1
|
Westhorpe R, Roske JJ, Yeeles JTP. Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes. Mol Cell 2024; 84:3469-3481.e7. [PMID: 39236719 PMCID: PMC7617106 DOI: 10.1016/j.molcel.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.
Collapse
Affiliation(s)
- Rose Westhorpe
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Johann J Roske
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
2
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Anticancer Activity of Metallodrugs and Metallizing Host Defense Peptides-Current Developments in Structure-Activity Relationship. Int J Mol Sci 2024; 25:7314. [PMID: 39000421 PMCID: PMC11242492 DOI: 10.3390/ijms25137314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
3
|
Pujari SS, Tretyakova N. Synthesis and polymerase bypass studies of DNA-peptide and DNA-protein conjugates. Methods Enzymol 2021; 661:363-405. [PMID: 34776221 PMCID: PMC10159213 DOI: 10.1016/bs.mie.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA-peptide (DpCs) and DNA-protein cross-links (DPCs) are DNA lesions formed when polypeptides and nuclear proteins become covalently trapped on DNA strands. DNA-protein cross-links are of enormous size and hence pose challenges to cell survival by blocking DNA replication, transcription, and repair. However, DPCs can undergo proteolytic degradation via various pathways to give shorter polypeptide chains (DpCs). The resulting DpC lesions are efficiently bypassed by translesion synthesis (TLS) DNA polymerases like κ, η, δ, etc., although polymerase bypass efficiency as well as correct base insertion depends heavily on size, sequence context, and position of peptides in DpCs. This chapter explores various synthetic methods to generate these lesions including detailed experimental procedures for the construction of DpCs and DPCs via reductive amination and oxime ligation. Further we describe biochemical experiments to investigate the effects of these lesions on DNA polymerase activity and fidelity.
Collapse
Affiliation(s)
- Suresh S Pujari
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
4
|
Ma S, Li X, Ran M, Ji M, Gou J, Yin T, He H, Wang Y, Zhang Y, Tang X. Fabricating nanoparticles co-loaded with survivin siRNA and Pt(IV) prodrug for the treatment of platinum-resistant lung cancer. Int J Pharm 2021; 601:120577. [PMID: 33839227 DOI: 10.1016/j.ijpharm.2021.120577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 01/13/2023]
Abstract
Resistance to platinum agents is a crucial challenge in the treatment of cancer using platinum drugs. To overcome the resistance of cells, the survivin protein is supposed to be decreased, since it has previously been found to be overexpressed in drug-resistant cancer cells in anti-apoptosis pathways, while the intracellular effective platinum accumulation should be increased. In the present work, a protamine/hyaluronic acid nanocarrier was used to load survivin siRNA with Pt(IV) loaded outside the coated polyglutamic acid (PGA) by chemical conjugation. The siRNA was released from the co-loaded nanoparticle prior to Pt(IV), in this way, the expression of survivin protein was effectively reduced, which, in turn, could avoid the anti-apoptosis of drug resistant cells. Here, Pt(IV) displayed a sustained release effect and gradually reduced to the toxic Pt(II) species, which reduced drug efflux and enhance apoptosis of the cancer cells. In vitro studies demonstrated that co-loaded nanoparticles resulted in similar cell killing performance in A549/DDP cells (cisplatin resistant) compared with non-siRNA loaded nanoparticles in A549 cells (cisplatin sensitive). NP-siRNA/Pt(IV) exhibited a greatly improved therapeutic effect (TIR, 82.46%) in a nude mice A549/DDP tumor model, with no serious adverse effects observed. Thus, co-loading of Pt(IV) and survivin siRNA nanoparticles could reverse cisplatin resistance and therefore has promising prospects for efficient cancer chemotherapy.
Collapse
Affiliation(s)
- Shuting Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xiaowen Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Meixin Ran
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Muse Ji
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| |
Collapse
|
5
|
Cheng L, Li C, Xi Z, Wei K, Yuan S, Arnesano F, Natile G, Liu Y. Cisplatin reacts with histone H1 and the adduct forms a ternary complex with DNA. Metallomics 2020; 11:556-564. [PMID: 30672544 DOI: 10.1039/c8mt00358k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cisplatin is an anticancer drug widely used in clinics; it induces the apoptosis of cancer cells by targeting DNA. However, its interaction with proteins has been found to be crucial in modulating the pre and post-target activity. Nuclear DNA is tightly assembled with histone proteins to form nucleosomes in chromatin; this can impede the drug to access DNA. On the other hand, the linker histone H1 is considered 'the gate to nucleosomal DNA' due to its exposed location and dynamic conformation; therefore, this protein can influence the platination of DNA. In this study, we performed a reaction of cisplatin with histone H1 and investigated the interaction of the H1/cisplatin adduct with DNA. The reactions were conducted on the N-terminal domains of H1.4 (sequence 1-90, H1N90) and H1.0 (sequence 1-7, H1N7). The results show that H1 readily reacts with cisplatin and generates bidentate and tridentate adducts, with methionine and glutamate residues as the preferential binding sites. Chromatographic and NMR analyses show that the platination rate of H1 is slightly higher than that of DNA and the platinated H1 can form H1-cisplatin-DNA ternary complexes. Interestingly, cisplatin is more prone to form H1-Pt-DNA ternary complexes than trans-oriented platinum agents. The formation of H1-cisplatin-DNA ternary complexes and their preference for cis- over trans-oriented platinum agents suggest an important role of histone H1 in the mechanism of action of cisplatin.
Collapse
Affiliation(s)
- Lanjun Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
DNA- and DNA-Protein-Crosslink Repair in Plants. Int J Mol Sci 2019; 20:ijms20174304. [PMID: 31484324 PMCID: PMC6747210 DOI: 10.3390/ijms20174304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
DNA-crosslinks are one of the most severe types of DNA lesions. Crosslinks (CLs) can be subdivided into DNA-intrastrand CLs, DNA-interstrand CLs (ICLs) and DNA-protein crosslinks (DPCs), and arise by various exogenous and endogenous sources. If left unrepaired before the cell enters S-phase, ICLs and DPCs pose a major threat to genomic integrity by blocking replication. In order to prevent the collapse of replication forks and impairment of cell division, complex repair pathways have emerged. In mammals, ICLs are repaired by the so-called Fanconi anemia (FA) pathway, which includes 22 different FANC genes, while in plants only a few of these genes are conserved. In this context, two pathways of ICL repair have been defined, each requiring the interaction of a helicase (FANCJB/RTEL1) and a nuclease (FAN1/MUS81). Moreover, homologous recombination (HR) as well as postreplicative repair factors are also involved. Although DPCs possess a comparable toxic potential to cells, it has only recently been shown that at least three parallel pathways for DPC repair exist in plants, defined by the protease WSS1A, the endonuclease MUS81 and tyrosyl-DNA phosphodiesterase 1 (TDP1). The importance of crosslink repair processes are highlighted by the fact that deficiencies in the respective pathways are associated with diverse hereditary disorders.
Collapse
|
7
|
Cheng L, Li C, Yuan S, Shi H, Zhao L, Zhang L, Arnesano F, Natile G, Liu Y. Reaction of Histone H1 with trans-Platinum Complexes and the Effect on DNA Platination. Inorg Chem 2019; 58:6485-6494. [DOI: 10.1021/acs.inorgchem.9b00686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lanjun Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chan Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongdong Shi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linhong Zhao
- Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Zhang
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Fabio Arnesano
- Dipartimento di Chimica, University of Bari “A. Moro”, via E. Orabona 4, 70125 Bari, Italy
| | - Giovanni Natile
- Dipartimento di Chimica, University of Bari “A. Moro”, via E. Orabona 4, 70125 Bari, Italy
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Novakova O, Farrell NP, Brabec V. Translesion DNA synthesis across double-base lesions derived from cross-links of an antitumor trinuclear platinum compound: primer extension, conformational and thermodynamic studies. Metallomics 2019; 10:132-144. [PMID: 29242879 DOI: 10.1039/c7mt00266a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polynuclear platinum complexes represent a unique structural class of DNA-binding agents of biological significance. They contain at least two platinum coordinating units bridged by a linker, which means that the formation of double-base lesions (cross-links) in DNA is possible. Here, we show that the lead compound, bifunctional [{trans-PtCl(NH3)2}2μ-trans-Pt(NH3)2{H2N(CH2)6NH2}2]4+ (Triplatin or BBR3464), forms in DNA specific double-base lesions which affect the biophysical and biochemical properties of DNA in a way fundamentally different compared to the analogous double-base lesions formed by two adducts of monofunctional chlorodiethylenetriamineplatinum(ii) chloride (dienPt). We find concomitantly that translesion DNA synthesis by the model A-family polymerase, the exonuclease deficient Klenow fragment, across the double-base lesions derived from the intrastrand CLs of Triplatin was markedly less extensive than that across the two analogous monofunctional adducts of dienPt. Collectively, these data provide convincing support for the hypothesis that the central noncovalent tetraamine platinum linker of Triplatin, capable of hydrogen-bonding and electrostatic interactions with DNA and bridging the two platinum adducts, represents an important factor responsible for the markedly lowered tolerance of DNA double-base adducts of Triplatin by DNA polymerases.
Collapse
Affiliation(s)
- O Novakova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | | | |
Collapse
|
9
|
Larsen NB, Gao AO, Sparks JL, Gallina I, Wu RA, Mann M, Räschle M, Walter JC, Duxin JP. Replication-Coupled DNA-Protein Crosslink Repair by SPRTN and the Proteasome in Xenopus Egg Extracts. Mol Cell 2018; 73:574-588.e7. [PMID: 30595436 PMCID: PMC6375733 DOI: 10.1016/j.molcel.2018.11.024] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/20/2018] [Accepted: 11/15/2018] [Indexed: 01/19/2023]
Abstract
DNA-protein crosslinks (DPCs) are bulky lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S phase removal of DPCs, but how SPRTN is targeted to DPCs during DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases. Proteasome recruitment requires DPC polyubiquitylation, which is partially dependent on the ubiquitin ligase activity of TRAIP. In contrast, SPRTN-mediated DPC degradation does not require DPC polyubiquitylation but instead depends on nascent strand extension to within a few nucleotides of the lesion, implying that polymerase stalling at the DPC activates SPRTN on both leading and lagging strand templates. Our results demonstrate that SPRTN and proteasome activities are coupled to DNA replication by distinct mechanisms that promote replication across immovable protein barriers.
Collapse
Affiliation(s)
- Nicolai B Larsen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alan O Gao
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Irene Gallina
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthias Mann
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Räschle
- Department of Molecular Biotechnology and Systems Biology, Technical University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Julien P Duxin
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Abstract
Since the discovery of cisplatin and its potency in anticancer therapy, the development of metallodrugs has been an active area of research. The large choice of transition metals, oxidation states, coordinating ligands, and different geometries, allows for the design of metal-based agents with unique mechanisms of action. Many metallodrugs, such as titanium, ruthenium, gallium, tin, gold, and copper-based complexes have been found to have anticancer activities. However, biological application of these agents necessitates aqueous solubility and low systemic toxicity. This minireview highlights the emerging strategies to facilitate the in vivo application of metallodrugs, aimed at enhancing their solubility and bioavailability, as well as improving their delivery to tumor tissues. The focus is on encapsulating the metal-based complexes into nanocarriers or coupling to biomacromolecules, generating efficacious anticancer therapies. The delivery systems for complexes of platinum, ruthenium, copper, and iron are discussed with most recent examples.
Collapse
|
11
|
Ide H, Nakano T, Salem AMH, Shoulkamy MI. DNA-protein cross-links: Formidable challenges to maintaining genome integrity. DNA Repair (Amst) 2018; 71:190-197. [PMID: 30177436 DOI: 10.1016/j.dnarep.2018.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
DNA is associated with proteins that are involved in its folding and transaction processes. When cells are exposed to chemical cross-linking agents or free radical-generating ionizing radiation, DNA-associated proteins are covalently trapped within the DNA to produce DNA-protein cross-links (DPCs). DPCs produced by these agents contain cross-linked proteins in an undisrupted DNA strand. Some DNA-metabolizing enzymes that form covalent reaction intermediates can also be irreversibly trapped in the presence of inhibitors or DNA damage to give rise to abortive DPCs. The abortive DPCs often contain cross-linked proteins attached to the 5' or 3' end of a DNA strand break. In vitro studies show that steric hindrance caused by cross-linked proteins impedes the progression of DNA helicases and polymerases and of RNA polymerases. The modes and consequences by which DPCs impede replication and transcription processes are considerably different from those with conventional DNA lesions. Thus, DPCs are formidable challenges to maintaining genome integrity and faithful gene expression. Current models of DPC repair involve direct and indirect removal of DPCs. The direct mechanism works for DPCs that contain topoisomerase 2 attached to the 5' end of DNA. The Mre11-Rad50-Nbs1 complex cleaves the site internal to the DPC and directly releases a DPC-containing oligonucleotide. The indirect mechanism involves degradation of cross-linked proteins by proteasomes or the recently identified DPC proteases Wss1 and Sprtn to relieve steric hindrance of DPCs. The resulting peptide-cross-links might be processed by translesion synthesis or other canonical repair mechanisms: however, the exact mechanism remains to be elucidated.
Collapse
Affiliation(s)
- Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | - Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Amir M H Salem
- Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mahmoud I Shoulkamy
- Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
12
|
O'Flaherty DK, Wilds CJ. AGT Activity Towards Intrastrand Crosslinked DNA is Modulated by the Alkylene Linker. Chembiochem 2017; 18:2351-2357. [PMID: 28980757 DOI: 10.1002/cbic.201700450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/12/2022]
Abstract
DNA oligomers containing dimethylene and trimethylene intrastrand crosslinks (IaCLs) between the O4 and O6 atoms of neighboring thymidine (T) and 2'-deoxyguanosine (dG) residues were prepared by solid-phase synthesis. UV thermal denaturation (Tm ) experiments revealed that these IaCLs had a destabilizing effect on the DNA duplex relative to the control. Circular dichroism spectroscopy suggested these IaCLs induced minimal structural distortions. Susceptibility to dealkylation by reaction with various O6 -alkylguanine DNA alkyltransferases (AGTs) from human and Escherichia coli was evaluated. It was revealed that only human AGT displayed activity towards the IaCL DNA, with reduced efficiency as the IaCL shortened (from four to two methylene linkages). Changing the site of attachment of the ethylene linkage at the 5'-end of the IaCL to the N3 atom of T had minimal influence on duplex stability and structure, and was refractory to AGT activity.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University Montreal, 7141 Sherbrooke Street W., Montreal, Quebec, H4B 1R6, Canada.,Present address: Howard Hughes Medical Institute, Department of Molecular Biology and, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University Montreal, 7141 Sherbrooke Street W., Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
13
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Kranjc S, Cemazar M, Sersa G, Scancar J, Grabner S. In Vitro and in vivo Evaluation of Electrochemotherapy with trans-platinum Analogue trans-[PtCl 2(3-Hmpy) 2]. Radiol Oncol 2017; 51:295-306. [PMID: 28959166 PMCID: PMC5611994 DOI: 10.1515/raon-2017-0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background Cisplatin is used in cancer therapy, but its side effects and acquired resistance to cisplatin have led to the synthesis and evaluation of new platinum compounds. Recently, the synthesized platinum compound trans-[PtCl2(3-Hmpy)2] (3-Hmpy = 3-hydroxymethylpyridine) (compound 2) showed a considerable cytotoxic and antitumour effectiveness. To improve compound 2 cytotoxicity in vitro and antitumour effectiveness in vivo, electroporation was used as drug delivery approach to increase membrane permeability (electrochemotherapy). Materials and methods In vitro, survival of sarcoma cells with different intrinsic sensitivity to cisplatin (TBLCl2 sensitive, TBLCl2Pt resistant and SA-1 moderately sensitive) was determined using a clonogenic assay after treatment with compound 2 or cisplatin electrochemotherapy. In vivo, the antitumour effectiveness of electrochemotherapy with compound 2 or cisplatin was evaluated using a tumour growth delay assay. In addition, platinum in the serum, tumours and platinum bound to the DNA in the cells were performed using inductively coupled plasma mass spectrometry. Results In vitro, cell survival after treatment with compound 2 electrochemotherapy was significantly decreased in all tested sarcoma cells with different intrinsic sensitivity to cisplatin (TBLCl2 sensitive, TBLCl2Pt resistant and SA-1 moderately sensitive). However, this effect was less pronounced compared to cisplatin. Interestingly, the enhancement factor (5-fold) of compound 2 cytotoxicity was equal in cisplatin-sensitive TBLCl2 and cisplatin-resistant TBLCl2Pt cells. In vivo, the growth delay of subcutaneous tumours after treatment with compound 2 electrochemotherapy was lower compared to cisplatin. The highest antitumour effectiveness after cisplatin or compound 2 electrochemotherapy was obtained in TBLCl2 tumours, resulting in 67% and 11% of tumour cures, respectively. Compound 2 induced significantly smaller loss of animal body weight compared to cisplatin. Furthermore, platinum amounts in tumours after compound 2 or cisplatin electrochemotherapy were approximately 2-fold higher compared to the drug treatment only, and the same increase of platinum bound to DNA was observed. Conclusions The obtained results in vitro and in vivo suggest compound 2 as a potential antitumour agent in electrochemotherapy.
Collapse
Affiliation(s)
- Simona Kranjc
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia.,University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Sabina Grabner
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Grabner S, Modec B, Bukovec N, Bukovec P, Čemažar M, Kranjc S, Serša G, Sčančar J. Cytotoxic trans-platinum(II) complex with 3-hydroxymethylpyridine: Synthesis, X-ray structure and biological activity evaluation. J Inorg Biochem 2016; 161:40-51. [PMID: 27189143 DOI: 10.1016/j.jinorgbio.2016.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/07/2023]
Abstract
To assess the potential cytostatic properties of Pt(II) complexes with 3-hydroxymethylpyridine (3-hmpy) as the only carrier ligand, novel cis-[PtCl2(3-hmpy)2] (1) and trans-[PtCl2(3-hmpy)2] (2) have been prepared. Elemental analysis, FTIR spectroscopy, multinuclear NMR spectroscopy and X-ray crystallography were used to determine their structures. Based on the results obtained with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and clonogenic assay on T24 human bladder carcinoma cells (T24), the most potent compound 2 was further tested for cytotoxicity in human ovarian carcinoma cell lines - cisplatin sensitive (IGROV 1) and its resistant subclone (IGROV 1/RDDP). The cytotoxicity of compound 2 in IGROV 1/RDDP is comparable to cisplatin. Furthermore, compound 2 induced severe conformational changes in plasmid DNA, which resulted in a delayed onset of apoptosis in T24 cells, and higher amounts of Pt in tumours and serum compared to cisplatin. In addition, in vivo antitumour effectiveness was comparable to that of cisplatin with a smaller reduction of animals' body weight, thus demonstrating that it is a promising transplatin analogue which deserves further studies.
Collapse
Affiliation(s)
- Sabina Grabner
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Barbara Modec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Nataša Bukovec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Peter Bukovec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Maja Čemažar
- Institute of Oncology Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc
- Institute of Oncology Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia
| | - Janez Sčančar
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev 2016; 116:3436-86. [PMID: 26865551 PMCID: PMC4792284 DOI: 10.1021/acs.chemrev.5b00597] [Citation(s) in RCA: 1734] [Impact Index Per Article: 192.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 2016; 77:1103-24. [PMID: 26886018 DOI: 10.1007/s00280-016-2976-z] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022]
Abstract
Platinum-based drugs cisplatin, carboplatin and oxaliplatin are widely used in the therapy of human neoplasms. Their clinical success is, however, limited due to severe side effects and intrinsic or acquired resistance to the treatment. Much effort has been put into the development of new platinum anticancer complexes, but none of them has reached worldwide clinical application so far. Nedaplatin, lobaplatin and heptaplatin received only regional approval. Some new platinum complexes and platinum drug formulations are undergoing clinical trials. Here, we review the main classes of new platinum drug candidates, such as sterically hindered complexes, monofunctional platinum drugs, complexes with biologically active ligands, trans-configured and polynuclear platinum complexes, platinum(IV) prodrugs and platinum-based drug delivery systems. For each class of compounds, a detailed overview of the mechanism of action is given, the cytotoxicity is compared to that of the clinically used platinum drugs, and the clinical perspectives are discussed. A critical analysis of lessons to be learned is presented. Finally, a general outlook regarding future directions in the field of new platinum drugs is given.
Collapse
|
18
|
Oral AY, Cevatemre B, Sarimahmut M, Icsel C, Yilmaz VT, Ulukaya E. Anti-growth effect of a novel trans-dichloridobis[2-(2-hydroxyethyl)pyridine]platinum (II) complex via induction of apoptosis on breast cancer cell lines. Bioorg Med Chem 2015; 23:4303-4310. [DOI: 10.1016/j.bmc.2015.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/20/2015] [Accepted: 06/12/2015] [Indexed: 01/27/2023]
|
19
|
|
20
|
Nakano T, Mitsusada Y, Salem AMH, Shoulkamy MI, Sugimoto T, Hirayama R, Uzawa A, Furusawa Y, Ide H. Induction of DNA-protein cross-links by ionizing radiation and their elimination from the genome. Mutat Res 2015; 771:45-50. [PMID: 25771979 DOI: 10.1016/j.mrfmmm.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Ionizing radiation produces various types of DNA lesions, such as base damage, single-strand breaks, double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, DSBs are the most critical lesions underlying the lethal effects of ionizing radiation. With DPCs, proteins covalently trapped in DNA constitute strong roadblocks to replication and transcription machineries, and hence can be lethal to cells. The formation of DPCs by ionizing radiation is promoted in the absence of oxygen, whereas that of DSBs is retarded. Accordingly, the contribution of DPCs to the lethal events in irradiated cells may not be negligible for hypoxic cells, such as those present in tumors. However, the role of DPCs in the lethal effects of ionizing radiation remains largely equivocal. In the present study, normoxic and hypoxic mouse tumors were irradiated with X-rays [low linear energy transfer (LET) radiation] and carbon (C)-ion beams (high LET radiation), and the resulting induction of DPCs and DSBs and their removal from the genome were analyzed. X-rays and C-ion beams produced more DPCs in hypoxic tumors than in normoxic tumors. Interestingly, the yield of DPCs was slightly but statistically significantly greater (1.3- to 1.5-fold) for C-ion beams than for X-rays. Both X-rays and C-ion beams generated two types of DPC that differed according to their rate of removal from the genome. This was also the case for DSBs. The half-lives of the rapidly removed components of DPCs and DSBs were similar (<1 h), but those of the slowly removed components of DPCs and DSBs were markedly different (3.9-5 h for DSBs versus 63-70 h for DPCs). The long half-life and abundance of the slowly removed DPCs render them persistent in DNA, which may impede DNA transactions and confer deleterious effects on cells in conjunction with DSBs.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yusuke Mitsusada
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Amir M H Salem
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12311, Egypt
| | - Mahmoud I Shoulkamy
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Tatsuya Sugimoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ryoichi Hirayama
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan
| | - Akiko Uzawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Development and Support Center, National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
21
|
Theoretical study on the mechanism of reaction of novel iminoether-containing Pt(II) anticancer drugs with biological targets. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Abstract
Abstract
Alfred Werner was awarded the Nobel Prize in Chemistry just over 100 years ago. We recall briefly the era in which he was working, his co-workers, and the equipment he used in his laboratories. His ideas were ground breaking: not only does a metal ion have a primary valency (“hauptvalenz”, now the oxidation state), but also a secondary valency, the coordination number (“nebenvalenz”). At that time some refused to accept this idea, but he realised that his new thinking would open up new areas of research. Indeed it did. We illustrate this for the emerging field of medicinal metal coordination chemistry, the design of metal-based therapeutic and diagnostic agents. The biological activity of metal complexes depends intimately not only on the metal and its oxidation state, but also on the type and number of coordinated ligands, and the coordination geometry. This provides a rich platform in pharmacological space for structural and electronic diversity. It is necessary to control both the thermodynamics (strengths of metal-ligand bonds) and kinetics of ligand substitution reactions to provide complexes with defined mechanisms of action. Outer-sphere interactions can also play a major role in target recognition. Our current interest is focussed especially on relatively inert metal complexes which were very familiar to Werner (RuII, OsII, RhIII, IrIII, PtII, PtIV).
Collapse
|
23
|
Wickramaratne S, Boldry EJ, Buehler C, Wang YC, Distefano MD, Tretyakova NY. Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine. J Biol Chem 2014; 290:775-87. [PMID: 25391658 DOI: 10.1074/jbc.m114.613638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI(-)-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.
Collapse
Affiliation(s)
- Susith Wickramaratne
- From the Masonic Cancer Center, Departments of Medicinal Chemistry and Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Emily J Boldry
- From the Masonic Cancer Center, Departments of Medicinal Chemistry and
| | - Charles Buehler
- Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yen-Chih Wang
- Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mark D Distefano
- From the Masonic Cancer Center, Departments of Medicinal Chemistry and Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
24
|
Duxin JP, Dewar JM, Yardimci H, Walter JC. Repair of a DNA-protein crosslink by replication-coupled proteolysis. Cell 2014; 159:346-57. [PMID: 25303529 PMCID: PMC4229047 DOI: 10.1016/j.cell.2014.09.024] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/18/2014] [Accepted: 09/11/2014] [Indexed: 12/24/2022]
Abstract
DNA-protein crosslinks (DPCs) are caused by environmental, endogenous, and chemotherapeutic agents and pose a severe threat to genome stability. We use Xenopus egg extracts to recapitulate DPC repair in vitro and show that this process is coupled to DNA replication. A DPC on the leading strand template arrests the replisome by stalling the CMG helicase. The DPC is then degraded on DNA, yielding a peptide-DNA adduct that is bypassed by CMG. The leading strand subsequently resumes synthesis, stalls again at the adduct, and then progresses past the adduct using DNA polymerase ζ. A DPC on the lagging strand template only transiently stalls the replisome, but it too is degraded, allowing Okazaki fragment bypass. Our experiments describe a versatile, proteolysis-based mechanism of S phase DPC repair that avoids replication fork collapse.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hasan Yardimci
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
25
|
Novakova O, Liskova B, Vystrcilova J, Suchankova T, Vrana O, Starha P, Travnicek Z, Brabec V. Conformation and recognition of DNA damaged by antitumor cis-dichlorido platinum(II) complex of CDK inhibitor bohemine. Eur J Med Chem 2014; 78:54-64. [PMID: 24675180 DOI: 10.1016/j.ejmech.2014.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/20/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
A substitution of the ammine ligands of cisplatin, cis-[Pt(NH3)2Cl2], for cyclin dependent kinase (CDK) inhibitor bohemine (boh), [2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine], results in a compound, cis-[Pt(boh)2Cl2] (C1), with the unique anticancer profile which may be associated with some features of the damaged DNA and/or its cellular processing (Travnicek Z et al. (2003) J Inorg Biochem94, 307-316; Liskova B (2012) Chem Res Toxicol25, 500-509). A combination of biochemical and molecular biology techniques was used to establish mechanistic differences between cisplatin and C1 with respect to the DNA damage they produce and their interactions with critical DNA-binding proteins, DNA-processing enzymes and glutathione. The results show that replacement of the NH3 groups in cisplatin by bohemine modulates some aspects of the mechanism of action of C1. More specifically, the results of the present work are consistent with the thesis that, in comparison with cisplatin, effects of other factors, such as: (i) slower rate of initial binding of C1 to DNA; (ii) the lower efficiency of C1 to form bifunctional adducts; (iii) the reduced bend of longitudinal DNA axis induced by the major 1,2-GG intrastrand cross-link of C1; (iv) the reduced affinity of HMG domain proteins to the major adduct of C1; (v) the enhanced efficiency of the DNA adducts of C1 to block DNA polymerization and to inhibit transcription activity of human RNA pol II and RNA transcription; (vi) slower rate of the reaction of C1 with glutathione, may partially contribute to the unique activity of C1.
Collapse
Affiliation(s)
- Olga Novakova
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Barbora Liskova
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Jana Vystrcilova
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Tereza Suchankova
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Oldrich Vrana
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | - Pavel Starha
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Zdenek Travnicek
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic.
| |
Collapse
|
26
|
Xu D, Min Y, Cheng Q, Shi H, Wei K, Arnesano F, Natile G, Liu Y. Chemical and cellular investigations of trans-ammine-pyridine-dichlorido-platinum(II), the likely metabolite of the antitumor active cis-diammine-pyridine-chorido-platinum(II). J Inorg Biochem 2013; 129:15-22. [DOI: 10.1016/j.jinorgbio.2013.07.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022]
|
27
|
Wilson JJ, Lippard SJ. Synthetic methods for the preparation of platinum anticancer complexes. Chem Rev 2013; 114:4470-95. [PMID: 24283498 DOI: 10.1021/cr4004314] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Justin J Wilson
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
28
|
Ari F, Aztopal N, Icsel C, Yilmaz VT, Guney E, Buyukgungor O, Ulukaya E. Synthesis, structural characterization and cell death-inducing effect of novel palladium(II) and platinum(II) saccharinate complexes with 2-(hydroxymethyl)pyridine and 2-(2-hydroxyethyl)pyridine on cancer cells in vitro. Bioorg Med Chem 2013; 21:6427-34. [DOI: 10.1016/j.bmc.2013.08.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 12/15/2022]
|
29
|
Sgarbossa P, Sbovata SM, Bertani R, Mozzon M, Benetollo F, Marzano C, Gandin V, Michelin RA. Novel imino thioether complexes of platinum(II): synthesis, structural investigation, and biological activity. Inorg Chem 2013; 52:5729-41. [PMID: 23647564 DOI: 10.1021/ic3024452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reactions of the nitrile complexes cis- and trans-[PtCl2(NCR)2] (R = Me, Et, CH2Ph, Ph) with an excess of ethanethiol, EtSH, in the presence of a catalytic amount of n-BuLi in tetrahydrofuran (THF), afforded in good yield the bis-imino thioether derivatives cis-[PtCl2{E-N(H)═C(SEt)R}2] (R = Me (1), Et (2), CH2Ph (3), Ph (4)) and trans-[PtCl2{E-N(H)═C(SEt)R}2] (R = Me (5), Et (6), CH2Ph (7), Ph (8)). The imino thioether ligands assumed the E configuration corresponding to a cis addition of the thiol to the nitrile triple bond. The spectroscopic properties of these complexes have been reported along with the molecular structures of 1, 2, and 7 as established by X-ray crystallography which indicated that these compounds exhibit square-planar coordination geometry around the platinum center. Four N-H···Cl intermolecular contacts (N-H···Cl ca. 2.5-2.7 Å) between each chlorine atom and the N-H proton of the imino thioether ligand gave rise to "dimers" Pt2Cl4L4 (L = imino thioether) formed by two PtCl2L2 units. The cytotoxic properties of these new platinum(II) complexes were evaluated against various human cancer cell lines. Among all derivatives, trans-[PtCl2{E-N(H)═C(SEt)CH2Ph}2] showed the greatest in vitro cytotoxic activity being able to decrease cancer cell viability roughly 3-fold more effectively than cisplatin.
Collapse
Affiliation(s)
- Paolo Sgarbossa
- Department of Industrial Engineering, University of Padua, Via F. Marzolo, 9, 35131 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Icsel C, Yilmaz VT, Ari F, Ulukaya E, Harrison WT. trans-Dichloridopalladium(II) and platinum(II) complexes with 2-(hydroxymethyl)pyridine and 2-(2-hydroxyethyl)pyridine: Synthesis, structural characterization, DNA binding and in vitro cytotoxicity studies. Eur J Med Chem 2013; 60:386-94. [DOI: 10.1016/j.ejmech.2012.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 12/12/2022]
|
31
|
Nakano T, Miyamoto-Matsubara M, Shoulkamy MI, Salem AMH, Pack SP, Ishimi Y, Ide H. Translocation and stability of replicative DNA helicases upon encountering DNA-protein cross-links. J Biol Chem 2013; 288:4649-58. [PMID: 23283980 DOI: 10.1074/jbc.m112.419358] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-protein cross-links (DPCs) are formed when cells are exposed to various DNA-damaging agents. Because DPCs are extremely large, steric hindrance conferred by DPCs is likely to affect many aspects of DNA transactions. In DNA replication, DPCs are first encountered by the replicative helicase that moves at the head of the replisome. However, little is known about how replicative helicases respond to covalently immobilized protein roadblocks. In the present study we elucidated the effect of DPCs on the DNA unwinding reaction of hexameric replicative helicases in vitro using defined DPC substrates. DPCs on the translocating strand but not on the nontranslocating strand impeded the progression of the helicases including the phage T7 gene 4 protein, simian virus 40 large T antigen, Escherichia coli DnaB protein, and human minichromosome maintenance Mcm467 subcomplex. The impediment varied with the size of the cross-linked proteins, with a threshold size for clearance of 5.0-14.1 kDa. These results indicate that the central channel of the dynamically translocating hexameric ring helicases can accommodate only small proteins and that all of the helicases tested use the steric exclusion mechanism to unwind duplex DNA. These results further suggest that DPCs on the translocating and nontranslocating strands constitute helicase and polymerase blocks, respectively. The helicases stalled by DPC had limited stability and dissociated from DNA with a half-life of 15-36 min. The implications of the results are discussed in relation to the distinct stabilities of replisomes that encounter tight but reversible DNA-protein complexes and irreversible DPC roadblocks.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Wong VCL, Cash HL, Morse JL, Lu S, Zhitkovich A. S-phase sensing of DNA-protein crosslinks triggers TopBP1-independent ATR activation and p53-mediated cell death by formaldehyde. Cell Cycle 2012; 11:2526-37. [PMID: 22722496 DOI: 10.4161/cc.20905] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We examined genotoxic signaling and cell fate decisions in response to a potent DNA-protein crosslinker formaldehyde (FA). DNA-protein crosslinks (DPC) are poorly understood lesions produced by bifunctional carcinogens and several cancer drugs. FA-treated human cells showed a rapid activation of ATR kinase that preferentially targeted the p53 transcription factor at low doses and CHK1 kinase at more severe damage, producing bell-shaped and sublinear responses, respectively. CHK1 phosphorylation was transient, and its loss was accompanied by increased p53 accumulation and Ser15 phosphorylation. Activation of p53 was insensitive to inhibition of mismatch repair and nucleotide and base excision repair, excluding the role of small DNA adducts in this response. The p53-targeted signaling was transcription-independent, absent in quiescent cells and specific to S-phase in cycling populations. Unlike other S-phase stressors, FA-activated p53 was functional transcriptionally, promoted apoptosis in lung epithelial cells and caused senescence in normal lung fibroblasts. FA did not induce ATR, RAD1 or RPA foci, and p53 phosphorylation was TopBP1-independent, indicating a noncanonical mode of ATR activation. Replication arrest by FA caused a dissociation of ATR from a chromatin-loaded MCM helicase but no PCNA monoubiquitination associated with stalled polymerases. These results suggest that unlike typical DNA adducts that stall DNA polymerases, replication inhibition by bulkier DPC largely results from blocking upstream MCM helicase, which prevents accumulation of ssDNA. Overall, our findings indicate that S-phase-specific, TopBP1-independent activation of the ATR-p53 axis is a critical stress response to FA-DPC, which has implications for understanding of FA carcinogenesis.
Collapse
Affiliation(s)
- Victor Chun-Lam Wong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
33
|
Shoulkamy MI, Nakano T, Ohshima M, Hirayama R, Uzawa A, Furusawa Y, Ide H. Detection of DNA-protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs. Nucleic Acids Res 2012; 40:e143. [PMID: 22730301 PMCID: PMC3467041 DOI: 10.1093/nar/gks601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins are covalently trapped on DNA to form DNA-protein crosslinks (DPCs) when cells are exposed to DNA-damaging agents. DPCs interfere with many aspects of DNA transactions. The current DPC detection methods indirectly measure crosslinked proteins (CLPs) through DNA tethered to proteins. However, a major drawback of such methods is the non-linear relationship between the amounts of DNA and CLPs, which makes quantitative data interpretation difficult. Here we developed novel methods of DPC detection based on direct CLP measurement, whereby CLPs in DNA isolated from cells are labeled with fluorescein isothiocyanate (FITC) and quantified by fluorometry or western blotting using anti-FITC antibodies. Both formats successfully monitored the induction and elimination of DPCs in cultured cells exposed to aldehydes and mouse tumors exposed to ionizing radiation (carbon-ion beams). The fluorometric and western blotting formats require 30 and 0.3 μg of DNA, respectively. Analyses of the isolated genomic DPCs revealed that both aldehydes and ionizing radiation produce two types of DPC with distinct stabilities. The stable components of aldehyde-induced DPCs have half-lives of up to days. Interestingly, that of radiation-induced DPCs has an infinite half-life, suggesting that the stable DPC component exerts a profound effect on DNA transactions over many cell cycles.
Collapse
Affiliation(s)
- Mahmoud I Shoulkamy
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Solivio MJ, Nemera DB, Sallans L, Merino EJ. Biologically relevant oxidants cause bound proteins to readily oxidatively cross-link at Guanine. Chem Res Toxicol 2012; 25:326-36. [PMID: 22216745 DOI: 10.1021/tx200376e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative DNA-protein cross-links have received less attention than other types of DNA damage and remain as one of the least understood types of oxidative lesion. A model system using ribonuclease A and a 27-nucleotide DNA was used to determine the propensity of oxidative cross-linking to occur in the presence of oxidants. Cross-link formation was examined using four different oxidation systems that generate singlet oxygen, superoxide, and metal-based Fenton reactions. It is shown that oxidative cross-linking occurs in yields ranging from 14% to a maximal yield of 61% in all oxidative systems when equivalent concentrations of DNA and protein are present. Because singlet oxygen is the most efficient oxidation system in generating DNA-protein cross-links, it was chosen for further analyses. Cross-linking occurred with single-stranded DNA binding protein and not with bovine serum albumin. Addition of salt lowered nonspecific binding affinity and lowered cross-link yield by up to 59%. The yield of cross-linking increased with increased ratios of protein compared with DNA. Cross-linking was highly dependent on the number of guanines in a DNA sequence. Loss of guanine content on the 27-nucleotide DNA led to nearly complete loss in cross-linking, while primer extension studies showed cross-links to predominantly occur at guanine base on a 100-nucleotide DNA. The chemical species generated were examined using two peptides derived from the ribonuclease A sequence, N-acetyl-AAAKF and N-acetyl-AYKTT, which were cross-linked to 2'-deoxyguanosine. The cross-link products were spiroiminodihydantoin, guanidinohydantoin, and tyrosyl-based adducts. Formation of tyrosine-based adducts may be competitive with the more well-studied lysine-based cross-links. We conclude that oxidative cross-links may be present at high levels in cells since the propensity to oxidatively cross-link is high and so much of the genomic DNA is coated with protein.
Collapse
Affiliation(s)
- Morwena J Solivio
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | | | | | | |
Collapse
|
35
|
Nakano T, Ouchi R, Kawazoe J, Pack SP, Makino K, Ide H. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription. J Biol Chem 2012; 287:6562-72. [PMID: 22235136 DOI: 10.1074/jbc.m111.318410] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RNA polymerases (RNAPs) transcribe genes through the barrier of nucleoproteins and site-specific DNA-binding proteins on their own or with the aid of accessory factors. Proteins are often covalently trapped on DNA by DNA damaging agents, forming DNA-protein cross-links (DPCs). However, little is known about how immobilized proteins affect transcription. To elucidate the effect of DPCs on transcription, we constructed DNA templates containing site-specific DPCs and performed in vitro transcription reactions using phage T7 RNAP. We show here that DPCs constitute strong but not absolute blocks to in vitro transcription catalyzed by T7 RNAP. More importantly, sequence analysis of transcripts shows that RNAPs roadblocked not only by DPCs but also by the stalled leading RNAP become highly error prone and generate mutations in the upstream intact template regions. This contrasts with the transcriptional mutations induced by conventional DNA lesions, which are delivered to the active site or its proximal position in RNAPs and cause direct misincorporation. Our data also indicate that the trailing RNAP stimulates forward translocation of the stalled leading RNAP, promoting the translesion bypass of DPCs. The present results provide new insights into the transcriptional fidelity and mutual interactions of RNAPs that encounter persistent roadblocks.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Bartel C, Bytzek AK, Scaffidi-Domianello YY, Grabmann G, Jakupec MA, Hartinger CG, Galanski M, Keppler BK. Cellular accumulation and DNA interaction studies of cytotoxic trans-platinum anticancer compounds. J Biol Inorg Chem 2012; 17:465-74. [PMID: 22227950 DOI: 10.1007/s00775-011-0869-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/11/2011] [Indexed: 11/24/2022]
Abstract
Forty years after the discovery of the anticancer effects of cisplatin, scientists are still pursuing the development of platinum complexes with improved properties regarding side effects and resistance, which are two main problems in cisplatin treatment. Among these compounds, trans-configured platinum complexes with oxime ligands emerged as a new class with features distinct from those of established anticancer agents, including different DNA binding behavior, increased cellular accumulation, and a different pattern of protein interaction. We report herein on the reactivity with biomolecules of three novel pairs of cis- and trans-configured acetone oxime platinum(II) complexes and one pair of 3-pentanone oxime platinum(II) complexes. Cellular accumulation experiments and in vitro DNA platination studies were performed and platinum contents were determined by inductively coupled plasma mass spectrometry. The trans-configured complexes were accumulated in SW480 cells in up to 100 times higher amounts than cisplatin and up to 50 times higher amounts than their cis-configured counterparts; r (b) values (number of platinum atoms per nucleotide) were more than tenfold increased in cells treated with trans complexes compared with cells treated with cisplatin. The interaction of the complexes with DNA was studied in cell-free experiments with plasmid DNA (pUC19), in capillary zone electrophoresis with the DNA model 2-deoxyguanosine 5'-monophosphate, and in in vitro experiments showing the degree of DNA damage in the comet assay. Whereas incubation with cis compounds did not induce degradation of DNA, the trans complexes led to pronounced strand cleavage.
Collapse
Affiliation(s)
- Caroline Bartel
- Institute of Inorganic Chemistry, University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Alberto ME, Cosentino C, Russo N. Hydrolysis mechanism of anticancer Pd(II) complexes with coumarin derivatives: a theoretical investigation. Struct Chem 2011. [DOI: 10.1007/s11224-011-9927-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Thermodynamic stability and energetics of DNA duplexes containing major intrastrand cross-links of second-generation antitumor dinuclear PtII complexes. J Biol Inorg Chem 2011; 17:187-96. [DOI: 10.1007/s00775-011-0841-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/21/2011] [Indexed: 01/04/2023]
|
39
|
Li C, Huang R, Ding Y, Sletten E, Arnesano F, Losacco M, Natile G, Liu Y. Effect of thioethers on DNA platination by trans-platinum complexes. Inorg Chem 2011; 50:8168-76. [PMID: 21812429 DOI: 10.1021/ic200637t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing evidence indicates that sulfur-containing molecules can play important roles in the activity of platinum anticancer drugs. Although nuclear DNA is retained to be the ultimate target, these platinum compounds can readily react with a variety of other substrates containing a soft donor atom, such as proteins, peptides, and low molecular weight biomolecules, before reaching DNA. In a recent study it was demonstrated that the DNA platination rate of a trans-geometry antitumor drug was dramatically enhanced by methionine binding, thus suggesting that the thioether could serve as a catalyst for DNA platination. In this work we performed detailed studies on the reactions of a widely investigated and very promising trans-platinum complex having two iminoethers and two chlorido ligands, trans-EE, with methionine (Met) and guanosine 5'-monophosphate (GMP). The results show that in the reaction of trans-EE with methionine the bisadduct is the dominant species in the early stage of the reaction. The reaction is also influenced by chloride concentration: at low NaCl the bis-methionine adduct is formed in preference, whereas the monoadduct is favored at high NaCl concentration. Not only the monomethionine complex, trans-PtCl(E-iminoether)(2)(AcMet), but also the bis-methionine adduct, trans-Pt(E-iminoether)(2)(AcMet)(2), which has already lost both leaving chlorides, can react with GMP to form the ternary platinum complex trans-Pt(E-iminoether)(2)(AcMet)(GMP). The latter reaction discloses the possibility of direct coordination to DNA of a platinum-protein adduct, in which the two carrier ligands remain intact; this is not the case of cis-oriented platinum complexes, like cisplatin, for which formation of a ternary complex is usually accompanied by loss of at least one carrier ligand. Interestingly, isomerization from S to N coordination of one methionine takes place in the bis-methionine complex at neutral pH, while the monoadduct appears to be stable. The shift from S to N coordination of one methionine in the trans-bis-methionine adduct can easily account for the obtainment of the cis isomer in the bis-chelated Pt(Met-S,N)(2) end product.
Collapse
Affiliation(s)
- Chan Li
- Department of Chemistry, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ide H, Shoulkamy MI, Nakano T, Miyamoto-Matsubara M, Salem AMH. Repair and biochemical effects of DNA-protein crosslinks. Mutat Res 2011; 711:113-122. [PMID: 21185846 DOI: 10.1016/j.mrfmmm.2010.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/11/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
Genomic DNA is associated with various structural, regulatory, and transaction proteins. The dynamic and reversible association between proteins and DNA ensures the accurate expression and propagation of genetic information. However, various endogenous, environmental, and chemotherapeutic agents induce DNA-protein crosslinks (DPCs), and hence covalently trap proteins on DNA. Since DPCs are extremely large compared to conventional DNA lesions, they probably impair many aspects of DNA transactions such as replication, transcription, and repair due to steric hindrance. Recent genetic and biochemical studies have shed light on the elaborate molecular mechanism by which cells repair or tolerate DPCs. This review summarizes the current knowledge regarding the repair and biochemical effects of the most ubiquitous form of DPCs, which are associated with no flanked DNA strand breaks. In bacteria small DPCs are eliminated by nucleotide excision repair (NER), whereas oversized DPCs are processed by RecBCD-dependent homologous recombination (HR). NER does not participate in the repair of DPCs in mammalian cells, since the upper size limit of DPCs amenable to mammalian NER is smaller than that of bacterial NER. Thus, DPCs are processed exclusively by HR. The reactivation of the stalled replication fork at DPCs by HR seems to involve fork breakage in mammalian cells but not in bacterial cells. In addition, recent proteomic studies have identified the numbers of proteins in DPCs induced by environmental and chemotherapeutic agents. However, it remains largely elusive how DPCs affect replication and transcription at the molecular level. Considering the extremely large nature of DPCs, it is possible that they impede the progression of replication and transcription machineries by mechanisms different from those for conventional DNA lesions. This might also be true for the DNA damage response and signaling mechanism.
Collapse
Affiliation(s)
- Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | | | | | | | | |
Collapse
|
41
|
Michelin RA, Sgarbossa P, Sbovata SM, Gandin V, Marzano C, Bertani R. Chemistry and biological activity of platinum amidine complexes. ChemMedChem 2011; 6:1172-83. [PMID: 21630470 DOI: 10.1002/cmdc.201100150] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/26/2011] [Indexed: 01/06/2023]
Abstract
Platinum amidine complexes represent a new class of potential antitumor drugs that contain the imino moiety HN=C(sp(2)) bonded to the platinum center. They can be related to the iminoether derivatives, which were recently shown to be the first Pt(II) compounds with a trans configuration endowed with anticancer activity. The chemical and biological properties of platinum amidine complexes, and more generally of platinum imino derivatives, can be rationally modified through suitable synthetic procedures with the aim of improving their cytotoxicity and antitumor activity. The addition of protic nucleophiles to nitriles coordinated to platinum in various oxidation states can offer a wide variety of complexes with chemical, structural, and physical properties specifically tuned for a more efficacious biological response.
Collapse
Affiliation(s)
- Rino A Michelin
- Department of Chemical Processes of Engineering, Padova University, Via F. Marzolo 9, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Alberto ME, Russo N. Methionineligand selectively promotes monofunctional adducts between trans-EE platinum anticancer drug and guanine DNA base. Chem Commun (Camb) 2011; 47:887-9. [DOI: 10.1039/c0cc03605f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Marzano C, Mazzega Sbovata S, Gandin V, Colavito D, Del Giudice E, Michelin RA, Venzo A, Seraglia R, Benetollo F, Schiavon M, Bertani R. A new class of antitumor trans-amine-amidine-Pt(II) cationic complexes: influence of chemical structure and solvent on in vitro and in vivo tumor cell proliferation. J Med Chem 2010; 53:6210-27. [PMID: 20681543 DOI: 10.1021/jm1006534] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of cyclopropylamine, cyclopentylamine, and cyclohexylamine with trans-[PtCl2(NCMe)2] afforded the bis-cationic complexes trans-[Pt(amine)2(Z-amidine)2]2+[Cl-]2, 1-3. The solution behavior and biological activity have been studied in different solvents (DMSO, water, polyethylene glycol (PEG 400), and polyethylene glycol dimethyl ether (PEG-DME 500)). The biological activity was strongly influenced by the cycloaliphatic amine ring size, with trans-[Pt(NH2CH(CH2)4CH2)2{N(H) horizontal lineC(CH3)N(H)CH(CH2)4CH2}2]2+[Cl-]2 (3) being the most active compound. Complex 3 overcame both cisplatin and MDR resistance, inducing cancer cell death through p53-mediated apoptosis. Alkaline single-cell gel electrophoresis experiments indicated direct DNA damage, reasonably attributable to DNA adducts of trans-[PtCl(amine)(Z-amidine)2][Cl] species, which can evolve to produce disruptive and nonrepairable lesions on DNA, thus leading to the drug-induced programmed cancer cell death. Preliminary in vivo antitumor studies on C57BL mice bearing Lewis lung carcinoma highlighted that complex 3 promoted a significant and dose-dependent tumor growth inhibition without adverse side effects.
Collapse
Affiliation(s)
- Cristina Marzano
- Department of Pharmaceutical Sciences, Universy of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Novakova O, Malina J, Suchankova T, Kasparkova J, Bugarcic T, Sadler PJ, Brabec V. Energetics, conformation, and recognition of DNA duplexes modified by monodentate Ru(II) complexes containing terphenyl arenes. Chemistry 2010; 16:5744-54. [PMID: 20376825 DOI: 10.1002/chem.200903078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the thermodynamic properties, conformation, and recognition of DNA duplexes site-specifically modified by monofunctional adducts of Ru(II) complexes of the type [Ru(II)(eta(6)-arene)(Cl)(en)](+), in which arene=para-, meta-, or ortho-terphenyl (complexes 1, 2, and 3, respectively) and en=1,2-diaminoethane. It has been shown (J. Med. Chem. 2008, 51, 5310) that 1 exhibits promising cytotoxic effects in human tumor cells, whereas 2 and 3 are much less cytotoxic; concomitantly with the high cytotoxicity of 1, its DNA binding mode involves combined intercalative and monofunctional (coordination) binding modes, whereas less cytotoxic compounds 2 and 3 bind to DNA only through a monofunctional coordination to DNA bases. An analysis of conformational distortions induced in DNA by adducts of 1 and 2 revealed more extensive and stronger distortion and concomitantly greater thermodynamic destabilization of DNA by the adducts of nonintercalating 2. Moreover, affinity of replication protein A to the DNA duplex containing adduct of 1 was pronouncedly lower than to the adduct of 2. On the other hand, another damaged-DNA-binding protein, xeroderma pigmentosum protein A, did not recognize the DNA adduct of 1 or 2. Importantly, the adducts of 1 induced a considerably lower level of repair synthesis than the adducts of 2, which suggests enhanced persistence of the adducts of the more potent and intercalating 1 in comparison with the adducts of the less potent and nonintercalating 2. Also interestingly, the adducts of 1 inhibited DNA polymerization more efficiently than the adducts of 2, and they could also be bypassed by DNA polymerases with greater difficulty. Results of the present work along with those previously published support the view that monodentate Ru(II) arene complexes belong to a class of anticancer agents for which structure-pharmacological relationships might be correlated with their DNA-binding modes.
Collapse
Affiliation(s)
- Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
45
|
Skander M, Retailleau P, Bourrié B, Schio L, Mailliet P, Marinetti A. N-Heterocyclic Carbene-Amine Pt(II) Complexes, a New Chemical Space for the Development of Platinum-Based Anticancer Drugs. J Med Chem 2010; 53:2146-54. [DOI: 10.1021/jm901693m] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myriem Skander
- Centre de Recherche de Gif, I.C.S.N., CNRS UPR 2301, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Centre de Recherche de Gif, I.C.S.N., CNRS UPR 2301, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Bernard Bourrié
- Sanofi-Aventis Recherche et Développement, Centre de Recherche de Vitry-Alfortville, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Laurent Schio
- Sanofi-Aventis Recherche et Développement, Centre de Recherche de Vitry-Alfortville, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Patrick Mailliet
- Sanofi-Aventis Recherche et Développement, Centre de Recherche de Vitry-Alfortville, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Angela Marinetti
- Centre de Recherche de Gif, I.C.S.N., CNRS UPR 2301, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
46
|
Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring Pt II chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand. Biochem Pharmacol 2010; 79:552-64. [PMID: 19782655 DOI: 10.1016/j.bcp.2009.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/28/2009] [Accepted: 09/18/2009] [Indexed: 12/20/2022]
Abstract
Earlier studies have described promising antitumor activity of a large-ring chelate complex [PtCl(2)(cis-1,4-DACH)] (DACH=diaminocyclohexane). Encouraging antitumor activity of this analogue of cisplatin prompted us to perform studies focused on the mechanistic basis of pharmacological effects of this complex. Four early steps in the mechanism of biological activity of cisplatin have been delineated: cell entry, reactions with sulfur-containing compounds, platinum-DNA binding along with processing platinated DNA by proteins (enzymes) and DNA repair. Here, we describe comparative experiments (involving also cisplatin) revealing: (i) improved cytotoxicity (3.4-5.4-fold) of [PtCl(2)(cis-1,4-DACH)] in human tumor ovarian cell lines; (ii) enhanced cellular uptake (approximately 1.5-fold) of [PtCl(2)(cis-1,4-DACH)]; (iii) somewhat enhanced rate of reactions of [PtCl(2)(cis-1,4-DACH)] with glutathione (approximately 1.5-fold), but a similar rate of reactions with metallothionenin-2; (iv) enhanced rate of DNA binding of [PtCl(2)(cis-1,4-DACH)] in cell-free media (approximately 2-fold); (v) similar sequence preference of DNA binding of [PtCl(2)(cis-1,4-DACH)] in cell-free media; (vi) identical DNA interstrand cross-linking efficiency (6%); (vii) similar bending (32 degrees) and enhanced local unwinding (approximately 1.5-fold) induced in DNA by the major 1,2-GG-intrastrand cross-link; (viii) markedly enhanced inhibiting effects of DNA adducts of [PtCl(2)(cis-1,4-DACH)] on processivity of DNA polymerase; and (ix) a slightly lower efficiency of DNA repair systems to remove the adducts of [PtCl(2)(cis-1,4-DACH)] from DNA.
Collapse
|
47
|
Li C, Li Z, Sletten E, Arnesano F, Losacco M, Natile G, Liu Y. Methionine Can Favor DNA Platination bytrans-Coordinated Platinum Antitumor Drugs. Angew Chem Int Ed Engl 2009; 48:8497-500. [DOI: 10.1002/anie.200902948] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Li C, Li Z, Sletten E, Arnesano F, Losacco M, Natile G, Liu Y. Methionine Can Favor DNA Platination bytrans-Coordinated Platinum Antitumor Drugs. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Nakano T, Katafuchi A, Matsubara M, Terato H, Tsuboi T, Masuda T, Tatsumoto T, Pack SP, Makino K, Croteau DL, Van Houten B, Iijima K, Tauchi H, Ide H. Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells. J Biol Chem 2009; 284:27065-76. [PMID: 19674975 PMCID: PMC2785636 DOI: 10.1074/jbc.m109.019174] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/06/2009] [Indexed: 11/06/2022] Open
Abstract
DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. The steric hindrance imposed by cross-linked proteins (CLPs) will hamper DNA transactions, such as replication and transcription, posing an enormous threat to cells. In bacteria, DPCs with small CLPs are eliminated by nucleotide excision repair (NER), whereas oversized DPCs are processed exclusively by RecBCD-dependent homologous recombination (HR). Here we have assessed the roles of NER and HR for DPCs in mammalian cells. We show that the upper size limit of CLPs amenable to mammalian NER is relatively small (8-10 kDa) so that NER cannot participate in the repair of chromosomal DPCs in mammalian cells. Moreover, CLPs are not polyubiquitinated and hence are not subjected to proteasomal degradation prior to NER. In contrast, HR constitutes the major pathway in tolerance of DPCs as judged from cell survival and RAD51 and gamma-H2AX nuclear foci formation. Induction of DPCs results in the accumulation of DNA double strand breaks in HR-deficient but not HR-proficient cells, suggesting that fork breakage at the DPC site initiates HR and reactivates the stalled fork. DPCs activate both ATR and ATM damage response pathways, but there is a time lag between two responses. These results highlight the differential involvement of NER in the repair of DPCs in bacterial and mammalian cells and demonstrate the versatile and conserved role of HR in tolerance of DPCs among species.
Collapse
Affiliation(s)
- Toshiaki Nakano
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsushi Katafuchi
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Mayumi Matsubara
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Terato
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomohiro Tsuboi
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tasuku Masuda
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takahiro Tatsumoto
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Seung Pil Pack
- the Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, Korea
| | - Keisuke Makino
- the Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Deborah L. Croteau
- the Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Bennett Van Houten
- the Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Kenta Iijima
- the **Department of Environmental Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Tauchi
- the **Department of Environmental Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Ide
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
50
|
Synthesis, characterization, DNA interaction studies and anticancer activity of platinum–clotrimazole complexes. TRANSIT METAL CHEM 2009. [DOI: 10.1007/s11243-009-9276-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|