1
|
Meng Y, Huang X, Zhang G, Fu S, Li Y, Song J, Zhu Y, Xu X, Peng X. MicroRNA-450b-5p modulated RPLP0 promotes hepatocellular carcinoma progression via activating JAK/STAT3 pathway. Transl Oncol 2024; 50:102150. [PMID: 39383650 PMCID: PMC11490897 DOI: 10.1016/j.tranon.2024.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is distinguished by its insidious onset, difficult treatment, and poor prognosis. Ribosomal Protein Lateral Stalk Subunit P0 (RPLP0) is implicated in numerous tumor progression processes. Nevertheless, the regulatory mechanism of RPLP0 in HCC progression remains unclear. Our study suggested that RPLP0 exhibits high expression levels in HCC and possesses promising diagnostic capabilities, as indicated by its area under the curve (AUC) of 0.908. Further analysis showed that RPLP0 was a significant independent prognostic factor, and elevated expression levels of RPLP0 were linked with poorer overall survival (OS) and progression-free interval (PFI) outcomes. Additionally, reducing RPLP0 levels led to a decrease in HCC cell proliferation, clonality, invasion, migration, and xenograft tumor growth, as well as an increase in apoptosis. Furthermore, our findings indicated that microRNA(miR)-450b-5p induced downregulation of RPLP0, leading to the suppression of the JAK/STAT3 pathway and consequently hindering the advancement of HCC. The study indicates that RPLP0 plays a role as a carcinogenic factor in HCC and carries important diagnostic and prognostic implications. Targeting the miR-450b-5p/RPLP0/JAK/STAT3 axis has potential clinical value in treating HCC.
Collapse
Affiliation(s)
- Yanqiu Meng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Xianbin Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Guangxin Zhang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Sansan Fu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Youhua Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Jielong Song
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Yizi Zhu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Xinping Xu
- Jiangxi Clinical Research Center for Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| | - Xiaodong Peng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Dutta A, Szekely Z, Guven H, Li XP, McLaughlin JE, Tumer NE. A fluorescence anisotropy-based competition assay to identify inhibitors against ricin and Shiga toxin ribosome interactions. Anal Biochem 2024; 692:115580. [PMID: 38825159 PMCID: PMC11418909 DOI: 10.1016/j.ab.2024.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Ricin is one of the most toxic substances known and a type B biothreat agent. Shiga toxins (Stxs) produced by E. coli (STEC) and Shigella dysenteriae are foodborne pathogens. There is no effective therapy against ricin or STEC and there is an urgent need for inhibitors. Ricin toxin A subunit (RTA) and A1 subunit of Stx2a (Stx2A1) bind to the C-terminal domain (CTD) of the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. Modulation of toxin-ribosome interactions has not been explored as a strategy for inhibition. Therefore, development of assays that detect inhibitors targeting toxin-ribosome interactions remains a critical need. Here we describe a fluorescence anisotropy (FA)-based competitive binding assay using a BODIPY-TMR labeled 11-mer peptide (P11) derived from the P-stalk CTD to measure the binding affinity of peptides ranging from 3 to 11 amino acids for the P-stalk pocket of RTA and Stx2A1. Comparison of the affinity with the surface plasmon resonance (SPR) assay indicated that although the rank order was the same by both methods, the FA assay could differentiate better between peptides that show nonspecific interactions by SPR. The FA assay detects only interactions that compete with the labeled P11 and can validate inhibitor specificity and mechanism of action.
Collapse
Affiliation(s)
- Arkajyoti Dutta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Zoltan Szekely
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Hakan Guven
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA.
| | - John E McLaughlin
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Nilgun E Tumer
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Li XP, Rudolph MJ, Chen Y, Tumer NE. Structure-Function Analysis of the A1 Subunit of Shiga Toxin 2 with Peptides That Target the P-Stalk Binding Site and Inhibit Activity. Biochemistry 2024; 63:893-905. [PMID: 38467020 PMCID: PMC11418911 DOI: 10.1021/acs.biochem.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Shiga toxin 2a (Stx2a) is the virulence factor of Escherichia coli (STEC), which is associated with hemolytic uremic syndrome, the leading cause of pediatric kidney failure. The A1 subunit of Stx2a (Stx2A1) binds to the conserved C-terminal domain (CTD) of the ribosomal P-stalk proteins to remove an adenine from the sarcin-ricin loop (SRL) in the 28S rRNA, inhibiting protein synthesis. There are no antidotes against Stx2a or any other ribosome-inactivating protein (RIP). The structural and functional details of the binding of Stx2A1 to the P-stalk CTD are not known. Here, we carry out a deletion analysis of the conserved P-stalk CTD and show that the last eight amino acids (P8) of the P-stalk proteins are the minimal sequence required for optimal affinity and maximal inhibitory activity against Stx2A1. We determined the first X-ray crystal structure of Stx2A1 alone and in complex with P8 and identified the exact binding site. The C-terminal aspartic acid of the P-stalk CTD serves as an anchor, forming key contacts with the conserved arginine residues at the P-stalk binding pocket of Stx2A1. Although the ricin A subunit (RTA) binds to the P-stalk CTD, the last aspartic acid is more critical for the interaction with Stx2A1, indicating that RIPs differ in their requirements for the P-stalk. These results demonstrate that the catalytic activity of Stx2A1 is inhibited by blocking its interactions with the P-stalk, providing evidence that P-stalk binding is an essential first step in the recruitment of Stx2A1 to the SRL for depurination.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Michael J Rudolph
- New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, United States
| | - Yang Chen
- New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, United States
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
4
|
Rudolph MJ, Dutta A, Tsymbal AM, McLaughlin JE, Chen Y, Davis SA, Theodorous SA, Pierce M, Algava B, Zhang X, Szekely Z, Roberge JY, Li XP, Tumer NE. Structure-based design and optimization of a new class of small molecule inhibitors targeting the P-stalk binding pocket of ricin. Bioorg Med Chem 2024; 100:117614. [PMID: 38340640 PMCID: PMC11418912 DOI: 10.1016/j.bmc.2024.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Ricin, a category-B agent for bioterrorism, and Shiga toxins (Stxs), which cause food poisoning bind to the ribosomal P-stalk to depurinate the sarcin/ricin loop. No effective therapy exists for ricin or Stx intoxication. Ribosome binding sites of the toxins have not been targeted by small molecules. We previously identified CC10501, which inhibits toxin activity by binding the P-stalk pocket of ricin toxin A subunit (RTA) remote from the catalytic site. Here, we developed a fluorescence polarization assay and identified a new class of compounds, which bind P-stalk pocket of RTA with higher affinity and inhibit catalytic activity with submicromolar potency. A lead compound, RU-NT-206, bound P-stalk pocket of RTA with similar affinity as a five-fold larger P-stalk peptide and protected cells against ricin and Stx2 holotoxins for the first time. These results validate the P-stalk binding site of RTA as a critical target for allosteric inhibition of the active site.
Collapse
Affiliation(s)
- Michael J Rudolph
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, United States
| | - Arkajyoti Dutta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Anastasiia M Tsymbal
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ 08854, United States
| | - John E McLaughlin
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Yang Chen
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, United States
| | - Simon A Davis
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, United States
| | - Sophia A Theodorous
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, United States
| | - Michael Pierce
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Benjamin Algava
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Xiaoyu Zhang
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Zoltan Szekely
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ 08854, United States
| | - Jacques Y Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ 08854, United States
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States.
| |
Collapse
|
5
|
Yang L, Lee KM, Yu CWH, Imai H, Choi AH, Banfield D, Ito K, Uchiumi T, Wong KB. The flexible N-terminal motif of uL11 unique to eukaryotic ribosomes interacts with P-complex and facilitates protein translation. Nucleic Acids Res 2022; 50:5335-5348. [PMID: 35544198 PMCID: PMC9122527 DOI: 10.1093/nar/gkac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic uL11 contains a conserved MPPKFDP motif at the N-terminus that is not found in archaeal and bacterial homologs. Here, we determined the solution structure of human uL11 by NMR spectroscopy and characterized its backbone dynamics by 15N-1H relaxation experiments. We showed that these N-terminal residues are unstructured and flexible. Structural comparison with ribosome-bound uL11 suggests that the linker region between the N-terminal domain and C-terminal domain of human uL11 is intrinsically disordered and only becomes structured when bound to the ribosomes. Mutagenesis studies show that the N-terminal conserved MPPKFDP motif is involved in interacting with the P-complex and its extended protuberant domain of uL10 in vitro. Truncation of the MPPKFDP motif also reduced the poly-phenylalanine synthesis in both hybrid ribosome and yeast mutagenesis studies. In addition, G→A/P substitutions to the conserved GPLG motif of helix-1 reduced poly-phenylalanine synthesis to 9-32% in yeast ribosomes. We propose that the flexible N-terminal residues of uL11, which could extend up to ∼25 Å from the N-terminal domain of uL11, can form transient interactions with the uL10 that help to fetch and fix it into a position ready for recruiting the incoming translation factors and facilitate protein synthesis.
Collapse
Affiliation(s)
- Lei Yang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Conny Wing-Heng Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hirotatsu Imai
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Andrew Kwok-Ho Choi
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - David K Banfield
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
- The Institute of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
6
|
Lu JQ, Wong KB, Shaw PC. A Sixty-Year Research and Development of Trichosanthin, a Ribosome-Inactivating Protein. Toxins (Basel) 2022; 14:178. [PMID: 35324675 PMCID: PMC8950148 DOI: 10.3390/toxins14030178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tian Hua Fen, a herbal powder extract that contains trichosanthin (TCS), was used as an abortifacient in traditional Chinese medicine. In 1972, TCS was purified to alleviate the side effects. Because of its clinical applications, TCS became one of the most active research areas in the 1960s to the 1980s in China. These include obtaining the sequence information in the 1980s and the crystal structure in 1995. The replication block of TCS on human immunodeficiency virus in lymphocytes and macrophages was found in 1989 and started a new chapter of its development. Clinical studies were subsequently conducted. TCS was also found to have the potential for gastric and colorectal cancer treatment. Studies on its mechanism showed TCS acts as an rRNA N-glycosylase (EC 3.2.2.22) by hydrolyzing and depurinating A-4324 in α-sarcin/ricin loop on 28S rRNA of rat ribosome. Its interaction with acidic ribosomal stalk proteins was revealed in 2007, and its trafficking in mammalian cells was elucidated in the 2000s. The adverse drug reactions, such as inducing immune responses, short plasma half-life, and non-specificity, somehow became the obstacles to its usage. Immunotoxins, sequence modification, or coupling with polyethylene glycerol and dextran were developed to improve the pharmacological properties. TCS has nicely shown the scientific basis of traditional Chinese medicine and how its research and development have expanded the knowledge and applications of ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Jia-Qi Lu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
7
|
Li XP, Harijan RK, Cao B, Kahn JN, Pierce M, Tsymbal AM, Roberge JY, Augeri D, Tumer NE. Synthesis and Structural Characterization of Ricin Inhibitors Targeting Ribosome Binding Using Fragment-Based Methods and Structure-Based Design. J Med Chem 2021; 64:15334-15348. [PMID: 34648707 PMCID: PMC10704857 DOI: 10.1021/acs.jmedchem.1c01370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ricin toxin A subunit (RTA) is the catalytic subunit of ricin, which depurinates an adenine from the sarcin/ricin loop in eukaryotic ribosomes. There are no approved inhibitors against ricin. We used a new strategy to disrupt RTA-ribosome interactions by fragment screening using surface plasmon resonance. Here, using a structure-guided approach, we improved the affinity and inhibitory activity of small-molecular-weight lead compounds and obtained improved compounds with over an order of magnitude higher efficiency. Four advanced compounds were characterized by X-ray crystallography. They bind at the RTA-ribosome binding site as the original compound but in a distinctive manner. These inhibitors bind remotely from the catalytic site and cause local conformational changes with no alteration of the catalytic site geometry. Yet they inhibit depurination by ricin holotoxin and inhibit the cytotoxicity of ricin in mammalian cells. They are the first agents that protect against ricin holotoxin by acting directly on RTA.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Bin Cao
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Jennifer N Kahn
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Michael Pierce
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Anastasiia M Tsymbal
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Jacques Y Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - David Augeri
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
8
|
Pathanraj D, Choowongkomon K, Roytrakul S, Yokthongwattana C. Structural Distinctive 26SK, a Ribosome-Inactivating Protein from Jatropha curcas and Its Biological Activities. Appl Biochem Biotechnol 2021; 193:3877-3897. [PMID: 34669111 DOI: 10.1007/s12010-021-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are a group of proteins exhibiting N-glycosidase activity leading to an inactivation of protein synthesis. Thirteen predicted Jatropha curcas RIP sequences could be grouped into RIP types 1 or 2. The expression of the RIP genes was detected in seed kernels, seed coats, and leaves. The full-length cDNA of two RIP genes (26SK and 34.7(A)SK) were cloned and studied. The 34.7(A)SK protein was successfully expressed in the host cells while it was difficult to produce even only a small amount of the 26SK protein. Therefore, the crude proteins were used from E. coli expressing 26SK and 34.7(A)SK constructs and they showed RIP activity. Only the cell lysate from 26SK could inhibit the growth of E. coli. In addition, the crude protein extracted from 26SK expressing cells displayed the effect on the growth of MDA-MB-231, a human breast cancer cell line. Based on in silico analysis, all 13 J. curcas RIPs contained RNA and ribosomal P2 stalk protein binding sites; however, the C-terminal region of the P2 stalk binding site was lacking in the 26SK structure. In addition, an amphipathic distribution between positive and negative potential was observed only in the 26SK protein, similar to that found in the anti-microbial peptide. These findings suggested that this 26SK protein structure might have contributed to its toxicity, suggesting potential uses against pathogenic bacteria in the future.
Collapse
Affiliation(s)
- Danulada Pathanraj
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand.
| |
Collapse
|
9
|
Ran G, Feng XL, Xie YL, Zheng QY, Guo PP, Yang M, Feng YL, Ling C, Zhu LQ, Zhong C. The use of miR122 and its target sequence in adeno-associated virus-mediated trichosanthin gene therapy. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:515-525. [PMID: 34538767 DOI: 10.1016/j.joim.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Plant-derived cytotoxic transgene expression, such as trichosanthin (tcs), regulated by recombinant adeno-associated virus (rAAV) vector is a promising cancer gene therapy. However, the cytotoxic transgene can hamper the vector production in the rAAV producer cell line, human embryonic kidney (HEK293) cells. Here, we explored microRNA-122 (miR122) and its target sequence to limit the expression of the cytotoxic gene in the rAAV producer cells. METHODS A miR122 target (122T) sequence was incorporated into the 3' untranslated region of the tcs cDNA sequence. The firefly luciferase (fluc) transgene was used as an appropriate control. Cell line HEK293-mir122 was generated by the lentiviral vector-mediated genome integration of the mir122 gene in parental HEK293 cells. The effects of miR122 overexpression on cell growth, transgene expression, and rAAV production were determined. RESULTS The presence of 122T sequence significantly reduced transgene expression in the miR122-enriched Huh7 cell line (in vitro), fresh human hepatocytes (ex vivo), and mouse liver (in vivo). Also, the normal liver physiology was unaffected by delivery of 122T sequence by rAAV vectors. Compared with the parental cells, the miR122-overexpressing HEK293-mir122 cell line showed similar cell growth rate and expression of transgene without 122T, as well as the ability to produce liver-targeting rAAV vectors. Fascinatingly, the yield of rAAV vectors carrying the tcs-122T gene was increased by 77.7-fold in HEK293-mir122 cells. Moreover, the tcs-122T-containing rAAV vectors significantly reduced the proliferation of hepatocellular carcinoma cells without affecting the normal liver cells. CONCLUSION HEK293-mir122 cells along with the 122T sequence provide a potential tool to attenuate the cytotoxic transgene expression, such as tcs, during rAAV vector production.
Collapse
Affiliation(s)
- Gai Ran
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Xi-Lin Feng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yi-Lin Xie
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Qing-Yun Zheng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Peng-Peng Guo
- Department of Traditional Chinese Medicine, Chinese People's Liberation Army 971 Hospital, Qingdao 266071, Shandong Province, China
| | - Ming Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Ying-Lu Feng
- Department of Traditional Chinese Medicine, Chinese People's Liberation Army 971 Hospital, Qingdao 266071, Shandong Province, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Li-Qing Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Horbowicz-Drożdżal P, Kamel K, Kmiecik S, Borkiewicz L, Tumer NE, Shaw PC, Tchórzewski M, Grela P. Phosphorylation of the conserved C-terminal domain of ribosomal P-proteins impairs the mode of interaction with plant toxins. FEBS Lett 2021; 595:2221-2236. [PMID: 34328639 DOI: 10.1002/1873-3468.14170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/12/2022]
Abstract
The ribosome is subjected to post-translational modifications, including phosphorylation, that affect its biological activity. Among ribosomal elements, the P-proteins undergo phosphorylation within the C terminus, the element which interacts with trGTPases or ribosome-inactivating proteins (RIPs); however, the role of phosphorylation has never been elucidated. Here, we probed the function of phosphorylation on the interaction of P-proteins with RIPs using the ribosomal P1-P2 dimer. We determined the kinetic parameters of the interaction with the toxins using biolayer interferometry and microscale thermophoresis. The results present the first mechanistic insight into the function of P-protein phosphorylation, showing that introduction of a negative charge into the C terminus of P1-P2 proteins promotes α-helix formation and decreases the affinity of the P-proteins for the RIPs.
Collapse
Affiliation(s)
- Patrycja Horbowicz-Drożdżal
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Poland
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, China
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Grela
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
11
|
Rudolph MJ, Davis SA, Tumer NE, Li XP. Structural basis for the interaction of Shiga toxin 2a with a C-terminal peptide of ribosomal P stalk proteins. J Biol Chem 2020; 295:15588-15596. [PMID: 32878986 PMCID: PMC7667979 DOI: 10.1074/jbc.ac120.015070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
The principal virulence factor of human pathogenic enterohemorrhagic Escherichia coli is Shiga toxin (Stx). Shiga toxin 2a (Stx2a) is the subtype most commonly associated with severe disease outcomes such as hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 subunit (Stx2A1) binds to the conserved elongation factor binding C-terminal domain (CTD) of ribosomal P stalk proteins to inhibit translation. Stx2a holotoxin also binds to the CTD of P stalk proteins because the ribosome-binding site is exposed. We show here that Stx2a binds to an 11-mer peptide (P11) mimicking the CTD of P stalk proteins with low micromolar affinity. We cocrystallized Stx2a with P11 and defined their interactions by X-ray crystallography. We found that the last six residues of P11 inserted into a shallow pocket on Stx2A1 and interacted with Arg-172, Arg-176, and Arg-179, which were previously shown to be critical for binding of Stx2A1 to the ribosome. Stx2a formed a distinct P11-binding mode within a different surface pocket relative to ricin toxin A subunit and trichosanthin, suggesting different ribosome recognition mechanisms for each ribosome inactivating protein (RIP). The binding mode of Stx2a to P11 is also conserved among the different Stx subtypes. Furthermore, the P stalk protein CTD is flexible and adopts distinct orientations and interaction modes depending on the structural differences between the RIPs. Structural characterization of the Stx2a-ribosome complex is important for understanding the role of the stalk in toxin recruitment to the sarcin/ricin loop and may provide a new target for inhibitor discovery.
Collapse
Affiliation(s)
| | - Simon A. Davis
- New York Structural Biology Center, New York, New York, USA
| | - Nilgun E. Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA,For correspondence: Xiao-Ping Li, ; Nilgun E. Tumer,
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA,For correspondence: Xiao-Ping Li, ; Nilgun E. Tumer,
| |
Collapse
|
12
|
iTRAQ®-based quantitative proteomics reveals the proteomic profiling of methicillin-resistant Staphylococcus aureus-derived extracellular vesicles after exposure to imipenem. Folia Microbiol (Praha) 2020; 66:221-230. [PMID: 33165807 DOI: 10.1007/s12223-020-00836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
This study sought to reveal the proteomic profiling of methicillin-resistant Staphylococcus aureus (MRSA)-derived extracellular vesicles (EVs) after exposure to imipenem. The advanced isobaric tags for relative and absolute quantitation (iTRAQ®) proteomic approach were used to analyze the alterations in MRSA-derived EV protein patterns upon exposure to imipenem. A total of 1260 EV proteins were identified and quantified. Among these, 861 differentially expressed exosome proteins (P < 0.05) were found. Multivariate analysis, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyze the identified proteins. Enrichment analysis of GO annotations indicated that imipenem primarily regulated the metabolic processes in MRSA. The metabolism of differentially expressed proteins was found to be the most significant in the combined analysis of the KEGG pathway analysis. Based on the results from the STRING analysis, 50S ribosomal protein L16 (RplP) and 30S ribosomal protein S8 (RpsH) were involved in the imipenem-induced MRSA-derived EVs. These results provide vital information on MRSA-derived EVs, increasing our knowledge of the proteome level changes in EVs upon exposure to imipenem. Moreover, these results pave the way for developing novel MRSA treatments.
Collapse
|
13
|
Leucine 232 and hydrophobic residues at the ribosomal P stalk binding site are critical for biological activity of ricin. Biosci Rep 2020; 39:BSR20192022. [PMID: 31548364 PMCID: PMC6822507 DOI: 10.1042/bsr20192022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 01/16/2023] Open
Abstract
Ricin interacts with the ribosomal P stalk to cleave a conserved adenine from the α-sarcin/ricin loop (SRL) of the rRNA. Ricin toxin A chain (RTA) uses Arg235 as the most critical arginine for binding to the P stalk through electrostatic interactions to facilitate depurination. Structural analysis showed that a P2 peptide binds to a hydrophobic pocket on RTA and the last two residues form hydrogen bonds with Arg235. The importance of hydrophobic residues relative to Arg235 in the interaction with the P stalk in vivo and on the toxicity of RTA is not known. Here, we mutated residues in the hydrophobic pocket to analyze their contribution to toxicity and depurination activity in yeast and in mammalian cells. We found that Leu232, Tyr183 and Phe240 contribute cumulatively to toxicity, with Leu232 being the most significant. A quadruple mutant, Y183A/L232A/R235A/F240A, which combined mutations in critical hydrophobic residues with R235A completely abolished the activity of RTA, indicating that Arg235 and hydrophobic residues are required for full biological activity. Y183A and F240A mutants had reduced activity on RNA, but higher activity on ribosomes compared with R235A in vitro, suggesting that they could partially regain activity upon interaction with ribosomes. These results expand the region of interaction between RTA and the P stalk critical for cellular activity to include the hydrophobic pocket and provide the first evidence that interaction of P stalk with the hydrophobic pocket promotes a conformational rearrangement of RTA to correctly position the active site residues for catalytic attack on the SRL.
Collapse
|
14
|
Li XP, Harijan RK, Kahn JN, Schramm VL, Tumer NE. Small Molecule Inhibitors Targeting the Interaction of Ricin Toxin A Subunit with Ribosomes. ACS Infect Dis 2020; 6:1894-1905. [PMID: 32428396 DOI: 10.1021/acsinfecdis.0c00127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ricin toxin A subunit (RTA) removes an adenine from the universally conserved sarcin/ricin loop (SRL) on eukaryotic ribosomes, thereby inhibiting protein synthesis. No high affinity and selective small molecule therapeutic antidotes have been reported against ricin toxicity. RTA binds to the ribosomal P stalk to access the SRL. The interaction anchors RTA to the P protein C-termini at a well-defined hydrophobic pocket, which is on the opposite face relative to the active site. The RTA ribosome binding site has not been previously targeted by small molecule inhibitors. We used fragment screening with surface plasmon resonance to identify small molecular weight lead compounds that bind RTA and defined their interactions by crystallography. We identified five fragments, which bound RTA with mid-micromolar affinity. Three chemically distinct binding fragments were cocrystallized with RTA, and crystal structures were solved. Two fragments bound at the P stalk binding site, and the third bound to helix D, a motif distinct from the P stalk binding site. All fragments bound RTA remote from the catalytic site and caused little change in catalytic site geometry. Two fragments uniquely bound at the hydrophobic pocket with affinity sufficient to inhibit the catalytic activity on eukaryotic ribosomes in the low micromolar range. The binding mode of these inhibitors mimicked the interaction of the P stalk peptide, establishing that small molecule inhibitors can inhibit RTA binding to the ribosome with the potential for therapeutic intervention.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Rajesh K. Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus,1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Jennifer N. Kahn
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus,1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Nilgun E. Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
15
|
Fan X, Wang Y, Guo F, Zhang Y, Jin T. Atomic-resolution structures of type I ribosome inactivating protein alpha-momorcharin with different substrate analogs. Int J Biol Macromol 2020; 164:265-276. [PMID: 32653369 DOI: 10.1016/j.ijbiomac.2020.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Alpha-momorcharin (Alpha-MMC) from the seed of bitter melon is a type I ribosome inactivating protein (RIP) that removes a specific adenine from 28S rRNA and inhibits protein biosynthesis. Here, we report seven crystal complex structures of alpha-MMC with different substrate analogs (adenine, AMP, cAMP, dAMP, ADP, GMP, and xanthosine) at 1.08 Å to 1.52 Å resolution. These structures reveal that not only adenine, but also guanine and their analogs can effectively bind to alpha-MMC. The side chain of Tyr93 adopts two conformations, serving as a switch to open and close the substrate binding pocket of alpha-MMC. Although adenine, AMP, GMP, and guanine are located in a similar active site in different RIPs, residues involved in the interaction between RIPs and substrate analogs are slightly different. Complex structures of alpha-MMC with different substrate analogs solved in this study provide useful information on its enzymatic mechanisms and may enable the development of new inhibitors to treat the poisoning of alpha-MMC.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | - Feng Guo
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | - Yuzhu Zhang
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA; Processed Foods Research Unit, USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China; Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
16
|
Britikov VV, Britikova EV, Urban AS, Lesovoy DM, Le TBT, Van Phan C, Usanov SA, Arseniev AS, Bocharov EV. Backbone and side-chain chemical shift assignments for the ribosome-inactivating protein trichobakin (TBK). BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:55-61. [PMID: 31734904 DOI: 10.1007/s12104-019-09920-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Trichobakin (TBK) is a type-I ribosome-inactivating protein (RIP-I), acting as an extremely potent inhibitor of protein synthesis in the cell-free translation system of rabbit reticulocyte lysate (IC50: 3.5 pM). In this respect, TBK surpasses the well-studied highly homologous RIP-I trichosanthin (IC50: 20-27 pM), therefore creation of recombinant toxins based on it is of great interest. TBK needs to penetrate into cytosol through the cell membrane and specifically bind to α-sarcin/ricin loop of 28S ribosome RNA to perform the function of specific RNA depurination. At the moment, there is no detailed structural-dynamic information in solution about diverse states RIP-I can adopt at different stages on the way to protein synthesis inhibition. In this work, we report a near-complete assignment of 1H, 13C, and 15N TBK (27.3 kDa) resonances and analysis of the secondary structure based on the experimental chemical shifts data. This work will serve as a basis for further investigations of the structure, dynamics and interactions of the TBK with its molecular partners using NMR techniques.
Collapse
Affiliation(s)
- Vladimir V Britikov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Elena V Britikova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anatoly S Urban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Dmitry M Lesovoy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Thi Bich Thao Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Chi Van Phan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| |
Collapse
|
17
|
Choi KHA, Yang L, Lee KM, Yu CWH, Banfield DK, Ito K, Uchiumi T, Wong KB. Structural and Mutagenesis Studies Evince the Role of the Extended Protuberant Domain of Ribosomal Protein uL10 in Protein Translation. Biochemistry 2019; 58:3744-3754. [PMID: 31419120 DOI: 10.1021/acs.biochem.9b00528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lateral stalk of ribosomes constitutes the GTPase-associated center and is responsible for recruiting translation factors to the ribosomes. The eukaryotic stalk contains a P-complex, in which one molecule of uL10 (formerly known as P0) protein binds two copies of P1/P2 heterodimers. Unlike bacterial uL10, eukaryotic uL10 has an extended protuberant (uL10ext) domain inserted into the N-terminal RNA-binding domain. Here, we determined the solution structure of the extended protuberant domain of Bombyx mori uL10 by nuclear magnetic resonance spectroscopy. Comparison of the structures of the B. mori uL10ext domain with eRF1-bound and eEF2-bound ribosomes revealed significant structural rearrangement in a "hinge" region surrounding Phe183, a residue conserved in eukaryotic but not in archaeal uL10. 15N relaxation analyses showed that residues in the hinge region have significantly large values of transverse relaxation rates. To test the role of the conserved phenylalanine residue, we created a yeast mutant strain expressing an F181A variant of uL10. An in vitro translation assay showed that the alanine substitution increased the level of polyphenylalanine synthesis by ∼33%. Taken together, our results suggest that the hinge motion of the uL10ext domain facilitates the binding of different translation factors to the GTPase-associated center during protein synthesis.
Collapse
Affiliation(s)
- Kwok-Ho Andrew Choi
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Lei Yang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Conny Wing-Heng Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - David K Banfield
- Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong , China
| | - Kosuke Ito
- Department of Biology, Faculty of Science , Niigata University , Ikarashi 2-8050 , Nishi-ku, Niigata 950-2191 , Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science , Niigata University , Ikarashi 2-8050 , Nishi-ku, Niigata 950-2191 , Japan
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| |
Collapse
|
18
|
Wang CH, Wang LK, Wu CC, Chen ML, Lee MC, Lin YY, Tsai FM. The Ribosomal Protein RPLP0 Mediates PLAAT4-induced Cell Cycle Arrest and Cell Apoptosis. Cell Biochem Biophys 2019; 77:253-260. [DOI: 10.1007/s12013-019-00876-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
|
19
|
How Ricin Damages the Ribosome. Toxins (Basel) 2019; 11:toxins11050241. [PMID: 31035546 PMCID: PMC6562825 DOI: 10.3390/toxins11050241] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Ricin belongs to the group of ribosome-inactivating proteins (RIPs), i.e., toxins that have evolved to provide particular species with an advantage over other competitors in nature. Ricin possesses RNA N-glycosidase activity enabling the toxin to eliminate a single adenine base from the sarcin-ricin RNA loop (SRL), which is a highly conserved structure present on the large ribosomal subunit in all species from the three domains of life. The SRL belongs to the GTPase associated center (GAC), i.e., a ribosomal element involved in conferring unidirectional trajectory for the translational apparatus at the expense of GTP hydrolysis by translational GTPases (trGTPases). The SRL represents a critical element in the GAC, being the main triggering factor of GTP hydrolysis by trGTPases. Enzymatic removal of a single adenine base at the tip of SRL by ricin blocks GTP hydrolysis and, at the same time, impedes functioning of the translational machinery. Here, we discuss the consequences of SRL depurination by ricin for ribosomal performance, with emphasis on the mechanistic model overview of the SRL modus operandi.
Collapse
|
20
|
Li XP, Kahn JN, Tumer NE. Peptide Mimics of the Ribosomal P Stalk Inhibit the Activity of Ricin A Chain by Preventing Ribosome Binding. Toxins (Basel) 2018; 10:E371. [PMID: 30217009 PMCID: PMC6162817 DOI: 10.3390/toxins10090371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022] Open
Abstract
Ricin A chain (RTA) depurinates the sarcin/ricin loop (SRL) by interacting with the C-termini of the ribosomal P stalk. The ribosome interaction site and the active site are located on opposite faces of RTA. The interaction with P proteins allows RTA to depurinate the SRL on the ribosome at physiological pH with an extremely high activity by orienting the active site towards the SRL. Therefore, if an inhibitor disrupts RTA⁻ribosome interaction by binding to the ribosome binding site of RTA, it should inhibit the depurination activity. To test this model, we synthesized peptides mimicking the last 3 to 11 amino acids of P proteins and examined their interaction with wild-type RTA and ribosome binding mutants by Biacore. We measured the inhibitory activity of these peptides on RTA-mediated depurination of yeast and rat liver ribosomes. We found that the peptides interacted with the ribosome binding site of RTA and inhibited depurination activity by disrupting RTA⁻ribosome interactions. The shortest peptide that could interact with RTA and inhibit its activity was four amino acids in length. RTA activity was inhibited by disrupting its interaction with the P stalk without targeting the active site, establishing the ribosome binding site as a new target for inhibitor discovery.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA.
| | - Jennifer N Kahn
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|
21
|
Shi WW, Wong KB, Shaw PC. Structural and Functional Investigation and Pharmacological Mechanism of Trichosanthin, a Type 1 Ribosome-Inactivating Protein. Toxins (Basel) 2018; 10:toxins10080335. [PMID: 30127254 PMCID: PMC6115768 DOI: 10.3390/toxins10080335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/11/2023] Open
Abstract
Trichosanthin (TCS) is an RNA N-glycosidase that depurinates adenine-4324 in the conserved α-sarcin/ricin loop (α-SRL) of rat 28 S ribosomal RNA (rRNA). TCS has only one chain, and is classified as type 1 ribosome-inactivating protein (RIP). Our structural studies revealed that TCS consists of two domains, with five conserved catalytic residues Tyr70, Tyr111, Glu160, Arg163 and Phe192 at the active cleft formed between them. We also found that the structural requirements of TCS to interact with the ribosomal stalk protein P2 C-terminal tail. The structural analyses suggest TCS attacks ribosomes by first binding to the C-terminal domain of ribosomal P protein. TCS exhibits a broad spectrum of biological and pharmacological activities including anti-tumor, anti-virus, and immune regulatory activities. This review summarizes an updated knowledge in the structural and functional studies and the mechanism of its multiple pharmacological effects.
Collapse
Affiliation(s)
- Wei-Wei Shi
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| |
Collapse
|
22
|
Zhou Y, Li XP, Kahn JN, Tumer NE. Functional Assays for Measuring the Catalytic Activity of Ribosome Inactivating Proteins. Toxins (Basel) 2018; 10:toxins10060240. [PMID: 29899209 PMCID: PMC6024586 DOI: 10.3390/toxins10060240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are potent toxins that inactivate ribosomes by catalytically removing a specific adenine from the α-sarcin/ricin loop (SRL) of the large rRNA. Direct assays for measuring depurination activity and indirect assays for measuring the resulting translation inhibition have been employed to determine the enzyme activity of RIPs. Rapid and sensitive methods to measure the depurination activity of RIPs are critical for assessing their reaction mechanism, enzymatic properties, interaction with ribosomal proteins, ribotoxic stress signaling, in the search for inhibitors and in the detection and diagnosis of enteric infections. Here, we review the major assays developed for measuring the catalytic activity of RIPs, discuss their advantages and disadvantages and explain how they are used in understanding the catalytic mechanism, ribosome specificity, and dynamic enzymatic features of RIPs.
Collapse
Affiliation(s)
- Yijun Zhou
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Xiao-Ping Li
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Jennifer N Kahn
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|
23
|
Human ribosomal P1-P2 heterodimer represents an optimal docking site for ricin A chain with a prominent role for P1 C-terminus. Sci Rep 2017; 7:5608. [PMID: 28717148 PMCID: PMC5514047 DOI: 10.1038/s41598-017-05675-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/15/2017] [Indexed: 12/26/2022] Open
Abstract
The eukaryotic P-stalk contains two P1-P2 protein dimers with a conserved C- terminal domain (CTD) critical for the interaction with external factors. To understand the role of the individual CTD of human P1/P2 proteins, we examined the interaction of reconstituted human P-protein complexes and C-terminally truncated forms with ricin A chain (RTA), which binds to the stalk to depurinate the sarcin/ricin loop (SRL). The interaction between P-protein complexes and RTA was examined by surface plasmon resonance, isothermal titration calorimetry, microscale thermophoresis and bio-layer interferometry. The P1-P2 heterodimer missing a CTD on P2 was able to bind RTA. In contrast, the P1-P2 heterodimer missing the CTD of P1 protein displayed almost no binding toward RTA. Very low interaction was detected between RTA and the non-truncated P2-P2 homodimer, suggesting that the structural architecture of the P1-P2 heterodimer is critical for binding RTA. The reconstituted pentameric human stalk complex had higher affinity for RTA than the P1-P2 dimer. Deletion of P1 CTD, but not P2 CTD reduced the affinity of the pentamer for RTA. These results highlight the importance of the heterodimeric organization of P1-P2 in the human stalk pentamer and functional non-equivalence of the individual P-protein CTDs in the interaction with RTA.
Collapse
|
24
|
De Zaeytijd J, Van Damme EJM. Extensive Evolution of Cereal Ribosome-Inactivating Proteins Translates into Unique Structural Features, Activation Mechanisms, and Physiological Roles. Toxins (Basel) 2017; 9:E123. [PMID: 28353660 PMCID: PMC5408197 DOI: 10.3390/toxins9040123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can depurinate rRNAs thereby inhibiting protein translation. Although these proteins have also been detected in bacteria, fungi, and even some insects, they are especially prevalent in the plant kingdom. This review focuses on the RIPs from cereals. Studies on the taxonomical distribution and evolution of plant RIPs suggest that cereal RIPs have evolved at an enhanced rate giving rise to a large and heterogeneous RIP gene family. Furthermore, several cereal RIP genes are characterized by a unique domain architecture and the lack of a signal peptide. This advanced evolution of cereal RIPs translates into distinct structures, activation mechanisms, and physiological roles. Several cereal RIPs are characterized by activation mechanisms that include the proteolytic removal of internal peptides from the N-glycosidase domain, a feature not documented for non-cereal RIPs. Besides their role in defense against pathogenic fungi or herbivorous insects, cereal RIPs are also involved in endogenous functions such as adaptation to abiotic stress, storage, induction of senescence, and reprogramming of the translational machinery. The unique properties of cereal RIPs are discussed in this review paper.
Collapse
Affiliation(s)
- Jeroen De Zaeytijd
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
25
|
Zhou Y, Li XP, Chen BY, Tumer NE. Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Sci Rep 2017; 7:42912. [PMID: 28230053 PMCID: PMC5322317 DOI: 10.1038/srep42912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/17/2017] [Indexed: 01/24/2023] Open
Abstract
Ricin toxin A chain (RTA) binds to stalk P-proteins to reach the α-sarcin/ricin loop (SRL) where it cleaves a conserved adenine. Arginine residues at the RTA/RTB interface are involved in this interaction. To investigate the individual contribution of each arginine, we generated single, double and triple arginine mutations in RTA. The R235A mutation reduced toxicity and depurination activity more than any other single arginine mutation in yeast. Further reduction in toxicity, depurination activity and ribosome binding was observed when R235A was combined with a mutation in a nearby arginine. RTA interacts with the ribosome via a two-step process, which involves slow and fast interactions. Single arginine mutations eliminated the fast interactions with the ribosome, indicating that they increase the binding rate of RTA. Arginine residues form a positively charged patch to bind to negatively charged residues at the C-termini of P-proteins. When electrostatic interactions conferred by the arginines are lost, hydrophobic interactions are also abolished, suggesting that the hydrophobic interactions alone are insufficient to allow binding. We propose that Arg235 serves as an anchor residue and cooperates with nearby arginines and the hydrophobic interactions to provide the binding specificity and strength in ribosome targeting of RTA.
Collapse
Affiliation(s)
- Yijun Zhou
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Xiao-Ping Li
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Brian Y Chen
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015-3084, USA
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| |
Collapse
|
26
|
Fan X, Zhu Y, Wang C, Niu L, Teng M, Li X. Structural insights into the interaction of the ribosomal P stalk protein P2 with a type II ribosome-inactivating protein ricin. Sci Rep 2016; 6:37803. [PMID: 27886256 PMCID: PMC5122897 DOI: 10.1038/srep37803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
Ricin is a type II ribosome-inactivating protein (RIP) that depurinates A4324 at the sarcin-ricin loop of 28 S ribosomal RNA (rRNA), thus inactivating the ribosome by preventing elongation factors from binding to the GTPase activation centre. Recent studies have disclosed that the conserved C-terminal domain (CTD) of eukaryotic ribosomal P stalk proteins is involved in the process that RIPs target ribosome. However, the details of the molecular interaction between ricin and P stalk proteins remain unknown. Here, we report the structure of ricin-A chain (RTA) in a complex with the CTD of the human ribosomal protein P2. The structure shows that the Phe111, Leu113 and Phe114 residues of P2 insert into a hydrophobic pocket formed by the Tyr183, Arg235, Phe240 and Ile251 residues of RTA, while Asp115 of P2 forms hydrogen bonds with Arg235 of RTA. The key residues in RTA and P2 for complex formation were mutated, and their importance was determined by pull-down assays. The results from cell-free translation assays further confirmed that the interaction with P stalk proteins is essential for the inhibition of protein synthesis by RTA. Taken together, our results provide a structural basis that will improve our understanding of the process by which ricin targets the ribosome, which will benefit the development of effective small-molecule inhibitors for use as therapeutic agents.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Networks, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China,Key Laboratory of Structural Biology, Hefei Science Center of Chinese Academy of Science, Hefei, Anhui, 230026, People’s Republic of China
| | - Yuwei Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Networks, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China,Key Laboratory of Structural Biology, Hefei Science Center of Chinese Academy of Science, Hefei, Anhui, 230026, People’s Republic of China
| | - Chongyuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Networks, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China,Key Laboratory of Structural Biology, Hefei Science Center of Chinese Academy of Science, Hefei, Anhui, 230026, People’s Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Networks, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China,Key Laboratory of Structural Biology, Hefei Science Center of Chinese Academy of Science, Hefei, Anhui, 230026, People’s Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Networks, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China,Key Laboratory of Structural Biology, Hefei Science Center of Chinese Academy of Science, Hefei, Anhui, 230026, People’s Republic of China,
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Networks, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China,Key Laboratory of Structural Biology, Hefei Science Center of Chinese Academy of Science, Hefei, Anhui, 230026, People’s Republic of China,
| |
Collapse
|
27
|
Structures and Ribosomal Interaction of Ribosome-Inactivating Proteins. Molecules 2016; 21:molecules21111588. [PMID: 27879643 PMCID: PMC6273143 DOI: 10.3390/molecules21111588] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 11/27/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) including ricin, Shiga toxin, and trichosanthin, are RNA N-glycosidases that depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. RIPs are grouped into three types according to the number of subunits and the organization of the precursor sequences. RIPs are two-domain proteins, with the active site located in the cleft between the N- and C-terminal domains. It has been found that the basic surface residues of the RIPs promote rapid and specific targeting to the ribosome and a number of RIPs have been shown to interact with the C-terminal regions of the P proteins of the ribosome. At present, the structural basis for the interaction of trichosanthin and ricin-A chain toward P2 peptide is known. This review surveys the structural features of the representative RIPs and discusses how they approach and interact with the ribosome.
Collapse
|
28
|
Conserved Arginines at the P-Protein Stalk Binding Site and the Active Site Are Critical for Ribosome Interactions of Shiga Toxins but Do Not Contribute to Differences in the Affinity of the A1 Subunits for the Ribosome. Infect Immun 2016; 84:3290-3301. [PMID: 27600507 DOI: 10.1128/iai.00630-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
The A1 subunits of Shiga toxin 1 (Stx1A1) and Shiga toxin 2 (Stx2A1) interact with the conserved C termini of ribosomal-stalk P-proteins to remove a specific adenine from the sarcin/ricin loop. We previously showed that Stx2A1 has higher affinity for the ribosome and higher catalytic activity than Stx1A1. To determine if conserved arginines at the distal face of the active site contribute to the higher affinity of Stx2A1 for the ribosome, we mutated Arg172, Arg176, and Arg179 in both toxins. We show that Arg172 and Arg176 are more important than Arg179 for the depurination activity and toxicity of Stx1A1 and Stx2A1. Mutation of a single arginine reduced the depurination activity of Stx1A1 more than that of Stx2A1. In contrast, mutation of at least two arginines was necessary to reduce depurination by Stx2A1 to a level similar to that of Stx1A1. R176A and R172A/R176A mutations eliminated interaction of Stx1A1 and Stx2A1 with ribosomes and with the stalk, while mutation of Arg170 at the active site reduced the binding affinity of Stx1A1 and Stx2A1 for the ribosome, but not for the stalk. These results demonstrate that conserved arginines at the distal face of the active site are critical for interactions of Stx1A1 and Stx2A1 with the stalk, while a conserved arginine at the active site is critical for non-stalk-specific interactions with the ribosome. Arginine mutations at either site reduced ribosome interactions of Stx1A1 and Stx2A1 similarly, indicating that conserved arginines are critical for ribosome interactions but do not contribute to the higher affinity of Stx2A1 for the ribosome.
Collapse
|
29
|
Shi WW, Tang YS, Sze SY, Zhu ZN, Wong KB, Shaw PC. Crystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2. Toxins (Basel) 2016; 8:toxins8100296. [PMID: 27754366 PMCID: PMC5086656 DOI: 10.3390/toxins8100296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022] Open
Abstract
Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (RTA) complexed to the C-terminal peptide of the ribosomal stalk protein P2, which plays a crucial role in specific recognition of elongation factors and recruitment of eukaryote-specific RIPs to the ribosomes. Our structure reveals that the C-terminal GFGLFD motif of P2 peptide is inserted into a hydrophobic pocket of RTA, while the interaction assays demonstrate the structurally untraced SDDDM motif of P2 peptide contributes to the interaction with RTA. This interaction mode of RTA and P protein is in contrast to that with trichosanthin (TCS), Shiga-toxin (Stx) and the active form of maize RIP (MOD), implying the flexibility of the P2 peptide-RIP interaction, for the latter to gain access to ribosome.
Collapse
Affiliation(s)
- Wei-Wei Shi
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - See-Yuen Sze
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zhen-Ning Zhu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
30
|
Jetzt AE, Li XP, Tumer NE, Cohick WS. Toxicity of ricin A chain is reduced in mammalian cells by inhibiting its interaction with the ribosome. Toxicol Appl Pharmacol 2016; 310:120-128. [PMID: 27639428 DOI: 10.1016/j.taap.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/11/2023]
Abstract
Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarly to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication.
Collapse
Affiliation(s)
- Amanda E Jetzt
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Xiao-Ping Li
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Wendie S Cohick
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States.
| |
Collapse
|
31
|
Artero-Castro A, Perez-Alea M, Feliciano A, Leal JA, Genestar M, Castellvi J, Peg V, Ramón Y Cajal S, Lleonart MEL. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy 2016; 11:1499-519. [PMID: 26176264 DOI: 10.1080/15548627.2015.1063764] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human ribosomal P complex, which consists of the acidic ribosomal P proteins RPLP0, RPLP1, and RPLP2 (RPLP proteins), recruits translational factors, facilitating protein synthesis. Recently, we showed that overexpression of RPLP1 immortalizes primary cells and contributes to transformation. Moreover, RPLP proteins are overexpressed in human cancer, with the highest incidence in breast carcinomas. It is thought that disruption of the P complex would directly affect protein synthesis, causing cell growth arrest and eventually apoptosis. Here, we report a distinct mechanism by which cancer cells undergo cell cycle arrest and induced autophagy when RPLP proteins are downregulated. We found that absence of RPLP0, RPLP1, or RPLP2 resulted in reactive oxygen species (ROS) accumulation and MAPK1/ERK2 signaling pathway activation. Moreover, ROS generation led to endoplasmic reticulum (ER) stress that involved the EIF2AK3/PERK-EIF2S1/eIF2α-EIF2S2-EIF2S3-ATF4/ATF-4- and ATF6/ATF-6-dependent arms of the unfolded protein response (UPR). RPLP protein-deficient cells treated with autophagy inhibitors experienced apoptotic cell death as an alternative to autophagy. Strikingly, antioxidant treatment prevented UPR activation and autophagy while restoring the proliferative capacity of these cells. Our results indicate that ROS are a critical signal generated by disruption of the P complex that causes a cellular response that follows a sequential order: first ROS, then ER stress/UPR activation, and finally autophagy. Importantly, inhibition of the first step alone is able to restore the proliferative capacity of the cells, preventing UPR activation and autophagy. Overall, our results support a role for autophagy as a survival mechanism in response to stress due to RPLP protein deficiency.
Collapse
Affiliation(s)
- Ana Artero-Castro
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Mileidys Perez-Alea
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Andrea Feliciano
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Jose A Leal
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Mónica Genestar
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Josep Castellvi
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Vicente Peg
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Santiago Ramón Y Cajal
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Matilde E L Lleonart
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| |
Collapse
|
32
|
Wang S, Li Z, Li S, Di R, Ho CT, Yang G. Ribosome-inactivating proteins (RIPs) and their important health promoting property. RSC Adv 2016. [DOI: 10.1039/c6ra02946a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs), widely present in plants, certain fungi and bacteria, can inhibit protein synthesis by removing one or more specific adenine residues from the large subunit of ribosomal RNAs (rRNAs).
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains
- College of Life Science
- Huanggang Normal University
- Huanggang
| | - Zhiliang Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains
- College of Life Science
- Huanggang Normal University
- Huanggang
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains
- College of Life Science
- Huanggang Normal University
- Huanggang
| | - Rong Di
- Department of Plant Biology and Pathology
- Rutgers University
- New Brunswick
- USA
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Guliang Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains
- College of Life Science
- Huanggang Normal University
- Huanggang
| |
Collapse
|
33
|
The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1. Infect Immun 2015; 84:149-61. [PMID: 26483409 DOI: 10.1128/iai.00994-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 01/25/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections can lead to life-threatening complications, including hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS), which is the most common cause of acute renal failure in children in the United States. Stx1 and Stx2 are AB5 toxins consisting of an enzymatically active A subunit associated with a pentamer of receptor binding B subunits. Epidemiological evidence suggests that Stx2-producing E. coli strains are more frequently associated with HUS than Stx1-producing strains. Several studies suggest that the B subunit plays a role in mediating toxicity. However, the role of the A subunits in the increased potency of Stx2 has not been fully investigated. Here, using purified A1 subunits, we show that Stx2A1 has a higher affinity for yeast and mammalian ribosomes than Stx1A1. Biacore analysis indicated that Stx2A1 has faster association and dissociation with ribosomes than Stx1A1. Analysis of ribosome depurination kinetics demonstrated that Stx2A1 depurinates yeast and mammalian ribosomes and an RNA stem-loop mimic of the sarcin/ricin loop (SRL) at a higher catalytic rate and is a more efficient enzyme than Stx1A1. Stx2A1 depurinated ribosomes at a higher level in vivo and was more cytotoxic than Stx1A1 in Saccharomyces cerevisiae. Stx2A1 depurinated ribosomes and inhibited translation at a significantly higher level than Stx1A1 in human cells. These results provide the first direct evidence that the higher affinity for ribosomes in combination with higher catalytic activity toward the SRL allows Stx2A1 to depurinate ribosomes, inhibit translation, and exhibit cytotoxicity at a significantly higher level than Stx1A1.
Collapse
|
34
|
Basu D, Tumer NE. Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2? Toxins (Basel) 2015; 7:1467-85. [PMID: 25938272 PMCID: PMC4448158 DOI: 10.3390/toxins7051467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of hemorrhagic colitis (HC) or hemolytic uremic syndrome (HUS). Currently, there are no therapeutic treatments for HC or HUS. E. coli O157:H7 strains carrying Stx2 are more virulent and are more frequently associated with HUS, which is the most common cause of renal failure in children in the US. The basis for the increased potency of Stx2 is not fully understood. Shiga toxins belong to the AB5 family of protein toxins with an A subunit, which depurinates a universally conserved adenine residue in the α-sarcin/ricin loop (SRL) of the 28S rRNA and five copies of the B subunit responsible for binding to cellular receptors. Recent studies showed differences in the structure, receptor binding, dependence on ribosomal proteins and pathogenicity of Stx1 and Stx2 and supported a role for the B subunit in differential toxicity. However, the current data do not rule out a potential role for the A1 subunits in the differential toxicity of Stx1 and Stx2. This review highlights the recent progress in understanding the differences in the A1 subunits of Stx1 and Stx2 and their role in defining toxicity.
Collapse
Affiliation(s)
- Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|
35
|
Di R, Tumer NE. Pokeweed antiviral protein: its cytotoxicity mechanism and applications in plant disease resistance. Toxins (Basel) 2015; 7:755-72. [PMID: 25756953 PMCID: PMC4379523 DOI: 10.3390/toxins7030755] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a 29 kDa type I ribosome inactivating protein (RIP) found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity is summarized based on evidence from the analysis of transgenic plants and the yeast model system. PAP was initially found to be anti-viral when it was co-inoculated with plant viruses onto plants. Transgenic plants expressing PAP and non-toxic PAP mutants have displayed broad-spectrum resistance to both viral and fungal infection. The mechanism of PAP-induced disease resistance in transgenic plants is summarized.
Collapse
Affiliation(s)
- Rong Di
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
36
|
Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes. Toxins (Basel) 2015; 7:638-47. [PMID: 25723321 PMCID: PMC4379515 DOI: 10.3390/toxins7030638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/30/2015] [Accepted: 02/15/2015] [Indexed: 11/17/2022] Open
Abstract
Ribosome-inactivating proteins (RIP) are RNA N-glycosidases that inactivate ribosomes by specifically depurinating a conserved adenine residue at the α-sarcin/ricin loop of 28S rRNA. Recent studies have pointed to the involvement of the C-terminal domain of the eukaryotic stalk proteins in facilitating the toxic action of RIPs. This review highlights how structural studies of eukaryotic stalk proteins provide insights into the recruitment of RIPs to the ribosomes. Since the C-terminal domain of eukaryotic stalk proteins is involved in specific recognition of elongation factors and some eukaryote-specific RIPs (e.g., trichosanthin and ricin), we postulate that these RIPs may have evolved to hijack the translation-factor-recruiting function of ribosomal stalk in reaching their target site of rRNA.
Collapse
|
37
|
Functional divergence between the two P1-P2 stalk dimers on the ribosome in their interaction with ricin A chain. Biochem J 2014; 460:59-67. [PMID: 24576056 DOI: 10.1042/bj20140014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The eukaryotic stalk, which is responsible for the recruitment of translation factors, is a pentamer containing two P1-P2 dimers with unclear modes of action. In Saccharomyces cerevisiae, P1/P2 proteins (individual P1 and P2 proteins) are organized into two distinct dimers, P1A-P2B and P1B-P2A. To investigate the functional contribution of each dimer on the ribosome, RTA (ricin A chain), which binds to the stalk to depurinate the SRL (sarcin/ricin loop), was used as a molecular probe in yeast mutants in which the binding site for one or the other dimer on P0 was deleted. Ribosome depurination and toxicity of RTA were greatly reduced in mutants containing only P1A-P2B on the ribosome, whereas those with only P1B-P2A were reduced less in depurination and were unaffected in toxicity. Ribosomes bearing P1B-P2A were depurinated by RTA at a similar level as wild-type, but ribosomes bearing P1A-P2B were depurinated at a much lower level in vitro. The latter ribosomes showed the lowest association and almost no dissociation with RTA by surface plasmon resonance. These results indicate that the P1B-P2A dimer is more critical for facilitating the access of RTA to the SRL, providing the first in vivo evidence for functional divergence between the two stalk dimers on the ribosome.
Collapse
|
38
|
Olombrada M, Rodríguez-Mateos M, Prieto D, Pla J, Remacha M, Martínez-del-Pozo Á, Gavilanes JG, Ballesta JPG, García-Ortega L. The Acidic Ribosomal Stalk Proteins Are Not Required for the Highly Specific Inactivation Exerted by α-Sarcin of the Eukaryotic Ribosome. Biochemistry 2014; 53:1545-7. [DOI: 10.1021/bi401470u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miriam Olombrada
- Departamento
de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - María Rodríguez-Mateos
- Centro
de Biología Molecular Severo Ochoa, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Daniel Prieto
- Departamento
de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Jesús Pla
- Departamento
de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Miguel Remacha
- Centro
de Biología Molecular Severo Ochoa, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- Departamento
de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - José G. Gavilanes
- Departamento
de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Juan P. G. Ballesta
- Centro
de Biología Molecular Severo Ochoa, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Lucía García-Ortega
- Departamento
de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
39
|
Hu M, Li L, Chao J, Zhao Y, Zhang Z, Liang A. The acidic ribosomal protein P2 from Euplotes octocarinatus is phosphorylated at its N-terminal domain. Biochem Cell Biol 2014; 92:23-32. [PMID: 24471915 DOI: 10.1139/bcb-2013-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The eukaryotic acid ribosomal P0, P1, and P2 proteins share a conserved flexible C-terminal tail that is rich in acidic residues, which are involved in the interaction with elongation factor 2 during protein synthesis. Our previous work suggested that the acidic ribosomal P proteins from Euplotes octocarinatus have a special C-terminal domain. To further understand this characteristic feature, both P2 and elongation factor 2 from E. octocarinatus were overexpressed, for the first time, in Escherichia coli in this study. GST pull-down assay indicated that P2 protein from E. octocarinatus (EoP2) interacted specifically with the N-terminal domain of elongation factor 2 from E. octocarinatus (EoEF-2) in vitro. The interacting part of EoP2 is in the C-terminal domains, consistent with the observation in other organisms. Phosphorylation of the recombinant EoP2 was performed in vitro using multiple methods such as (31)P-NMR spectroscopy, native PAGE, and Phos-tag(TM) SDS-PAGE. Results showed that ribosomal protein EoP2 was phosphorylated by casein kinase II at serine 21 located at the N terminus. This phosphorylation site identified in EoP2 is quite different from that of P2 from other organisms, in which the phosphorylation site is located in the conserved C-terminal region.
Collapse
Affiliation(s)
- Miaoqing Hu
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | |
Collapse
|
40
|
Li XP, Kahn PC, Kahn JN, Grela P, Tumer NE. Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk. J Biol Chem 2013; 288:30270-30284. [PMID: 24003229 DOI: 10.1074/jbc.m113.510966] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their K(m) values and catalytic rates (k(cat)) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in K(m) and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.
Collapse
Affiliation(s)
- Xiao-Ping Li
- From the Departments of Plant Biology and Pathology and
| | - Peter C Kahn
- Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520
| | | | | | - Nilgun E Tumer
- From the Departments of Plant Biology and Pathology and.
| |
Collapse
|
41
|
Lee KM, Yusa K, Chu LO, Yu CWH, Oono M, Miyoshi T, Ito K, Shaw PC, Wong KB, Uchiumi T. Solution structure of human P1•P2 heterodimer provides insights into the role of eukaryotic stalk in recruiting the ribosome-inactivating protein trichosanthin to the ribosome. Nucleic Acids Res 2013; 41:8776-87. [PMID: 23892290 PMCID: PMC3794596 DOI: 10.1093/nar/gkt636] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lateral ribosomal stalk is responsible for binding and recruiting translation factors during protein synthesis. The eukaryotic stalk consists of one P0 protein with two copies of P1•P2 heterodimers to form a P0(P1•P2)2 pentameric P-complex. Here, we have solved the structure of full-length P1•P2 by nuclear magnetic resonance spectroscopy. P1 and P2 dimerize via their helical N-terminal domains, whereas the C-terminal tails of P1•P2 are unstructured and can extend up to ∼125 Å away from the dimerization domains. 15N relaxation study reveals that the C-terminal tails are flexible, having a much faster internal mobility than the N-terminal domains. Replacement of prokaryotic L10(L7/L12)4/L11 by eukaryotic P0(P1•P2)2/eL12 rendered Escherichia coli ribosome, which is insensitive to trichosanthin (TCS), susceptible to depurination by TCS and the C-terminal tail was found to be responsible for this depurination. Truncation and insertion studies showed that depurination of hybrid ribosome is dependent on the length of the proline-alanine rich hinge region within the C-terminal tail. All together, we propose a model that recruitment of TCS to the sarcin-ricin loop required the flexible C-terminal tail, and the proline-alanine rich hinge region lengthens this C-terminal tail, allowing the tail to sweep around the ribosome to recruit TCS.
Collapse
Affiliation(s)
- Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, Hong Kong, China and Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
May KL, Yan Q, Tumer NE. Targeting ricin to the ribosome. Toxicon 2013; 69:143-51. [PMID: 23454625 DOI: 10.1016/j.toxicon.2013.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 12/15/2022]
Abstract
The plant toxin ricin is highly toxic for mammalian cells and is of concern for bioterrorism. Ricin belongs to a family of functionally related toxins, collectively referred to as ribosome inactivating proteins (RIPs), which disable ribosomes and halt protein synthesis. Currently there are no specific antidotes against ricin or related RIPs. The catalytic subunit of ricin is an N-glycosidase that depurinates a universally conserved adenine residue within the sarcin/ricin loop (SRL) of the 28S rRNA. This depurination activity inhibits translation and its biochemistry has been intensively studied. Yet, recent developments paint a more complex picture of toxicity, with ribosomal proteins and cellular signaling pathways contributing to the potency of ricin. In particular, several studies have now established the importance of the ribosomal stalk structure in facilitating the depurination activity and ribosome specificity of ricin and other RIPs. This review highlights recent developments defining toxin-ribosome interactions and examines the significance of these interactions for toxicity and therapeutic intervention.
Collapse
Affiliation(s)
- Kerrie L May
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | | | | |
Collapse
|
43
|
Wong YT, Ng YM, Mak ANS, Sze KH, Wong KB, Shaw PC. Maize ribosome-inactivating protein uses Lys158-lys161 to interact with ribosomal protein P2 and the strength of interaction is correlated to the biological activities. PLoS One 2012; 7:e49608. [PMID: 23251345 PMCID: PMC3520970 DOI: 10.1371/journal.pone.0049608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) inactivate prokaryotic or eukaryotic ribosomes by removing a single adenine in the large ribosomal RNA. Here we show maize RIP (MOD), an atypical RIP with an internal inactivation loop, interacts with the ribosomal stalk protein P2 via Lys158–Lys161, which is located in the N-terminal domain and at the base of its internal loop. Due to subtle differences in the structure of maize RIP, hydrophobic interaction with the ‘FGLFD’ motif of P2 is not as evidenced in MOD-P2 interaction. As a result, interaction of P2 with MOD was weaker than those with trichosanthin and shiga toxin A as reflected by the dissociation constants (KD) of their interaction, which are 1037.50±65.75 µM, 611.70±28.13 µM and 194.84±9.47 µM respectively. Despite MOD and TCS target at the same ribosomal protein P2, MOD was found 48 and 10 folds less potent than trichosanthin in ribosome depurination and cytotoxicity to 293T cells respectively, implicating the strength of interaction between RIPs and ribosomal proteins is important for the biological activity of RIPs. Our work illustrates the flexibility on the docking of RIPs on ribosomal proteins for targeting the sarcin-ricin loop and the importance of protein-protein interaction for ribosome-inactivating activity.
Collapse
Affiliation(s)
- Yuen-Ting Wong
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yiu-Ming Ng
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Amanda Nga-Sze Mak
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kam-Bo Wong
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pang-Chui Shaw
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail:
| |
Collapse
|
44
|
May KL, Li XP, Martínez-Azorín F, Ballesta JPG, Grela P, Tchórzewski M, Tumer NE. The P1/P2 proteins of the human ribosomal stalk are required for ribosome binding and depurination by ricin in human cells. FEBS J 2012; 279:3925-36. [PMID: 22909382 DOI: 10.1111/j.1742-4658.2012.08752.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 01/30/2023]
Abstract
Ricin A-chain (RTA) depurinates the sarcin-ricin loop of 28S ribosomal RNA and inhibits protein synthesis in mammalian cells. In yeast, the ribosomal stalk facilitates the interaction of RTA with the ribosome and subsequent depurination. Despite homology between the stalk structures from yeast and humans, there are notable differences. The human ribosomal stalk contains two identical heterodimers of P1 and P2 bound to P0, whereas the yeast stalk consists of two different heterodimers, P1α-P2β and P2α-P1β, bound to P0. RTA exhibits higher activity towards mammalian ribosomes than towards ribosomes from other organisms, suggesting that the mode of interaction with ribosomes may vary. Here, we examined whether the human ribosomal stalk proteins facilitate the interaction of RTA with human ribosomes and subsequent depurination of the sarcin-ricin loop. Using small interfering RNA-mediated knockdown of P1/P2 expression in human cells, we demonstrated that the depurination activity of RTA is lower when P1 and P2 levels are reduced. Biacore analysis showed that ribosomes from P1/P2-depleted cells have a reduced ability to bind RTA, which correlates with reduced depurination activity both in vitro and inside cells. RTA interacts directly with recombinant human P1-P2 dimer, further demonstrating the importance of human P1 and P2 in enabling RTA to bind and depurinate human ribosomes.
Collapse
Affiliation(s)
- Kerrie L May
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Lapadula WJ, Sanchez-Puerta MV, Juri Ayub M. Convergent evolution led ribosome inactivating proteins to interact with ribosomal stalk. Toxicon 2012; 59:427-32. [DOI: 10.1016/j.toxicon.2011.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
46
|
McCluskey AJ, Bolewska-Pedyczak E, Jarvik N, Chen G, Sidhu SS, Gariépy J. Charged and hydrophobic surfaces on the a chain of shiga-like toxin 1 recognize the C-terminal domain of ribosomal stalk proteins. PLoS One 2012; 7:e31191. [PMID: 22355345 PMCID: PMC3280276 DOI: 10.1371/journal.pone.0031191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A(1) chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A(1) chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 µM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A(1) chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A(1) variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A(1) chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A(1) chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A(1) chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs.
Collapse
Affiliation(s)
- Andrew J. McCluskey
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Nick Jarvik
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Gang Chen
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jean Gariépy
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Abstract
Ricin and Shiga toxins designated as ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine (A₄₃₂₄ in rat 28S rRNA) in the conserved α-sarcin/ricin loop of the large rRNA, inhibiting protein synthesis. Evidence obtained from a number of studies suggests that interaction with ribosomal proteins plays an important role in the catalytic activity and ribosome specificity of RIPs. This review summarizes the recent developments in identification of the ribosomal proteins that interact with ricin and Shiga toxins and the principles governing these interactions.
Collapse
Affiliation(s)
- Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA.
| | | |
Collapse
|
48
|
Lee KM, Yu CWH, Chiu TYH, Sze KH, Shaw PC, Wong KB. Solution structure of the dimerization domain of the eukaryotic stalk P1/P2 complex reveals the structural organization of eukaryotic stalk complex. Nucleic Acids Res 2011; 40:3172-82. [PMID: 22135285 PMCID: PMC3326305 DOI: 10.1093/nar/gkr1143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The lateral ribosomal stalk is responsible for the kingdom-specific binding of translation factors and activation of GTP hydrolysis during protein synthesis. The eukaryotic stalk is composed of three acidic ribosomal proteins P0, P1 and P2. P0 binds two copies of P1/P2 hetero-dimers to form a pentameric P-complex. The structure of the eukaryotic stalk is currently not known. To provide a better understanding on the structural organization of eukaryotic stalk, we have determined the solution structure of the N-terminal dimerization domain (NTD) of P1/P2 hetero-dimer. Helix-1, -2 and -4 from each of the NTD-P1 and NTD-P2 form the dimeric interface that buries 2200 A2 of solvent accessible surface area. In contrast to the symmetric P2 homo-dimer, P1/P2 hetero-dimer is asymmetric. Three conserved hydrophobic residues on the surface of NTD-P1 are replaced by charged residues in NTD-P2. Moreover, NTD-P1 has an extra turn in helix-1, which forms extensive intermolecular interactions with helix-1 and -4 of NTD-P2. Truncation of this extra turn of P1 abolished the formation of P1/P2 hetero-dimer. Systematic truncation studies suggest that P0 contains two spine-helices that each binds one copy of P1/P2 hetero-dimer. Modeling studies suggest that a large hydrophobic cavity, which can accommodate the loop between the spine-helices of P0, can be found on NTD-P1 but not on NTD-P2 when the helix-4 adopts an ‘open’ conformation. Based on the asymmetric properties of NTD-P1/NTD-P2, a structural model of the eukaryotic P-complex with P2/P1:P1/P2 topology is proposed.
Collapse
Affiliation(s)
- Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
49
|
Chiou JC, Li XP, Remacha M, Ballesta JPG, Tumer NE. Shiga toxin 1 is more dependent on the P proteins of the ribosomal stalk for depurination activity than Shiga toxin 2. Int J Biochem Cell Biol 2011; 43:1792-801. [PMID: 21907821 DOI: 10.1016/j.biocel.2011.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/27/2011] [Accepted: 08/26/2011] [Indexed: 01/01/2023]
Abstract
Shiga toxins produced by Escherichia coli O157:H7 are responsible for food poisoning and hemolytic uremic syndrome (HUS). The A subunits of Shiga toxins (Stx1A and Stx2A) inhibit translation by depurinating a specific adenine in the large rRNA. To determine if Stx1A and Stx2A require the ribosomal stalk for depurination, their activity and cytotoxicity were examined in the yeast P protein deletion mutants. Stx1A and Stx2A were less toxic and depurinated ribosomes less in a strain lacking P1/P2 on the ribosome and in the cytosol (ΔP2) than in a strain lacking P1/P2 on the ribosome, but containing free P2 in the cytosol (ΔP1). To determine if cytoplasmic P proteins facilitated depurination, Stx1A and Stx2A were expressed in the P0ΔAB mutant, in which the binding sites for P1/P2 were deleted on the ribosome, and P1/P2 accumulated in the cytosol. Stx1A was less toxic and depurinated ribosomes less in P0ΔAB, suggesting that intact binding sites for P1/P2 were critical. In contrast, Stx2A was toxic and depurinated ribosomes in P0ΔAB as in wild type, suggesting that it did not require the P1/P2 binding sites. Depurination of ΔP1, but not P0ΔAB ribosomes increased upon addition of purified P1α/P2βin vitro, and the increase was greater for Stx1 than for Stx2. We conclude that cytoplasmic P proteins stimulate depurination by Stx1 by facilitating the access of the toxin to the ribosome. Although ribosomal stalk is important for Stx1 and Stx2 to depurinate the ribosome, Stx2 is less dependent on the stalk proteins for activity than Stx1 and can depurinate ribosomes with an incomplete stalk better than Stx1.
Collapse
Affiliation(s)
- Jia-Chi Chiou
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | |
Collapse
|
50
|
Li CT, Lin CH, Kao TY, Wu MF, Yeh CS, Yeh KT, Ko JL. The mechanisms of action of Tianhua(™) on antitumor activity in lung cancer cells. PHARMACEUTICAL BIOLOGY 2010; 48:1302-1309. [PMID: 20738166 DOI: 10.3109/13880201003789432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
CONTEXT Tianhua (TH-R) is extracted from Trichosanthes kirilowii Maxim (Cucurbitaceae) containing trichosanthin, a traditional Chinese medicine, which has been locally reported to have good anticancer effects in vivo in both animal and human models. However, there have been several reports that trichosanthin has an anticancer effect involving apoptosis. OBJECTIVE To investigate other anticancer effects of TH-R, various tumorigenesis parameters were verified. MATERIALS AND METHODS Telomerase activity, anti-apoptosis, anti-migration and immunomodulatory activity were estimated by telomeric repeat amplification protocol assay (TRAP), flow cytometry, Boyden chamber assay and ELISA assay, respectively. RESULTS In our studies, we are the first to find that TH-R had a cytotoxic effect on lung cancer cells in MTS assays; it could change the cell cycle distribution of human lung cancer cells (A549 cell line) and induce apoptosis. Further anti-telomerase effects in human lung adenocarcinoma A549 cells using the TRAP assay were noted. TH-R also had an aggregation effect on peripheral blood lymphocytes, but no effect on stimulating peripheral lymphocytes to produce human interferon-γ(IFN-γ). TH-R could inhibit the migration, or metastatic ability, of A549 cells by Boyden chamber assay. In the oral feeding therapy of an in vivo mouse model, there was an initial inhibition of A549 cancer cell growth, but no statistical difference after one month of therapy. DISCUSSION AND CONCLUSION It has been proven that medicinal herbs such as Tianhua have positive effects against cancer through preventing or inhibiting the process of lung tumorigenesis.
Collapse
Affiliation(s)
- Chien-Te Li
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|