1
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
2
|
Roilo M, Kullmann MK, Hengst L. Cold-inducible RNA-binding protein (CIRP) induces translation of the cell-cycle inhibitor p27Kip1. Nucleic Acids Res 2019; 46:3198-3210. [PMID: 29361038 PMCID: PMC5888589 DOI: 10.1093/nar/gkx1317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
The CDK inhibitor p27Kip1 plays a central role in controlling cell proliferation and cell-cycle exit. p27Kip1 protein levels oscillate during cell-cycle progression and are regulated by mitogen or anti-proliferative signaling. The abundance of the protein is frequently determined by post-transcriptional mechanisms including ubiquitin-mediated proteolysis and translational control. Here, we report that the cold-inducible RNA-binding protein (CIRP) selectively binds to the 5′ untranslated region of the p27Kip1 mRNA. CIRP is induced, modified and relocalized in response to various stress stimuli and can regulate cell survival and cell proliferation particularly during stress. Binding of CIRP to the 5′UTR of the p27Kip1 mRNA significantly enhanced reporter translation. In cells exposed to mild hypothermia, the induction of CIRP correlated with increased translation of a p27Kip1 5′UTR reporter and with the accumulation of p27Kip1 protein. shRNA-mediated CIRP knockdown could prevent the induction of translation. We found that p27Kip1 is central for the decreased proliferation at lower temperature, since p27Kip1 KO mouse embryonic fibroblasts (MEFs) hardly increased their doubling time in hypothermic conditions, whereas wild-type MEFs significantly delayed proliferation in response to cold stress. This suggests that the CIRP-dependent p27Kip1 upregulation during mild hypothermia contributes to the cold shock-induced inhibition of cell proliferation.
Collapse
Affiliation(s)
- Martina Roilo
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Michael K Kullmann
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
3
|
Yin JY, Dong Z, Zhang JT. eIF3 Regulation of Protein Synthesis, Tumorigenesis, and Therapeutic Response. Methods Mol Biol 2017; 1507:113-127. [PMID: 27832536 DOI: 10.1007/978-1-4939-6518-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation initiation is the rate-limiting step of protein synthesis and highly regulated. Eukaryotic initiation factor 3 (eIF3) is the largest and most complex initiation factor consisting of 13 putative subunits. A growing number of studies suggest that eIF3 and its subunits may represent a new group of proto-oncogenes and associates with prognosis. They regulate translation of a subset of mRNAs involved in many cellular processes including proliferation, apoptosis, DNA repair, and cell cycle. Therefore, unveiling the mechanisms of eIF3 action in tumorigenesis may help identify attractive targets for cancer therapy. Here, we describe a series of methods used in the study of eIF3 function in regulating protein synthesis, tumorigenesis, and cellular response to therapeutic treatments.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, Hunan, 410078, China.
| | - Zizheng Dong
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
Identification of Rhopalosiphum Padi Virus 5' Untranslated Region Sequences Required for Cryptic Promoter Activity and Internal Ribosome Entry. Int J Mol Sci 2015; 16:16053-66. [PMID: 26184188 PMCID: PMC4519938 DOI: 10.3390/ijms160716053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/15/2015] [Accepted: 07/02/2015] [Indexed: 11/18/2022] Open
Abstract
The 579-nucleotide 5′ untranslated region (5′UTR) of the Rhopalosiphum padi virus (RhPV) possesses a cross-kingdom internal ribosome entry site (IRES) activity that functions in insect, mammalian, and plant-derived in vitro translation systems, and six TAAG motifs within the DNA fragment encoding the RhPV 5′UTR were previously found to confer the RhPV 5′UTR with late promoter activity in baculovirus. In the present study, various truncated RhPV 5′UTR sequences were produced, and among them, a fragment of 110 bp ranging from nucleotides 309 to 418 was identified to be the shortest fragment responsible for the late promoter activity in baculovirus infected Sf21 cells. This 110 bp fragment contains a TAAG tandem repeat that retains more than 60% of the late promoter activity of the full length RhPV 5′UTR sequence. Further, IRES activity remained unchanged in all truncated RhPV 5′UTR constructs. Taken together, this novel 110 bp fragment having late promoter activity in baculovirus as well as IRES activity in mammalian cell, renders it a useful tool for the development of a “shuttle” bi-cistronic baculovirus gene expression and/or delivery vector.
Collapse
|
5
|
Huang W, Dong Z, Wang F, Peng H, Liu JY, Zhang JT. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem Biol 2014; 9:1188-96. [PMID: 24661007 PMCID: PMC4033648 DOI: 10.1021/cb500071v] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Signal transducer and activator of
transcription 3 (STAT3) plays
important roles in multiple aspects of cancer aggressiveness including
migration, invasion, survival, self-renewal, angiogenesis, and tumor
cell immune evasion by regulating the expression of multiple downstream
target genes. STAT3 is constitutively activated in many malignant
tumors and its activation is associated with high histological grade
and advanced cancer stages. Thus, inhibiting STAT3 promises an attracting
strategy for treatment of advanced and metastatic cancers. Herein,
we identified a STAT3 inhibitor, inS3-54, by targeting the DNA-binding
domain of STAT3 using an improved virtual screening strategy. InS3-54
preferentially suppresses proliferation of cancer over non-cancer
cells and inhibits migration and invasion of malignant cells. Biochemical
analyses show that inS3-54 selectively inhibits STAT3 binding to DNA
without affecting the activation and dimerization of STAT3. Furthermore,
inS3-54 inhibits expression of STAT3 downstream target genes and STAT3
binding to chromatin in situ. Thus, inS3-54 represents a novel probe
for development of specific inhibitors targeting the DNA-binding domain
of STAT3 and a potential therapeutic for cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | - Jing-Yuan Liu
- Department
of Computation and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan St., Indianapolis, Indiana 46202, United States
| | | |
Collapse
|
6
|
Teng YC, Lee CF, Li YS, Chen YR, Hsiao PW, Chan MY, Lin FM, Huang HD, Chen YT, Jeng YM, Hsu CH, Yan Q, Tsai MD, Juan LJ. Histone demethylase RBP2 promotes lung tumorigenesis and cancer metastasis. Cancer Res 2013; 73:4711-21. [PMID: 23722541 DOI: 10.1158/0008-5472.can-12-3165] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinoblastoma binding protein RBP2 (KDM5A) is a histone demethylase that promotes gastric cancer cell growth and is enriched in drug-resistant lung cancer cells. In tumor-prone mice lacking the tumor suppressor gene RB or MEN1, genetic ablation of RBP2 can suppress tumor initiation, but the pathogenic breadth and mechanistic aspects of this effect relative to human tumors have not been defined. Here, we approached this question in the context of lung cancer. RBP2 was overexpressed in human lung cancer tissues where its depletion impaired cell proliferation, motility, migration, invasion, and metastasis. RBP2 oncogenicity relied on its demethylase and DNA-binding activities. RBP2 upregulated expression of cyclins D1 and E1 while suppressing the expression of cyclin-dependent kinase inhibitor p27 (CDKN1B), each contributing to RBP2-mediated cell proliferation. Expression microarray analyses revealed that RBP2 promoted expression of integrin-β1 (ITGB1), which is implicated in lung cancer metastasis. Mechanistic investigations established that RBP2 bound directly to the p27, cyclin D1, and ITGB1 promoters and that exogenous expression of cyclin D1, cyclin E1, or ITGB1 was sufficient to rescue proliferation or migration/invasion, respectively. Taken together, our results establish an oncogenic role for RBP2 in lung tumorigenesis and progression and uncover novel RBP2 targets mediating this role.
Collapse
Affiliation(s)
- Yu-Ching Teng
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang, Taipei, 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yin JY, Dong ZZ, Liu RY, Chen J, Liu ZQ, Zhang JT. Translational regulation of RPA2 via internal ribosomal entry site and by eIF3a. Carcinogenesis 2013; 34:1224-31. [PMID: 23393223 DOI: 10.1093/carcin/bgt052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RPA2 is a subunit of a trimeric replication protein A (RPA) complex important for DNA repair and replication. Although it is known that RPA activity is regulated by post-translational modification, whether RPA expression is regulated and the mechanism therein is currently unknown. eIF3a, the largest subunit of eIF3, is an important player in translational control and has been suggested to regulate translation of a subset of messenger RNAs important for tumorigenesis, metastasis, cell cycle progression, drug response and DNA repair. In the present study, we show that RPA2 expression is regulated at translational level via internal ribosome entry site (IRES)-mediated initiation in response to DNA damage. We also found that eIF3a suppresses RPA2 synthesis and inhibits its cellular IRES activity by directly binding to the IRES element of RPA2 located at -50 to -150 bases upstream of the translation start site. Taken together, we conclude that RPA2 expression is translationally regulated via IRES and by eIF3a and that this regulation is partly accountable for cellular response to DNA damage and survival.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Department of Pharmacology/Toxicology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Internal ribosome entry sites/segments (IRESs) were first discovered over 20 years ago in picornaviruses, followed by the discovery of two other types of IRES in hepatitis C virus (HCV), and the dicistroviruses, which infect invertebrates. In the meantime, reports of IRESs in eukaryotic cellular mRNAs started to appear, and the list of such putative IRESs continues to grow to the point in which it now stands at ~100, 80% of them in vertebrate mRNAs. Despite initial skepticism from some quarters, there now seems universal agreement that there is genuine internal ribosome entry on the viral IRESs. However, the same cannot be said for cellular mRNA IRESs, which continue to be shrouded in controversy. The aim of this article is to explain why vertebrate mRNA IRESs remain controversial, and to discuss ways in which these controversies might be resolved.
Collapse
Affiliation(s)
- Richard J Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
| |
Collapse
|
9
|
Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, Yang J, Cui Y, Zhang L, Hirankarn N, Cheng H, Pan HF, Gao J, Lee TL, Sheng Y, Lau CS, Li Y, Chan TM, Yin X, Ying D, Lu Q, Leung AMH, Zuo X, Chen X, Tong KL, Zhou F, Diao Q, Tse NKC, Xie H, Mok CC, Hao F, Wong SN, Shi B, Lee KW, Hui Y, Ho MHK, Liang B, Lee PPW, Cui H, Guo Q, Chung BHY, Pu X, Liu Q, Zhang X, Zhang C, Chong CY, Fang H, Wong RWS, Sun Y, Mok MY, Li XP, Avihingsanon Y, Zhai Z, Rianthavorn P, Deekajorndej T, Suphapeetiporn K, Gao F, Shotelersuk V, Kang X, Ying SKY, Zhang L, Wong WHS, Zhu D, Fung SKS, Zeng F, Lai WM, Wong CM, Ng IOL, Garcia-Barceló MM, Cherny SS, Shen N, Tam PKH, Sham PC, Ye DQ, Yang S, Zhang X, Lau YL. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet 2013; 92:41-51. [PMID: 23273568 DOI: 10.1016/j.ajhg.2012.11.018] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/12/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases.
Collapse
Affiliation(s)
- Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lemp NA, Hiraoka K, Kasahara N, Logg CR. Cryptic transcripts from a ubiquitous plasmid origin of replication confound tests for cis-regulatory function. Nucleic Acids Res 2012; 40:7280-90. [PMID: 22618870 PMCID: PMC3424574 DOI: 10.1093/nar/gks451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A vast amount of research on the regulation of gene expression has relied on plasmid reporter assays. In this study, we show that plasmids widely used for this purpose constitutively produce substantial amounts of RNA from a TATA-containing cryptic promoter within the origin of replication. Readthrough of these RNAs into the intended transcriptional unit potently stimulated reporter activity when the inserted test sequence contained a 3′ splice site (ss). We show that two human sequences, originally reported to be internal ribosome entry sites and later to instead be promoters, mimic both types of element in dicistronic reporter assays by causing these cryptic readthrough transcripts to splice in patterns that allow efficient translation of the downstream cistron. Introduction of test sequences containing 3′ ss into monocistronic luciferase reporter vectors widely used in the study of transcriptional regulation also created the false appearance of promoter function via the same mechanism. Across a large number of variants of these plasmids, we found a very highly significant correlation between reporter activity and levels of such spliced readthrough transcripts. Computational estimation of the frequency of cryptic 3′ ss in genomic sequences suggests that misattribution of cis-regulatory function may be a common occurrence.
Collapse
Affiliation(s)
- Nathan A Lemp
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
11
|
Malanga D, De Gisi S, Riccardi M, Scrima M, De Marco C, Robledo M, Viglietto G. Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype. Eur J Endocrinol 2012; 166:551-60. [PMID: 22129891 DOI: 10.1530/eje-11-0929] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the presence of germline mutations in the CDKN1B gene that encodes the cyclin-dependent kinase (Cdk) inhibitor p27 in multiple endocrine neoplasia 1 (MEN1)-like Spanish index patients. The CDKN1B gene has recently been identified as a tumor susceptibility gene for MEN4, with six germline mutations reported so far in patients with a MEN-like phenotype but negative for MEN1 mutations. DESIGN AND METHODS Fifteen Spanish index cases with MEN-like symptoms were screened for mutations in the CDKN1B gene and the mutant variant was studied functionally by transcription/translation assays in vitro and in transiently transfected HeLa cells. RESULTS We report the identification of a heterozygous GAGA deletion in the 5'-UTR of CDKN1B, NM_004064.3:c.-32_-29del, in a patient affected by gastric carcinoid tumor and hyperparathyroidism. This deletion falls inside the region that is responsible for CDKN1B transcription and is predicted to destroy a secondary stem and loop structure that includes the GAGAGA element responsible for ribosome recruitment. Accordingly, in vitro studies of coupled transcription/translation assays and transient transfection in HeLa cells showed that the GAGA deletion in the CDKN1B 5'-UTR significantly impairs the transcription of downstream reporter luciferase (of ∼40-60%) and, possibly, the translation of the corresponding mRNA. This mutation was associated with a significant reduction in the amount of CDKN1B mRNA in peripheral blood leukocytes from the patient, as demonstrated by quantitative real-time PCR. CONCLUSIONS Our results confirm that germline CDKN1B mutations may predispose to a human MEN4 condition and add novel evidence that alteration in the transcription/translation rate of CDKN1B mRNA might be the mechanism implicated in tumor susceptibility.
Collapse
Affiliation(s)
- Donatella Malanga
- Dipartimento di Medicina Sperimentale e Clinica G Salvatore, Università Magna Graecia, Campus Universitario Germaneto, 88100 Catanzaro, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
A cluster of transcripts encoded by KSHV ORF30-33 gene locus. Virus Genes 2011; 44:225-36. [PMID: 22180077 DOI: 10.1007/s11262-011-0698-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 12/01/2011] [Indexed: 12/21/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus ORF30-33 locus encodes four genes with unknown functions. We performed transcriptional mapping of these genes. Northern-hybridization, 5'- and 3'-rapid amplification of cDNA ends, and DNA sequencing identified four transcripts of 3.7, 3.6, 2.7, and 1.4 kb, none of which has alternative splicing. While all transcripts have the same termination site, their start sites vary. All transcripts are not expressed or only weakly expressed in latent cells but can be chemically induced. The 3.7 and 3.6 kb transcripts contain all four genes and are sensitive to cycloheximide (CH) but resistant to phosphonoacetic acid (PAA), indicating that they are early lytic transcripts. The 2.7 kb transcript contains ORF32 and ORF33 genes while the 1.4 kb transcript contains the ORF33 gene. Both transcripts are sensitive to CH and PAA, indicating that they are late lytic transcripts. Furthermore, we identified four promoters with functional TATA boxes, none of which is directly transactivated by RTA. Examination of the 5' untranslated region of ORF31 failed to identify any functional internal ribosome entry sites. These results define the transcriptional patterns of the ORF30-33 locus, which should help the delineation of its function.
Collapse
|
13
|
Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 2011; 31:1-15. [PMID: 20964625 DOI: 10.1042/bsr20100077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Translational control is one of primary regulation mechanisms of gene expression. Eukaryotic translational control mainly occurs at the initiation step, the speed-limiting step, which involves more than ten translation initiation factors [eIFs (eukaryotic initiation factors)]. Changing the level or function of these eIFs results in abnormal translation of specific mRNAs and consequently abnormal growth of cells that leads to human diseases, including cancer. Accumulating evidence from recent studies showed that the expression of many eIFs was associated with malignant transformation, cancer prognosis, as well as gene expression regulation. In the present paper, we perform a critical review of recent advances in understanding the role and mechanism of eIF action in translational control and cancer as well as the possibility of targeting eIFs for therapeutic development.
Collapse
|
14
|
Logan CA, Somero GN. Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). Am J Physiol Regul Integr Comp Physiol 2011; 300:R1373-83. [DOI: 10.1152/ajpregu.00689.2010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capacities of eurythermal ectotherms to withstand wide ranges of temperature are based, in part, on abilities to modulate gene expression as body temperature changes, notably genes encoding proteins of the cellular stress response. Here, using a complementary DNA microarray, we investigated the sequence in which cellular stress response-linked genes are expressed during acute heat stress, to elucidate how severity of stress affects the categories of genes changing expression. We also studied how prior acclimation history affected gene expression in response to acute heat stress. Eurythermal goby fish ( Gillichthys mirabilis ) were acclimated to 9 ± 0.5, 19 ± 0.5, and 28 ± 0.5°C for 1 mo. Then fish were given an acute heat ramp (4°C/h), and gill tissues were sampled every +4°C to monitor gene expression. The average onset temperature for a significant change in expression during acute stress increased by ∼2°C for each ∼10°C increase in acclimation temperature. For some genes, warm acclimation appeared to obviate the need for expression change until the most extreme temperatures were reached. Sequential expression of different categories of genes reflected severity of stress. Regardless of acclimation temperature, the gene encoding heat shock protein 70 ( HSP70) was upregulated strongly during mild stress; the gene encoding the proteolytic protein ubiquitin ( UBIQ) was upregulated at slightly higher temperatures; and a gene encoding a protein involved in cell cycle arrest and apoptosis, cyclin-dependent kinase inhibitor 1B ( CDKN1B), was upregulated only under extreme stress. The tiered, stress level-related expression patterns and the effects of acclimation on induction temperature yield new insights into the fundamental mechanisms of eurythermy.
Collapse
Affiliation(s)
- Cheryl A. Logan
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - George N. Somero
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| |
Collapse
|
15
|
Evidence for translational regulation by the herpes simplex virus virion host shutoff protein. J Virol 2010; 84:6041-9. [PMID: 20357089 DOI: 10.1128/jvi.01819-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The herpes simplex virus (HSV) virion host shutoff protein (vhs) encoded by gene UL41 is an mRNA-specific RNase that triggers accelerated degradation of host and viral mRNAs in infected cells. We report here that vhs is also able to modulate reporter gene expression without greatly altering the levels of the target mRNA in transient-transfection assays conducted in HeLa cells. We monitored the effects of vhs on a panel of bicistronic reporter constructs bearing a variety of internal ribosome entry sites (IRESs) located between two test cistrons. As expected, vhs inhibited the expression of the 5' cistrons of all of these constructs; however, the response of the 3' cistron varied with the IRES: expression driven from the wild-type EMCV IRES was strongly suppressed, while expression controlled by a mutant EMCV IRES and the cellular ApaF1, BiP, and DAP5 IRES elements was strongly activated. In addition, several HSV type 1 (HSV-1) 5' untranslated region (5' UTR) sequences also served as positive vhs response elements in this assay. IRES activation was also observed in 293 and HepG2 cells, but no such response was observed in Vero cells. Mutational analysis has yet to uncouple the ability of vhs to activate 3' cistron expression from its shutoff activity. Remarkably, repression of 5' cistron expression could be observed under conditions where the levels of the reporter RNA were not correspondingly reduced. These data provide strong evidence that vhs can modulate gene expression at the level of translation and that it is able to activate cap-independent translation through specific cis-acting elements.
Collapse
|
16
|
Regulation of p27kip1 mRNA Expression by MicroRNAs. MIRNA REGULATION OF THE TRANSLATIONAL MACHINERY 2010; 50:59-70. [DOI: 10.1007/978-3-642-03103-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Saffran HA, Smiley JR. The XIAP IRES activates 3' cistron expression by inducing production of monocistronic mRNA in the betagal/CAT bicistronic reporter system. RNA (NEW YORK, N.Y.) 2009; 15:1980-5. [PMID: 19713328 PMCID: PMC2764481 DOI: 10.1261/rna.1557809] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
X-chromosome linked inhibitor of apoptosis (XIAP) mRNA has been proposed to bear a stress-activated internal ribosome entry site (IRES) that stimulates translation under conditions that inhibit cap-dependent initiation. However, several reports have indicated that the strong activity of the XIAP IRES in certain bicistronic reporter assay systems stems from production of unintended monocistronic transcripts through splicing or cryptic promoter activity. Here we extend these findings by providing evidence that the XIAP IRES similarly provokes the production of monocistronic mRNA encompassing the 3' cistron in the betagal/CAT bicistronic reporter plasmid that was originally used to identify and characterize this putative IRES, through cryptic promoter activity.
Collapse
|
18
|
Fitzgerald KD, Semler BL. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:518-28. [PMID: 19631772 DOI: 10.1016/j.bbagrm.2009.07.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 02/07/2023]
Abstract
IRES elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, ribosome-scanning model, the mechanism of IRES-mediated translation initiation is not well understood. IRES elements, first discovered in viral RNA genomes, were subsequently found in a subset of cellular RNAs as well. Interestingly, these cellular IRES-containing mRNAs appear to play important roles during conditions of cellular stress, development, and disease (e.g., cancer). It has been shown for viral IRESes that some require specific IRES trans-acting factors (ITAFs), while others require few if any additional proteins and can bind ribosomes directly. Current studies are aimed at elucidating the mechanism of IRES-mediated translation initiation and features that may be common or differ greatly among cellular and viral IRESes. This review will explore IRES elements as important RNA structures that function in both cellular and viral RNA translation and the significance of these structures in providing an alternative mechanism of eukaryotic translation initiation.
Collapse
Affiliation(s)
- Kerry D Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
19
|
miR-181a regulates cap-dependent translation of p27(kip1) mRNA in myeloid cells. Mol Cell Biol 2009; 29:2841-51. [PMID: 19273599 DOI: 10.1128/mcb.01971-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
p27(kip1) (p27) is a cell cycle inhibitor and tumor suppressor whose expression is tightly regulated in the cell. Translational control of p27 mRNA has emerged as a prominent mechanism to regulate p27 expression during differentiation, quiescence, and cancer progression. The microRNAs miR-221 and miR-222 repress p27 expression in various cancer cells, and this repression promotes tumor cell proliferation. In addition, the presence of an internal ribosome entry site in the 5' untranslated region (UTR) of p27 mRNA has been reported. Here, we show that p27 mRNA is translated via a cap-dependent mechanism in HeLa and HL60 cells and that the previously reported IRES activity can be attributed to cryptic promoters in the sequence corresponding to the p27 5' UTR. Furthermore, cap-dependent translation of p27 mRNA is repressed by miR-181a in undifferentiated HL60 cells. Repression by miR-181a is relieved during differentiation of HL60 into monocyte-like cells, allowing the accumulation of p27, which is necessary to fully block cell cycle progression and reach terminal differentiation. These results identify miR-181a as a regulator of p27 mRNA translation during myeloid cell differentiation.
Collapse
|
20
|
Chen GL, Miller GM. 5'-Untranslated region of the tryptophan hydroxylase-2 gene harbors an asymmetric bidirectional promoter but not internal ribosome entry site in vitro. Gene 2009; 435:53-62. [PMID: 19344641 DOI: 10.1016/j.gene.2008.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/20/2008] [Accepted: 12/30/2008] [Indexed: 01/10/2023]
Abstract
Tryptophan hydroxylase-2 (TPH2) catalyzes the synthesis of neuronal serotonin, a major neurotransmitter involved in many brain functions and psychiatric disorders. We have previously revealed a critical role of the human TPH2 (hTPH2) 5'-UTR in gene expression regulation. This study aimed to further characterize mechanism(s) by which the hTPH2 5'-UTR regulates gene expression. An internal ribosome entry site (IRES) activity in hTPH2 5'-UTR was suggested by the conventional bicistronic reporter assay; however, further stringent experiments, including in vitro translation, quantitative real-time PCR, Northern blot, ribonuclease protection assay, and monocistronic reporter assay, demonstrated that the hTPH2 5'-UTR harbors a bidirectional promoter, but not IRES, within its downstream segment (61-141). The antisense promoter is much stronger than the sense promoter, but the strength of both promoters are cell-line dependent, with the highest and lowest activities being observed in HEK-293T and SK-N-MC cells, respectively. In accordance with our previous findings, the upstream segment (1-60) of hTPH2 5'-UTR suppresses the neighboring promoter of both direction, independent of the cell line and its location in the 5'- or 3'-flanking regions of the gene. In summary, this study demonstrates that no IRES but an asymmetric bidirectional promoter is present in the downstream segment of hTPH2 5'-UTR, and this promoter is susceptible to a gene silencing effect caused by the upstream segment (1-60) of hTPH2 5'-UTR. Our findings point to the potential involvement of antisense transcription and non-coding RNA in the regulation of TPH2 gene expression.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
21
|
Desplanques G, Giuliani N, Delsignore R, Rizzoli V, Bataille R, Barillé-Nion S. Impact of XIAP protein levels on the survival of myeloma cells. Haematologica 2008; 94:87-93. [PMID: 19001278 DOI: 10.3324/haematol.13483] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND XIAP is the best characterized and the most potent direct endogenous caspase inhibitor and is considered a key actor in the control of apoptotic threshold in cancer cells. In this report, we specifically addressed XIAP regulation and function in myeloma cells. DESIGN AND METHODS XIAP and its endogenous inhibitor XAF-1 protein levels and their regulation were assessed by immunoblot analysis in myeloma cell lines or primary myeloma cells. XIAP knockdown by RNA interference was used to evaluate XIAP impact on in vitro drug sensitivity and in vivo tumor growth. RESULTS Our results indicate that myeloma cells expressed high levels of XIAP protein that were tightly regulated during growth factor stimulation or stress condition. Of note, an increased XIAPlevel was evidenced during the blockade of the canonical cap-dependent translation by the mTOR inhibitor rapamycin, supporting the hypothesis of a functional IRES sequence in XIAP mRNA. In addition, caspase-mediated XIAP cleavage correlated to an apoptotic process occurring upon cell treatment with the proteasome inhibitor bortezomib. Importantly, XIAP knockdown using RNA interference enhanced drug sensitivity and decreased tumor formation in NOD/SCID mice. Finally, myeloma cells also expressed the XIAP inhibitor XAF-1 that interacted with XIAP in viable myeloma cells. CONCLUSIONS Altogether, our data argue for a delicate control of XIAP function in myeloma cells and stimulate interest in targeting XIAP in myeloma treatment.
Collapse
|
22
|
Identifying intrinsic and extrinsic determinants that regulate internal initiation of translation mediated by the FMR1 5' leader. BMC Mol Biol 2008; 9:89. [PMID: 18922172 PMCID: PMC2576346 DOI: 10.1186/1471-2199-9-89] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 10/15/2008] [Indexed: 11/21/2022] Open
Abstract
Background Regulating synthesis of the Fragile X gene (FMR1) product, FMRP alters neural plasticity potentially through its role in the microRNA pathway. Cap-dependent translation of the FMR1 mRNA, a process requiring ribosomal scanning through the 5' leader, is likely impeded by the extensive secondary structure generated by the high guanosine/cytosine nucleotide content including the CGG triplet nucleotide repeats in the 5' leader. An alternative mechanism to initiate translation – internal initiation often utilizes secondary structure to recruit the translational machinery. Consequently, studies were undertaken to confirm and extend a previous observation that the FMR1 5' leader contains an internal ribosomal entry site (IRES). Results Cellular transfection of a dicistronic DNA construct containing the FMR1 5' leader inserted into the intercistronic region yielded significant translation of the second cistron, but the FMR1 5' leader was also found to contain a cryptic promoter possibly confounding interpretation of these results. However, transfection of dicistronic and monocistronic RNA ex vivo or in vitro confirmed that the FMR1 5' leader contains an IRES. Moreover, inhibiting cap-dependent translation ex vivo did not affect the expression level of endogenous FMRP indicating a role for IRES-dependent translation of FMR1 mRNA. Analysis of the FMR1 5' leader revealed that the CGG repeats and the 5' end of the leader were vital for internal initiation. Functionally, exposure to potassium chloride or intracellular acidification and addition of polyinosinic:polycytidylic acid as mimics of neural activity and double stranded RNA, respectively, differentially affected FMR1 IRES activity. Conclusion Our results indicate that multiple stimuli influence IRES-dependent translation of the FMR1 mRNA and suggest a functional role for the CGG nucleotide repeats.
Collapse
|
23
|
Audigier S, Guiramand J, Prado-Lourenco L, Conte C, Gonzalez-Herrera IG, Cohen-Solal C, Récasens M, Prats AC. Potent activation of FGF-2 IRES-dependent mechanism of translation during brain development. RNA (NEW YORK, N.Y.) 2008; 14:1852-64. [PMID: 18676616 PMCID: PMC2525950 DOI: 10.1261/rna.790608] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fibroblast growth factor-2 (FGF-2) plays a fundamental role in brain functions. This role may be partly achieved through the control of its expression at the translational level via an internal ribosome entry site (IRES)-dependent mechanism. Transgenic mice expressing a bicistronic mRNA allowed us to study in vivo and ex vivo where this translational mechanism operates. Along brain development, we identified a stringent spatiotemporal regulation of FGF-2 IRES activity showing a peak at post-natal day 7 in most brain regions, which is concomitant with neuronal maturation. At adult age, this activity remained relatively high in forebrain regions. By the enrichment of this activity in forebrain synaptoneurosomes and by the use of primary cultures of cortical neurons or cocultures with astrocytes, we showed that this activity is indeed localized in neurons, is dependent on their maturation, and correlates with endogenous FGF-2 protein expression. In addition, this activity was regulated by astrocyte factors, including FGF-2, and spontaneous electrical activity. Thus, neuronal IRES-driven translation of the FGF-2 mRNA may be involved in synapse formation and maturation.
Collapse
Affiliation(s)
- Sylvie Audigier
- Institut National de la Santé et de la Recherche Médicale (INSERM), U858, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wei D, Kanai M, Jia Z, Le X, Xie K. Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 2008; 68:4631-9. [PMID: 18559508 DOI: 10.1158/0008-5472.can-07-5953] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zinc finger transcription factor Krüppel-like factor 4 (KLF4) has been implicated in both tumor suppression and progression. However, its function in pancreatic cancer has not been well characterized. Here, we show that pancreatic cancer cell lines expressed various levels of KLF4 RNA and protein. Ectopic expression of KLF4 by FG and BxPC-3 pancreatic cancer cells resulted in cell cycle arrest and marked inhibition of cell growth in vitro and attenuation of tumor growth and metastasis in an orthotopic mouse model. Overexpression of KLF4 also led to significant induction of p27(Kip1) expression, at both the RNA and protein levels, in a dose- and time-dependent manner, indicating that KLF4 transcriptionally regulates the expression of p27(Kip1). Chromatin immunoprecipitation assays consistently showed that KLF4 protein physically interacts with the p27(Kip1) promoter. Promoter deletion and point mutation analyses indicated that a region between nucleotides -435 and -60 of the p27(Kip1) promoter and intact of the three KLF4-binding sites within that region were required for the full induction of p27(Kip1) promoter activity by KLF4. Our findings suggest that KLF4 transactivates p27(Kip1) expression and inhibits the growth and metastasis of human pancreatic cancer.
Collapse
Affiliation(s)
- Daoyan Wei
- Departments of Gastrointestinal Medical Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
25
|
Wu YJ, Teng CY, Chen YJ, Chen SC, Chen YJ, Lin YT, Wu TY. Internal ribosome entry site of Rhopalosiphum padi virus is functional in mammalian cells and has cryptic promoter activity in baculovirus-infected Sf21 cells. Acta Pharmacol Sin 2008; 29:965-74. [PMID: 18664329 DOI: 10.1111/j.1745-7254.2008.00820.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To substantiate the in vitro translational studies of a cross-kingdom, internal ribosome entry site (IRES), the 5 untranslated region of the Rhopalosiphum padi virus (RhPV), can function in mammalian cells and act as a shuttle IRES between insect cells and mammalian cells. METHODS Cytomegalovirus (CMV) promoter-based bicistronic mammalian cell expression vectors, either in plasmids or baculovirus vectors, were generated. Plasmid transient transfection and baculovirus transduction assays were performed to test whether the RhPV IRES can mediate translation activity in versatile mammalian cell lines. RESULTS Both plasmids and recombinant baculoviruses containing the CMV promoter and the RhPV IRES can mediate bicistronic gene expression in mammalian cells. However, in the CMV promoter containing recombinant baculovirus-infected insect Sf21 cells, only the second cistron gene expression was observed. Northern blot analysis and a promoterless assay demonstrated that the RhPV IRES exhibited cryptic promoter activity in baculovirus-infected insect cells. CONCLUSION RhPV IRES can mediate gene expression in both insect cells and mammalian cells, and this characteristic of the RhPV IRES will facilitate the development of a bicistronic baculovirus gene therapy vectors.
Collapse
Affiliation(s)
- Yi-jane Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli 320, Taiwan, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Contribution of internal initiation to translation of cellular mRNAs containing IRESs. Biochem Soc Trans 2008; 36:694-7. [DOI: 10.1042/bst0360694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A broad range of cellular stresses lead to the inhibition of translation. Despite this, some cellular mRNAs are selectively translated under these conditions. It is widely supposed that cap-independent internal initiation may maintain efficient translation of particular cellular mRNAs under a variety of stresses and other special conditions when cap-dependent protein synthesis is impaired. However, in spite of a large number of reports focused on the investigation of the regulation of IRES (internal ribosome entry site) activity in different tissues and under various stresses, only rarely is the real efficiency of IRES-driven translation in comparison with cap-dependent translation evaluated. When precisely measured, the efficiencies of candidate IRESs in most cases appeared to be very low and not sufficient to compensate for the reduction of cap-dependent initiation under stresses. The usually low efficiency of internal initiation of translation is inconsistent with postulated biological roles of IRESs.
Collapse
|
27
|
Hansen MA, Nielsen JE, Retelska D, Larsen N, Leffers H. A shared promoter region suggests a common ancestor for the human VCX/Y, SPANX, and CSAG gene families and the murine CYPT family. Mol Reprod Dev 2008; 75:219-29. [PMID: 17342728 DOI: 10.1002/mrd.20651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many testis-specific genes from the sex chromosomes are subject to rapid evolution, which can make it difficult to identify murine genes in the human genome. The murine CYPT gene family includes 15 members, but orthologs were undetectable in the human genome. However, using refined homology search, sequences corresponding to the shared promoter region of the CYPT family were identified at 39 loci. Most loci were located immediately upstream of genes belonging to the VCX/Y, SPANX, or CSAG gene families. Sequence comparison of the loci revealed a conserved CYPT promoter-like (CPL) element featuring TATA and CCAAT boxes. The expression of members of the three families harboring the CPL resembled the murine expression of the CYPT family, with weak expression in late pachytene spermatocytes and predominant expression in spermatids, but some genes were also weakly expressed in somatic cells and in other germ cell types. The genomic regions harboring the gene families were rich in direct and inverted segmental duplications (SD), which may facilitate gene conversion and rapid evolution. The conserved CPL and the common expression profiles suggest that the human VCX/Y, SPANX, and CSAG2 gene families together with the murine SPANX gene and the CYPT family may share a common ancestor. Finally, we present evidence that VCX/Y and SPANX may be paralogs with a similar protein structure consisting of C terminal acidic repeats of variable lengths.
Collapse
Affiliation(s)
- Martin A Hansen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej, Denmark.
| | | | | | | | | |
Collapse
|
28
|
Kozak M. Lessons (not) learned from mistakes about translation. Gene 2007; 403:194-203. [PMID: 17888589 DOI: 10.1016/j.gene.2007.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/16/2007] [Accepted: 08/27/2007] [Indexed: 01/01/2023]
Abstract
Some popular ideas about translational regulation in eukaryotes have been recognized recently as mistakes. One example is the rejection of a long-standing idea about involvement of S6 kinase in translation of ribosomal proteins. Unfortunately, new proposals about how S6 kinase might regulate translation are based on evidence that is no better than the old. Recent findings have also forced rejection of some popular ideas about the function of sequences at the 3' end of viral mRNAs and rejection of some ideas about internal ribosome entry sequences (IRESs). One long-held belief was that tissue-specific translation via an IRES underlies the neurotropism of poliovirus and the attenuation of Sabin vaccine strains. Older experiments that appeared to support this belief and recent experiments that refute it are discussed. The hypothesis that dyskeratosis congenita is caused by a defect in IRES-mediated translation is probably another mistaken idea. The supporting evidence, such as it is, comes from a mouse model of the disease and is contradicted by studies carried out with cells from affected patients. The growing use of IRESs as tools to study other questions about translation is discussed and lamented. The inefficient function of IRESs (if they are IRESs) promotes misunderstandings. I explain again why it is not valid to invoke a special mechanism of initiation based on the finding that edeine (at very low concentrations) does not inhibit the translation of a putative IRES from cricket paralysis virus. I explain why new assays, devised to rule out splicing in tests with dicistronic vectors, are not valid and why experiments with IRESs are not a good way to investigate the mechanism whereby microRNAs inhibit translation.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
29
|
Jiang H, Coleman J, Miskimins R, Srinivasan R, Miskimins WK. Cap-independent translation through the p27 5'-UTR. Nucleic Acids Res 2007; 35:4767-78. [PMID: 17617641 PMCID: PMC1950543 DOI: 10.1093/nar/gkm512] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several recent publications have explored cap-independent translation through an internal ribosome entry site (IRES) in the 5′-UTR of the mRNA encoding the cyclin-dependent kinase inhibitor p27. The major experimental tool used in these reports was the use of bicistronic reporter constructs in which the 5′-UTR was inserted between the upstream and downstream cistrons. None of these reports has completely ruled out the possibility that the 5′-UTR has either cryptic promoter activity or a cryptic splice acceptor site. Either of these possibilities could result in expression of a monocistronic mRNA encoding the downstream cistron and false identification of an IRES. Indeed, Liu et al. recently published data suggesting that the p27 5′-UTR harbors cryptic promoter activity which accounts for its putative IRES activity. In this report, we have explored this potential problem further using promoterless bicistronic constructs coupled with RNase protection assays, siRNA knockdown of individual cistrons, RT-PCR to detect mRNA encoded by the bicistronic reporter with high sensitivity, direct transfection of bicistronic mRNAs, and insertion of an iron response element into the bicistronic reporter. The results do not support the conclusion that the p27 5′-UTR has significant functional promoter activity or cryptic splice sites, but rather that it is able to support cap-independent initiation of translation.
Collapse
Affiliation(s)
- Hong Jiang
- Cancer Biology Research Institute, Sanford Research/USD, 1400 West 22nd Street, Sioux Falls, South Dakota 57105 and Sanford School of Medicine of the University of South Dakota, Division of Basic Biomedical Sciences, 414 East Clark Street, Vermillion, South Dakota 57069, USA
| | - Jennifer Coleman
- Cancer Biology Research Institute, Sanford Research/USD, 1400 West 22nd Street, Sioux Falls, South Dakota 57105 and Sanford School of Medicine of the University of South Dakota, Division of Basic Biomedical Sciences, 414 East Clark Street, Vermillion, South Dakota 57069, USA
| | - Robin Miskimins
- Cancer Biology Research Institute, Sanford Research/USD, 1400 West 22nd Street, Sioux Falls, South Dakota 57105 and Sanford School of Medicine of the University of South Dakota, Division of Basic Biomedical Sciences, 414 East Clark Street, Vermillion, South Dakota 57069, USA
| | - Rekha Srinivasan
- Cancer Biology Research Institute, Sanford Research/USD, 1400 West 22nd Street, Sioux Falls, South Dakota 57105 and Sanford School of Medicine of the University of South Dakota, Division of Basic Biomedical Sciences, 414 East Clark Street, Vermillion, South Dakota 57069, USA
| | - W. Keith Miskimins
- Cancer Biology Research Institute, Sanford Research/USD, 1400 West 22nd Street, Sioux Falls, South Dakota 57105 and Sanford School of Medicine of the University of South Dakota, Division of Basic Biomedical Sciences, 414 East Clark Street, Vermillion, South Dakota 57069, USA
- *To whom correspondence should be addressed.+1 605 357 1544+1 605 357 1409
| |
Collapse
|
30
|
Araud T, Genolet R, Jaquier-Gubler P, Curran J. Alternatively spliced isoforms of the human elk-1 mRNA within the 5' UTR: implications for ELK-1 expression. Nucleic Acids Res 2007; 35:4649-63. [PMID: 17591614 PMCID: PMC1950554 DOI: 10.1093/nar/gkm482] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The expression of cellular proteins that play central roles in the regulation of cell growth and differentiation is frequently tightly controlled at the level of translation initiation. In this article, we provide evidence that the ETS domain transcription factor ELK-1 forms part of this class of genes. Its mRNA 5′ UTR is composed of a complexed mosaic of elements, including uAUGs, uORFs and RNA structure, that interplay to modulate ribosomal access to the ELK-1 AUG start codon. Superimposed upon this is the generation of two different 5′ UTRs via alternative splicing. The two spliced isoforms show altered cellular and tissue distributions and behave differently in polysomal recruitment assays in the presence of the drug rapamycin. We propose that repression is therefore the sum of a series of interplaying negative elements within the 5′ UTRs, a situation which may reflect the need for tight translational control of ELK-1 in different tissues and under changing physiological conditions.
Collapse
Affiliation(s)
| | | | | | - Joseph Curran
- *To whom correspondence should be addressed.+0041 22 3795799+0041 22 3795702
| |
Collapse
|
31
|
Kamrud KI, Custer M, Dudek JM, Owens G, Alterson KD, Lee JS, Groebner JL, Smith JF. Alphavirus replicon approach to promoterless analysis of IRES elements. Virology 2007; 360:376-87. [PMID: 17156813 PMCID: PMC1885372 DOI: 10.1016/j.virol.2006.10.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 08/30/2006] [Accepted: 10/30/2006] [Indexed: 02/05/2023]
Abstract
Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.
Collapse
Affiliation(s)
- K I Kamrud
- AlphaVax, Inc., 2 Triangle Drive, Research Triangle Park, NC 27709-0307, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
This review discusses the need to re-examine some popular but unproven ideas about regulation of translation in eukaryotes. Translational control is invoked often on superficial grounds, such as a discrepancy between mRNA and protein levels which could be explained instead by rapid turnover of the protein. It is essential to verify that there is translational control (i.e., essential to rule out alternative mechanisms) before asking how translation is regulated. Many of the postulated control mechanisms are dubious. It is easy to create artifactual regulation (a slight increase or decrease in translation) by over-expressing recombinant RNA-binding proteins. The internal-initiation hypothesis is the source of other misunderstandings. Recent claims about the involvement of internal ribosome entry sequences (IRESs) in cancer and other diseases are discussed. The scanning model for initiation provides a more credible framework for understanding many aspects of translation, including ways to restrict the production of potent regulatory proteins which would be harmful if over-expressed. The rare production in eukaryotes of dicistronic mRNAs (e.g., from retrotransposons) raises questions about how the 3' cistron gets translated. Some proposed mechanisms are discussed, but the available evidence does not allow resolution of the issue.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
33
|
Abstract
The cell has many ways to regulate the production of proteins. One mechanism is through the changes to the machinery of translation initiation. These alterations favor the translation of one subset of mRNAs over another. It was first shown that internal ribosome entry sites (IRESes) within viral RNA genomes allowed the production of viral proteins more efficiently than most of the host proteins. The RNA secondary structure of viral IRESes has sometimes been conserved between viral species even though the primary sequences differ. These structures are important for IRES function, but no similar structure conservation has yet to be shown in cellular IRES. With the advances in mathematical modeling and computational approaches to complex biological problems, is there a way to predict an IRES in a data set of unknown sequences? This review examines what is known about cellular IRES structures, as well as the data sets and tools available to examine this question. We find that the lengths, number of upstream AUGs, and %GC content of 5'-UTRs of the human transcriptome have a similar distribution to those of published IRES-containing UTRs. Although the UTRs containing IRESes are on the average longer, almost half of all 5'-UTRs are long enough to contain an IRES. Examination of the available RNA structure prediction software and RNA motif searching programs indicates that while these programs are useful tools to fine tune the empirically determined RNA secondary structure, the accuracy of de novo secondary structure prediction of large RNA molecules and subsequent identification of new IRES elements by computational approaches, is still not possible.
Collapse
Affiliation(s)
- Stephen D Baird
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
34
|
Bert AG, Grépin R, Vadas MA, Goodall GJ. Assessing IRES activity in the HIF-1alpha and other cellular 5' UTRs. RNA (NEW YORK, N.Y.) 2006; 12:1074-83. [PMID: 16601206 PMCID: PMC1464860 DOI: 10.1261/rna.2320506] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dicistronic reporter plasmids, such as the dual luciferase-containing pR-F plasmid, have been widely used to assay cellular and viral 5' untranslated regions (UTRs) for IRES activity. We found that the pR-F dicistronic reporter containing the 5' UTRs from HIF-1alpha, VEGF, c-myc, XIAP, VEGFR-1, or Egr-1 UTRs all produce the downstream luciferase predominantly as a result of cryptic promoter activity that is activated by the SV40 enhancer elements in the plasmid. RNA transfection experiments using dicistronic or uncapped RNAs, which avoid the complication of cryptic promoter activity, indicate that the HIF-1alpha, VEGF, c-myc, and XIAP UTRs do have some IRES activity, although the activity was much less than that of the viral EMCV IRES. The translation of transfected monocistronic RNAs containing these cellular UTRs was greatly enhanced by the presence of a 5' cap, raising questions as to the strength or mechanism of IRES-mediated translation in these assays.
Collapse
Affiliation(s)
- Andrew G Bert
- Division of Human Immunology, Hanson Institute, Institute of Medical and Veterinary Science (IMVS), Adelaide, SA, Australia
| | | | | | | |
Collapse
|
35
|
Mokrejs M, Vopálenský V, Kolenaty O, Masek T, Feketová Z, Sekyrová P, Skaloudová B, Kríz V, Pospísek M. IRESite: the database of experimentally verified IRES structures (www.iresite.org). Nucleic Acids Res 2006; 34:D125-30. [PMID: 16381829 PMCID: PMC1347444 DOI: 10.1093/nar/gkj081] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IRESite is an exhaustive, manually annotated non-redundant relational database focused on the IRES elements (Internal Ribosome Entry Site) and containing information not available in the primary public databases. IRES elements were originally found in eukaryotic viruses hijacking initiation of translation of their host. Later on, they were also discovered in 5′-untranslated regions of some eukaryotic mRNA molecules. Currently, IRESite presents up to 92 biologically relevant aspects of every experiment, e.g. the nature of an IRES element, its functionality/defectivity, origin, size, sequence, structure, its relative position with respect to surrounding protein coding regions, positive/negative controls used in the experiment, the reporter genes used to monitor IRES activity, the measured reporter protein yields/activities, and references to original publications as well as cross-references to other databases, and also comments from submitters and our curators. Furthermore, the site presents the known similarities to rRNA sequences as well as RNA–protein interactions. Special care is given to the annotation of promoter-like regions. The annotated data in IRESite are bound to mostly complete, full-length mRNA, and whenever possible, accompanied by original plasmid vector sequences. New data can be submitted through the publicly available web-based interface at and are curated by a team of lab-experienced biologists.
Collapse
Affiliation(s)
- Martin Mokrejs
- Charles University, Faculty of Science, Department of Genetics and Microbiology, Vinicna 5, Prague 2, 128 44, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kozak M. A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 2005; 33:6593-602. [PMID: 16314320 PMCID: PMC1298923 DOI: 10.1093/nar/gki958] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/26/2005] [Indexed: 01/27/2023] Open
Abstract
This review takes a second look at a set of mRNAs that purportedly employ an alternative mechanism of initiation when cap-dependent translation is reduced during mitosis or stress conditions. A closer look is necessary because evidence cited in support of the internal initiation hypothesis is often flawed. When putative internal ribosome entry sequences (IRESs) are examined more carefully, they often turn out to harbor cryptic promoters or splice sites. This undermines the dicistronic assay, wherein IRES activity is measured by the ability to support translation of the 3' cistron. Most putative IRESs still have not been checked carefully to determine whether the dicistronic vector produces only the intended dicistronic mRNA. The widespread use of the pRF vector is a major problem because this vector, which has Renilla luciferase as the 5' cistron and firefly luciferase as the 3' cistron, has been found to generate spliced transcripts. RNA transfection assays could theoretically circumvent these problems, but most candidate IRESs score very weakly in that test. The practice of calling even very weak results 'positive' is one of the problems discussed herein. The extremely low efficiency of putative IRESs is inconsistent with their postulated biological roles.'
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
37
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 543] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|