1
|
Li Z, Cao C, Zhao Q, Li D, Han Y, Zhang M, Mao L, Zhou B, Wang L. RNA splicing controls organ-wide maturation of postnatal heart in mice. Dev Cell 2025; 60:236-252.e8. [PMID: 39406241 DOI: 10.1016/j.devcel.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/27/2024] [Accepted: 09/15/2024] [Indexed: 01/23/2025]
Abstract
Postnatal cardiac development requires the orchestrated maturation of diverse cellular components for which unifying control mechanisms are still lacking. Using full-length sequencing, we examined the transcriptomic landscape of the maturating mouse heart (E18.5-P28) at single-cell and transcript isoform resolution. We identified dynamically changing intercellular networks as a molecular basis of the maturing heart and alternative splicing (AS) as a common mechanism that distinguished developmental age. Manipulation of RNA-binding proteins (RBPs) remodeled the AS landscape, cardiac cell maturation, and intercellular communication through direct binding of splice targets, which were enriched for functions related to general, as well as cell-type-specific, maturation. Overexpression of an RBP nuclear cap-binding protein subunit 2 (NCBP2) in neonatal hearts repressed cardiac maturation. Together, our data suggest AS regulation by RBPs as an organ-level control mechanism in mammalian postnatal cardiac development and provide insight into the possibility of manipulating RBPs for therapeutic purposes.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yan Han
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China
| | - Mingzhi Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China.
| |
Collapse
|
2
|
Glick L, Castiglione S, Loewenthal G, Raia P, Pupko T, Mayrose I. Phylogenetic Analysis of 590 Species Reveals Distinct Evolutionary Patterns of Intron-Exon Gene Structures Across Eukaryotic Lineages. Mol Biol Evol 2024; 41:msae248. [PMID: 39657604 DOI: 10.1093/molbev/msae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Introns are highly prevalent in most eukaryotic genomes. Despite the accumulating evidence for benefits conferred by the possession of introns, their specific roles and functions, as well as the processes shaping their evolution, are still only partially understood. Here, we explore the evolution of the eukaryotic intron-exon gene structure by focusing on several key features such as the intron length, the number of introns, and the intron-to-exon length ratio in protein-coding genes. We utilize whole-genome data from 590 species covering the main eukaryotic taxonomic groups and analyze them within a statistical phylogenetic framework. We found that the basic gene structure differs markedly among the main eukaryotic groups, with animals, and particularly chordates, displaying intron-rich genes, compared with plants and fungi. Reconstruction of gene structure evolution suggests that these differences evolved prior to the divergence of the main phyla and have remained mostly conserved within groups. We revisit the previously reported association between the genome size and the mean intron length and report that this association differs considerably among phyla. Analyzing a large and diverse dataset of species with whole-genome information while applying advanced modeling techniques allowed us to obtain a global evolutionary perspective. Our findings may indicate that introns play different molecular and evolutionary roles in different organisms.
Collapse
Affiliation(s)
- Lior Glick
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Silvia Castiglione
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Naples, Italy
| | - Gil Loewenthal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pasquale Raia
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Naples, Italy
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Zang XC, Chen K, Khan IM, Shao M. Augmenting Transcriptome Annotations through the Lens of Splicing Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621892. [PMID: 39574730 PMCID: PMC11580973 DOI: 10.1101/2024.11.04.621892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Alternative splicing (AS) is a ubiquitous mechanism in eukaryotes. It is estimated that 90% of human genes are alternatively spliced. Despite enormous efforts, transcriptome annotations remain, nevertheless, incomplete. Conventional means of annotation were largely driven by experimental data such as RNA-seq and protein sequences, while little insight was shed on understanding transcriptomes and alternative splicings from the perspective of evolution. This study addresses this critical gap by presenting TENNIS (Transcript EvolutioN for New Isoform Splicing), an evolution-based model to predict unannotated isoforms and refine existing annotations without requiring additional data. The model of TENNIS is based on two minimal premises-AS isoforms evolve sequentially from existing isoforms, and each evolutionary step involves a single AS event. We formulate the identification of missing transcripts as an optimization problem and parsimoniously find the minimal number of novel transcripts. Our analysis showed approximately 80% of multi-transcript groups from six transcriptome annotations satisfy our evolutionary model. At a high confidence level, 40% of isoforms predicted by TENNIS were validated by deep long-read RNA-seq. In a simulated incomplete annotation scenario, TENNIS dramatically outperforms two randomized baseline approaches by a 2.25-3 fold-change in precision or a 3.5-3.9 fold-change in recall, after controlling the same level of recall or precision of the baseline methods. These results demonstrate that TENNIS effectively identifies missing transcripts by complying with minimal propositions, offering a powerful approach for transcriptome augmentations through the lens of alternative splicing evolutions. TENNIS is freely available at https://github.com/Shao-Group/tennis .
Collapse
Affiliation(s)
- Xiaofei Carl Zang
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ke Chen
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Irtesam Mahmud Khan
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mingfu Shao
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Bursakov SA, Kovaleva AV, Brigida AV, Zaripov OG. Functional analysis of the GPAT4 gene mutation predicted to affect splicing. Anim Biotechnol 2024; 35:2269210. [PMID: 37906284 DOI: 10.1080/10495398.2023.2269210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The GPAT4 gene is considered as a potential functional candidate for single nucleotide polymorphism (SNP) studies in dairy cattle breeding due to its association with dairy performance in cattle by encoding an enzyme responsible for the presence of diacylglycerols and triacylglycerols in milk. Using the example of the GPAT4 gene, we applied the minigene splicing assay to analyze the functional consequences of its variant that was predicted to affect normal splicing. The results of functional analysis revealed the sequence variations (rs442541537), transfection experiments in a wild type and mutant cell line model system demonstrated that the investigated mutation in the second intron of the GPAT4 gene was responsible for the presence of a second exon in mature messenger RNA (mRNA). The cases of its absence in the spliced mature mRNA transcript resulted in a truncated dysfunctional protein due to the appearance of a stop codon. Thus, the discovered SNP led to alternative splicing in pre-mRNA by the 'cassette exon' ('exon skipping') mechanism. The studied mutation can potentially be a molecular genetic marker for alternative splicing for the GPAT4 gene and, therefore contributes to economic benefits in cattle breeding programs.
Collapse
Affiliation(s)
- Sergey A Bursakov
- Institution of Innovative Biotechnology in Animal Husbandry - A Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L.K. Ernst, Moscow, Russia
- Federal State Budgetary Scientific Institution "All-Russia Research Institute of Agricultural Biotechnology", Moscow, Russia
| | - Anastasia V Kovaleva
- Institution of Innovative Biotechnology in Animal Husbandry - A Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L.K. Ernst, Moscow, Russia
| | - Artyom V Brigida
- Institution of Innovative Biotechnology in Animal Husbandry - A Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L.K. Ernst, Moscow, Russia
| | - Oleg G Zaripov
- Institution of Innovative Biotechnology in Animal Husbandry - A Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L.K. Ernst, Moscow, Russia
| |
Collapse
|
5
|
Shade LMP, Katsumata Y, Abner EL, Aung KZ, Claas SA, Qiao Q, Heberle BA, Brandon JA, Page ML, Hohman TJ, Mukherjee S, Mayeux RP, Farrer LA, Schellenberg GD, Haines JL, Kukull WA, Nho K, Saykin AJ, Bennett DA, Schneider JA, Ebbert MTW, Nelson PT, Fardo DW. GWAS of multiple neuropathology endophenotypes identifies new risk loci and provides insights into the genetic risk of dementia. Nat Genet 2024; 56:2407-2421. [PMID: 39379761 PMCID: PMC11549054 DOI: 10.1038/s41588-024-01939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Genome-wide association studies (GWAS) have identified >80 Alzheimer's disease and related dementias (ADRD)-associated genetic loci. However, the clinical outcomes used in most previous studies belie the complex nature of underlying neuropathologies. Here we performed GWAS on 11 ADRD-related neuropathology endophenotypes with participants drawn from the following three sources: the National Alzheimer's Coordinating Center, the Religious Orders Study and Rush Memory and Aging Project, and the Adult Changes in Thought study (n = 7,804 total autopsied participants). We identified eight independent significantly associated loci, of which four were new (COL4A1, PIK3R5, LZTS1 and APOC2). Separately testing known ADRD loci, 19 loci were significantly associated with at least one neuropathology after false-discovery rate adjustment. Genetic colocalization analyses identified pleiotropic effects and quantitative trait loci. Methylation in the cerebral cortex at two sites near APOC2 was associated with cerebral amyloid angiopathy. Studies that include neuropathology endophenotypes are an important step in understanding the mechanisms underlying genetic ADRD risk.
Collapse
Affiliation(s)
- Lincoln M P Shade
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Khine Zin Aung
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Steven A Claas
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Qi Qiao
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Anthony Brandon
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Madeline L Page
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Richard P Mayeux
- Department of Neurology, Columbia University, New York City, NY, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
- Department of Pathology, Rush Medical College, Chicago, IL, USA
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Guo Y, Shang X, Ma L, Cao Y. RNA-Binding Protein-Mediated Alternative Splicing Regulates Abiotic Stress Responses in Plants. Int J Mol Sci 2024; 25:10548. [PMID: 39408875 PMCID: PMC11477454 DOI: 10.3390/ijms251910548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The alternative splicing of pre-mRNA generates distinct mRNA variants from a pre-mRNA, thereby modulating a gene's function. The splicing of pre-mRNA depends on splice sites and regulatory elements in pre-mRNA, as well as the snRNA and proteins that recognize these sequences. Among these, RNA-binding proteins (RBPs) are the primary regulators of pre-mRNA splicing and play a critical role in the regulation of alternative splicing by recognizing the elements in pre-mRNA. However, little is known about the function of RBPs in stress response in plants. Here, we summarized the RBPs involved in the alternative splicing of pre-mRNA and their recognizing elements in pre-mRNA, and the recent advance in the role of RBP-mediated alternative splicing in response to abiotic stresses in plants. This review proposes that the regulation of pre-mRNA alternative splicing by RBPs is an important way for plants to adapt to abiotic stresses, and the regulation of alternative splicing by RBPs is a promising direction for crop breeding.
Collapse
Affiliation(s)
| | | | | | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (Y.G.); (X.S.); (L.M.)
| |
Collapse
|
7
|
Liu Z, Yang B, Zhang T, Sun H, Mao L, Yang S, Dai X, Suo H, Zhang Z, Chen W, Chen H, Xu W, Dossa K, Zou X, Ou L. Full-length transcriptome sequencing of pepper fruit during development and construction of a transcript variation database. HORTICULTURE RESEARCH 2024; 11:uhae198. [PMID: 39257544 PMCID: PMC11387007 DOI: 10.1093/hr/uhae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 09/12/2024]
Abstract
Chili pepper is an important spice and a model plant for fruit development studies. Large-scale omics information on chili pepper plant development continues to be gathered for understanding development as well as capsaicin biosynthesis. In this study, a full-spectrum transcriptome data of eight chili pepper tissues at five growth stages using the Oxford Nanopore long-read sequencing approach was generated. Of the 485 351 transcripts, 35 336 were recorded as reference transcripts (genes), while 450 015 were novel including coding, lnc, and other non-coding RNAs. These novel transcripts belonged to unknown/intergenic (347703), those retained introns (26336), and had multi-exons with at least one junction match (20333). In terms of alternative splicing, retained intron had the highest proportion (14795). The number of tissue-specific expressed transcripts ranged from 22 925 (stem) to 40 289 (flower). The expression changes during fruit and placenta development are discussed in detail. Integration of gene expression and capsaicin content quantification throughout the placental development clarifies that capsaicin biosynthesis in pepper is mainly derived from valine, leucin, and isoleucine degradation as well as citrate cycle and/or pyrimidine metabolism pathways. Most importantly, a user-friendly Pepper Full-Length Transcriptome Variation Database (PFTVD 1.0) (http://pepper-database.cn/) has been developed. PFTVD 1.0 provides transcriptomics and genomics information and allows users to analyse the data using various tools implemented. This work highlights the potential of long-read sequencing to discover novel genes and transcripts and their diversity in plant developmental biology.
Collapse
Affiliation(s)
- Zhoubin Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | | | - Hao Sun
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lianzhen Mao
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Sha Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Huan Suo
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Hu Chen
- Wuhan Benagen Technology Co., Ltd., Wuhan 430075, China
| | - Wangjie Xu
- Wuhan Benagen Technology Co., Ltd., Wuhan 430075, China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institut, 97170 Petit Bourg, Guadeloupe, France
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| |
Collapse
|
8
|
Yustis JC, Devoucoux M, Côté J. The Functional Relationship Between RNA Splicing and the Chromatin Landscape. J Mol Biol 2024; 436:168614. [PMID: 38762032 DOI: 10.1016/j.jmb.2024.168614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Chromatin is a highly regulated and dynamic structure that has been shown to play an essential role in transcriptional and co-transcriptional regulation. In the context of RNA splicing, early evidence suggested a loose connection between the chromatin landscape and splicing. More recently, it has been shown that splicing occurs in a co-transcriptional manner, meaning that the splicing process occurs in the context of chromatin. Experimental and computational evidence have also shown that chromatin dynamics can influence the splicing process and vice versa. However, much of this evidence provides mainly correlative relationships between chromatin and splicing with just a few concrete examples providing defined molecular mechanisms by which these two processes are functionally related. Nevertheless, it is clear that chromatin and RNA splicing are tightly interconnected to one another. In this review, we highlight the current state of knowledge of the relationship between chromatin and splicing.
Collapse
Affiliation(s)
- Juan-Carlos Yustis
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Maëva Devoucoux
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada.
| |
Collapse
|
9
|
Ouedraogo WYDD, Ouangraoua A. SimSpliceEvol2: alternative splicing-aware simulation of biological sequence evolution and transcript phylogenies. BMC Bioinformatics 2024; 25:235. [PMID: 38992593 PMCID: PMC11238459 DOI: 10.1186/s12859-024-05853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND SimSpliceEvol is a tool for simulating the evolution of eukaryotic gene sequences that integrates exon-intron structure evolution as well as the evolution of the sets of transcripts produced from genes. It takes a guide gene tree as input and generates a gene sequence with its transcripts for each node of the tree, from the root to the leaves. However, the sets of transcripts simulated at different nodes of the guide gene tree lack evolutionary connections. Consequently, SimSpliceEvol is not suitable for evaluating methods for transcript phylogeny inference or gene phylogeny inference that rely on transcript conservation. RESULTS Here, we introduce SimSpliceEvol2, which, compared to the first version, incorporates an explicit model of transcript evolution for simulating alternative transcripts along the branches of a guide gene tree, as well as the transcript phylogenies inferred. We offer a comprehensive software with a graphical user interface and an updated version of the web server, ensuring easy and user-friendly access to the tool. CONCLUSION SimSpliceEvol2 generates synthetic datasets that are useful for evaluating methods and tools for spliced RNA sequence analysis, such as spliced alignment methods, methods for identifying conserved transcripts, and transcript phylogeny reconstruction methods. The web server is accessible at https://simspliceevol.cobius.usherbrooke.ca , where you can also download the standalone software. Comprehensive documentation for the software is available at the same address. For developers interested in the source code, which requires the installation of all prerequisites to run, it is provided at https://github.com/UdeS-CoBIUS/SimSpliceEvol .
Collapse
Affiliation(s)
- Wend Yam D D Ouedraogo
- Department of Computer Science, Université de Sherbrooke, 2500 Bd de l'université, Sherbrooke, QC, J1K2R1, Canada.
| | - Aida Ouangraoua
- Department of Computer Science, Université de Sherbrooke, 2500 Bd de l'université, Sherbrooke, QC, J1K2R1, Canada
| |
Collapse
|
10
|
Page ML, Aguzzoli Heberle B, Brandon JA, Wadsworth ME, Gordon LA, Nations KA, Ebbert MTW. Surveying the landscape of RNA isoform diversity and expression across 9 GTEx tissues using long-read sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579945. [PMID: 38405825 PMCID: PMC10888753 DOI: 10.1101/2024.02.13.579945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Even though alternative RNA splicing was discovered nearly 50 years ago (1977), we still understand very little about most isoforms arising from a single gene, including in which tissues they are expressed and if their functions differ. Human gene annotations suggest remarkable transcriptional complexity, with approximately 252,798 distinct RNA isoform annotations from 62,710 gene bodies (Ensembl v109; 2023), emphasizing the need to understand their biological effects. For example, 256 gene bodies have ≥50 annotated isoforms and 30 have ≥100, where one protein-coding gene (MAPK10) even has 192 distinct RNA isoform annotations. Whether such isoform diversity results from biological redundancy or spurious alternative splicing (i.e., noise), or whether individual isoforms have specialized functions (even if subtle) remains a mystery for most genes. Recent studies by Aguzzoli-Heberle et al., Leung et al., and Glinos et al. demonstrated long-read RNAseq enables improved RNA isoform quantification for essentially any tissue, cell type, or biological condition (e.g., disease, development, aging, etc.), making it possible to better assess individual isoform expression and function. While each study provided important discoveries related to RNA isoform diversity, deeper exploration is needed. We sought to quantify and characterize real isoform usage across tissues (compared to annotations). We used long-read RNAseq data from 58 GTEx samples across nine tissues (three brain, two heart, muscle, lung, liver, and cultured fibroblasts) generated by Glinos et al. and found considerable isoform diversity within and across tissues. Cerebellar hemisphere was the most transcriptionally complex tissue (22,522 distinct isoforms; 3,726 unique); liver was least diverse (12,435 distinct isoforms; 1,039 unique). We highlight gene clusters exhibiting high tissue-specific isoform diversity per tissue (e.g., TPM1 expresses 19 in heart's atrial appendage). We also validated 447 of the 700 new isoforms discovered by Aguzzoli-Heberle et al. and found that 88 were expressed in all nine tissues, while 58 were specific to a single tissue. This study represents a broad survey of the RNA isoform landscape, demonstrating isoform diversity across nine tissues and emphasizes the need to better understand how individual isoforms from a single gene body contribute to human health and disease.
Collapse
Affiliation(s)
- Madeline L. Page
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - J. Anthony Brandon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Mark E. Wadsworth
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Lacey A. Gordon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Kayla A. Nations
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Mark T. W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
11
|
Castañeda-Casasola CC, Nieto-Jacobo MF, Soares A, Padilla-Padilla EA, Anducho-Reyes MA, Brown C, Soth S, Esquivel-Naranjo EU, Hampton J, Mendoza-Mendoza A. Unveiling a Microexon Switch: Novel Regulation of the Activities of Sugar Assimilation and Plant-Cell-Wall-Degrading Xylanases and Cellulases by Xlr2 in Trichoderma virens. Int J Mol Sci 2024; 25:5172. [PMID: 38791210 PMCID: PMC11121469 DOI: 10.3390/ijms25105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-β). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-β in T. virens showed that the short isoform (Xlr2-β) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-β but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.
Collapse
Affiliation(s)
- Cynthia Coccet Castañeda-Casasola
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Centro Nacional de Referencia Fitosanitaria, Tecamac 55740, Mexico
| | | | - Amanda Soares
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Emir Alejandro Padilla-Padilla
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 04510, Mexico
| | - Miguel Angel Anducho-Reyes
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
| | - Chris Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico
| | - John Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Artemio Mendoza-Mendoza
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| |
Collapse
|
12
|
Lee SG, Furth PA, Hennighausen L, Lee HK. Variant- and vaccination-specific alternative splicing profiles in SARS-CoV-2 infections. iScience 2024; 27:109177. [PMID: 38414855 PMCID: PMC10897911 DOI: 10.1016/j.isci.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
The COVID-19 pandemic, driven by the SARS-CoV-2 virus and its variants, highlights the important role of understanding host-viral molecular interactions influencing infection outcomes. Alternative splicing post-infection can impact both host responses and viral replication. We analyzed RNA splicing patterns in immune cells across various SARS-CoV-2 variants, considering immunization status. Using a dataset of 190 RNA-seq samples from our prior studies, we observed a substantial deactivation of alternative splicing and RNA splicing-related genes in COVID-19 patients. The alterations varied significantly depending on the infecting variant and immunization history. Notably, Alpha or Beta-infected patients differed from controls, while Omicron-infected patients displayed a splicing profile closer to controls. Particularly, vaccinated Omicron-infected individuals showed a distinct dynamic in alternative splicing patterns not widely shared among other groups. Our findings underscore the intricate interplay between SARS-CoV-2 variants, vaccination-induced immunity, and alternative splicing, emphasizing the need for further investigations to deepen understanding and guide therapeutic development.
Collapse
Affiliation(s)
- Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Priscilla A Furth
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
13
|
Shamnas v M, Singh A, Kumar A, Mishra GP, Sinha SK. Exitrons: offering new roles to retained introns-the novel regulators of protein diversity and utility. AOB PLANTS 2024; 16:plae014. [PMID: 38566894 PMCID: PMC10985678 DOI: 10.1093/aobpla/plae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Exitrons are exonic introns. This subclass of intron retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.
Collapse
Affiliation(s)
- Muhammed Shamnas v
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Akanksha Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette 47906, Indiana, USA
| | - Anuj Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
14
|
Chen G, Chen J, Qi L, Yin Y, Lin Z, Wen H, Zhang S, Xiao C, Bello SF, Zhang X, Nie Q, Luo W. Bulk and single-cell alternative splicing analyses reveal roles of TRA2B in myogenic differentiation. Cell Prolif 2024; 57:e13545. [PMID: 37705195 PMCID: PMC10849790 DOI: 10.1111/cpr.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Alternative splicing (AS) disruption has been linked to disorders of muscle development, as well as muscular atrophy. However, the precise changes in AS patterns that occur during myogenesis are not well understood. Here, we employed isoform long-reads RNA-seq (Iso-seq) and single-cell RNA-seq (scRNA-seq) to investigate the AS landscape during myogenesis. Our Iso-seq data identified 61,146 full-length isoforms representing 11,682 expressed genes, of which over 52% were novel. We identified 38,022 AS events, with most of these events altering coding sequences and exhibiting stage-specific splicing patterns. We identified AS dynamics in different types of muscle cells through scRNA-seq analysis, revealing genes essential for the contractile muscle system and cytoskeleton that undergo differential splicing across cell types. Gene-splicing analysis demonstrated that AS acts as a regulator, independent of changes in overall gene expression. Two isoforms of splicing factor TRA2B play distinct roles in myogenic differentiation by triggering AS of TGFBR2 to regulate canonical TGF-β signalling cascades differently. Our study provides a valuable transcriptome resource for myogenesis and reveals the complexity of AS and its regulation during myogenesis.
Collapse
Affiliation(s)
- Genghua Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lin Qi
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yunqian Yin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Zetong Lin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Huaqiang Wen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shuai Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Chuanyun Xiao
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Semiu Folaniyi Bello
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiquan Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinghua Nie
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Wen Luo
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
15
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
16
|
Zhao J, Li S, Xu Y, Ahmad N, Kuang B, Feng M, Wei N, Yang X. The subgenome Saccharum spontaneum contributes to sugar accumulation in sugarcane as revealed by full-length transcriptomic analysis. J Adv Res 2023; 54:1-13. [PMID: 36781019 DOI: 10.1016/j.jare.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
INTRODUCTION Modern sugarcane cultivars (Saccharum spp. hybrids) derived from crosses between S. officinarum and S. spontaneum, with high-sugar traits and excellent stress tolerance inherited respectively. However, the contribution of the S. spontaneum subgenome to sucrose accumulation is still unclear. OBJECTIVE To compensate for the absence of a high-quality reference genome, a transcriptome analysis method is needed to analyze the molecular basis of differential sucrose accumulation in sugarcane hybrids and to find clues to the contribution of the S. spontaneum subgenome to sucrose accumulation. METHODS PacBio full-length sequencing was used to complement genome annotation, followed by the identification of differential genes between the high and low sugar groups using differential alternative splicing analysis and differential expression analysis. At the subgenomic level, the factors responsible for differential sucrose accumulation were investigated from the perspective of transcriptional and post-transcriptional regulation. RESULTS A full-length transcriptome annotated at the subgenomic level was provided, complemented by 263,378 allele-defined transcript isoforms and 139,405 alternative splicing (AS) events. Differential alternative splicing (DA) analysis and differential expression (DE) analysis identified differential genes between high and low sugar groups and explained differential sucrose accumulation factors by the KEGG pathways. In some gene models, different or even opposite expression patterns of alleles from the same gene were observed, reflecting the potential evolution of these alleles toward novel functions in polyploid sugarcane. Among DA and DE genes in the sucrose source-sink complex pathway, we found some alleles encoding sucrose accumulation-related enzymes derived from the S. spontaneum subgenome were differentially expressed or had DA events between the two contrasting sugarcane hybrids. CONCLUSION Full-length transcriptomes annotated at the subgenomic level could better characterize sugarcane hybrids, and the S. spontaneum subgenome was found to contribute to sucrose accumulation.
Collapse
Affiliation(s)
- Jihan Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuzhi Xu
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Nazir Ahmad
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Bowen Kuang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Mengfan Feng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ni Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
17
|
Lee SG, Furth PA, Hennighausen L, Lee HK. Variant- and Vaccination-Specific Alternative Splicing Profiles in SARS-CoV-2 Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568603. [PMID: 38076812 PMCID: PMC10705549 DOI: 10.1101/2023.11.24.568603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, and its subsequent variants has underscored the importance of understanding the host-viral molecular interactions to devise effective therapeutic strategies. A significant aspect of these interactions is the role of alternative splicing in modulating host responses and viral replication mechanisms. Our study sought to delineate the patterns of alternative splicing of RNAs from immune cells across different SARS-CoV-2 variants and vaccination statuses, utilizing a robust dataset of 190 RNA-seq samples from our previous studies, encompassing an average of 212 million reads per sample. We identified a dynamic alteration in alternative splicing and genes related to RNA splicing were highly deactivated in COVID-19 patients and showed variant- and vaccination-specific expression profiles. Overall, Omicron-infected patients exhibited a gene expression profile akin to healthy controls, unlike the Alpha or Beta variants. However, significantly, we found identified a subset of infected individuals, most pronounced in vaccinated patients infected with Omicron variant, that exhibited a specific dynamic in their alternative splicing patterns that was not widely shared amongst the other groups. Our findings underscore the complex interplay between SARS-CoV-2 variants, vaccination-induced immune responses, and alternative splicing, emphasizing the necessity for further investigations into these molecular cross-talks to foster deeper understanding and guide strategic therapeutic development.
Collapse
Affiliation(s)
- Sung-Gwon Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Priscilla A. Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| |
Collapse
|
18
|
Huang J, Wu H, Zhao G, Ma Y, An Y, Sun L, Li F, Wang S. A Case-Control Study of the Relationship Between Genetic Polymorphism and Cretinism in Xinjiang. Pharmgenomics Pers Med 2023; 16:785-794. [PMID: 37641720 PMCID: PMC10460608 DOI: 10.2147/pgpm.s418722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Background Cretinism is a subtype of congenital hypothyroidism, an endocrine disorder resulting from inadequate thyroid hormone production or receptor deficiency. Genetic abnormalities play a major role in the development of thyroid dysfunction. Methods We recruited 183 participants with cretinism and 119 healthy participants from the Xinjiang Uyghur Autonomous Region and randomly selected 29 tag single nucleotide polymorphisms (tSNPs) in TSHB, PAX8, TPO, NKX2-5, and TSHR in all participants. We compared genotype and allele frequencies between cases and controls utilizing the chi-squared test, logistic regression analysis, and haplotype analysis. Results Using the chi-squared test, a single SNP was found to be associated with cretinism (recessive model: rs3754363, OR = 0.46, 95% CI = 0.27-0.80, P = 0.00519; genotype model: P = 0.01677). We stratified neurological, myxedematous, and mixed type and determined that another SNP was associated with a higher risk when comparing myxedematous type to the neurological type (rs2277923). Conclusion rs3754363 has a statistically significant protective effect on people with cretinism, while rs2277923 may play a greater role in promoting the development of neurocretinism.
Collapse
Affiliation(s)
- Jia Huang
- Department of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
- Division of Endemic Disease Prevention, Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Haiyan Wu
- Division of Endemic Disease Prevention, Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Guiqiang Zhao
- Infection Management Department, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang, 830000, People’s Republic of China
| | - Yan Ma
- Department of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Yunping An
- Kashgar District Center for Disease Control and Prevention, Kashgar, Xinjiang, 844000, People’s Republic of China
| | - Li Sun
- Ingisha County Center for Disease Control and Prevention, Kashgar, Xinjiang, 844500, People’s Republic of China
| | - Fuye Li
- Department of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Shengling Wang
- Division of Endemic Disease Prevention, Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, 830002, People’s Republic of China
| |
Collapse
|
19
|
Hoppe ER, Udy DB, Bradley RK. Recursive splicing discovery using lariats in total RNA sequencing. Life Sci Alliance 2023; 6:e202201889. [PMID: 37137707 PMCID: PMC10156609 DOI: 10.26508/lsa.202201889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Recursive splicing is a non-canonical splicing mechanism in which an intron is removed in segments via multiple splicing reactions. Relatively few recursive splice sites have been identified with high confidence in human introns, and more comprehensive analyses are needed to better characterize where recursive splicing happens and whether or not it has a regulatory function. In this study, we use an unbiased approach using intron lariats to search for recursive splice sites in constitutive introns and alternative exons in the human transcriptome. We find evidence for recursive splicing in a broader range of intron sizes than previously reported and detail a new location for recursive splicing at the distal ends of cassette exons. In addition, we identify evidence for the conservation of these recursive splice sites among higher vertebrates and the use of these sites to influence alternative exon exclusion. Together, our data demonstrate the prevalence of recursive splicing and its potential influence on gene expression through alternatively spliced isoforms.
Collapse
Affiliation(s)
- Emma R Hoppe
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dylan B Udy
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Upton RN, Correr FH, Lile J, Reynolds GL, Falaschi K, Cook JP, Lachowiec J. Design, execution, and interpretation of plant RNA-seq analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1135455. [PMID: 37457354 PMCID: PMC10348879 DOI: 10.3389/fpls.2023.1135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Genomics has transformed our understanding of the genetic architecture of traits and the genetic variation present in plants. Here, we present a review of how RNA-seq can be performed to tackle research challenges addressed by plant sciences. We discuss the importance of experimental design in RNA-seq, including considerations for sampling and replication, to avoid pitfalls and wasted resources. Approaches for processing RNA-seq data include quality control and counting features, and we describe common approaches and variations. Though differential gene expression analysis is the most common analysis of RNA-seq data, we review multiple methods for assessing gene expression, including detecting allele-specific gene expression and building co-expression networks. With the production of more RNA-seq data, strategies for integrating these data into genetic mapping pipelines is of increased interest. Finally, special considerations for RNA-seq analysis and interpretation in plants are needed, due to the high genome complexity common across plants. By incorporating informed decisions throughout an RNA-seq experiment, we can increase the knowledge gained.
Collapse
|
21
|
Chen R, Li F, Guo X, Bi Y, Li C, Pan S, Coin LJM, Song J. ATTIC is an integrated approach for predicting A-to-I RNA editing sites in three species. Brief Bioinform 2023; 24:bbad170. [PMID: 37150785 PMCID: PMC10565902 DOI: 10.1093/bib/bbad170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
A-to-I editing is the most prevalent RNA editing event, which refers to the change of adenosine (A) bases to inosine (I) bases in double-stranded RNAs. Several studies have revealed that A-to-I editing can regulate cellular processes and is associated with various human diseases. Therefore, accurate identification of A-to-I editing sites is crucial for understanding RNA-level (i.e. transcriptional) modifications and their potential roles in molecular functions. To date, various computational approaches for A-to-I editing site identification have been developed; however, their performance is still unsatisfactory and needs further improvement. In this study, we developed a novel stacked-ensemble learning model, ATTIC (A-To-I ediTing predICtor), to accurately identify A-to-I editing sites across three species, including Homo sapiens, Mus musculus and Drosophila melanogaster. We first comprehensively evaluated 37 RNA sequence-derived features combined with 14 popular machine learning algorithms. Then, we selected the optimal base models to build a series of stacked ensemble models. The final ATTIC framework was developed based on the optimal models improved by the feature selection strategy for specific species. Extensive cross-validation and independent tests illustrate that ATTIC outperforms state-of-the-art tools for predicting A-to-I editing sites. We also developed a web server for ATTIC, which is publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/ATTIC/. We anticipate that ATTIC can be utilized as a useful tool to accelerate the identification of A-to-I RNA editing events and help characterize their roles in post-transcriptional regulation.
Collapse
Affiliation(s)
- Ruyi Chen
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Fuyi Li
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Xudong Guo
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Yue Bi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Shirui Pan
- School of Information and Communication Technology, Griffith University, QLD 4222, Australia
| | - Lachlan J M Coin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, VIC 3800, Australia
| |
Collapse
|
22
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
23
|
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batstone T, Lapébie P, Lemogo L, Sarrasin M, Stretenowich P, Tripathi P, Yazaki E, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukeš J, Burger G. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 2023; 21:99. [PMID: 37143068 PMCID: PMC10161547 DOI: 10.1186/s12915-023-01563-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| | - Sandrine Moreira
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anna Nenarokova
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tom Batstone
- School of Biological Sciences, University of Bristol, Bristol, UK
- Present address: High Performance Computing Centre, Bristol, UK
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Lionnel Lemogo
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Environment Climate Change Canada, Dorval, QC, Canada
| | - Matt Sarrasin
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Paul Stretenowich
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Canadian Centre for Computational Genomics; McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Euki Yazaki
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), Hirosawa, Wako, Saitama, Japan
| | - Takeshi Nara
- Laboratory of Molecular Parasitology, Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki City, Fukushima, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
- Present address: DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - B Franz Lang
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
24
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
25
|
Chen W, Zhou W, Li Q, Mao X. Sex differences in gene expression and alternative splicing in the Chinese horseshoe bat. PeerJ 2023; 11:e15231. [PMID: 37123006 PMCID: PMC10135408 DOI: 10.7717/peerj.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Sexually dimorphic traits are common in sexually reproducing organisms and can be encoded by differential gene regulation between males and females. Although alternative splicing is common mechanism in generating transcriptional diversity, its role in generating sex differences relative to differential gene expression is less clear. Here, we investigate the relative roles of differential gene expression and alternative splicing between male and female the horseshoe bat species, Rhinolophus sinicus. Horseshoe bats are an excellent model to study acoustic differences between sexes. Using RNA-seq analyses of two somatic tissues (brain and liver) from males and females of the same population, we identified 3,471 and 2,208 differentially expressed genes between the sexes (DEGs) in the brain and liver, respectively. DEGs were enriched with functional categories associated with physiological difference of the sexes (e.g.,gamete generation and energy production for reproduction in females). In addition, we also detected many differentially spliced genes between the sexes (DSGs, 2,231 and 1,027 in the brain and liver, respectively) which were mainly involved in regulation of RNA splicing and mRNA metabolic process. Interestingly, we found a significant enrichment of DEGs on the X chromosome, but not for DSGs. As for the extent of overlap between the two sets of genes, more than expected overlap of DEGs and DSGs was observed in the brain but not in the liver. This suggests that more complex tissues, such as the brain, may require the intricate and simultaneous interplay of both differential gene expression and splicing of genes to govern sex-specific functions. Overall, our results support that variation in gene expression and alternative splicing are important and complementary mechanisms governing sex differences.
Collapse
Affiliation(s)
- Wenli Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Weiwei Zhou
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Qianqian Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
26
|
Stöcker T, Uebermuth-Feldhaus C, Boecker F, Schoof H. A2TEA: Identifying trait-specific evolutionary adaptations. F1000Res 2023; 11:1137. [PMID: 37224329 PMCID: PMC10186066 DOI: 10.12688/f1000research.126463.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/26/2023] Open
Abstract
Background: Plants differ in their ability to cope with external stresses (e.g., drought tolerance). Genome duplications are an important mechanism to enable plant adaptation. This leads to characteristic footprints in the genome, such as protein family expansion. We explore genetic diversity and uncover evolutionary adaptation to stresses by exploiting genome comparisons between stress tolerant and sensitive species and RNA-Seq data sets from stress experiments. Expanded gene families that are stress-responsive based on differential expression analysis could hint at species or clade-specific adaptation, making these gene families exciting candidates for follow-up tolerance studies and crop improvement. Software: Integration of such cross-species omics data is a challenging task, requiring various steps of transformation and filtering. Ultimately, visualization is crucial for quality control and interpretation. To address this, we developed A2TEA: Automated Assessment of Trait-specific Evolutionary Adaptations, a Snakemake workflow for detecting adaptation footprints in silico. It functions as a one-stop processing pipeline, integrating protein family, phylogeny, expression, and protein function analyses. The pipeline is accompanied by an R Shiny web application that allows exploring, highlighting, and exporting the results interactively. This allows the user to formulate hypotheses regarding the genomic adaptations of one or a subset of the investigated species to a given stress. Conclusions: While our research focus is on crops, the pipeline is entirely independent of the underlying species and can be used with any set of species. We demonstrate pipeline efficiency on real-world datasets and discuss the implementation and limits of our analysis workflow as well as planned extensions to its current state. The A2TEA workflow and web application are publicly available at: https://github.com/tgstoecker/A2TEA.Workflow and https://github.com/tgstoecker/A2TEA.WebApp, respectively.
Collapse
Affiliation(s)
- Tyll Stöcker
- Crop Bioinformatics, University of Bonn, Bonn, NRW, 53115, Germany
| | | | - Florian Boecker
- Crop Bioinformatics, University of Bonn, Bonn, NRW, 53115, Germany
| | - Heiko Schoof
- Crop Bioinformatics, University of Bonn, Bonn, NRW, 53115, Germany
| |
Collapse
|
27
|
Choi S, Cho N, Kim KK. The implications of alternative pre-mRNA splicing in cell signal transduction. Exp Mol Med 2023; 55:755-766. [PMID: 37009804 PMCID: PMC10167241 DOI: 10.1038/s12276-023-00981-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
Cells produce multiple mRNAs through alternative splicing, which ensures proteome diversity. Because most human genes undergo alternative splicing, key components of signal transduction pathways are no exception. Cells regulate various signal transduction pathways, including those associated with cell proliferation, development, differentiation, migration, and apoptosis. Since proteins produced through alternative splicing can exhibit diverse biological functions, splicing regulatory mechanisms affect all signal transduction pathways. Studies have demonstrated that proteins generated by the selective combination of exons encoding important domains can enhance or attenuate signal transduction and can stably and precisely regulate various signal transduction pathways. However, aberrant splicing regulation via genetic mutation or abnormal expression of splicing factors negatively affects signal transduction pathways and is associated with the onset and progression of various diseases, including cancer. In this review, we describe the effects of alternative splicing regulation on major signal transduction pathways and highlight the significance of alternative splicing.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
28
|
Franz A, Weber AI, Preußner M, Dimos N, Stumpf A, Ji Y, Moreno-Velasquez L, Voigt A, Schulz F, Neumann A, Kuropka B, Kühn R, Urlaub H, Schmitz D, Wahl MC, Heyd F. Branch point strength controls species-specific CAMK2B alternative splicing and regulates LTP. Life Sci Alliance 2023; 6:6/3/e202201826. [PMID: 36543542 PMCID: PMC9772828 DOI: 10.26508/lsa.202201826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Regulation and functionality of species-specific alternative splicing has remained enigmatic to the present date. Calcium/calmodulin-dependent protein kinase IIβ (CaMKIIβ) is expressed in several splice variants and plays a key role in learning and memory. Here, we identify and characterize several primate-specific CAMK2B splice isoforms, which show altered kinetic properties and changes in substrate specificity. Furthermore, we demonstrate that primate-specific CAMK2B alternative splicing is achieved through branch point weakening during evolution. We show that reducing branch point and splice site strengths during evolution globally renders constitutive exons alternative, thus providing novel mechanistic insight into cis-directed species-specific alternative splicing regulation. Using CRISPR/Cas9, we introduce a weaker, human branch point sequence into the mouse genome, resulting in strongly altered Camk2b splicing in the brains of mutant mice. We observe a strong impairment of long-term potentiation in CA3-CA1 synapses of mutant mice, thus connecting branch point-controlled CAMK2B alternative splicing with a fundamental function in learning and memory.
Collapse
Affiliation(s)
- Andreas Franz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - A Ioana Weber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Nicole Dimos
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Alexander Stumpf
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Laura Moreno-Velasquez
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Voigt
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederic Schulz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Mass Spectrometry Core Facility (BioSupraMol), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar Schmitz
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| |
Collapse
|
29
|
Identification of sex-specific splicing via comparative transcriptome analysis of gonads from sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101031. [PMID: 36371882 DOI: 10.1016/j.cbd.2022.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Alternative splicing (AS) is an essential post-transcriptional regulation mechanism for sex differentiation and gonadal development, which has rarely been reported in marine invertebrates. Sea cucumber (Apostichopus japonicus) is an economically important marine benthic echinoderm with a potential XX/XY sex determination mechanism, whose molecular mechanism in the gonadal differentiation has not been clearly understood. In this study, we analyzed available RNA-seq datasets of male and female gonads to explore if AS mechanism exerts an essential function in sex differentiation and gonadal development of A. japonicus. In our results, a total of 20,338 AS events from 7219 alternatively spliced genes, and 189 sexually differential alternative splicing (DAS) events from 156 genes were identified in gonadal transcriptome of sea cucumber. Gene Ontology analysis indicated that these DAS genes were significantly enriched in spermatogenesis-related GO terms. Maximal Clique Centrality (MCC) was then applied for protein-protein interaction (PPI) analysis to search for protein interactions and hub DAS gene. Among all DAS genes, we identified 10 DAS genes closely related to spermatogenesis and (or) sperm motility and a hub gene dnah1. Thus, this study revealed that alternative isoforms were generated from certain genes in female and male gonads through alternative splicing, which may provide direct evidence that alternative splicing mechanisms participate in female and male gonads. These results suggested a novel perspective for explaining the molecular mechanisms underlying gonadal differentiation between male and female sea cucumbers.
Collapse
|
30
|
Martinez-Gomez L, Cerdán-Vélez D, Abascal F, Tress ML. Origins and Evolution of Human Tandem Duplicated Exon Substitution Events. Genome Biol Evol 2022; 14:6809199. [PMID: 36346145 PMCID: PMC9741552 DOI: 10.1093/gbe/evac162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
The mutually exclusive splicing of tandem duplicated exons produces protein isoforms that are identical save for a homologous region that allows for the fine tuning of protein function. Tandem duplicated exon substitution events are rare, yet highly important alternative splicing events. Most events are ancient, their isoforms are highly expressed, and they have significantly more pathogenic mutations than other splice events. Here, we analyzed the physicochemical properties and functional roles of the homologous polypeptide regions produced by the 236 tandem duplicated exon substitutions annotated in the human gene set. We find that the most important structural and functional residues in these homologous regions are maintained, and that most changes are conservative rather than drastic. Three quarters of the isoforms produced from tandem duplicated exon substitution events are tissue-specific, particularly in nervous and cardiac tissues, and tandem duplicated exon substitution events are enriched in functional terms related to structures in the brain and skeletal muscle. We find considerable evidence for the convergent evolution of tandem duplicated exon substitution events in vertebrates, arthropods, and nematodes. Twelve human gene families have orthologues with tandem duplicated exon substitution events in both Drosophila melanogaster and Caenorhabditis elegans. Six of these gene families are ion transporters, suggesting that tandem exon duplication in genes that control the flow of ions into the cell has an adaptive benefit. The ancient origins, the strong indications of tissue-specific functions, and the evidence of convergent evolution suggest that these events may have played important roles in the evolution of animal tissues and organs.
Collapse
Affiliation(s)
- Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | | |
Collapse
|
31
|
Gazzaz N, Frost FG, Alderman E, Richmond PA, Dalmann J, Lin S, Salman A, Del Bel KL, Lehman A, Turvey SE, Boerkoel CF, Cherukuri PF. Can tandem alternative splicing and evasion of premature termination codon surveillance contribute to attenuated Peutz-Jeghers syndrome? Am J Med Genet A 2022; 188:3089-3095. [PMID: 35946377 DOI: 10.1002/ajmg.a.62942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023]
Abstract
Alternative use of short distance tandem sites such as NAGNn AG are a common mechanism of alternative splicing; however, single nucleotide variants are rarely reported as likely to generate or to disrupt tandem splice sites. We identify a pathogenic intron 5 STK11 variant (NM_000455.4:c.[735-6A>G];[=]) segregating with the mucocutaneous features but not the hamartomatous polyps of Peutz-Jeghers syndrome in two individuals. By RNAseq analysis of peripheral blood mRNA, this variant was shown to generate a novel and preferentially used tandem proximal splice acceptor (AAGTGAAG). The variant transcript (NM_000455.4:c.734_734 + 1insTGAAG), which encodes a frameshift (p.[Tyr246Glufs*43]) constituted 36%-43% of STK11 transcripts suggesting partial escape from nonsense mediated mRNA decay and translation of a truncated protein. A review of the ClinVar database identified other similar variants. We suggest that nucleotide changes creating or disrupting tandem alternative splice sites are a pertinent disease mechanism and require contextualization for clinical reporting. Additionally, we hypothesize that some pathogenic STK11 variants cause an attenuated phenotype.
Collapse
Affiliation(s)
- Nour Gazzaz
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Graeme Frost
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Alderman
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Phillip A Richmond
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Dalmann
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Susan Lin
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Areesha Salman
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Kate L Del Bel
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelius F Boerkoel
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Praveen F Cherukuri
- Imagenetics, Sanford Health and Research Center and Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
32
|
Zhang Y, Lou F, Chen J, Han Z, Yang T, Gao T, Song N. Single-molecule Real-time (SMRT) Sequencing Facilitates Transcriptome Research and Genome Annotation of the Fish Sillago sinica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1002-1013. [PMID: 36083383 DOI: 10.1007/s10126-022-10163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As a newly described Sillaginidae species, Chinese sillago (Sillago sinica) needs a better understanding of gene annotation information. In this study, we reported the first full-length transcriptome data of S. sinica using the PacBio isoform sequencing Iso-seq and a description of transcriptome structure analysis. A total of 454,979 high-quality full-length transcripts were obtained by single-molecule real-time (SMRT) sequencing, which was corrected by Illumina sequencing data. After that, 66,948 non-redundant full-length transcripts were generated after mapping to the reference genome of S. sinica, including 49 fusion isoforms and 9,250 novel isoforms. 63,459 isoforms were successfully annotated by one of the Nr, Nt, SwissProt, Pfam, KOG, GO, and KEGG databases. Additionally, 30,987 alternative polyadenylation (APA) sites, 451,867 alternative splicing (AS) events, 21,928 long non-coding RNAs (lncRNAs) and 12,911 transcription factors (TFs) were identified. The full-length transcripts of S. sinica would provide a precious resource for characterizing the transcriptome of S. sinica and for the further study of gene function and regulatory mechanism of this species.
Collapse
Affiliation(s)
- Yuan Zhang
- Fishery College, Ocean University of China, Qingdao, 266003, China
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Na Song
- Fishery College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
33
|
Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N. Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 2022; 22:1189-1209. [PMID: 36173582 DOI: 10.1007/s10142-022-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.
Collapse
Affiliation(s)
- Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Lee TA, Han H, Polash A, Cho SK, Lee JW, Ra EA, Lee E, Park A, Kang S, Choi JL, Kim JH, Lee JE, Min KW, Yang SW, Hafner M, Lee I, Yoon JH, Lee S, Park B. The nucleolus is the site for inflammatory RNA decay during infection. Nat Commun 2022; 13:5203. [PMID: 36057640 PMCID: PMC9440930 DOI: 10.1038/s41467-022-32856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/16/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammatory cytokines are key signaling molecules that can promote an immune response, thus their RNA turnover must be tightly controlled during infection. Most studies investigate the RNA decay pathways in the cytosol or nucleoplasm but never focused on the nucleolus. Although this organelle has well-studied roles in ribosome biogenesis and cellular stress sensing, the mechanism of RNA decay within the nucleolus is not completely understood. Here, we report that the nucleolus is an essential site of inflammatory pre-mRNA instability during infection. RNA-sequencing analysis reveals that not only do inflammatory genes have higher intronic read densities compared with non-inflammatory genes, but their pre-mRNAs are highly enriched in nucleoli during infection. Notably, nucleolin (NCL) acts as a guide factor for recruiting cytosine or uracil (C/U)-rich sequence-containing inflammatory pre-mRNAs and the Rrp6-exosome complex to the nucleolus through a physical interaction, thereby enabling targeted RNA delivery to Rrp6-exosomes and subsequent degradation. Consequently, Ncl depletion causes aberrant hyperinflammation, resulting in a severe lethality in response to LPS. Importantly, the dynamics of NCL post-translational modifications determine its functional activity in phases of LPS. This process represents a nucleolus-dependent pathway for maintaining inflammatory gene expression integrity and immunological homeostasis during infection. The nucleolus is the traditional site for ribosomal RNA biogenesis. Here, the authors find that the nucleolus is a site of inflammatory pre-mRNA turnover and elucidated how immune homeostasis can be maintained by controlling inflammatory gene expression.
Collapse
Affiliation(s)
- Taeyun A Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Heonjong Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, South Korea
| | - Ahsan Polash
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Eun A Ra
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunhye Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Junhee L Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.,Samsung Genome Institute (SGI), Samsung Medical Center, Seoul, South Korea
| | - Kyung-Won Min
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Sungwook Lee
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, South Korea.
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
35
|
Liu J, Chen S, Liu M, Chen Y, Fan W, Lee S, Xiao H, Kudrna D, Li Z, Chen X, Peng Y, Tian K, Zhang B, Wing RA, Zhang J, Wang X. Full-Length Transcriptome Sequencing Reveals Alternative Splicing and lncRNA Regulation during Nodule Development in Glycine max. Int J Mol Sci 2022; 23:7371. [PMID: 35806374 PMCID: PMC9266934 DOI: 10.3390/ijms23137371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing (AS) is a ubiquitous phenomenon among eukaryotic intron-containing genes, which greatly contributes to transcriptome and proteome diversity. Here we performed the isoform sequencing (Iso-Seq) of soybean underground tissues inoculated and uninoculated with Rhizobium and obtained 200,681 full-length transcripts covering 26,183 gene loci. It was found that 80.78% of the multi-exon loci produced more than one splicing variant. Comprehensive analysis of these identified 7874 differentially splicing events with highly diverse splicing patterns during nodule development, especially in defense and transport-related processes. We further profiled genes with differential isoform usage and revealed that 2008 multi-isoform loci underwent stage-specific or simultaneous major isoform switches after Rhizobium inoculation, indicating that AS is a vital way to regulate nodule development. Moreover, we took the lead in identifying 1563 high-confidence long non-coding RNAs (lncRNAs) in soybean, and 157 of them are differentially expressed during nodule development. Therefore, our study uncovers the landscape of AS during the soybean-Rhizobium interaction and provides systematic transcriptomic data for future study of multiple novel directions in soybean.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.C.); (M.L.); (Y.C.); (W.F.); (Z.L.); (X.C.); (K.T.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Shengcai Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.C.); (M.L.); (Y.C.); (W.F.); (Z.L.); (X.C.); (K.T.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Min Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.C.); (M.L.); (Y.C.); (W.F.); (Z.L.); (X.C.); (K.T.)
| | - Yimian Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.C.); (M.L.); (Y.C.); (W.F.); (Z.L.); (X.C.); (K.T.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Wei Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.C.); (M.L.); (Y.C.); (W.F.); (Z.L.); (X.C.); (K.T.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (D.K.); (R.A.W.); (J.Z.)
| | - Han Xiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Dave Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (D.K.); (R.A.W.); (J.Z.)
| | - Zixin Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.C.); (M.L.); (Y.C.); (W.F.); (Z.L.); (X.C.); (K.T.)
| | - Xu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.C.); (M.L.); (Y.C.); (W.F.); (Z.L.); (X.C.); (K.T.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Kewei Tian
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.C.); (M.L.); (Y.C.); (W.F.); (Z.L.); (X.C.); (K.T.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Bao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| | - Rod A. Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (D.K.); (R.A.W.); (J.Z.)
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (D.K.); (R.A.W.); (J.Z.)
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; (H.X.); (Y.P.); (B.Z.)
| |
Collapse
|
36
|
Meta-Analysis Suggests That Intron Retention Can Affect Quantification of Transposable Elements from RNA-Seq Data. BIOLOGY 2022; 11:biology11060826. [PMID: 35741347 PMCID: PMC9220773 DOI: 10.3390/biology11060826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023]
Abstract
Simple Summary Transposable elements (TEs) are repetitive sequences comprising more than one third of the human genome with the original ability to change their location within the genome. Owing to their repetitive nature, the quantification of TEs results often challenging. RNA-seq is a useful tool for genome-wide TEs quantification, nevertheless it also presents technical issues, including low reads mappability and erroneous quantification derived from the transcription of TEs fragments embedded in canonical transcripts. Fragments derived from TEs are found within the introns of most genes, which led to the hypothesis that intron retention (IR) can affect the unbiased quantification of TEs expression. Performing meta-analysis of public RNA-seq datasets, here we observe that IR can indeed impact the quantification of TEs by increasing the number of reads mapped on intronic TE copies. Our work highlights a correlation between IR and TEs expression measurement by RNA-seq that should be taken into account to achieve reliable TEs quantification, especially in samples characterized by extensive IR, because differential IR might be confused with differential TEs expression. Abstract Transposable elements (TEs), also known as “jumping genes”, are repetitive sequences with the capability of changing their location within the genome. They are key players in many different biological processes in health and disease. Therefore, a reliable quantification of their expression as transcriptional units is crucial to distinguish between their independent expression and the transcription of their sequences as part of canonical transcripts. TEs quantification faces difficulties of different types, the most important one being low reads mappability due to their repetitive nature preventing an unambiguous mapping of reads originating from their sequences. A large fraction of TEs fragments localizes within introns, which led to the hypothesis that intron retention (IR) can be an additional source of bias, potentially affecting accurate TEs quantification. IR occurs when introns, normally removed from the mature transcript by the splicing machinery, are maintained in mature transcripts. IR is a widespread mechanism affecting many different genes with cell type-specific patterns. We hypothesized that, in an RNA-seq experiment, reads derived from retained introns can introduce a bias in the detection of overlapping, independent TEs RNA expression. In this study we performed meta-analysis using public RNA-seq data from lymphoblastoid cell lines and show that IR can impact TEs quantification using established tools with default parameters. Reads mapped on intronic TEs were indeed associated to the expression of TEs and influence their correct quantification as independent transcriptional units. We confirmed these results using additional independent datasets, demonstrating that this bias does not appear in samples where IR is not present and that differential TEs expression does not impact on IR quantification. We concluded that IR causes the over-quantification of intronic TEs and differential IR might be confused with differential TEs expression. Our results should be taken into account for a correct quantification of TEs expression from RNA-seq data, especially in samples in which IR is abundant.
Collapse
|
37
|
Gao Y, Pang AP, Ma L, Wang H, Durrani S, Li B, Wu FG, Lin F. Intron retention coupled with nonsense-mediated decay is involved in cellulase biosynthesis in cellulolytic fungi. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:53. [PMID: 35590374 PMCID: PMC9118705 DOI: 10.1186/s13068-022-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Knowledge on regulatory networks associated with cellulase biosynthesis is prerequisite for exploitation of such regulatory systems in enhancing cellulase production with low cost. The biological functions of intron retention (IR) and nonsense-mediated mRNA decay (NMD) in filamentous fungi is lack of study, let alone their roles in cellulase biosynthesis. RESULTS We found that major cellulase genes (cel7a, cel7b, and cel3a) exhibited concomitant decrease in IR rates and increase in their gene expression in T. reesei under cellulase-producing condition (cellulose and lactose) that was accompanied with a more active NMD pathway, as compared to cellulase non-producing condition (glucose). In the presence of the NMD pathway inhibitor that successfully repressed the NMD pathway, the mRNA levels of cellulase genes were sharply down-regulated, but the rates of IR in these genes were significantly up-regulated. Consistently, the cellulase activities were severely inhibited. In addition, the NMD pathway inhibitor caused the downregulated mRNA levels of two important genes of the target of rapamycin (TOR) pathway, trfkbp12 and trTOR1. The absence of gene trfkbp12 made the cellulase production in T. reesei more sensitive to the NMD pathway inhibitor. CONCLUSIONS All these findings suggest that the IR of cellulase genes regulates their own gene expression by coupling with the NMD pathway, which might involve the TOR pathway. Our results provide better understanding on intron retention, the NMD pathway, and cellulase production mechanism in filamentous fungi.
Collapse
Affiliation(s)
- Yichen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bingzhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
38
|
Identification and characterization of a new germline-specific marker vasa gene and its promoter in the giant freshwater prawn Macrobrachium rosenbergii. Comp Biochem Physiol B Biochem Mol Biol 2022; 259:110716. [PMID: 34999221 DOI: 10.1016/j.cbpb.2022.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
Abstract
Vasa gene encodes a protein member of DEAD-box superfamily of ATP-dependent RNA helicases, which plays a key role in germline development in metazoans. In present study, we identified a new germline-specific marker Mrvasa in the prawn Macrobrachium rosenbergii, whose genomic DNA sequence consists of 14 exons and 13 introns. A 2516 bp of full-length Mrvasa cDNA encodes a protein of 603 amino acids. It contains nine conserved motifs, a zinc-finger motif, and RGG repeats. RT-PCR indicated that Mrvasa mRNA was specifically expressed in gonads. QPCR analysis further revealed that the expression of Mrvasa mRNA is much higher in testis than in ovary. In testis, the relative expression level of Mrvasa mRNA in late developing stage is significantly higher than that in early-middle developing stage. During ovarian development, no significant difference in expression was found. In situ hybridization demonstrated that Mrvasa mRNA was localized in germline cells including spermatogonia, spermatocytes, and spermatozoa in testes, and previtellogenic and vitellogenic oocytes in ovary. We then isolated the Mrvasa promoter and determined the transcription core region of this promoter. This is the first report on identification of vasa core promoter in crustaceans. Our results will provide a useful germline-specific marker Mrvasa for tracing germline cell formation and development in M. rosenbergii.
Collapse
|
39
|
Chan SKN, Suresh S, Munday P, Ravasi T, Bernal MA, Schunter C. The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecol Evol 2022; 12:e8738. [PMID: 35342554 PMCID: PMC8933327 DOI: 10.1002/ece3.8738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluctuations. In this study, we investigated patterns of alternative splicing in the liver of the coral reef fish Acanthochromis polyacanthus in response to the 2016 marine heatwave on the Great Barrier Reef. The differentially spliced (DS; n = 40) genes during the onset of the heatwave (i.e., 29.49°C or +1°C from average) were related to essential cellular functions such as the MAPK signaling system, Ca(2+) binding, and homeostasis. With the persistence of the heatwave for a period of one month (February to March), 21 DS genes were detected, suggesting that acute warming during the onset of the heatwave is more influential on alternative splicing than the continued exposure to elevated temperatures. After the heatwave, the water temperature cooled to ~24.96°C, and fish showed differential splicing of genes related to cyto-protection and post-damage recovery (n = 26). Two-thirds of the DS genes detected across the heatwave were also differentially expressed, revealing that the two molecular mechanisms act together in A. polyacanthus to cope with the acute thermal change. This study exemplifies how splicing patterns of a coral reef fish can be modified by marine heatwaves. Alternative splicing could therefore be a potential mechanism to adjust cellular physiological states under thermal stress and aid coral reef fishes in their response to more frequent acute thermal fluctuations in upcoming decades.
Collapse
Affiliation(s)
- Stanley Kin Nok Chan
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Sneha Suresh
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Phillip Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Moisés A. Bernal
- Department of Biological SciencesCollege of Science and MathematicsAuburn UniversityAuburnAlabamaUSA
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
40
|
Kusiak M, Oleszczuk P, Jośko I. Cross-examination of engineered nanomaterials in crop production: Application and related implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127374. [PMID: 34879568 DOI: 10.1016/j.jhazmat.2021.127374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The review presents the current knowledge on the development and implementation of nanotechnology in crop production, giving particular attention to potential opportunities and challenges of the use of nano-sensors, nano-pesticides, and nano-fertilizers. Due to the size-dependent properties, e.g. high reactivity, targeted and controlled delivery of active ingredients, engineered nanomaterials (ENMs) are expected to be more efficient agrochemicals than conventional agents. Growing production and usage of ENMs result in the spread of ENMs in the environment. Because plants constitute an important component of the agri-ecosystem, they are subjected to the ENMs activity. A number of studies have confirmed the uptake and translocation of ENMs by plants as well as their positive/negative effects on plants. Here, these endpoints are briefly summarized to show the diversity of plant responses to ENMs. The review includes a detailed molecular analysis of ENMs-plant interactions. The transcriptomics, proteomics and metabolomics tools have been very recently employed to explore ENMs-induced effects in planta. The omics approach allows a comprehensive understanding of the specific machinery of ENMs occurring at the molecular level. The summary of data will be valuable in defining future studies on the ENMs-plant system, which is crucial for developing a suitable strategy for the ENMs usage.
Collapse
Affiliation(s)
- Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland.
| |
Collapse
|
41
|
Singh P, Ahi EP. The importance of alternative splicing in adaptive evolution. Mol Ecol 2022; 31:1928-1938. [DOI: 10.1111/mec.16377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Pooja Singh
- Department of Biological Sciences University of Calgary Calgary Canada
- Institute of Ecology and Evolution University of Bern Bern Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Kastanienbaum Switzerland
| | - Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
| |
Collapse
|
42
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
43
|
Sacchetto C, Peretto L, Baralle F, Maestri I, Tassi F, Bernardi F, van de Graaf SFJ, Pagani F, Pinotti M, Balestra D. OTC intron 4 variations mediate pathogenic splicing patterns caused by the c.386G>A mutation in humans and spf ash mice, and govern susceptibility to RNA-based therapies. Mol Med 2021; 27:157. [PMID: 34906067 PMCID: PMC8670272 DOI: 10.1186/s10020-021-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Background Aberrant splicing is a common outcome in the presence of exonic or intronic variants that might hamper the intricate network of interactions defining an exon in a specific gene context. Therefore, the evaluation of the functional, and potentially pathological, role of nucleotide changes remains one of the major challenges in the modern genomic era. This aspect has also to be taken into account during the pre-clinical evaluation of innovative therapeutic approaches in animal models of human diseases. This is of particular relevance when developing therapeutics acting on splicing, an intriguing and expanding research area for several disorders. Here, we addressed species-specific splicing mechanisms triggered by the OTC c.386G>A mutation, relatively frequent in humans, leading to Ornithine TransCarbamylase Deficiency (OTCD) in patients and spfash mice, and its differential susceptibility to RNA therapeutics based on engineered U1snRNA. Methods Creation and co-expression of engineered U1snRNAs with human and mouse minigenes, either wild-type or harbouring different nucleotide changes, in human (HepG2) and mouse (Hepa1-6) hepatoma cells followed by analysis of splicing pattern. RNA pulldown studies to evaluate binding of specific splicing factors. Results Comparative nucleotide analysis suggested a role for the intronic +10-11 nucleotides, and pull-down assays showed that they confer preferential binding to the TIA1 splicing factor in the mouse context, where TIA1 overexpression further increases correct splicing. Consistently, the splicing profile of the human minigene with mouse +10-11 nucleotides overlapped that of mouse minigene, and restored responsiveness to TIA1 overexpression and to compensatory U1snRNA. Swapping the human +10-11 nucleotides into the mouse context had opposite effects. Moreover, the interplay between the authentic and the adjacent cryptic 5′ss in the human OTC dictates pathogenic mechanisms of several OTCD-causing 5′ss mutations, and only the c.386+5G>A change, abrogating the cryptic 5′ss, was rescuable by engineered U1snRNA. Conclusions Subtle intronic variations explain species-specific OTC splicing patterns driven by the c.386G>A mutation, and the responsiveness to engineered U1snRNAs, which suggests careful elucidation of molecular mechanisms before proposing translation of tailored therapeutics from animal models to humans. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00418-9.
Collapse
Affiliation(s)
- Claudia Sacchetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Department of Molecular Genetics, University of Maastricht, Maastricht, The Netherlands
| | - Laura Peretto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | | | - Iva Maestri
- Department of Translational Medicine and for Romagna, Pathology Unit of Pathologic Anatomy, Histology and Cytology, University of Ferrara, Ferrara, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Franco Pagani
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| |
Collapse
|
44
|
Karki P, Carney TD, Maracci C, Yatsenko AS, Shcherbata HR, Rodnina MV. Tissue-specific regulation of translational readthrough tunes functions of the traffic jam transcription factor. Nucleic Acids Res 2021; 50:6001-6019. [PMID: 34897510 PMCID: PMC9226519 DOI: 10.1093/nar/gkab1189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Translational readthrough (TR) occurs when the ribosome decodes a stop codon as a sense codon, resulting in two protein isoforms synthesized from the same mRNA. TR has been identified in several eukaryotic organisms; however, its biological significance and mechanism remain unclear. Here, we quantify TR of several candidate genes in Drosophila melanogaster and characterize the regulation of TR in the large Maf transcription factor Traffic jam (Tj). Using CRISPR/Cas9-generated mutant flies, we show that the TR-generated Tj isoform is expressed in a subset of neural cells of the central nervous system and is excluded from the somatic cells of gonads. Control of TR in Tj is critical for preservation of neuronal integrity and maintenance of reproductive health. The tissue-specific distribution of a release factor splice variant, eRF1H, plays a critical role in modulating differential TR of leaky stop codon contexts. Fine-tuning of gene regulatory functions of transcription factors by TR provides a potential mechanism for cell-specific regulation of gene expression.
Collapse
Affiliation(s)
- Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Travis D Carney
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
45
|
Liu K, Su Q, Kang K, Chen M, Wang WX, Zhang WQ, Pang R. Genome-wide Analysis of Alternative Gene Splicing Associated with Virulence in the Brown Planthopper Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2512-2523. [PMID: 34568947 DOI: 10.1093/jee/toab186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 06/13/2023]
Abstract
Alternative splicing of protein coding genes plays a profound role in phenotypic variation for many eukaryotic organisms. The development of high-throughput sequencing and bioinformatics algorithms provides the possibility of genome-wide identification of alternative splicing events in eukaryotes. However, for the brown planthopper Nilaparvata lugens, a destructive pest of rice crops, whole-genome distribution of alternative splicing events and the role of alternative splicing in the phenotypic plasticity of virulence have not previously been estimated. Here, we developed an analysis pipeline to identify alternative splicing events in the genome of N. lugens. Differential expression analysis and functional annotation were performed on datasets related to different virulence phenotypes. In total, 27,880 alternative splicing events corresponding to 9,787 multi-exon genes were detected in N. lugens. Among them, specifically expressed alternative splicing transcripts in the virulent Mudgo population were enriched in metabolic process categories, while transcripts in the avirulent TN1 population were enriched in regulator activity categories. In addition, genes encoding odorant receptor, secreted saliva protein and xenobiotic metabolic P450 monooxygenase showed different splicing patterns between Mudgo population and TN1 population. Host change experiment also revealed that an isoform of a P450 gene could be specially induced by the stimulation of resistant rice variety Mudgo. This research pioneered a genome-wide study of alternative gene splicing in the rice brown planthopper. Differences in alternative splicing between virulent and avirulent populations indicated that alternative splicing might play an important role in the formation of virulence phenotypes in N. lugens.
Collapse
Affiliation(s)
- Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qin Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kui Kang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
46
|
Yang P, Wang D, Kang L. Alternative splicing level related to intron size and organism complexity. BMC Genomics 2021; 22:853. [PMID: 34819032 PMCID: PMC8614042 DOI: 10.1186/s12864-021-08172-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Alternative splicing is the process of selecting different combinations of splice sites to produce variably spliced mRNAs. However, the relationships between alternative splicing prevalence and level (ASP/L) and variations of intron size and organism complexity (OC) remain vague. Here, we developed a robust protocol to analyze the relationships between ASP/L and variations of intron size and OC. Approximately 8 Tb raw RNA-Seq data from 37 eumetazoan species were divided into three sets of species based on variations in intron size and OC. Results We found a strong positive correlation between ASP/L and OC, but no correlation between ASP/L and intron size across species. Surprisingly, ASP/L displayed a positive correlation with mean intron size of genes within individual genomes. Moreover, our results revealed that four ASP/L-related pathways contributed to the differences in ASP/L that were associated with OC. In particular, the spliceosome pathway displayed distinct genomic features, such as the highest gene expression level, conservation level, and fraction of disordered regions. Interestingly, lower or no obvious correlations were observed among these genomic features. Conclusions The positive correlation between ASP/L and OC ubiquitously exists in eukaryotes, and this correlation is not affected by the mean intron size of these species. ASP/L-related splicing factors may play an important role in the evolution of OC. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08172-2.
Collapse
Affiliation(s)
- Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Depin Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Borao S, Ayté J, Hümmer S. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Int J Mol Sci 2021; 22:ijms222212444. [PMID: 34830325 PMCID: PMC8624252 DOI: 10.3390/ijms222212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5' and 3' splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: (J.A.); (S.H.)
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Translational Molecular Pathology, Vall d’Hebron Research Institute (VHIR), CIBERONC, 08035 Barcelona, Spain
- Correspondence: (J.A.); (S.H.)
| |
Collapse
|
48
|
Schorr AL, Mangone M. miRNA-Based Regulation of Alternative RNA Splicing in Metazoans. Int J Mol Sci 2021; 22:ijms222111618. [PMID: 34769047 PMCID: PMC8584187 DOI: 10.3390/ijms222111618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative RNA splicing is an important regulatory process used by genes to increase their diversity. This process is mainly executed by specific classes of RNA binding proteins that act in a dosage-dependent manner to include or exclude selected exons in the final transcripts. While these processes are tightly regulated in cells and tissues, little is known on how the dosage of these factors is achieved and maintained. Several recent studies have suggested that alternative RNA splicing may be in part modulated by microRNAs (miRNAs), which are short, non-coding RNAs (~22 nt in length) that inhibit translation of specific mRNA transcripts. As evidenced in tissues and in diseases, such as cancer and neurological disorders, the dysregulation of miRNA pathways disrupts downstream alternative RNA splicing events by altering the dosage of splicing factors involved in RNA splicing. This attractive model suggests that miRNAs can not only influence the dosage of gene expression at the post-transcriptional level but also indirectly interfere in pre-mRNA splicing at the co-transcriptional level. The purpose of this review is to compile and analyze recent studies on miRNAs modulating alternative RNA splicing factors, and how these events contribute to transcript rearrangements in tissue development and disease.
Collapse
Affiliation(s)
- Anna L. Schorr
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287, USA;
| | - Marco Mangone
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85287, USA
- Correspondence: ; Tel.: +1-480-965-7957
| |
Collapse
|
49
|
Mir Q, Lakshmipati DK, Ulrich BJ, Kaplan MH, Janga SC. Comparative Analysis of Alternative Splicing Profiles in Th Cell Subsets Reveals Extensive Cell Type-Specific Effects Modulated by a Network of Transcription Factors and RNA-Binding Proteins. Immunohorizons 2021; 5:760-771. [PMID: 34583937 DOI: 10.4049/immunohorizons.2100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing (AS) plays an important role in the development of many cell types; however, its contribution to Th subsets has been clearly defined. In this study, we compare mice naive CD4+ Th cells with Th1, Th2, Th17, and T regulatory cells and observed that the majority of AS events were retained intron, followed by skipped-exon events, with at least 1200 genes across cell types affected by AS events. A significant fraction of the AS events, especially retained intron events from the 72-h time point, were no longer observed 2 wk postdifferentiation, suggesting a role for AS in early activation and differentiation via preferential expression of specific isoforms required during T cell activation, but not for differentiation or effector function. Examining the protein consequence of the exon-skipping events revealed an abundance of structural proteins encoding for intrinsically unstructured peptide regions, followed by transmembrane helices, β strands, and polypeptide turn motifs. Analyses of expression profiles of RNA-binding proteins (RBPs) and their cognate binding sites flanking the discovered AS events revealed an enrichment for specific RBP recognition sites in each of the Th subsets. Integration with publicly available chromatin immunoprecipitation sequencing datasets for transcription factors support a model wherein lineage-determining transcription factors impact the RBP profile within the differentiating cells, and this differential expression contributes to AS of the transcriptome via a cascade of cell type-specific posttranscriptional rewiring events.
Collapse
Affiliation(s)
- Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN
| | - Deepak K Lakshmipati
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN
| | - Benjamin J Ulrich
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H Kaplan
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN;
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN; and
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
50
|
Tao M, Zheng M, Xu Y, Ma S, Zhang W, Ju S. CircRNAs and their regulatory roles in cancers. Mol Med 2021; 27:94. [PMID: 34445958 PMCID: PMC8393742 DOI: 10.1186/s10020-021-00359-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of non-coding RNAs (ncRNAs), have a covalently closed circular structure resulting from pre-mRNA back splicing via spliceosome and ribozymes. They can be classified differently in accordance with different criteria. As circRNAs are abundant, conserved, and stable, they can be used as diagnostic markers in various diseases and targets to develop new therapies. There are various functions of circRNAs, including sponge for miR/proteins, role of scaffolds, templates for translation, and regulators of mRNA translation and stability. Without m7G cap and poly-A tail, circRNAs can still be degraded in several ways, including RNase L, Ago-dependent, and Ago-independent degradation. Increasing evidence indicates that circRNAs can be modified by N-6 methylation (m6A) in many aspects such as biogenesis, nuclear export, translation, and degradation. In addition, they have been proved to play a regulatory role in the progression of various cancers. Recently, methods of detecting circRNAs with high sensitivity and specificity have also been reported. This review presents a detailed overview of circRNAs regarding biogenesis, biomarker, functions, degradation, and dynamic modification as well as their regulatory roles in various cancers. It’s particularly summarized in detail in the biogenesis of circRNAs, regulation of circRNAs by m6A modification and mechanisms by which circRNAs affect tumor progression respectively. Moreover, existing circRNA detection methods and their characteristics are also mentioned.
Collapse
Affiliation(s)
- Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Ming Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Weiwei Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China. .,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.
| |
Collapse
|