1
|
Aguirre-Bottger C, Zolla G. The best of both worlds: photosynthesis and Solanaceae biodiversity seeking a sustainable food and cosmetic industry. FRONTIERS IN PLANT SCIENCE 2024; 15:1362814. [PMID: 38434437 PMCID: PMC10904534 DOI: 10.3389/fpls.2024.1362814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Affiliation(s)
| | - Gaston Zolla
- Grupo de Investigation en Fisiología Molecular de Plantas, Facultad de Agronomia, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
2
|
MacIntosh GC, Castandet B. Organellar and Secretory Ribonucleases: Major Players in Plant RNA Homeostasis. PLANT PHYSIOLOGY 2020; 183:1438-1452. [PMID: 32513833 PMCID: PMC7401137 DOI: 10.1104/pp.20.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/31/2020] [Indexed: 05/05/2023]
Abstract
Organellar and secretory RNases, associated with different cellular compartments, are essential to maintain cellular homeostasis during development and in stress responses.
Collapse
Affiliation(s)
- Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Benoît Castandet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| |
Collapse
|
3
|
Amstutz CL, Fristedt R, Schultink A, Merchant SS, Niyogi KK, Malnoë A. An atypical short-chain dehydrogenase-reductase functions in the relaxation of photoprotective qH in Arabidopsis. NATURE PLANTS 2020; 6:154-166. [PMID: 32055052 PMCID: PMC7288749 DOI: 10.1038/s41477-020-0591-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/28/2019] [Indexed: 05/20/2023]
Abstract
Photosynthetic organisms experience wide fluctuations in light intensity and regulate light harvesting accordingly to prevent damage from excess energy. The antenna quenching component qH is a sustained form of energy dissipation that protects the photosynthetic apparatus under stress conditions. This photoprotective mechanism requires the plastid lipocalin LCNP and is prevented by SUPPRESSOR OF QUENCHING1 (SOQ1) under non-stress conditions. However, the molecular mechanism of qH relaxation has yet to be resolved. Here, we isolated and characterized RELAXATION OF QH1 (ROQH1), an atypical short-chain dehydrogenase-reductase that functions as a qH-relaxation factor in Arabidopsis. The ROQH1 gene belongs to the GreenCut2 inventory specific to photosynthetic organisms, and the ROQH1 protein localizes to the chloroplast stroma lamellae membrane. After a cold and high-light treatment, qH does not relax in roqh1 mutants and qH does not occur in leaves overexpressing ROQH1. When the soq1 and roqh1 mutations are combined, qH can neither be prevented nor relaxed and soq1 roqh1 displays constitutive qH and light-limited growth. We propose that LCNP and ROQH1 perform dosage-dependent, antagonistic functions to protect the photosynthetic apparatus and maintain light-harvesting efficiency in plants.
Collapse
Affiliation(s)
- Cynthia L Amstutz
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rikard Fristedt
- Department of Physics and Astronomy, Vrije University of Amsterdam, Amsterdam, The Netherlands
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Alex Schultink
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Alizée Malnoë
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Rorbach J, Bobrowicz A, Pearce S, Minczuk M. Polyadenylation in bacteria and organelles. Methods Mol Biol 2014; 1125:211-27. [PMID: 24590792 DOI: 10.1007/978-1-62703-971-0_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polyadenylation is a posttranscriptional modification present throughout all the kingdoms of life with important roles in regulation of RNA stability, translation, and quality control. Functions of polyadenylation in prokaryotic and organellar RNA metabolism are still not fully characterized, and poly(A) tails appear to play contrasting roles in different systems. Here we present a general overview of the polyadenylation process and the factors involved in its regulation, with an emphasis on the diverse functions of 3' end modification in the control of gene expression in different biological systems.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK,
| | | | | | | |
Collapse
|
5
|
Leister D. Complex(iti)es of the ubiquitous RNA-binding CSP41 proteins. FRONTIERS IN PLANT SCIENCE 2014; 5:255. [PMID: 24936205 PMCID: PMC4047790 DOI: 10.3389/fpls.2014.00255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/19/2014] [Indexed: 05/22/2023]
Affiliation(s)
- Dario Leister
- Department Biology I, Plant Molecular Biology (Botany), Ludwig-Maximilians-University MunichMartinsried, Germany
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
- *Correspondence:
| |
Collapse
|
6
|
Qi Y, Armbruster U, Schmitz-Linneweber C, Delannoy E, de Longevialle AF, Rühle T, Small I, Jahns P, Leister D. Arabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1251-70. [PMID: 22090436 PMCID: PMC3276088 DOI: 10.1093/jxb/err347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 05/20/2023]
Abstract
The spinach CSP41 protein has been shown to bind and cleave chloroplast RNA in vitro. Arabidopsis thaliana, like other photosynthetic eukaryotes, encodes two copies of this protein. Several functions have been described for CSP41 proteins in Arabidopsis, including roles in chloroplast rRNA metabolism and transcription. CSP41a and CSP41b interact physically, but it is not clear whether they have distinct functions. It is shown here that CSP41b, but not CSP41a, is an essential and major component of a specific subset of RNA-binding complexes that form in the dark and disassemble in the light. RNA immunoprecipitation and hybridization to gene chips (RIP-chip) experiments indicated that CSP41 complexes can contain chloroplast mRNAs coding for photosynthetic proteins and rRNAs (16S and 23S), but no tRNAs or mRNAs for ribosomal proteins. Leaves of plants lacking CSP41b showed decreased steady-state levels of CSP41 target RNAs, as well as decreased plastid transcription and translation rates. Representative target RNAs were less stable when incubated with broken chloroplasts devoid of CSP41 complexes, indicating that CSP41 proteins can stabilize target RNAs. Therefore, it is proposed that (i) CSP41 complexes may serve to stabilize non-translated target mRNAs and precursor rRNAs during the night when the translational machinery is less active in a manner responsive to the redox state of the chloroplast, and (ii) that the defects in translation and transcription in CSP41 protein-less mutants are secondary effects of the decreased transcript stability.
Collapse
Affiliation(s)
- Yafei Qi
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bollenbach TJ, Sharwood RE, Gutierrez R, Lerbs-Mache S, Stern DB. The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 69:541-52. [PMID: 19067181 DOI: 10.1007/s11103-008-9436-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 11/13/2008] [Indexed: 05/04/2023]
Abstract
The chloroplast protein CSP41a both binds and cleaves RNA, particularly in stem-loops, and has been found associated with ribosomes. A related protein, CSP41b, co-purifies with CSP41a, ribosomes, and the plastid-encoded RNA polymerase. Here we show that Arabidopsis CSP41a and CSP41b interact in vivo, and that a csp41b null mutant becomes depleted of CSP41a in mature leaves, correlating with a pale green phenotype and reduced accumulation of the ATP synthase and cytochrome b ( 6 )/f complexes. RNA gel blot analyses revealed up to four-fold decreases in accumulation for some chloroplast RNAs, which run-on experiments suggested could tentatively be ascribed to decreased transcription. Depletion of both CSP41a and CSP41b triggered a promoter switch whereby atpBE became predominately transcribed from its nucleus-encoded polymerase promoter as opposed to its plastid-encoded polymerase promoter. Together with published proteomic data, this suggests that CSP41a and/or CSP41b enhances transcription by the plastid-encoded polymerase. Gradient analysis of rRNAs in the mutant suggest a defect in polysome assembly or stability, suggesting that CSP41a and/or CSP41b, which are not present in polysomal fractions, stabilize ribosome assembly intermediates. Although psbA and rbcL mRNAs are normally polysome-associated in the mutant, petD-containing RNAs have diminished association, perhaps accounting for reduced accumulation of its respective multimeric complex. In conclusion, our data suggest that CSP41a and CSP41b stimulate both transcription and translation in the chloroplast.
Collapse
Affiliation(s)
- Thomas J Bollenbach
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
8
|
Beligni MV, Mayfield SP. Arabidopsis thaliana mutants reveal a role for CSP41a and CSP41b, two ribosome-associated endonucleases, in chloroplast ribosomal RNA metabolism. PLANT MOLECULAR BIOLOGY 2008; 67:389-401. [PMID: 18398686 DOI: 10.1007/s11103-008-9328-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 03/19/2008] [Indexed: 05/04/2023]
Abstract
A proteomic analysis of Chlamydomonas reinhardtii 70S ribosomes identified two proteins, RAP38 and RAP41, which associate in stoichiometric amounts with intact ribosomes. In this work we show results that suggest the Arabidopsis thaliana homologs, CSP41b and CSP41a, participate in ribosomal RNA metabolism. Csp41a-1 and csp41b-1 single mutants show little phenotype, while the loss of both proteins is lethal. Plants homozygous for the csp41b-1 mutation and heterozygous for the csp41a-1 mutation (csp41b-1/csp41a-1*) fail to accumulate CSP41b and show a marked reduction in the levels of CSP41a. These mutants have reduced chlorophyll content, grow slower and over-accumulate 23S precursor rRNAs compared to their wild-type (WT) siblings, whereas other rRNAs or mRNAs are unaffected. Chloroplast polysome assembly is reduced in csp41b-1/csp41a-1* mutants, which also contain increased amounts of pre-ribosomal particles compared to mature 70S ribosomes. Our results also indicate that CSP41b associates with pre-ribosomal particles in vivo. In vitro, the pattern of 23S precursors and mature rRNAs is altered upon incubation with recombinant CSP41a and CSP41b. Taken together, these results suggest that CSP41a and CSP41b have a role in chloroplast ribosomal RNA metabolism, most likely acting in the final steps of 23S rRNA maturation.
Collapse
Affiliation(s)
- María Verónica Beligni
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
9
|
Ströher E, Dietz KJ. The dynamic thiol-disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility. PHYSIOLOGIA PLANTARUM 2008; 133:566-83. [PMID: 18433418 DOI: 10.1111/j.1399-3054.2008.01103.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The dynamics of the thiol-disulphide redox proteome is central to cell function and its regulation. Altered mobility of proteins in the oxidized and reduced state allows the MS-based identification of those thiol-disulphide proteins that undergo major conformational changes. A proteomic approach was taken with thylakoid-bound, luminal and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-less stromal subproteome fractions of the chloroplast from Arabidopsis thaliana. Among the 49 verified polypeptides were 22 novel redox proteins, previously not reported as being part of the redox proteome. Among the redox-affected proteins were PsbA (D1), PsaA1 and PsaF, chloroplast monodehydroascorbate reductase and also the Deg1 protease. Recombinant Deg1 and Deg2 revealed redox dependence of their proteolytic activity. The data provide new insights into the redox network of the chloroplast.
Collapse
Affiliation(s)
- Elke Ströher
- Faculty of Biology, University of Bielefeld, Univ. Str. 25, D-33501 Bielefeld, Germany
| | | |
Collapse
|
10
|
Schult K, Meierhoff K, Paradies S, Töller T, Wolff P, Westhoff P. The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. THE PLANT CELL 2007; 19:1329-46. [PMID: 17435084 PMCID: PMC1913763 DOI: 10.1105/tpc.106.042895] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 03/08/2007] [Accepted: 03/22/2007] [Indexed: 05/14/2023]
Abstract
To gain insight into the biogenesis of photosystem II (PSII) and to identify auxiliary factors required for this process, we characterized the mutant hcf173 of Arabidopsis thaliana. The mutant shows a high chlorophyll fluorescence phenotype (hcf) and is severely affected in the accumulation of PSII subunits. In vivo labeling experiments revealed a drastically decreased synthesis of the reaction center protein D1. Polysome association experiments suggest that this is primarily caused by reduced translation initiation of the corresponding psbA mRNA. Comparison of mRNA steady state levels indicated that the psbA mRNA is significantly reduced in hcf173. Furthermore, the determination of the psbA mRNA half-life revealed an impaired RNA stability. The HCF173 gene was identified by map-based cloning, and its identity was confirmed by complementation of the hcf phenotype. HCF173 encodes a protein with weak similarities to the superfamily of the short-chain dehydrogenases/reductases. The protein HCF173 is localized in the chloroplast, where it is mainly associated with the membrane system and is part of a higher molecular weight complex. Affinity chromatography of an HCF173 fusion protein uncovered the psbA mRNA as a component of this complex.
Collapse
Affiliation(s)
- Kerstin Schult
- Institut für Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Fujii S, Komatsu S, Toriyama K. Retrograde regulation of nuclear gene expression in CW-CMS of rice. PLANT MOLECULAR BIOLOGY 2007; 63:405-17. [PMID: 17086445 DOI: 10.1007/s11103-006-9097-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 10/05/2006] [Indexed: 05/12/2023]
Abstract
The CW-cytoplasmic male sterility (CMS) line has the cytoplasm of Oryza rufipogon Griff, and mature pollen is morphologically normal under an optical microscope but lacks the ability to germinate; restorer gene Rf17 has been identified as restoring this ability. The difference between nuclear gene expression in mature anthers was compared for the CW-CMS line, [cms-CW] rf17rf17, and a maintainer line with normal cytoplasm of Oryza sativa L., [normal] rf17rf17. Using a 22-k rice oligoarray we detected 58 genes that were up-regulated more than threefold in the CW-CMS line. Expression in other organs was further investigated for 20 genes using RT-PCR. Five genes, including genes for alternative oxidase, were found to be preferentially expressed in [cms-CW] rf17rf17 but not in [normal] rf17rf17 or [cms-CW] Rf17Rf17. Such [cms-CW] rf17rf17-specific gene expression was only observed in mature anthers but not in leaves, stems, or roots, indicating the presence of anther-specific mitochondrial retrograde regulation of nuclear gene expression, and that Rf17 has a role in restoring the ectopic gene expression. We also used a proteomic approach to discover the retrograde regulated proteins and identified six proteins that were accumulated differently. These results reveal organ-specific induced mitochondrial retrograde pathways affecting nuclear gene expression possibly related to CMS.
Collapse
Affiliation(s)
- Sota Fujii
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | |
Collapse
|
12
|
Processing, degradation, and polyadenylation of chloroplast transcripts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
von Zychlinski A, Kleffmann T, Krishnamurthy N, Sjölander K, Baginsky S, Gruissem W. Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 2005; 4:1072-84. [PMID: 15901827 DOI: 10.1074/mcp.m500018-mcp200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report an extensive proteome analysis of rice etioplasts, which were highly purified from dark-grown leaves by a novel protocol using Nycodenz density gradient centrifugation. Comparative protein profiling of different cell compartments from leaf tissue demonstrated the purity of the etioplast preparation by the absence of diagnostic marker proteins of other cell compartments. Systematic analysis of the etioplast proteome identified 240 unique proteins that provide new insights into heterotrophic plant metabolism and control of gene expression. They include several new proteins that were not previously known to localize to plastids. The etioplast proteins were compared with proteomes from Arabidopsis chloroplasts and plastid from tobacco Bright Yellow 2 cells. Together with computational structure analyses of proteins without functional annotations, this comparative proteome analysis revealed novel etioplast-specific proteins. These include components of the plastid gene expression machinery such as two RNA helicases, an RNase II-like hydrolytic exonuclease, and a site 2 protease-like metalloprotease all of which were not known previously to localize to the plastid and are indicative for so far unknown regulatory mechanisms of plastid gene expression. All etioplast protein identifications and related data were integrated into a data base that is freely available upon request.
Collapse
Affiliation(s)
- Anne von Zychlinski
- Institute of Plant Science and Functional Genomics Center Zurich, Swiss Federal Institute of Technology, Eidgenössische Technische Hochschule (ETH) Zurich, 8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Pfannschmidt T, Liere K. Redox regulation and modification of proteins controlling chloroplast gene expression. Antioxid Redox Signal 2005; 7:607-18. [PMID: 15890004 DOI: 10.1089/ars.2005.7.607] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chloroplasts are typical organelles of plant cells and represent the site of photosynthesis. As one very remarkable feature, they possess their own genome and a complete machinery to express the genetic information in it. The plastid gene expression machinery is a unique assembly of prokaryotic-, eukaryotic-, and phage-like components because chloroplasts acquired a great number of regulatory proteins during evolution. Such proteins can be found at all levels of gene expression. They significantly expand the functional and especially the regulatory properties of the "old" gene expression system that chloroplasts inherited from their prokaryotic ancestors. Recent results show that photosynthesis has a strong regulatory effect on plastid gene expression. The redox states of electron transport components, redox-active molecules coupled to photosynthesis, and pools of reactive oxygen species act as redox signals. They provide a functional feedback control, which couples the expression of chloroplast genes to the actual function of photosynthesis and, by this means, helps to acclimate the photosynthetic process to environmental cues. The redox signals are mediated by various specific signaling pathways that involve many of the "new" regulatory proteins. Chloroplasts therefore are an ideal model to study redox-regulated mechanisms in gene expression control. Because of the multiple origins of the expression machinery, these observations are of great relevance for many other biological systems.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Department for General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | |
Collapse
|
15
|
Nishimura Y, Kikis EA, Zimmer SL, Komine Y, Stern DB. Antisense transcript and RNA processing alterations suppress instability of polyadenylated mRNA in chlamydomonas chloroplasts. THE PLANT CELL 2004; 16:2849-69. [PMID: 15486097 PMCID: PMC527185 DOI: 10.1105/tpc.104.026203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Accepted: 08/26/2004] [Indexed: 05/21/2023]
Abstract
In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Delta26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Delta26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3' poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS-, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Delta26, in which atpB mRNA is unstable because of the lack of a 3' stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3'-->5' exonuclease activity, a phenomenon that may occur naturally in the symmetrically transcribed and densely packed chloroplast genome.
Collapse
MESH Headings
- Animals
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/metabolism
- Chloroplasts/genetics
- DNA, Complementary/genetics
- Exonucleases/metabolism
- Gene Expression Regulation/genetics
- Genome, Plant
- Photosynthesis/genetics
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- RNA 3' End Processing/genetics
- RNA 3' Polyadenylation Signals/genetics
- RNA Processing, Post-Transcriptional/genetics
- RNA Stability/genetics
- RNA, Algal/biosynthesis
- RNA, Algal/genetics
- RNA, Antisense/genetics
- RNA, Double-Stranded/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/genetics
- Species Specificity
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
16
|
Suzuki JY, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P. Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:164-72. [PMID: 15361150 DOI: 10.1111/j.1365-313x.2004.02195.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We affinity-purified the tobacco plastid-encoded plastid RNA polymerase (PEP) complex by the alpha subunit containing a C-terminal 12 x histidine tag using heparin and Ni(2+) chromatography. The composition of the complex was determined by mass spectrometry after separating the proteins of the >900 kDa complex in blue native and SDS polyacrylamide gels. The purified PEP contained the core alpha, beta, beta', beta" subunits and five major associated proteins of unknown function, but lacked sigma factors required for promoter recognition. The holoenzyme efficiently recognized a plastid psbA promoter when it was reconstituted from the purified PEP and recombinant plastid sigma factors. Reconstitution of a plastid holoenzyme with individual sigma factors will facilitate identification of sigma factor-specific promoter elements.
Collapse
Affiliation(s)
- Jon Y Suzuki
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | |
Collapse
|
17
|
Xu H, He WJ, Liu WY. A novel ribotoxin with ribonuclease activity that specifically cleaves a single phosphodiester bond in rat 28S ribosomal RNA and inactivates ribosome. Arch Biochem Biophys 2004; 427:30-40. [PMID: 15178485 DOI: 10.1016/j.abb.2004.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/20/2004] [Indexed: 11/21/2022]
Abstract
A unique ribonuclease named Biota orientalis ribonuclease (Biota orientalis RNase) is purified to homogeneity from mature seeds of oriental arborvitae (Biota orientalis). The molecular mass of Biota orientalis RNase is about 13 kDa. When the concentration of Mg(2+) is 25 mM in the incubation buffer, the ribonuclease specifically cleaves the phosphodiester bond between C4453 and A4454 in region K (a region in domain VII) of 28S RNA in rat ribosome, resulting in inactivation of ribosome. Thus, it is a ribotoxin similar to alpha-sarcin. The region around C4453-A4454 in rat 28S rRNA is named "Biota orientalis RNase region." Rat ribosome treated by Biota orientalis RNase produces a small RNA fragment (S-fragment) that contains 333 nucleotides from the 3'-terminus of rat 28S rRNA. The distance between the cleavage-sites of alpha-sarcin (G4325) and Biota orientalis RNase (C4453) is 128 nucleotides. Under restricted conditions (25 mM Mg(2+)), the substrate specificity of Biota orientalis RNase is extremely high: it acts only on the "Biota orientalis RNase region" of the largest RNA in ribosomes from certain eukaryotes. The ribosome specifically damaged by Biota orientalis RNase is unable to EF-1alpha-dependently bind aminoacyl-tRNA, whereas the formation of the EF-2/GDP/ribosome complex is not affected. It is proposed that Biota orientalis RNase inactivates ribosome at least partially by interfering with the EF-1alpha-dependent binding of aminoacyl-tRNA to ribosome. Biota orientalis RNase might be a useful tool in studying the structure/function of ribosome.
Collapse
Affiliation(s)
- Hong Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | |
Collapse
|
18
|
Loschelder H, Homann A, Ogrzewalla K, Link G. Proteomics-based sequence analysis of plant gene expression--the chloroplast transcription apparatus. PHYTOCHEMISTRY 2004; 65:1785-93. [PMID: 15276437 DOI: 10.1016/j.phytochem.2004.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/23/2004] [Indexed: 05/18/2023]
Abstract
The chloroplast transcription apparatus has turned out to be more complex than anticipated, with core polypeptides surrounded by multiple accessory proteins of diverse, and in part unexpected, functions. At least two different RNA-binding proteins and several redox-responsive proteins are components of the major chloroplast RNA polymerase termed PEP-A. One of the key-regulatory factors has been identified as a Ser/Thr-specific protein kinase that is sensitive to SH group modification by glutathione and by this means is able to modulate transcription. The cloned plastid transcription kinase from mustard (Sinapis alba L.) has been assigned as a member of the (mostly nucleo-cytosolic) CK2 family and hence has been termed cpCK2. Despite its apparent role in mustard chloroplast transcription, until recently no data have been available for other plant species. Using the web database resources, we find evidence for an evolutionarily conserved role of this redox-sensitive plastid transcription factor.
Collapse
Affiliation(s)
- Heike Loschelder
- Plant Cell Physiology and Molecular Biology, University of Bochum, Building ND 2-72, Universitaetsstr. 150, D44780 Bochum, Germany
| | | | | | | |
Collapse
|
19
|
Bollenbach TJ, Schuster G, Stern DB. Cooperation of Endo- and Exoribonucleases in Chloroplast mRNA Turnover. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:305-37. [PMID: 15210334 DOI: 10.1016/s0079-6603(04)78008-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chloroplasts were acquired by eukaryotic cells through endosymbiosis and have retained their own gene expression machinery. One hallmark of chloroplast gene regulation is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on how chloroplast mRNA stability is regulated, through an examination of poly(A)-dependent and independent pathways. The poly(A)-dependent pathway is catalyzed by polynucleotide phosphorylase (PNPase), which both adds and degrades destabilizing poly(A) tails, whereas RNase II and PNPase may both participate in the poly(A)-independent pathway. Each system is initiated through endonucleolytic cleavages that remove 3' stem-loop structures, which are catalyzed by the related proteins CSP41a and CSP41b and possibly an RNase E-like enzyme. Overall, chloroplasts have retained the prokaryotic endonuclease-exonuclease RNA degradation system despite evolution in the number and character of the enzymes involved. This reflects the presence of the chloroplast within a eukaryotic host and the complex responses that occur to environmental and developmental cues.
Collapse
MESH Headings
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Cyanobacteria/genetics
- Cyanobacteria/metabolism
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Evolution, Molecular
- Exoribonucleases/chemistry
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Models, Biological
- Models, Molecular
- Plants/genetics
- Plants/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Chloroplast/genetics
- RNA, Chloroplast/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
Collapse
Affiliation(s)
- Thomas J Bollenbach
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
20
|
Bollenbach TJ, Tatman DA, Stern DB. CSP41a, a multifunctional RNA-binding protein, initiates mRNA turnover in tobacco chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:842-52. [PMID: 14675449 DOI: 10.1046/j.1365-313x.2003.01935.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Expression of chloroplast stem-loop binding protein (CSP)41a, a highly conserved chloroplast endoribonuclease, was reduced >90% by the expression of antisense RNA in Nicotiana tabacum. The most striking effects of this silencing were two- to sevenfold decreases in the degradation rates of rbcL, psbA, and petD transcripts in lysed chloroplast extracts. These results are consistent with the hypothesis that CSP41a participates in initiating mRNA turnover through endonucleolytic cleavages. Surprisingly, rbcL and psbA mRNAs accumulated to similar levels in wild-type and antisense lines. This suggested that decreased degradation was compensated by reduced transcription, which was confirmed using run-on transcription assays. The collective accumulation of petD-containing mRNAs in antisense plants decreased by 25% compared to wild-type controls. However, the relative levels of petD processing intermediates in wild-type and antisense plants did not differ, and there were no changes in petD 3'-end maturation, suggesting that CSP41a is not required for petD RNA processing. CSP41a is a Mg2+-dependent enzyme; therefore, extracts from antisense plants were tested at different Mg2+ concentrations. These experiments showed that the half-life of rbcL decreased as the Mg2+ concentration was reduced, and at <1 mm free Mg2+, conditions where CSP41a is nearly inactive in vitro, the rbcL degradation rate was similar in wild-type and antisense extracts, suggesting that CSP41a is normally bypassed under these conditions. Mg2+ has been shown to mediate RNA stability during chloroplast biogenesis, and our data suggest that regulation of CSP41a activity by Mg2+ is a component of this process.
Collapse
Affiliation(s)
- Thomas J Bollenbach
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | | | | |
Collapse
|