureshi
- Department of Natural Sciences, University of Virginia's College at Wise, 1 College Ave., Wise, VA 24293, USA.
| |
Collapse
|
44
|
Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L. Genes (Basel) 2016; 8:genes8010013. [PMID: 28042823 PMCID: PMC5295008 DOI: 10.3390/genes8010013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022] Open
Abstract
RNA editing is an important way to convert cytidine (C) to uridine (U) at specific sites within RNA molecules at a post-transcriptional level in the chloroplasts of higher plants. Although it has been systematically studied in many plants, little is known about RNA editing in the wheat D genome donor Aegilops tauschii L. Here, we investigated the chloroplast RNA editing of Ae. tauschii and compared it with other wheat relatives to trace the evolution of wheat. Through bioinformatics prediction, a total of 34 C-to-U editing sites were identified, 17 of which were validated using RT-PCR product sequencing. Furthermore, 60 sites were found by the RNA-Seq read mapping approach, 24 of which agreed with the prediction and six were validated experimentally. The editing sites were biased toward tCn or nCa trinucleotides and 5′-pyrimidines, which were consistent with the flanking bases of editing sites of other seed plants. Furthermore, the editing events could result in the alteration of the secondary structures and topologies of the corresponding proteins, suggesting that RNA editing might impact the function of target genes. Finally, comparative analysis found some evolutionarily conserved editing sites in wheat and two species-specific sites were also obtained. This study is the first to report on RNA editing in Aegilops tauschii L, which not only sheds light on the evolution of wheat from the point of view of RNA editing, but also lays a foundation for further studies to identify the mechanisms of C-to-U alterations.
Collapse
|
45
|
Ichinose M, Sugita M. RNA Editing and Its Molecular Mechanism in Plant Organelles. Genes (Basel) 2016; 8:genes8010005. [PMID: 28025543 PMCID: PMC5295000 DOI: 10.3390/genes8010005] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified.
Collapse
Affiliation(s)
- Mizuho Ichinose
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
46
|
He P, Huang S, Xiao G, Zhang Y, Yu J. Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC PLANT BIOLOGY 2016; 16:257. [PMID: 27903241 PMCID: PMC5131507 DOI: 10.1186/s12870-016-0944-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/22/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. RESULTS In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. CONCLUSIONS The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.
Collapse
Affiliation(s)
- Peng He
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng Huang
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Guanghui Xiao
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Yuzhou Zhang
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Jianing Yu
- College of life sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
47
|
Knie N, Grewe F, Fischer S, Knoop V. Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns - a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles. BMC Evol Biol 2016; 16:134. [PMID: 27329857 PMCID: PMC4915041 DOI: 10.1186/s12862-016-0707-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA editing by C-to-U conversions is nearly omnipresent in land plant chloroplasts and mitochondria, where it mainly serves to reconstitute conserved codon identities in the organelle mRNAs. Reverse U-to-C RNA editing in contrast appears to be restricted to hornworts, some lycophytes, and ferns (monilophytes). A well-resolved monilophyte phylogeny has recently emerged and now allows to trace the side-by-side evolution of both types of pyrimidine exchange editing in the two endosymbiotic organelles. RESULTS Our study of RNA editing in four selected mitochondrial genes show a wide spectrum of divergent RNA editing frequencies including a dominance of U-to-C over the canonical C-to-U editing in some taxa like the order Schizaeales. We find that silent RNA editing leaving encoded amino acids unchanged is highly biased with more than ten-fold amounts of silent C-to-U over U-to-C edits. In full contrast to flowering plants, RNA editing frequencies are low in early-branching monilophyte lineages but increase in later emerging clades. Moreover, while editing rates in the two organelles are usually correlated, we observe uncoupled evolution of editing frequencies in fern mitochondria and chloroplasts. Most mitochondrial RNA editing sites are shared between the recently emerging fern orders whereas chloroplast editing sites are mostly clade-specific. Finally, we observe that chloroplast RNA editing appears to be completely absent in horsetails (Equisetales), the sister clade of all other monilophytes. CONCLUSIONS C-to-U and U-to-C RNA editing in fern chloroplasts and mitochondria follow disinct evolutionary pathways that are surprisingly different from what has previously been found in flowering plants. The results call for careful differentiation of the two types of RNA editing in the two endosymbiotic organelles in comparative evolutionary studies.
Collapse
Affiliation(s)
- Nils Knie
- Abteilung Molekulare Evolution, IZMB - Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Felix Grewe
- Present address: Department of Science and Education, Field Museum of Natural History, Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Simon Fischer
- Present address: Protrans medizinisch diagnostische Produkte GmbH, Ketschau 2, D-68766, Hockenheim, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, IZMB - Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| |
Collapse
|
48
|
Hein A, Polsakiewicz M, Knoop V. Frequent chloroplast RNA editing in early-branching flowering plants: pilot studies on angiosperm-wide coexistence of editing sites and their nuclear specificity factors. BMC Evol Biol 2016; 16:23. [PMID: 26809609 PMCID: PMC4727281 DOI: 10.1186/s12862-016-0589-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 11/11/2022] Open
Abstract
Background RNA editing by cytidine-to-uridine conversions is an essential step of RNA maturation in plant organelles. Some 30–50 sites of C-to-U RNA editing exist in chloroplasts of flowering plant models like Arabidopsis, rice or tobacco. We now predicted significantly more RNA editing in chloroplasts of early-branching angiosperm genera like Amborella, Calycanthus, Ceratophyllum, Chloranthus, Illicium, Liriodendron, Magnolia, Nuphar and Zingiber. Nuclear-encoded RNA-binding pentatricopeptide repeat (PPR) proteins are key editing factors expected to coevolve with their cognate RNA editing sites in the organelles. Results With an extensive chloroplast transcriptome study we identified 138 sites of RNA editing in Amborella trichopoda, approximately the 3- to 4-fold of cp editing in Arabidopsis thaliana or Oryza sativa. Selected cDNA studies in the other early-branching flowering plant taxa furthermore reveal a high diversity of early angiosperm RNA editomes. Many of the now identified editing sites in Amborella have orthologues in ferns, lycophytes or hornworts. We investigated the evolution of CRR28 and RARE1, two known Arabidopsis RNA editing factors responsible for cp editing events ndhBeU467PL, ndhDeU878SL and accDeU794SL, respectively, all of which we now found conserved in Amborella. In a phylogenetically wide sampling of 65 angiosperm genomes we find evidence for only one single loss of CRR28 in chickpea but several independent losses of RARE1, perfectly congruent with the presence of their cognate editing sites in the respective cpDNAs. Conclusion Chloroplast RNA editing is much more abundant in early-branching than in widely investigated model flowering plants. RNA editing specificity factors can be traced back for more than 120 million years of angiosperm evolution and show highly divergent patterns of evolutionary losses, matching the presence of their target editing events. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0589-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anke Hein
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| |
Collapse
|
49
|
Xu W, Xing T, Zhao M, Yin X, Xia G, Wang M. Synonymous codon usage bias in plant mitochondrial genes is associated with intron number and mirrors species evolution. PLoS One 2015; 10:e0131508. [PMID: 26110418 PMCID: PMC4481540 DOI: 10.1371/journal.pone.0131508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 11/21/2022] Open
Abstract
Synonymous codon usage bias (SCUB) is a common event that a non-uniform usage of codons often occurs in nearly all organisms. We previously found that SCUB is correlated with both intron number and exon position in the plant nuclear genome but not in the plastid genome; SCUB in both nuclear and plastid genome can mirror the evolutionary specialization. However, how about the rules in the mitochondrial genome has not been addressed. Here, we present an analysis of SCUB in the mitochondrial genome, based on 24 plant species ranging from algae to land plants. The frequencies of NNA and NNT (A- and T-ending codons) are higher than those of NNG and NNC, with the strongest preference in bryophytes and the weakest in land plants, suggesting an association between SCUB and plant evolution. The preference for NNA and NNT is more evident in genes harboring a greater number of introns in land plants, but the bias to NNA and NNT exhibits even among exons. The pattern of SCUB in the mitochondrial genome differs in some respects to that present in both the nuclear and plastid genomes.
Collapse
Affiliation(s)
- Wenjing Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Tian Xing
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Mingming Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Xunhao Yin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
- * E-mail:
| |
Collapse
|
50
|
Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 2015; 16:306. [PMID: 25887666 PMCID: PMC4446112 DOI: 10.1186/s12864-015-1498-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Plastid genomes, also known as plastomes, are shaped by the selective forces acting on the fundamental cellular functions they code for and thus they are expected to preserve signatures of the adaptive path undertaken by different plant species during evolution. To identify molecular signatures of positive selection associated to adaptation to contrasting ecological niches, we sequenced with Solexa technology the plastomes of two congeneric Brassicaceae species with different habitat preference, Cardamine resedifolia and Cardamine impatiens. Results Following in-depth characterization of plastome organization, repeat patterns and gene space, the comparison of the newly sequenced plastomes between each other and with 15 fully sequenced Brassicaceae plastomes publically available in GenBank uncovered dynamic variation of the IR boundaries in the Cardamine lineage. We further detected signatures of positive selection in ten of the 75 protein-coding genes of the examined plastomes, identifying a range of chloroplast functions putatively involved in adaptive processes within the family. For instance, the three residues found to be under positive selection in RUBISCO could possibly be involved in the modulation of RUBISCO aggregation/activation and enzymatic specificty in Brassicaceae. In addition, our results points to differential evolutionary rates in Cardamine plastomes. Conclusions Overall our results support the existence of wider signatures of positive selection in the plastome of C. resedifolia, possibly as a consequence of adaptation to high altitude environments. We further provide a first characterization of the selective patterns shaping the Brassicaceae plastomes, which could help elucidate the driving forces underlying adaptation and evolution in this important plant family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1498-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiliang Hu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Gaurav Sablok
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Bo Wang
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Dong Qu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy. .,College of Horticulture, Northwest Agricultural and Forest University, 712100, Yangling, Shaanxi, PR China.
| | - Enrico Barbaro
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Roberto Viola
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Mingai Li
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Claudio Varotto
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| |
Collapse
|