1
|
Rivera M, Ayon OS, Diaconescu-Grabari S, Pottel J, Moitessier N, Mittermaier A, McKeague M. A sensitive and scalable fluorescence anisotropy single stranded RNA targeting approach for monitoring riboswitch conformational states. Nucleic Acids Res 2024; 52:3164-3179. [PMID: 38375901 PMCID: PMC11014391 DOI: 10.1093/nar/gkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
The capacity of riboswitches to undergo conformational changes in response to binding their native ligands is closely tied to their functional roles and is an attractive target for antimicrobial drug design. Here, we established a probe-based fluorescence anisotropy assay to monitor riboswitch conformational switching with high sensitivity and throughput. Using the Bacillus subtillis yitJ S-Box (SAM-I), Fusobacterium nucleatum impX RFN element of (FMN) and class-I cyclic-di-GMP from Vibrio cholerae riboswitches as model systems, we developed short fluorescent DNA probes that specifically recognize either ligand-free or -bound riboswitch conformational states. We showed that increasing concentrations of native ligands cause measurable and reproducible changes in fluorescence anisotropy that correlate with riboswitch conformational changes observed by native gel analysis. Furthermore, we applied our assay to several ligand analogues and confirmed that it can discriminate between ligands that bind, triggering the native conformational change, from those that bind without causing the conformational change. This new platform opens the possibility of high-throughput screening compound libraries to identify potential new antibiotics that specifically target functional conformational changes in riboswitches.
Collapse
Affiliation(s)
- Maira Rivera
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | - Omma S Ayon
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - Joshua Pottel
- Molecular Forecaster Inc. 910-2075 Robert Bourassa, Montreal, QC H3A 2L1, Canada
| | - Nicolas Moitessier
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Molecular Forecaster Inc. 910-2075 Robert Bourassa, Montreal, QC H3A 2L1, Canada
| | - Anthony Mittermaier
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
2
|
Torres-Vázquez B, María de Lucas A, García-Crespo C, Antonio García-Martín J, Fragoso A, Fernández-Algar M, Perales C, Domingo E, Moreno M, Briones C. In vitro selection of high affinity DNA and RNA aptamers that detect hepatitis C virus core protein of genotypes 1 to 4 and inhibit virus production in cell culture. J Mol Biol 2022; 434:167501. [DOI: 10.1016/j.jmb.2022.167501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
3
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
4
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
5
|
Zeng D, Qiu C, Shen Y, Hou J, Li Z, Zhang J, Liu S, Shang J, Qin W, Xu L, Bao X. An innovative protein expression system using RNA polymerase I for large-scale screening of high-nucleic-acid content Saccharomyces cerevisiae strains. Microb Biotechnol 2020; 13:2008-2019. [PMID: 32854170 PMCID: PMC7533336 DOI: 10.1111/1751-7915.13653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/19/2020] [Accepted: 08/01/2020] [Indexed: 01/05/2023] Open
Abstract
Saccharomyces cerevisiae is the preferred source of RNA derivatives, which are widely used as supplements for foods and pharmaceuticals. As the most abundant RNAs, the ribosomal RNAs (rRNAs) transcribed by RNA polymerase I (Pol I) have no 5' caps, thus cannot be translated to proteins. To screen high-nucleic-acid content yeasts more efficiently, a cap-independent protein expression system mediated by Pol I has been designed and established to monitor the regulatory changes of rRNA synthesis by observing the variation in the reporter genes expression. The elements including Pol I-recognized rDNA promoter, the internal ribosome entry site from cricket paralytic virus which can recruit ribosomes internally, reporter genes (URA3 and yEGFP3), oligo-dT and an rDNA terminator were ligated to a yeast episomal plasmid. This system based on the URA3 gene worked well by observing the growth phenotype and did not require the disruption of cap-dependent initiation factors. The fluorescence intensity of strains expressing the yEGFP3 gene increased and drifted after mutagenesis. Combined with flow cytometry, cells with higher GFP level were sorted out. A strain showed 58% improvement in RNA content and exhibited no sequence alteration in the whole expression cassette introduced. This study provides a novel strategy for breeding high-nucleic-acid content yeasts.
Collapse
Affiliation(s)
- Duwen Zeng
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
| | - Chenxi Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Zailu Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
| | - Jixiang Zhang
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Shuai Liu
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Jianli Shang
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Wensheng Qin
- Department of BiologyLakehead University955 Oliver RoadThunder BayONP7B 5E1Canada
| | - Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| |
Collapse
|
6
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
7
|
Rivas-Aravena A, Muñoz P, Jorquera P, Diaz A, Reinoso C, González-Catrilelbún S, Sandino AM. Study of RNA-A Initiation Translation of The Infectious Pancreatic Necrosis Virus. Virus Res 2017; 240:121-129. [PMID: 28743463 DOI: 10.1016/j.virusres.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 01/24/2023]
Abstract
The infectious pancreatic necrosis virus (IPNV) is a salmonid pathogen that causes significant economic losses to the aquaculture industry. IPNV is a non-enveloped virus containing two uncapped and non-polyadenylated double strand RNA genomic segments, RNA-A and RNA-B. The viral protein Vpg is covalently attached to the 5' end of both segments. There is little knowledge about its viral cycle, particularly about the translation of the RNAs. Through experiments using mono and bicistronic reporters, in this work we show that the 120-nucleotide-long 5'-UTR of RNA-A contains an internal ribosome entry site (IRES) that functions efficiently both in vitro and in salmon cells. IRES activity is strongly dependent on temperature. Also, the IRES structure is confined to the 5'UTR and is not affected by the viral coding sequence. This is the first report of IRES activity in a fish virus and can give us tools to generate antivirals to attack the virus without affecting fish directly.
Collapse
Affiliation(s)
- Andrea Rivas-Aravena
- Comisión Chilena de Energía Nuclear, Departamento de Aplicaciones Nucleares, Laboratorio de Radiobiología Celular y Molecular. Nueva Bilbao 12501, Las Condes, Santiago, Chile; Universidad San Sebastián, Facultad de Ciencias, Lota 2465, Providencia, Santiago, Chile.
| | - Patricio Muñoz
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Patricia Jorquera
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Alvaro Diaz
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Claudia Reinoso
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Sebastián González-Catrilelbún
- Comisión Chilena de Energía Nuclear, Departamento de Aplicaciones Nucleares, Laboratorio de Radiobiología Celular y Molecular. Nueva Bilbao 12501, Las Condes, Santiago, Chile; Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile
| | - Ana María Sandino
- Universidad de Santiago de Chile, Centro de Biotecnología Acuícola, Laboratorio de Virología,Av. Bernardo O'Higgins 3303, Estación Central, Santiago, Chile.
| |
Collapse
|
8
|
Phan A, Mailey K, Saeki J, Gu X, Schroeder SJ. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops. RNA (NEW YORK, N.Y.) 2017; 23:770-781. [PMID: 28213527 PMCID: PMC5393185 DOI: 10.1261/rna.059865.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/13/2017] [Indexed: 05/24/2023]
Abstract
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites.
Collapse
Affiliation(s)
- Andy Phan
- Department of Chemistry and Biochemistry
| | | | | | - Xiaobo Gu
- Department of Chemistry and Biochemistry
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Susan J Schroeder
- Department of Chemistry and Biochemistry
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
9
|
Safir Filho M, Martin AR, Benhida R. Assessment of new triplet forming artificial nucleobases as RNA ligands directed towards HCV IRES IIId loop. Bioorg Med Chem Lett 2017; 27:1780-1783. [PMID: 28274634 DOI: 10.1016/j.bmcl.2017.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022]
Abstract
We report the synthesis of two new artificial nucleobase scaffolds, 1 and 2, featuring adequate hydrogen bonding donors and acceptors for the molecular recognition of U:A and C:G base pairs, respectively. The tethering of these structures to various amino acids and the assessment of these artificial nucleobase-amino acid conjugates as RNA ligands against a model of HCV IRES IIId domain are also reported. Compound 1e displayed the highest affinity (Kd twice lower than neomycin - control). Moreover, it appears that this interaction is enthalpically and entropically favored.
Collapse
Affiliation(s)
- Mauro Safir Filho
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France; CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil
| | - Anthony R Martin
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France.
| |
Collapse
|
10
|
Mirian M, Khanahmad H, Darzi L, Salehi M, Sadeghi-Aliabadi H. Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Res Pharm Sci 2017; 12:88-98. [PMID: 28515761 PMCID: PMC5385733 DOI: 10.4103/1735-5362.202447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Viral hepatitis, as an international public health concern, seriously affects communities and health system. In recent years, great strides have been taken for development of new potential tools against viral hepatitis. Among these efforts, a valuable strategy introduced new molecules called “aptamers”. Aptamers as potential alternatives for antibodies could be directed against any protein in infected cells and any components of viral particles. In this review, we will focus on recent advances in the diagnosis and treatment of viral hepatitis based on aptamer technology. In recent years, various types of aptamers including RNA and DNA were introduced against viral hepatitis. Some of these aptamers can be utilized for early and precise diagnosis of hepatitis infections and other group selected as therapeutic tools against viral targets. Designing diagnostic and therapeutic platforms based on aptamer technology is a promising approach in viral infections. The obtained aptamers in the recent years showed obvious potential for use as diagnostic and therapeutic tools against viral hepatitis. Although some modifications to increase the biostability and half-life of aptamers are underway, it seems these molecules will be a favorable substitute for monoclonal antibody in near future.
Collapse
Affiliation(s)
- Mina Mirian
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Department of Pharmaceutical Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Leila Darzi
- Department of Pharmaceutical Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mansour Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Pharmaceutical Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
11
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:ph9040078. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
12
|
Borgia G, Maraolo AE, Buonomo AR, Scotto R, Gentile I. The therapeutic potential of new investigational hepatitis C virus translation inhibitors. Expert Opin Investig Drugs 2016; 25:1209-14. [PMID: 27537604 DOI: 10.1080/13543784.2016.1225036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis, hepatocellular carcinoma and liver-related death worldwide. Currently, the anti-HCV armamentarium encompasses several direct-acting antivirals (DAA) that achieve very high response rates and have an excellent tolerability profile. However, they do not represent a final solution for HCV global eradication for at least these two reasons: i) some patients harbour resistant strains to DAAs and cannot benefit from currently available treatments; ii) the cost of these drugs remains very high. AREAS COVERED This review summarizes pre-clinical and clinical data regarding HCV translation inhibitors, a new class of drugs currently in the pipeline with novel mechanisms of action. EXPERT OPINION The availability of DAAs resolved most issues related to HCV treatment compared with the previous interferon-based therapies. However, there are some patients that cannot achieve a viral clearance with currently available treatments. Therefore, there is still room for new drugs in this setting, providing that they demonstrate an advantage in terms of efficacy, safety, cost or or simplicity of use. Based on preliminary results, at least for some promising molecules (e.g. miravirsen and RG-101), studies on safety and efficacy on this intriguing class of drugs are needed.
Collapse
Affiliation(s)
- Guglielmo Borgia
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Alberto Enrico Maraolo
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Antonio Riccardo Buonomo
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Riccardo Scotto
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| | - Ivan Gentile
- a Department of Clinical Medicine and Surgery , University of Naples 'Federico II,' Naples , Italy
| |
Collapse
|
13
|
Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ, Lee SW. Pharmacokinetics of a Cholesterol-conjugated Aptamer Against the Hepatitis C Virus (HCV) NS5B Protein. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e254. [PMID: 26440598 PMCID: PMC4881758 DOI: 10.1038/mtna.2015.30] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is the major cause of progressive liver disease such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Previously, we reported that a 29 nucleotide-long 2'-F pyrimidine modified RNA aptamer against the HCV nonstructural protein 5B efficiently inhibited HCV replication and suppressed HCV infectious virus particle formation in a cell culture system. In this study, we modified this aptamer through conjugation of cholesterol for in vivo availability. This cholesterol-conjugated aptamer (chol-aptamer) efficiently entered the cell and inhibited HCV RNA replication, without any alteration in gene expression profiling including innate immune response-related genes. Moreover, systemic administration of the chol-aptamer was well tolerated without any abnormalities in mice. To evaluate the pharmacokinetics of the chol-aptamer in vivo, dose proportionality, bioavailability, and pharmacokinetic parameters were evaluated by noncompartmental analyses in normal BALB/c mice. Population analysis was performed using nonlinear mixed effects modeling. Moreover, the pharmacokinetics of two different routes (intravenous, IV, versus intraperitoneal, IP) were compared. Cholesterol conjugation showed dose proportionality, extended the time that the aptamer was in the plasma, and enhanced aptamer exposure to the body. Noticeably, the IV route was more suitable than the IP route due to the chol-aptamer remaining in the plasma for a longer period of time.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Korea
| | - Soo-Han Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Ji Hyun Kim
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Korea
| | - Yook-Hwan Noh
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, California, USA
| | - Gyu-Jeong Noh
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong-Wook Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Korea
| |
Collapse
|
14
|
Nawtaisong P, Fraser ME, Carter JR, Fraser MJ. Trans-splicing group I intron targeting hepatitis C virus IRES mediates cell death upon viral infection in Huh7.5 cells. Virology 2015; 481:223-34. [PMID: 25840398 DOI: 10.1016/j.virol.2015.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/25/2014] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
Abstract
The HCV-IRES sequence is vital for both protein translation and genome replication and serves as a potential target for anti-HCV therapy. We constructed a series of anti-HCV group I introns (αHCV-GrpIs) to attack conserved target sites within the HCV IRES. These αHCV-GrpIs were designed to mediate a trans-splicing reaction that replaces the viral RNA genome downstream of the 5' splice site with a 3' exon that encodes an apoptosis-inducing gene. Pro-active forms of the apoptosis inducing genes BID, Caspase 3, Caspase 8, or tBax were modified by incorporation of the HCV NS5A/5B cleavage sequence in place of their respective endogenous cleavage sites to ensure that only HCV infected cells would undergo apoptosis following splicing and expression. Huh7.5 cells transfected with each intron were challenged at MOI 0.1 with HCV-Jc1FLAG2 which expresses a Gaussia Luciferase (GLuc) marker. Virus-containing supernatants were then assayed for GLuc expression as a measure of viral replication inhibition. Cellular extracts were analyzed for the presence of correct splice products by RT-PCR and DNA sequencing. We also measured levels of Caspase 3 activity as a means of quantifying apoptotic cell death. Each of these αHCV-GrpI introns was able to correctly splice their 3' apoptotic exons onto the virus RNA genome at the targeted Uracil, and resulted in greater than 80% suppression of the GLuc marker. A more pronounced suppression effect was observed with TCID₅₀ virus titrations, which demonstrated that these αHCV-GrpIs were able to suppress viral replication by more than 2 logs, or greater than 99%. Robust activation of the apoptotic factor within the challenged cells was evidenced by a significant increase of Caspase 3 activity upon viral infection compared to non-challenged cells. This novel genetic intervention tool may prove beneficial in certain HCV subjects.
Collapse
Affiliation(s)
- Pruksa Nawtaisong
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Mark E Fraser
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - James R Carter
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Malcolm J Fraser
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
15
|
Aptamers in diagnostics and treatment of viral infections. Viruses 2015; 7:751-80. [PMID: 25690797 PMCID: PMC4353915 DOI: 10.3390/v7020751] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/13/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Aptamers are in vitro selected DNA or RNA molecules that are capable of binding a wide range of nucleic and non-nucleic acid molecules with high affinity and specificity. They have been conducted through the process known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment). It serves to reach specificity and considerable affinity to target molecules, including those of viral origin, both proteins and nucleic acids. Properties of aptamers allow detecting virus infected cells or viruses themselves and make them competitive to monoclonal antibodies. Specific aptamers can be used to interfere in each stage of the viral replication cycle and also inhibit its penetration into cells. Many current studies have reported possible application of aptamers as a treatment or diagnostic tool in viral infections, e.g., HIV (Human Immunodeficiency Virus), HBV (Hepatitis B Virus), HCV (Hepatitis C Virus), SARS (Severe Acute Respiratory Syndrome), H5N1 avian influenza and recently spread Ebola. This review presents current developments of using aptamers in the diagnostics and treatment of viral diseases.
Collapse
|
16
|
Kadioglu O, Malczyk AH, Greten HJ, Efferth T. Aptamers as a novel tool for diagnostics and therapy. Invest New Drugs 2015; 33:513-20. [PMID: 25637166 DOI: 10.1007/s10637-015-0213-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/21/2015] [Indexed: 11/27/2022]
Abstract
Aptamers are short single-stranded DNA or RNA oligonucleotides that are capable of binding small molecules, proteins, or nucleotides with high specificity. They show a stable conformation and high binding affinity for their target molecules. There are numerous applications for aptamers in biotechnology, molecular diagnostics and targeted therapy of diseases. Their production is cheap, and they generally display lower immunogenicity than monoclonal antibodies. In the present review, we give an introduction to the preparation of aptamers and provide examples for their use in biotechnology, diagnostics and therapy of diseases.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | | | | |
Collapse
|
17
|
Ohlmann T, Mengardi C, López-Lastra M. Translation initiation of the HIV-1 mRNA. ACTA ACUST UNITED AC 2014; 2:e960242. [PMID: 26779410 DOI: 10.4161/2169074x.2014.960242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
Abstract
Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation.
Collapse
Affiliation(s)
- Théophile Ohlmann
- CIRI; International Center for Infectiology Research; Université de Lyon; Lyon, France; Inserm; Lyon, France; Ecole Normale Supérieure de Lyon; Lyon, France; Université Lyon 1; Center International de Recherche en Infectiologie; Lyon, France; CNRS; Lyon, France
| | - Chloé Mengardi
- CIRI; International Center for Infectiology Research; Université de Lyon; Lyon, France; Inserm; Lyon, France; Ecole Normale Supérieure de Lyon; Lyon, France; Université Lyon 1; Center International de Recherche en Infectiologie; Lyon, France; CNRS; Lyon, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular; Instituto Milenio de Inmunología e Inmunoterapia; Centro de Investigaciones Médicas; Escuela de Medicina; Pontificia Universidad Católica de Chile ; Santiago, Chile
| |
Collapse
|
18
|
Szilágyi A, Kun Á, Szathmáry E. Local neutral networks help maintain inaccurately replicating ribozymes. PLoS One 2014; 9:e109987. [PMID: 25299454 PMCID: PMC4192543 DOI: 10.1371/journal.pone.0109987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/05/2014] [Indexed: 12/03/2022] Open
Abstract
The error threshold of replication limits the selectively maintainable genome size against recurrent deleterious mutations for most fitness landscapes. In the context of RNA replication a distinction between the genotypic and the phenotypic error threshold has been made; where the latter concerns the maintenance of secondary structure rather than sequence. RNA secondary structure is treated as a proxy for function. The phenotypic error threshold allows higher per digit mutation rates than its genotypic counterpart, and is known to increase with the frequency of neutral mutations in sequence space. Here we show that the degree of neutrality, i.e. the frequency of nearest-neighbour (one-step) neutral mutants is a remarkably accurate proxy for the overall frequency of such mutants in an experimentally verifiable formula for the phenotypic error threshold; this we achieve by the full numerical solution for the concentration of all sequences in mutation-selection balance up to length 16. We reinforce our previous result that currently known ribozymes could be selectively maintained by the accuracy known from the best available polymerase ribozymes. Furthermore, we show that in silico stabilizing selection can increase the mutational robustness of ribozymes due to the fact that they were produced by artificial directional selection in the first place. Our finding offers a better understanding of the error threshold and provides further insight into the plausibility of an ancient RNA world.
Collapse
Affiliation(s)
- András Szilágyi
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
19
|
Zhang Z, Zhang J, Pei X, Zhang Q, Lu B, Zhang X, Liu J. An aptamer targets HBV core protein and suppresses HBV replication in HepG2.2.15 cells. Int J Mol Med 2014; 34:1423-9. [PMID: 25174447 DOI: 10.3892/ijmm.2014.1908] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/11/2014] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV)-related hepatitis is a major health concern worldwide. As current anti-HBV therapies are limited, it is essential to develop new strategies. Aptamer, a newly developed adaptive molecule (single-strand DNA or RNA also known as nucleotide antibody), is a new strategy for clinical diagnosis and therapy due to its high affinity and specificity. In the present study, by systematic evolution of ligand by exponential enrichment (SELEX), aptamers were screened against the core protein of HBV (HBc) from a random ssDNA library. Quantitative PCR (qPCR) results showed that the binding proportions of the SELEX-enriched aptamer pools were increased with the SELEX rounds, until round seven. Thus, the pool of round seven was cloned. Following the sequence analysis of a total of 90 clones by Macaw software, five aptamer candidates were selected and their affinity to HBc was tested by dot blot. Apt.No.28, which had sequence replicates in the clones, was shown to have a high affinity. Furthermore, by agarose gel electrophoresis-capillary transfer-blotting and qPCR, Apt.No.28 was shown to inhibit the assembly of the nucleocapsid, reducing extracellular HBV DNA whose synthesis relied on the formation of the nucleocapsid, indicating its role in suppressing HBV replication. The results provided a new ideal targeting molecule and may facilitate the strategy for targeted therapy as well as drug development of HBV-related diseases.
Collapse
Affiliation(s)
- Zuowei Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiaoyu Pei
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Qi Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Bin Lu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiaojiao Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
20
|
Abstract
Aptamers targeted to HIV reverse transcriptase (RT) have been demonstrated to inhibit RT in biochemical assays and as in cell culture. However, methods employed to date to evaluate viral suppression utilize time-consuming serial passage of infectious HIV in aptamer-expressing stable cell lines. We have established a rapid, transfection-based assay system to effectively examine the inhibitory potential of anti-HIV RT aptamers expressed between two catalytically inactive hammerhead ribozymes. Our system can be altered and optimized for a variety of cloning schemes, and addition of sequences of interest to the cassette is simple and straightforward. When paired with methods to analyze aptamer RNA accumulation and localization in cells and as packaging into pseudotyped virions, the method has a very high level of success in predicting good inhibitors.
Collapse
|
21
|
Shasha C, Henley RY, Stoloff DH, Rynearson KD, Hermann T, Wanunu M. Nanopore-based conformational analysis of a viral RNA drug target. ACS NANO 2014; 8:6425-6430. [PMID: 24861167 PMCID: PMC4729693 DOI: 10.1021/nn501969r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanopores are single-molecule sensors that show exceptional promise as a biomolecular analysis tool by enabling label-free detection of small amounts of sample. In this paper, we demonstrate that nanopores are capable of detecting the conformation of an antiviral RNA drug target. The hepatitis C virus uses an internal ribosome entry site (IRES) motif in order to initiate translation by docking to ribosomes in its host cell. The IRES is therefore a viable and important drug target. Drug-induced changes to the conformation of the HCV IRES motif, from a bent to a straight conformation, have been shown to inhibit HCV replication. However, there is presently no straightforward method to analyze the effect of candidate small-molecule drugs on the RNA conformation. In this paper, we show that RNA translocation dynamics through a 3 nm diameter nanopore is conformation-sensitive by demonstrating a difference in transport times between bent and straight conformations of a short viral RNA motif. Detection is possible because bent RNA is stalled in the 3 nm pore, resulting in longer molecular dwell times than straight RNA. Control experiments show that binding of a weaker drug does not produce a conformational change, as consistent with independent fluorescence measurements. Nanopore measurements of RNA conformation can thus be useful for probing the structure of various RNA motifs, as well as structural changes to the RNA upon small-molecule binding.
Collapse
Affiliation(s)
- Carolyn Shasha
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Robert Y. Henley
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniel H. Stoloff
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kevin D. Rynearson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Meni Wanunu
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Romero-López C, Díaz-González R, Berzal-Herranz A. RNA Selection and EvolutionIn Vitro:Powerful Techniques for the Analysis and Identification of new Molecular Tools. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2007.10817461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
23
|
Lee CH, Kim JH, Lee SW. Prospects for nucleic acid-based therapeutics against hepatitis C virus. World J Gastroenterol 2013; 19:8949-8962. [PMID: 24379620 PMCID: PMC3870548 DOI: 10.3748/wjg.v19.i47.8949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.
Collapse
|
24
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
25
|
Dibrov SM, Parsons J, Carnevali M, Zhou S, Rynearson KD, Ding K, Garcia Sega E, Brunn ND, Boerneke MA, Castaldi MP, Hermann T. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J Med Chem 2013; 57:1694-707. [PMID: 24138284 DOI: 10.1021/jm401312n] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The internal ribosome entry site (IRES) in the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome initiates translation of the viral polyprotein precursor. The unique structure and high sequence conservation of the 5' UTR render the IRES RNA a potential target for the development of selective viral translation inhibitors. Here, we provide an overview of approaches to block HCV IRES function by nucleic acid, peptide, and small molecule ligands. Emphasis will be given to the IRES subdomain IIa, which currently is the most advanced target for small molecule inhibitors of HCV translation. The subdomain IIa behaves as an RNA conformational switch. Selective ligands act as translation inhibitors by locking the conformation of the RNA switch. We review synthetic procedures for inhibitors as well as structural and functional studies of the subdomain IIa target and its ligand complexes.
Collapse
Affiliation(s)
- Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Romero-López C, Berzal-Herranz A. Unmasking the information encoded as structural motifs of viral RNA genomes: a potential antiviral target. Rev Med Virol 2013; 23:340-54. [PMID: 23983005 PMCID: PMC7169113 DOI: 10.1002/rmv.1756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 02/05/2023]
Abstract
RNA viruses show enormous capacity to evolve and adapt to new cellular and molecular contexts, a consequence of mutations arising from errors made by viral RNA-dependent RNA polymerase during replication. Sequence variation must occur, however, without compromising functions essential for the completion of the viral cycle. RNA viruses are safeguarded in this respect by their genome carrying conserved information that does not code only for proteins but also for the formation of structurally conserved RNA domains that directly perform these critical functions. Functional RNA domains can interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. They are therefore potential targets for novel therapeutic strategies. This review summarises our knowledge of the functional RNA domains of human RNA viruses and examines the achievements made in the design of antiviral compounds that interfere with their folding and therefore their function.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, PTS Granada, Armilla, Granada, Spain
| | | |
Collapse
|
27
|
Kondratov IG, Khasnatinov MA, Potapova UV, Potapov VV, Levitskii SA, Leonova GN, Pavlenko EV, Solovarov IS, Denikina NN, Kulakova NV, Belikov SI. Obtaining aptamers to a fragment of surface protein E of tick-borne encephalitis virus. DOKL BIOCHEM BIOPHYS 2013; 448:19-21. [PMID: 23478980 DOI: 10.1134/s1607672913010067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Indexed: 11/23/2022]
Affiliation(s)
- I G Kondratov
- Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marton S, Romero-López C, Berzal-Herranz A. RNA aptamer-mediated interference of HCV replication by targeting the CRE-5BSL3.2 domain. J Viral Hepat 2013; 20:103-12. [PMID: 23301545 DOI: 10.1111/j.1365-2893.2012.01629.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA genome of hepatitis C virus (HCV) contains multiple conserved structural RNA domains that play key roles in essential viral processes. A conserved structural component within the 3' end of the region coding for viral RNA-dependent RNA polymerase (NS5B) has been characterized as a functional cis-acting replication element (CRE). This study reports the ability of two RNA aptamers, P-58 and P-78, to interfere with HCV replication by targeting the essential 5BSL3.2 domain within this CRE. Structure-probing assays showed the binding of the aptamers to the CRE results in a structural reorganization of the apical portion of the 5BSL3.2 stem-loop domain. This interfered with the binding of the NS5B protein to the CRE and induced a significant reduction in HCV replication (≈50%) in an autonomous subgenomic HCV replication system. These results highlight the potential of this CRE as a target for the development of anti-HCV therapies and underscore the potential of antiviral agents based on RNA aptamer molecules.
Collapse
Affiliation(s)
- S Marton
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | | | | |
Collapse
|
29
|
Martín ME, García-Hernández M, García-Recio EM, Gómez-Chacón GF, Sánchez-López M, González VM. DNA aptamers selectively target Leishmania infantum H2A protein. PLoS One 2013; 8:e78886. [PMID: 24205340 PMCID: PMC3804487 DOI: 10.1371/journal.pone.0078886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/16/2013] [Indexed: 02/08/2023] Open
Abstract
Parasites of the genus Leishmania produce leishmaniasis which affects millions people around the world. Understanding the molecular characteristics of the parasite can increase the knowledge about the mechanisms underlying disease development and progression. Thus, the study of the molecular features of histones has been considered of particular interest because Leishmania does not condense the chromatin during mitosis and, consequently, a different role for these proteins in the biology of the parasite can be expected. Furthermore, the sequence divergences in the amino and in the carboxy-terminal domains of the kinetoplastid core histones convert them in potential diagnostic and/or therapeutics targets. Aptamers are oligonucleotide ligands that are selected in vitro by their affinity and specificity for the target as a consequence of the particular tertiary structure that they are able to acquire depending on their sequence. Development of high-affinity molecules with the ability to recognize specifically Leishmania histones is essential for the progress of this kind of study. Two aptamers which specifically recognize Leishmania infantum H2A histone were cloned from a previously obtained ssDNA enriched population. These aptamers were sequenced and subjected to an in silico analysis. ELONA, slot blot and Western blot were performed to establish aptamer affinity and specificity for LiH2A histone and ELONA assays using peptides corresponding to overlapped sequences of LiH2A were made mapping the aptamers:LiH2A interaction. As "proofs of concept", aptamers were used to determine the number of parasites in an ELONA platform and to purify LiH2A from complex mixtures. The aptamers showed different secondary structures among them; however, both of them were able to recognize the same peptides located in a side of the protein. In addition, we demonstrate that these aptamers are useful for LiH2A identification and also may be of potential application as diagnostic system and as a laboratory tool with purification purpose.
Collapse
Affiliation(s)
- M. Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, Spain
| | | | - Eva M. García-Recio
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | - Víctor M. González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, Spain
- * E-mail:
| |
Collapse
|
30
|
Shetty S, Stefanovic S, Mihailescu MR. Hepatitis C virus RNA: molecular switches mediated by long-range RNA-RNA interactions? Nucleic Acids Res 2012; 41:2526-40. [PMID: 23275555 PMCID: PMC3575821 DOI: 10.1093/nar/gks1318] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multiple conserved structural cis-acting regulatory elements have been recognized both in the coding and untranslated regions (UTRs) of the hepatitis C virus (HCV) genome. For example, the cis-element 5BSL3.2 in the HCV-coding region has been predicted to use both its apical and internal loops to interact with the X RNA in the 3'-UTR, with the IIId domain in the 5'-UTR and with the Alt sequence in the coding region. Additionally, the X RNA region uses a palindromic sequence that overlaps the sequence required for the interaction with 5BSL3.2, to dimerize with another HCV genome. The ability of the 5BSL3.2 and X RNA regions to engage in multi-interactions suggests the existence of one or more molecular RNA switches which may regulate different steps of the HCV life cycle. In this study, we used biophysical methods to characterize the essential interactions of these HCV cis-elements at the molecular level. Our results indicate that X RNA interacts with 5BSL3.2 and another X RNA molecule by adopting two different conformations and that 5BSL3.2 engages simultaneously in kissing interactions using its apical and internal loops. Based on these results, we propose a mode of action for possible molecular switches involving the HCV RNA.
Collapse
Affiliation(s)
- Sumangala Shetty
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
31
|
Piñeiro D, Martinez-Salas E. RNA structural elements of hepatitis C virus controlling viral RNA translation and the implications for viral pathogenesis. Viruses 2012. [PMID: 23202462 PMCID: PMC3497050 DOI: 10.3390/v4102233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) genome multiplication requires the concerted action of the viral RNA, host factors and viral proteins. Recent studies have provided information about the requirement of specific viral RNA motifs that play an active role in the viral life cycle. RNA regulatory motifs controlling translation and replication of the viral RNA are mostly found at the 5' and 3' untranslated regions (UTRs). In particular, viral protein synthesis is under the control of the internal ribosome entry site (IRES) element, a complex RNA structure located at the 5'UTR that recruits the ribosomal subunits to the initiator codon. Accordingly, interfering with this RNA structural motif causes the abrogation of the viral cycle. In addition, RNA translation initiation is modulated by cellular factors, including miRNAs and RNA-binding proteins. Interestingly, a RNA structural motif located at the 3'end controls viral replication and establishes long-range RNA-RNA interactions with the 5'UTR, generating functional bridges between both ends on the viral genome. In this article, we review recent advances on virus-host interaction and translation control modulating viral gene expression in infected cells.
Collapse
Affiliation(s)
- David Piñeiro
- Centro de Biología Molecular Severo Ochoa, Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
32
|
Rational design of modular allosteric aptamer sensor for label-free protein detection. Biosens Bioelectron 2012; 39:44-50. [PMID: 22819625 DOI: 10.1016/j.bios.2012.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/10/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023]
Abstract
An aptamer can be redesigned to new functional molecules by conjugating with other oligonucleotides. However, it requires experimental trials to optimize the conjugating module with the sensitivity and selectivity toward a target. To reduce these efforts, we report rationally-designed modular allosteric aptamer sensor (MAAS), which is composed of coupled two aptamers and the regulator. For label-free protein detection, the protein-aptamer was conjugated with the malachite green (MG) aptamer for signaling. The MAAS additionally has the regulator domain which is designed to hybridize to a protein binding domain. The regulator makes MAAS to be inactive by destructing the original structure of the two aptamers. However, its conformation becomes active by dissociating the hybridization from the protein recognition signal, thereby inducing the binding of MG emitting the enhanced fluorescence. The design of regulator is based on the thermodynamic energy difference by the RNA conformational change and protein-aptamer affinity. Here we first demonstrated the MAAS for hepatitis C helicase and replicase. The target proteins were detected up to 250nM with minimized blank signals and displayed high specificities 10-fold greater than in non-specific proteins. The MAAS provides valuable tools that can be adapted to a wide range of configurations in bioanalytical applications.
Collapse
|
33
|
The 3'-terminal hexamer sequence of classical swine fever virus RNA plays a role in negatively regulating the IRES-mediated translation. PLoS One 2012; 7:e33764. [PMID: 22432046 PMCID: PMC3303849 DOI: 10.1371/journal.pone.0033764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/17/2012] [Indexed: 12/14/2022] Open
Abstract
The 3′ untranslated region (UTR) is usually involved in the switch of the translation and replication for a positive-sense RNA virus. To understand the 3′ UTR involved in an internal ribosome entry site (IRES)-mediated translation in Classical swine fever virus (CSFV), we first confirmed the predicted secondary structure (designated as SLI, SLII, SLIII, and SLIV) by enzymatic probing. Using a reporter assay in which the luciferase expression is under the control of CSFV 5′ and 3′ UTRs, we found that the 3′ UTR harbors the positive and negative regulatory elements for translational control. Unlike other stem loops, SLI acts as a repressor for expression of the reporter gene. The negative cis-acting element in SLI is further mapped to the very 3′-end hexamer CGGCCC sequence. Further, the CSFV IRES-mediated translation can be enhanced by the heterologous 3′-ends such as the poly(A) or the 3′ UTR of Hepatitis C virus (HCV). Interestingly, such an enhancement was repressed by flanking this hexamer to the end of poly(A) or HCV 3′ UTR. After sequence comparison and alignment, we have found that this hexamer sequence could hypothetically base pair with the sequence in the IRES IIId1, the 40 S ribosomal subunit binding site for the translational initiation, located at the 5′ UTR. In conclusion, we have found that the 3′-end terminal sequence can play a role in regulating the translation of CSFV.
Collapse
|
34
|
Romero-López C, Berzal-Herranz B, Gómez J, Berzal-Herranz A. An engineered inhibitor RNA that efficiently interferes with hepatitis C virus translation and replication. Antiviral Res 2012; 94:131-8. [PMID: 22426470 DOI: 10.1016/j.antiviral.2012.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/25/2012] [Accepted: 02/28/2012] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) translation is mediated by a highly conserved internal ribosome entry site (IRES), mainly located at the 5'untranslatable region (5'UTR) of the viral genome. Viral protein synthesis clearly differs from that used by most cellular mRNAs, rendering the IRES an attractive target for novel antiviral compounds. The engineering of RNA compounds is an effective strategy for targeting conserved functional regions in viral RNA genomes. The present work analyses the anti-HCV potential of HH363-24, an in vitro selected molecule composed of a catalytic RNA cleaving domain with an extension at the 3' end that acts as aptamer for the viral 5'UTR. The engineered HH363-24 efficiently cleaved the HCV genome and bound to the essential IIId domain of the IRES region. This action interfered with the proper assembly of the translationally active ribosomal particles 48S and 80S, likely leading to effective inhibition of the IRES function in a hepatic cell line. HH363-24 also efficiently reduced HCV RNA levels up to 70% in a subgenomic replicon system. These findings provide new insights into the development of potential therapeutic strategies based on RNA molecules targeting genomic RNA structural domains and highlight the feasibility of generating novel engineered RNAs as potent antiviral agents.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | | | | | | |
Collapse
|
35
|
Binning JM, Leung DW, Amarasinghe GK. Aptamers in virology: recent advances and challenges. Front Microbiol 2012; 3:29. [PMID: 22347221 PMCID: PMC3274758 DOI: 10.3389/fmicb.2012.00029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/17/2012] [Indexed: 01/23/2023] Open
Abstract
Aptamers generated from randomized libraries of nucleic acids have found utility in a wide variety of fields and in the clinic. Aptamers can be used to target both intracellular and extracellular components, including small molecules, proteins, cells, and viruses. With recent technological developments in stringent selection and rapid isolation strategies, it is likely that aptamers will continue to make an impact as useful tools and reagents. Although many recently developed aptamers are intended for use as therapeutic and diagnostic agents, use of aptamers for basic research, including target validation, remains an active area with high potential to impact our understanding of molecular mechanisms and for drug discovery. In this brief review, we will discuss recent aptamer discoveries, their potential role in structural virology, as well as challenges and future prospects.
Collapse
Affiliation(s)
- Jennifer M Binning
- Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
36
|
Marton S, Berzal-Herranz B, Garmendia E, Cueto FJ, Berzal-Herranz A. Anti-HCV RNA Aptamers Targeting the Genomic cis-Acting Replication Element. Pharmaceuticals (Basel) 2011; 5:49-60. [PMID: 24288042 PMCID: PMC3763624 DOI: 10.3390/ph5010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/15/2011] [Accepted: 12/22/2011] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) replication is dependent on the existence of several highly conserved functional genomic RNA domains. The cis-acting replication element (CRE), located within the 3' end of the NS5B coding region of the HCV genome, has been shown essential for efficient viral replication. Its sequence and structural features determine its involvement in functional interactions with viral RNA-dependent RNA polymerase and distant RNA domains of the viral genome. This work reports the use of an in vitro selection strategy to select aptamer RNA molecules against the complete HCV-CRE. After six selection cycles, five potential target sites were identified within this domain. Inhibition assays using a sample of representative aptamers showed that the selected RNAs significantly inhibit the replication (>80%) of a subgenomic HCV replicon in Huh-7 cell cultures. These results highlight the potential of aptamer RNA molecules as therapeutic antiviral agents.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, P.T. Ciencias de la Salud, Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Hepatitis C viral protein translation occurs in a cap-independent manner through the use of an internal ribosomal entry site (IRES) present within the viral 5'-untranslated region. The IRES is composed of highly conserved structural domains that directly recruit the 40S ribosomal subunit to the viral genomic RNA. This frees the virus from relying on a large number of translation initiation factors that are required for cap-dependent translation, conferring a selective advantage to the virus especially in times when the availability of such factors is low. Although the mechanism of translation initiation on the Hepatitis C virus (HCV) IRES is well established, modulation of the HCV IRES activity by both cellular and viral factors is not well understood. As the IRES is essential in the HCV life cycle and as such remains well conserved in an otherwise highly heterogenic virus, the process of HCV protein translation represents an attractive target in the development of novel antivirals. This review will focus on the mechanisms of HCV protein translation and how this process is postulated to be modulated by cis-acting viral factors, as well as trans-acting viral and cellular factors. Numerous therapeutic approaches investigated in targeting HCV protein translation for the development of novel antivirals will also be discussed.
Collapse
Affiliation(s)
- Brett Hoffman
- Vaccine and Infectious Disease Organization/International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
38
|
Gieseler RK, Marquitan G, Schlattjan M, Sowa JP, Bechmann LP, Timm J, Roggendorf M, Gerken G, Friedman SL, Canbay A. Hepatocyte apoptotic bodies encasing nonstructural HCV proteins amplify hepatic stellate cell activation: implications for chronic hepatitis C. J Viral Hepat 2011; 18:760-7. [PMID: 20723040 PMCID: PMC2995835 DOI: 10.1111/j.1365-2893.2010.01362.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chronic hepatitis C infection leads to increased hepatocyte apoptosis. Because engulfment of apoptotic bodies (ABs) by hepatic stellate cells (HSC) is profibrogenic, we compared the effects of ABs derived from hepatitis C virus (HCV)-negative vs HCV-infected (Con1+) Huh7 hepatoblastoma cells on fibrogenic and activation-related mRNA expression by a human HSC line (LX2). Uptake of Huh7(Con1+) ABs by LX2 cells dose dependently upregulated profibrotic genes (COL1A1, TGFB1; TIMP1; TIMP2). When normalized to the apoptotic cytokeratin-18 M30 neoepitope, HCV(+) ABs exhibited a more pronounced effect than HCV(-) ABs. In contrast, neither noningested ABs nor nucleic acids obtained from Huh7, Huh7(Con1+) or HepG2 cells triggered those AB-dependent effects. Both the engulfment of Huh7(Con1+) ABs and their effects were partially blocked by masking of phosphatidylserine with annexin V and completely inhibited by the class-A scavenger receptor ligand, polyinosinic acid. Our findings demonstrate that AB uptake stimulates HSCs and indicate that HCV infection leads to amplified fibrogenic mRNA expression and enhanced HSC activation.
Collapse
Affiliation(s)
- Robert K. Gieseler
- Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany, Division of R&D, Rodos BioTarget GmbH, Medical Park Hannover, Hannover, Germany
| | - Guido Marquitan
- Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany, Division of R&D, Rodos BioTarget GmbH, Medical Park Hannover, Hannover, Germany
| | - Martin Schlattjan
- Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany
| | - Jan-Peter Sowa
- Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany
| | - Lars P. Bechmann
- Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany, Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY, USA
| | - Jörg Timm
- Department of Virology, University Hospital, Essen, Germany
| | | | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany
| | - Scott L. Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY, USA
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany
| |
Collapse
|
39
|
Konno K, Iizuka M, Fujita S, Nishikawa S, Hasegawa T, Fukuda K. An RNA aptamer containing two binding sites against the HCV minus-IRES domain I. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:185-202. [PMID: 21491328 DOI: 10.1080/15257770.2011.562475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The higher order structure of HCV (-)IRES containing five stem-loop structures (domain I) is essential for HCV replication because the viral RNA-dependent RNA polymerase, NS5B, recognizes it as the initiation site for plus-strand synthesis. To inhibit a de novo synthesis of plus-strand RNA molecules, in vitro selection against (-)IRES domain I was performed. One of the obtained aptamers, AP30, contained two consensus sequences within a random sequence region. Two consensus sequences form two apical loops and mutational analysis showed that both sequences were essential for binding to the target and for inhibiting NS5B-mediated RNA synthesis in vitro.
Collapse
Affiliation(s)
- Keisuke Konno
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Oligomeric nucleic acids as antivirals. Molecules 2011; 16:1271-96. [PMID: 21278679 PMCID: PMC6259927 DOI: 10.3390/molecules16021271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/12/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023] Open
Abstract
Based on the natural functions and chemical characteristics of nucleic acids, a variety of novel synthetic drugs and tools to explore biological systems have become available in recent years. To date, a great number of antisense oligonucleotides, RNA interference-based tools, CpG-containing oligonucleotides, catalytic oligonucleotides, decoys and aptamers has been produced synthetically and applied successfully for understanding and manipulating biological processes and in clinical trials to treat a variety of diseases. Their versatility and potency make them equally suited candidates for fighting viral infections. Here, we describe the different types of nucleic acid-based antivirals, their mechanism of action, their advantages and limitations, and their future prospects.
Collapse
|
41
|
Davis DR, Seth PP. Therapeutic targeting of HCV internal ribosomal entry site RNA. Antivir Chem Chemother 2011; 21:117-28. [PMID: 21233533 DOI: 10.3851/imp1693] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HCV infection is a significant human disease, leading to liver cirrhosis and cancer, and killing >10,000 people in the US annually. Translation of the viral RNA genome is initiated by ribosomal binding to a highly structured RNA element, the internal ribosomal entry site (IRES), which presents a novel target for therapeutic intervention. We will first discuss studies of oligonucleotide therapeutics targeting various regions of the 340-nucleotide IRES, many of which have effectively blocked IRES function in vitro and are active against virus replication in cell culture. Although low nanomolar potencies have been obtained for DNA- and RNA-based molecules, stability and drug delivery challenges remain to be addressed for these particular HCV compounds. Several classes of small molecule inhibitors have been identified from screening protocols or designed from established RNA therapeutic scaffolds. In particular, small molecule IRES inhibitors based on a benzimidazole scaffold bind specifically to the IRES, and inhibit viral replication in cell culture at micromolar concentrations with low toxicity. The structure of the RNA target in complex with a representative member of these small molecule inhibitors demonstrates that a large RNA conformational change occurs upon inhibitor binding. The RNA complex shows how the inhibitor alters the global RNA structure and provides a framework for structure-based drug design of novel HCV therapeutics.
Collapse
Affiliation(s)
- Darrell R Davis
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
| | | |
Collapse
|
42
|
López-Lastra M, Ramdohr P, Letelier A, Vallejos M, Vera-Otarola J, Valiente-Echeverría F. Translation initiation of viral mRNAs. Rev Med Virol 2010; 20:177-95. [PMID: 20440748 PMCID: PMC7169124 DOI: 10.1002/rmv.649] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Viruses depend on cells for their replication but have evolved mechanisms to achieve this in an efficient and, in some instances, a cell‐type‐specific manner. The expression of viral proteins is frequently subject to translational control. The dominant target of such control is the initiation step of protein synthesis. Indeed, during the early stages of infection, viral mRNAs must compete with their host counterparts for the protein synthetic machinery, especially for the limited pool of eukaryotic translation initiation factors (eIFs) that mediate the recruitment of ribosomes to both viral and cellular mRNAs. To circumvent this competition viruses use diverse strategies so that ribosomes can be recruited selectively to viral mRNAs. In this review we focus on the initiation of protein synthesis and outline some of the strategies used by viruses to ensure efficient translation initiation of their mRNAs. Copyright © 2010 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
43
|
Marton S, Reyes-Darias JA, Sánchez-Luque FJ, Romero-López C, Berzal-Herranz A. In vitro and ex vivo selection procedures for identifying potentially therapeutic DNA and RNA molecules. Molecules 2010; 15:4610-38. [PMID: 20657381 PMCID: PMC6257598 DOI: 10.3390/molecules15074610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 02/05/2023] Open
Abstract
It was only relatively recently discovered that nucleic acids participate in a variety of biological functions, besides the storage and transmission of genetic information. Quite apart from the nucleotide sequence, it is now clear that the structure of a nucleic acid plays an essential role in its functionality, enabling catalysis and specific binding reactions. In vitro selection and evolution strategies have been extremely useful in the analysis of functional RNA and DNA molecules, helping to expand our knowledge of their functional repertoire and to identify and optimize DNA and RNA molecules with potential therapeutic and diagnostic applications. The great progress made in this field has prompted the development of ex vivo methods for selecting functional nucleic acids in the cellular environment. This review summarizes the most important and most recent applications of in vitro and ex vivo selection strategies aimed at exploring the therapeutic potential of nucleic acids.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, P.T. Ciencias de la Salud, Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain.
| | | | | | | | | |
Collapse
|
44
|
Ayel E, Escudé C. In vitro selection of oligonucleotides that bind double-stranded DNA in the presence of triplex-stabilizing agents. Nucleic Acids Res 2010; 38:e31. [PMID: 20007154 PMCID: PMC2836567 DOI: 10.1093/nar/gkp1139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A SELEX approach has been developed in order to select oligonucleotides that bind double-stranded DNA in the presence of a triplex-stabilizing agent, and was applied to a target sequence containing an oligopurine-oligopyrimidine stretch. After only seven rounds of selection, the process led to the identification of oligonucleotides that were able to form triple helices within the antiparallel motif. Inspection of the selected sequences revealed that, contrary to GC base pair which were always recognized by guanines, recognition of AT base pair could be achieved by either adenine or thymine, depending on the sequence context. While thymines are strongly preferred for several positions, some others can accommodate the presence of adenines. These results contribute to set the rules for designing oligonucleotides that form stable triple helices in the presence of triplex-stabilizing agents at physiological pH. They set the basis for further experiments regarding extension of potential target sequences for triple-helix formation or recognition of ligand-DNA complexes.
Collapse
Affiliation(s)
- Elodie Ayel
- CNRS UMR 7196, Muséum National d'Histoire Naturelle, INSERM U 565, Case Postale 26, 43 rue Cuvier, Cedex 05, 75005 Paris, France
| | | |
Collapse
|
45
|
Sivaprakasam K, Pagán OR, Hess GP. Minimal RNA aptamer sequences that can inhibit or alleviate noncompetitive inhibition of the muscle-type nicotinic acetylcholine receptor. J Membr Biol 2010; 233:1-12. [PMID: 20049590 DOI: 10.1007/s00232-009-9215-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 10/16/2009] [Indexed: 11/29/2022]
Abstract
Combinatorially synthesized nucleotide polymers have been used during the last decade to find ligands that bind to specific sites on biological molecules, including membrane-bound proteins such as the nicotinic acetylcholine receptors (nAChRs). The neurotransmitter receptors belong to a group of four structurally related proteins that regulate signal transmission between ~10(11) neurons of the mammalian nervous system. The nAChRs are inhibited by compounds such as the anticonvulsant MK-801 [(+)-dizocilpine] and abused drugs such as cocaine. Based on predictions arising from the mechanism of receptor inhibition by MK-801 and cocaine, we developed two classes of RNA aptamers: class I members, which inhibit the nAChR, and class II members, which alleviate inhibition of the receptor by MK-801 and cocaine. The systematic evolution of ligands by the exponential enrichment (SELEX) method was used to obtain these compounds. Here, we report that we have truncated RNA aptamers in each class to determine the minimal nucleic acid sequence that retains the characteristic function for which the aptamer was originally selected. We demonstrate that a truncated class I aptamer containing a sequence of seven nucleotides inhibits the nAChR and that a truncated class II aptamer containing a sequence of only four nucleotides can alleviate MK-801 inhibition.
Collapse
Affiliation(s)
- Kannan Sivaprakasam
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
46
|
Abstract
The current standard of care for the treatment of hepatitis C virus infection, pegylated interferon-alpha and ribavirin, is costly, associated with significant side effects, and effective in only 50% of patients. There is therefore a need for the development of novel antiviral therapies. One such approach involves the application of gene silencing technologies, including antisense oligonucleotides, ribozymes, RNA interference, and aptamers. However, despite great scientific advances over the past decade, and promising in vitro data, several significant challenges continue to limit the translation of this technology to the clinical setting. This review provides a concise update of the current literature.
Collapse
Affiliation(s)
- Alexander J V Thompson
- Division of Gastroenterology/Hepatology, Duke Clinical Research Institute, Duke University, Durham, NC 27715, USA
| | | |
Collapse
|
47
|
Nishikawa F, Murakami K, Matsugami A, Katahira M, Nishikawa S. Structural studies of an RNA aptamer containing GGA repeats under ionic conditions using microchip electrophoresis, circular dichroism, and 1D-NMR. Oligonucleotides 2009; 19:179-90. [PMID: 19355811 DOI: 10.1089/oli.2008.0167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nuclear magnetic resonance (NMR) studies have shown that RNA/DNA oligomers with GGA repeat sequences contain unique G-quadruplex structures in the presence of K(+) or Na(+) ions. In this study, we used microchip electrophoresis to study the structure of an RNA aptamer against bovine prion protein that possessed four GGA-triplet repeats (wt2). We analyzed the structural changes and characterized dimer formation of the aptamer. Mutational, circular dichroism, and one-dimensional NMR studies of wt2 revealed that K(+) ions induce wt2 to assume a thermostable dimer in an intramolecular G-quadruplex with parallel orientation.
Collapse
Affiliation(s)
- Fumiko Nishikawa
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
48
|
Kikuchi K, Umehara T, Nishikawa F, Fukuda K, Hasegawa T, Nishikawa S. Increased inhibitory ability of conjugated RNA aptamers against the HCV IRES. Biochem Biophys Res Commun 2009; 386:118-23. [PMID: 19501043 DOI: 10.1016/j.bbrc.2009.05.135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 11/28/2022]
Abstract
Hepatitis C virus (HCV) translation begins within the internal ribosome entry site (IRES). We have previously isolated two RNA aptamers, 2-02 and 3-07, which specifically bind to domain II and domain III-IV of the HCV IRES, respectively, and inhibit IRES-dependent translation. To improve the function of these aptamers, we constructed two conjugated molecules of 2-02 and 3-07. These bound to the target RNA more efficiently than the two parental aptamers. Furthermore, they inhibited IRES-dependent translation about 10 times as efficiently as the 3-07 aptamer. This result indicates that combining aptamers for different target recognition sites potentiates the inhibition activity by enhancing the domain-binding efficiency.
Collapse
Affiliation(s)
- Kunio Kikuchi
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Li T, Wang E, Dong S. A grafting strategy for the design of improved G-quadruplex aptamers and high-activity DNAzymes. PLoS One 2009; 4:e5126. [PMID: 19357767 PMCID: PMC2663033 DOI: 10.1371/journal.pone.0005126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/13/2009] [Indexed: 11/19/2022] Open
Abstract
Nucleic acid aptamers are generally obtained by in vitro selection. Some have G-rich consensus sequences with ability to fold into the four-stranded structures known as G-quadruplexes. A few G-quadruplex aptamers have proven to bind hemin to form a new class of DNAzyme with the peroxidase-like activity, which can be significantly promoted by appending an appropriate base-pairing duplex onto the G-quadruplex structures of aptamers. Knowing the structural role of base pairing, here we introduce a novel grafting strategy for the design of improved G-quadruplex aptamers and high-activity DNAzymes. To demonstrate this strategy, three existing G-quadruplex aptamers are chosen as the first generation. A base-pairing DNA duplex is grafted onto the G-quadruplex motif of the first generation aptamers. Consequently, three new aptamers with the quadruplex/duplex DNA structures are produced as the second generation. The hemin-binding affinities and DNAzyme functions of the second generation aptamers are characterized and compared with the first generation. The results indicate three G-quadruplex aptamers obtained by the grafting strategy have more excellent properties than the corresponding original aptamers. Our findings suggest that, if the structures and functions of existing aptamers are thoroughly known, the grafting strategy can be facilely utilized to improve the aptamer properties and thereby producing better next-generation aptamers. This provides a simple but effective approach to the design of nucleic acid aptamers and DNAzymes.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | | | | |
Collapse
|
50
|
Kanamori H, Yuhashi K, Uchiyama Y, Kodama T, Ohnishi S. In vitro selection of RNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus: a possible role of GC-rich RNA motifs in NS5B binding. Virology 2009; 388:91-102. [PMID: 19328515 DOI: 10.1016/j.virol.2009.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/16/2008] [Accepted: 02/23/2009] [Indexed: 11/24/2022]
Abstract
We employed SELEX (systematic evolution of ligands by exponential enrichment) and identified high affinity RNA aptamers to the hepatitis C virus NS5B RNA-dependent RNA polymerase (RdRp). GC-rich stretches were identified in many of the aptamers. Deletion of the 5'-end single-stranded GC-stretch (CGGG) of the highest binding RNA impaired the binding and the inhibitory activity of the RNA to NS5B RdRp. The majority of the mutants with a single base substitution on the CGGG motif exhibited weaker binding to NS5B. Interestingly, the CGGG motif is present on the stem structure of the NS5B coding RNA (5BSL3.2), which is considered to be an important cis-acting replication element. The 5BSL3.2 RNA showed substantial binding to NS5B, while a point mutation on the CGGG motif reduced the binding of RNA to NS5B. These results suggest a GC-stretch to be the RNA element recognized by NS5B.
Collapse
Affiliation(s)
- Hiroshi Kanamori
- Department of Gastroenterology, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|