1
|
Knapp K, Klasinc R, Koren A, Siller M, Dingelmaier-Hovorka R, Drach M, Sanchez J, Chromy D, Kranawetter M, Grimm C, Bergthaler A, Kubicek S, Stockinger H, Stary G. Combination of compound screening with an animal model identifies pentamidine to prevent Chlamydia trachomatis infection. Cell Rep Med 2024; 5:101643. [PMID: 38981484 PMCID: PMC11293347 DOI: 10.1016/j.xcrm.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Chlamydia trachomatis (Ct) is the most common cause for bacterial sexually transmitted infections (STIs) worldwide with a tremendous impact on public health. With the aim to unravel novel targets of the chlamydia life cycle, we screen a compound library and identify 28 agents to significantly reduce Ct growth. The known anti-infective agent pentamidine-one of the top candidates of the screen-shows anti-chlamydia activity in low concentrations by changing the metabolism of host cells impairing chlamydia growth. Furthermore, it effectively decreases the Ct burden upon local or systemic application in mice. Pentamidine also inhibits the growth of Neisseria gonorrhea (Ng), which is a common co-infection of Ct. The conducted compound screen is powerful in exploring antimicrobial compounds against Ct in a medium-throughput format. Following thorough in vitro and in vivo assessments, pentamidine emerges as a promising agent for topical prophylaxis or treatment against Ct and possibly other bacterial STIs.
Collapse
Affiliation(s)
- Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Magdalena Siller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Mathias Drach
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Juan Sanchez
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - David Chromy
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Marlene Kranawetter
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Christoph Grimm
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria.
| |
Collapse
|
2
|
Żołek T, Dömötör O, Żabiński J. Binding mechanism of pentamidine derivatives with human serum acute phase protein α 1-acid glycoprotein. Int J Biol Macromol 2024; 266:131405. [PMID: 38582487 DOI: 10.1016/j.ijbiomac.2024.131405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Drug binding and interactions with plasma proteins play a crucial role in determining the efficacy of drug delivery, thus significantly impacting the overall pharmacological effect. AGP, the second most abundant plasma protein in blood circulation, has the unique capability to bind drugs and transport various compounds. In our present study, for the first time, we investigated whether AGP, a major component of the acute phase lipocalin in human plasma, can bind with pentamidine derivatives known for their high activity against the fungal pathogen Pneumocystis carinii. This investigation was conducted using integrated spectroscopic techniques and computer-based approaches. According to the results, it was concluded that compounds having heteroatoms (-NCH3) in the aliphatic linker and the addition of a Br atom and a methoxy substituent at the C-2 and C-6 positions on the benzene ring, exhibit strong interactions with the AGP binding site. These compounds are identified as potential candidates for recognition by this protein. MD studies indicated that the tested analogues complexed with AGPs reach an equilibrium state after 60 ns, suggesting the stability of the complexes. This observation was further corroborated by experimental results. Therefore, exploring the interaction mechanism of pentamidine derivatives with plasma proteins holds promise for the development of bis-benzamidine-designed pharmaceutically important drugs.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary
| | - Jerzy Żabiński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Ronayne CT, Jackson TD, Bennett CF, Perry EA, Kantorovic N, Puigserver P. Tetracyclines activate mitoribosome quality control and reduce ER stress to promote cell survival. EMBO Rep 2023; 24:e57228. [PMID: 37818824 PMCID: PMC10702820 DOI: 10.15252/embr.202357228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations is redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. One method to rescue this cell death vulnerability is the inhibition of mitochondrial translation using tetracyclines. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that tetracyclines inhibit the mitochondrial ribosome and promote survival through suppression of endoplasmic reticulum (ER) stress. Tetracyclines increase mitochondrial levels of the mitoribosome quality control factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) and promote its recruitment to the mitoribosome large subunit, where MALSU1 is necessary for tetracycline-induced survival and suppression of ER stress. Glucose starvation induces ER stress to activate the unfolded protein response and IRE1α-mediated cell death that is inhibited by tetracyclines. These studies establish a new interorganelle communication whereby inhibition of the mitoribosome signals to the ER to promote survival, implicating basic mechanisms of cell survival and treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Conor T Ronayne
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Thomas D Jackson
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Christopher F Bennett
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Elizabeth A Perry
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Noa Kantorovic
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Pere Puigserver
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
4
|
Barrera-Téllez FJ, Prieto-Martínez FD, Hernández-Campos A, Martínez-Mayorga K, Castillo-Bocanegra R. In Silico Exploration of the Trypanothione Reductase (TryR) of L. mexicana. Int J Mol Sci 2023; 24:16046. [PMID: 38003236 PMCID: PMC10671491 DOI: 10.3390/ijms242216046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.
Collapse
Affiliation(s)
- Francisco J. Barrera-Téllez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fernando D. Prieto-Martínez
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz, Km. 4.5, Ucú 97357, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacal, Mérida 97302, Mexico
| | - Rafael Castillo-Bocanegra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Chattopadhyay A, Joseph JP, Jagdish S, Chaudhuri S, Ramteke NS, Karhale AK, Waturuocha U, Saini DK, Nandi D. High throughput screening identifies auranofin and pentamidine as potent compounds that lower IFN-γ-induced Nitric Oxide and inflammatory responses in mice: DSS-induced colitis and Salmonella Typhimurium-induced sepsis. Int Immunopharmacol 2023; 122:110569. [PMID: 37392571 DOI: 10.1016/j.intimp.2023.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Interferon-gamma (IFN-γ) is a type II interferon produced primarily by T cells and natural killer cells. IFN-γ induces the expression of inducible nitric oxide synthase (NOS2) to catalyze Nitric Oxide (NO) production in various immune and non-immune cells. Excessive IFN-γ-activated NO production is implicated in several inflammatory diseases, including peritonitis and inflammatory bowel diseases. In this study, we screened the LOPAC®1280 library in vitro on the H6 mouse hepatoma cell line to identify novel non-steroidal small molecule inhibitors of IFN-γ-induced NO production. Compounds with the highest inhibitory activity were validated, which led to identifying the lead compounds: pentamidine, azithromycin, rolipram, and auranofin. Auranofin was the most potent compound determined based on IC50 and goodness of fit analyses. Mechanistic investigations revealed that majority of the lead compounds suppress the IFN-γ-induced transcription of Nos2 without negatively affecting NO-independent processes, such as the IFN-γ-induced transcription of Irf1, Socs1 and MHC class 1 surface expression. However, all four compounds lower IFN-γ-induced reactive oxygen species amounts. In addition, auranofin significantly reduced IFN-γ-mediated NO and IL6 production in resident as well as thioglycolate-elicited peritoneal macrophages (PMs). Finally, in vivo testing of the lead compounds in the pre-clinical DSS-induced ulcerative colitis mice model revealed pentamidine and auranofin to be the most potent and protective lead compounds. Also, pentamidine and auranofin greatly increase the survival of mice in another inflammatory model: Salmonella Typhimurium-induced sepsis. Overall, this study identifies novel anti-inflammatory compounds targeting IFN-γ-induced NO-dependent processes to alleviate two distinct inflammatory models of disease.
Collapse
Affiliation(s)
- Avik Chattopadhyay
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Joel P Joseph
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sirisha Jagdish
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Somak Chaudhuri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nikita S Ramteke
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Uchenna Waturuocha
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
6
|
Ronayne CT, Bennett CF, Perry EA, Kantorovich N, Puigserver P. Tetracycline-dependent inhibition of mitoribosome protein elongation in mitochondrial disease mutant cells suppresses IRE1α to promote cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531795. [PMID: 36945631 PMCID: PMC10028993 DOI: 10.1101/2023.03.09.531795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations are redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. Depending on the type of mitochondrial mutation, certain mechanisms can efficiently rescue cell death vulnerability. One method is the inhibition of mitochondrial translation elongation using tetracyclines, potent suppressors of cell death in mitochondrial disease mutant cells. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that in mitochondrial mutant disease cells, tetracycline-mediated inhibition of mitoribosome elongation promotes survival through suppression of the ER stress IRE1α protein. Tetracyclines increased levels of the splitting factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) at the mitochondria with recruitment to the mitochondrial ribosome (mitoribosome) large subunit. MALSU1, but not other quality control factors, was required for tetracycline-induced cell survival in mitochondrial disease mutant cells during glucose starvation. In these cells, nutrient stress induced cell death through IRE1α activation associated with a strong protein loading in the ER lumen. Notably, tetracyclines rescued cell death through suppression of IRE1α oligomerization and activity. Consistent with MALSU1 requirement, MALSU1 deficient mitochondrial mutant cells were sensitive to glucose-deprivation and exhibited increased ER stress and activation of IRE1α that was not reversed by tetracyclines. These studies show that inhibition of mitoribosome elongation signals to the ER to promote survival, establishing a new interorganelle communication between the mitoribosome and ER with implications in basic mechanisms of cell survival and treatment of mitochondrial diseases.
Collapse
|
7
|
Lin J, Xiao X, Liang Y, Zhao H, Yu Y, Yuan P, Lu S, Ding X. Repurposing non-antifungal drugs auranofin and pentamidine in combination as fungistatic antifungal agents against C. albicans. Front Cell Infect Microbiol 2022; 12:1065962. [PMID: 36590591 PMCID: PMC9798428 DOI: 10.3389/fcimb.2022.1065962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infection is a serious global health issue, causing approximately 1.5 million mortalities annually. However, clinically available anti-fungal drugs are limited, especially for multidrug-resistant fungal infections. Therefore, new antifungal drugs are urgently needed to address this clinical challenge. In this study, we proposed two non-antifungal drugs, auranofin and pentamidine, in combination to fight against multidrug-resistant C. albicans. The insufficient antifungal activity of anti-rheumatic drug auranofin is partially due to fungal membrane barrier preventing the drug uptake, and anti-protozoal drug pentamidine was used here to improve the permeability of membrane. The auranofin/pentamidine combination displayed synergistic inhibitory effect against both drug-susceptible and drug-resistant C. albicans, as well as biofilm, and significantly reduced the minimum inhibitory concentration of each drug. At non-antifungal concentration, pentamidine can disrupt the membrane integrity and increase membrane permeability, leading to enhanced cellular uptake of auranofin in C. albicans. This repurposing strategy using the combination of non-antifungal drugs with complementary antifungal mechanism may provide a novel approach for discovery of antifungal drugs to fight against multidrug-resistant fungal infections.
Collapse
Affiliation(s)
- Jiaying Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xueyi Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yijing Liang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingxiao Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China,*Correspondence: Peiyan Yuan, ; Sha Lu, ; Xin Ding,
| |
Collapse
|
8
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
9
|
Abstract
Pentamidine (PTM), which is a diamine that is widely known for its antimicrobial activity, is a very interesting drug whose mechanism of action is not fully understood. In recent years, PTM has been proposed as a novel potential drug candidate for the treatment of mental illnesses, myotonic dystrophy, diabetes, and tumors. Nevertheless, the systemic administration of PTM causes severe side effects, especially nephrotoxicity. In order to efficiently deliver PTM and reduce its side effects, several nanosystems that take advantage of the chemical characteristics of PTM, such as the presence of two positively charged amidine groups at physiological pH, have been proposed as useful delivery tools. Polymeric, lipidic, inorganic, and other types of nanocarriers have been reported in the literature for PTM delivery, and they are all in different development phases. The available approaches for the design of PTM nanoparticulate delivery systems are reported in this review, with a particular emphasis on formulation strategies and in vitro/in vivo applications. Furthermore, a critical view of the future developments of nanomedicine for PTM applications, based on recent repurposing studies, is provided. Created with BioRender.com.
Collapse
|
10
|
Wesseling CMJ, Slingerland CJ, Veraar S, Lok S, Martin NI. Structure-Activity Studies with Bis-Amidines That Potentiate Gram-Positive Specific Antibiotics against Gram-Negative Pathogens. ACS Infect Dis 2021; 7:3314-3335. [PMID: 34766746 PMCID: PMC8669655 DOI: 10.1021/acsinfecdis.1c00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Pentamidine, an FDA-approved
antiparasitic drug, was recently identified
as an outer membrane disrupting synergist that potentiates erythromycin,
rifampicin, and novobiocin against Gram-negative bacteria. The same
study also described a preliminary structure–activity relationship
using commercially available pentamidine analogues. We here report
the design, synthesis, and evaluation of a broader panel of bis-amidines
inspired by pentamidine. The present study both validates the previously
observed synergistic activity reported for pentamidine, while further
assessing the capacity for structurally similar bis-amidines to also
potentiate Gram-positive specific antibiotics against Gram-negative
pathogens. Among the bis-amidines prepared, a number of them were
found to exhibit synergistic activity greater than pentamidine. These
synergists were shown to effectively potentiate the activity of Gram-positive
specific antibiotics against multiple Gram-negative pathogens such
as Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas
aeruginosa, and Escherichia coli, including polymyxin- and carbapenem-resistant strains.
Collapse
Affiliation(s)
- Charlotte M. J. Wesseling
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Shanice Veraar
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Samantha Lok
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
11
|
Maliszewska I, Goldeman W. Pentamidine enhances photosensitization of Acinetobacter baumannii using diode lasers with emission of light at wavelength of ʎ = 405 nm and ʎ = 635 nm. Photodiagnosis Photodyn Ther 2021; 34:102242. [PMID: 33662618 DOI: 10.1016/j.pdpdt.2021.102242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/22/2021] [Accepted: 02/26/2021] [Indexed: 12/01/2022]
Abstract
Antimicrobial photodynamic inactivation is currently one of the most promising trends in the modern bactericidal protocols. Under the conditions defined in our studies, we found that in vitro photosensitization of A. baumannii with 5-ALA as a precursor of protoporphyrin IX (photosensitizer) reduces the concentration of viable cells in planktonic cultures, and this process can be strongly enhanced by pentamidine. Diode lasers with the peak-power wavelength of ʎ = 405 nm (radiation intensity of 26 mW cm-2) and ʎ = 635 nm (radiation intensity of 55 mW cm-2) were used in this study. It was found that a blue laser light (energy fluence of 64 J cm-2; no external photosensitizer) in the presence of pentamidine resulted in a reduction of CFU of 99.992 % compared to 99.97 % killing without pentamidine. When a red laser light was used in the experiments (energy fluence of 136 J cm-2; no external photosensitizer), the mortality rate was 99.98 % in the presence of pentamidine compared to 99.93 % of those killed without the addition of this drug. The lethal effect with 5-ALA was achieved under blue light fluence of 16 J cm-2 (in the presence of pentamidine) and 32 J cm-2 (without pentamidine). In the case of laser light of 635 nm, the lethal effect with 5-ALA was attained with energy fluence of 51 J cm-2 (with pentamidine) and 102 J cm-2 (without pentamidine). The possible roles of pentamidine in enhancing photodynamic inactivation of A. baumannii have been discussed.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
12
|
Perry EA, Bennett CF, Luo C, Balsa E, Jedrychowski M, O'Malley KE, Latorre-Muro P, Ladley RP, Reda K, Wright PM, Gygi SP, Myers AG, Puigserver P. Tetracyclines promote survival and fitness in mitochondrial disease models. Nat Metab 2021; 3:33-42. [PMID: 33462515 PMCID: PMC7856165 DOI: 10.1038/s42255-020-00334-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from mutations in nuclear or mitochondrial DNA genes encoding mitochondrial proteins1,2. MDs cause pathologies with severe tissue damage and ultimately death3,4. There are no cures for MDs and current treatments are only palliative5-7. Here we show that tetracyclines improve fitness of cultured MD cells and ameliorate disease in a mouse model of Leigh syndrome. To identify small molecules that prevent cellular damage and death under nutrient stress conditions, we conduct a chemical high-throughput screen with cells carrying human MD mutations and discover a series of antibiotics that maintain survival of various MD cells. We subsequently show that a sub-library of tetracycline analogues, including doxycycline, rescues cell death and inflammatory signatures in mutant cells through partial and selective inhibition of mitochondrial translation, resulting in an ATF4-independent mitohormetic response. Doxycycline treatment strongly promotes fitness and survival of Ndufs4-/- mice, a preclinical Leigh syndrome mouse model8. A proteomic analysis of brain tissue reveals that doxycycline treatment largely prevents neuronal death and the accumulation of neuroimmune and inflammatory proteins in Ndufs4-/- mice, indicating a potential causal role for these proteins in the brain pathology. Our findings suggest that tetracyclines deserve further evaluation as potential drugs for the treatment of MDs.
Collapse
Affiliation(s)
- Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Biological Sciences in Dental Medicine Program, Harvard School of Dental Medicine, Boston, MA, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Katherine E O'Malley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Richard Porter Ladley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Kamar Reda
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Peter M Wright
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Kelly ML, Chu CC, Shi H, Ganser LR, Bogerd HP, Huynh K, Hou Y, Cullen BR, Al-Hashimi HM. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem-loop RNAs and their implications for functional cellular assays. RNA (NEW YORK, N.Y.) 2021; 27:12-26. [PMID: 33028652 PMCID: PMC7749633 DOI: 10.1261/rna.076257.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/26/2020] [Indexed: 05/30/2023]
Abstract
Identifying small molecules that selectively bind an RNA target while discriminating against all other cellular RNAs is an important challenge in RNA-targeted drug discovery. Much effort has been directed toward identifying drug-like small molecules that minimize electrostatic and stacking interactions that lead to nonspecific binding of aminoglycosides and intercalators to many stem-loop RNAs. Many such compounds have been reported to bind RNAs and inhibit their cellular activities. However, target engagement and cellular selectivity assays are not routinely performed, and it is often unclear whether functional activity directly results from specific binding to the target RNA. Here, we examined the propensities of three drug-like compounds, previously shown to bind and inhibit the cellular activities of distinct stem-loop RNAs, to bind and inhibit the cellular activities of two unrelated HIV-1 stem-loop RNAs: the transactivation response element (TAR) and the rev response element stem IIB (RREIIB). All compounds bound TAR and RREIIB in vitro, and two inhibited TAR-dependent transactivation and RRE-dependent viral export in cell-based assays while also exhibiting off-target interactions consistent with nonspecific activity. A survey of X-ray and NMR structures of RNA-small molecule complexes revealed that aminoglycosides and drug-like molecules form hydrogen bonds with functional groups commonly accessible in canonical stem-loop RNA motifs, in contrast to ligands that specifically bind riboswitches. Our results demonstrate that drug-like molecules can nonspecifically bind stem-loop RNAs most likely through hydrogen bonding and electrostatic interactions and reinforce the importance of assaying for off-target interactions and RNA selectivity in vitro and in cells when assessing novel RNA-binders.
Collapse
Affiliation(s)
- Megan L Kelly
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Honglue Shi
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Laura R Ganser
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kelly Huynh
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuze Hou
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
14
|
Electrochemical sensing of the interaction of the anti-infective agent pentamidine with DNA. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Patra D, Banerjee S, Sova Mandi C, Haseena KS, Basu G, Dutta S. A Pyrimido-Quinoxaline Fused Heterocycle Lights Up Transfer RNA upon Binding at the Mg 2+ Binding Site. Chembiochem 2020; 22:359-363. [PMID: 32869357 DOI: 10.1002/cbic.202000584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/07/2022]
Abstract
Transfer RNAs (tRNAs) are fundamental molecules in cellular translation. In this study we have highlighted a fluorescence-based perceptive approach for tRNAs by using a quinoxaline small molecule. We have synthesised a water-soluble fluorescent pyrimido-quinoxaline-fused heterocycle containing a mandatory piperazine tail (DS1) with a large Stokes shift (∼160 nm). The interaction between DS1 and tRNA results in significant fluorescence enhancement of the molecule with Kd ∼5 μM and multiple binding sites. Our work reveals that the DS1 binding site overlaps with the specific Mg2+ ion binding site in the D loop of tRNA. As a proof-of-concept, the molecule inhibited Pb2+ -induced cleavage of yeast tRNAPhe in the D loop. In competitive binding assays, the fluorescence of DS1-tRNA complex is quenched by a known tRNA-binder, tobramycin. This indicates the displacement of DS1 and, indeed, a substantiation of specific binding at the site of tertiary interaction in the central region of tRNA. The ability of compound DS1 to bind tRNA with a higher affinity compared to DNA and single-stranded RNA offers a promising approach to developing tRNA-based biomarker diagnostics in the future.
Collapse
Affiliation(s)
- Dipendu Patra
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India.,Academy of Scientific and Innovative Research (AcSIR) CSIR - Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Sayanika Banerjee
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Chandra Sova Mandi
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - K S Haseena
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Sanjay Dutta
- Department of Organic and Medicinal Chemistry, CSIR - Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India.,Academy of Scientific and Innovative Research (AcSIR) CSIR - Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
16
|
Donlic A, Zafferani M, Padroni G, Puri M, Hargrove A. Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans. Nucleic Acids Res 2020; 48:7653-7664. [PMID: 32667657 PMCID: PMC7430642 DOI: 10.1093/nar/gkaa585] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
Small molecule-based modulation of a triple helix in the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been proposed as an attractive avenue for cancer treatment and a model system for understanding small molecule:RNA recognition. To elucidate fundamental recognition principles and structure-function relationships, we designed and synthesized nine novel analogs of a diphenylfuran-based small molecule DPFp8, a previously identified lead binder of MALAT1. We investigated the role of recognition modalities in binding and in silico studies along with the relationship between affinity, stability and in vitro enzymatic degradation of the triple helix. Specifically, molecular docking studies identified patterns driving affinity and selectivity, including limited ligand flexibility, as observed by ligand preorganization and 3D shape complementarity for the binding pocket. The use of differential scanning fluorimetry allowed rapid evaluation of ligand-induced thermal stabilization of the triple helix, which correlated with decreased in vitro degradation of this structure by the RNase R exonuclease. The magnitude of stabilization was related to binding mode and selectivity between the triple helix and its precursor stem loop structure. Together, this work demonstrates the value of scaffold-based libraries in revealing recognition principles and of raising broadly applicable strategies, including functional assays, for small molecule-RNA targeting.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Martina Zafferani
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Giacomo Padroni
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Malavika Puri
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Amanda E Hargrove
- To whom correspondence should be addressed. Tel: +1 919 660 1522; Fax: +1 919 660 1522;
| |
Collapse
|
17
|
Abstract
The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key players in an increasing number of other cellular processes, with far-reaching consequences in health and disease. The biochemical versatility of the synthetases has also proven pivotal in efforts to expand the genetic code, further emphasizing the wide-ranging roles of the aminoacyl-tRNA synthetase family in synthetic and natural biology.
Collapse
Affiliation(s)
- Miguel Angel Rubio Gomez
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
18
|
Samsonov SA, Freza S, Zsila F. In silico analysis of heparin and chondroitin sulfate binding mechanisms of the antiprotozoal drug berenil and pentamidine. Carbohydr Res 2019; 482:107742. [DOI: 10.1016/j.carres.2019.107742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
|
19
|
Patwardhan NN, Cai Z, Newson CN, Hargrove AE. Fluorescent peptide displacement as a general assay for screening small molecule libraries against RNA. Org Biomol Chem 2019; 17:1778-1786. [PMID: 30468226 DOI: 10.1039/c8ob02467g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A prominent hurdle in developing small molecule probes against RNA is the relative scarcity of general screening methods. In this study, we demonstrate the application of a fluorescent peptide displacement assay to screen small molecule probes against four different RNA targets. The designed experimental protocol combined with statistical analysis provides a fast and convenient method to simultaneously evaluate small molecule libraries against different RNA targets and classify them based on affinity and selectivity patterns.
Collapse
Affiliation(s)
- Neeraj N Patwardhan
- Department of Chemistry, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
20
|
Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol 2019; 4:565-577. [PMID: 30833727 DOI: 10.1038/s41564-019-0357-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance continues to be a public threat on a global scale. The ongoing need to develop new antimicrobial drugs that are effective against multi-drug-resistant pathogens has spurred the research community to invest in various drug discovery strategies, one of which is drug repurposing-the process of finding new uses for existing drugs. While still nascent in the antimicrobial field, the approach is gaining traction in both the public and private sector. While the approach has particular promise in fast-tracking compounds into clinical studies, it nevertheless has substantial obstacles to success. This Review covers the art of repurposing existing drugs for antimicrobial purposes. We discuss enabling screening platforms for antimicrobial discovery and present encouraging findings of novel antimicrobial therapeutic strategies. Also covered are general advantages of repurposing over de novo drug development and challenges of the strategy, including scientific, intellectual property and regulatory issues.
Collapse
Affiliation(s)
- Maya A Farha
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
21
|
Thomas JA, Baker N, Hutchinson S, Dominicus C, Trenaman A, Glover L, Alsford S, Horn D. Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Negl Trop Dis 2018; 12:e0006980. [PMID: 30475806 PMCID: PMC6283605 DOI: 10.1371/journal.pntd.0006980] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/06/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy continues to have a major impact on reducing the burden of disease caused by trypanosomatids. Unfortunately though, the mode-of-action (MoA) of antitrypanosomal drugs typically remains unclear or only partially characterised. This is the case for four of five current drugs used to treat Human African Trypanosomiasis (HAT); eflornithine is a specific inhibitor of ornithine decarboxylase. Here, we used a panel of T. brucei cellular assays to probe the MoA of the current HAT drugs. The assays included DNA-staining followed by microscopy and quantitative image analysis, or flow cytometry; terminal dUTP nick end labelling to monitor mitochondrial (kinetoplast) DNA replication; antibody-based detection of sites of nuclear DNA damage; and fluorescent dye-staining of mitochondria or lysosomes. We found that melarsoprol inhibited mitosis; nifurtimox reduced mitochondrial protein abundance; pentamidine triggered progressive loss of kinetoplast DNA and disruption of mitochondrial membrane potential; and suramin inhibited cytokinesis. Thus, current antitrypanosomal drugs perturb distinct and specific cellular compartments, structures or cell cycle phases. Further exploiting the findings, we show that putative mitogen-activated protein-kinases contribute to the melarsoprol-induced mitotic defect, reminiscent of the mitotic arrest associated signalling cascade triggered by arsenicals in mammalian cells, used to treat leukaemia. Thus, cytology-based profiling can rapidly yield novel insight into antitrypanosomal drug MoA.
Collapse
Affiliation(s)
- James A. Thomas
- London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Nicola Baker
- The Centre for Immunology and Infection, University of York, Heslington, York, United Kingdom
| | | | | | - Anna Trenaman
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Sam Alsford
- London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
22
|
López-Morató M, Brook JD, Wojciechowska M. Small Molecules Which Improve Pathogenesis of Myotonic Dystrophy Type 1. Front Neurol 2018; 9:349. [PMID: 29867749 PMCID: PMC5968088 DOI: 10.3389/fneur.2018.00349] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults for which there is currently no treatment. The pathogenesis of this autosomal dominant disorder is associated with the expansion of CTG repeats in the 3'-UTR of the DMPK gene. DMPK transcripts with expanded CUG repeats (CUGexpDMPK) are retained in the nucleus forming multiple discrete foci, and their presence triggers a cascade of toxic events. Thus far, most research emphasis has been on interactions of CUGexpDMPK with the muscleblind-like (MBNL) family of splicing factors. These proteins are sequestered by the expanded CUG repeats of DMPK RNA leading to their functional depletion. As a consequence, abnormalities in many pathways of RNA metabolism, including alternative splicing, are detected in DM1. To date, in vitro and in vivo efforts to develop therapeutic strategies for DM1 have mostly been focused on targeting CUGexpDMPK via reducing their expression and/or preventing interactions with MBNL1. Antisense oligonucleotides targeted to the CUG repeats in the DMPK transcripts are of particular interest due to their potential capacity to discriminate between mutant and normal transcripts. However, a growing number of reports describe alternative strategies using small molecule chemicals acting independently of a direct interaction with CUGexpDMPK. In this review, we summarize current knowledge about these chemicals and we describe the beneficial effects they caused in different DM1 experimental models. We also present potential mechanisms of action of these compounds and pathways they affect which could be considered for future therapeutic interventions in DM1.
Collapse
Affiliation(s)
- Marta López-Morató
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - John David Brook
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Marzena Wojciechowska
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Polish Academy of Sciences, Department of Molecular Genetics, Institute of Bioorganic Chemistry, Poznan, Poland
| |
Collapse
|
23
|
Thadke SA, Perera JDR, Hridya VM, Bhatt K, Shaikh AY, Hsieh WC, Chen M, Gayathri C, Gil RR, Rule GS, Mukherjee A, Thornton CA, Ly DH. Design of Bivalent Nucleic Acid Ligands for Recognition of RNA-Repeated Expansion Associated with Huntington's Disease. Biochemistry 2018; 57:2094-2108. [PMID: 29562132 PMCID: PMC6091552 DOI: 10.1021/acs.biochem.8b00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template. In the absence of an RNA target, they self-deactivate by undergoing an intramolecular reaction to form cyclic products, rendering them inactive for further binding. The work has implications for the design of ultrashort nucleic acid ligands for targeting rCAG-repeat expansion associated with Huntington's disease and a number of other related neuromuscular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shivaji A. Thadke
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - J. Dinithi R. Perera
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - V. M. Hridya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Kirti Bhatt
- Department of Neurology, Box 645, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Ashif Y. Shaikh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-Che Hsieh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mengshen Chen
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chakicherla Gayathri
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Roberto R. Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S. Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Charles A. Thornton
- Department of Neurology, Box 645, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Danith H. Ly
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
Abstract
Inhibition of tRNA aminoacylation has proven to be an effective antimicrobial strategy, impeding an essential step of protein synthesis. Mupirocin, the well-known selective inhibitor of bacterial isoleucyl-tRNA synthetase, is one of three aminoacylation inhibitors now approved for human or animal use. However, design of novel aminoacylation inhibitors is complicated by the steadfast requirement to avoid off-target inhibition of protein synthesis in human cells. Here we review available data regarding known aminoacylation inhibitors as well as key amino-acid residues in aminoacyl-tRNA synthetases (aaRSs) and nucleotides in tRNA that determine the specificity and strength of the aaRS-tRNA interaction. Unlike most ligand-protein interactions, the aaRS-tRNA recognition interaction represents coevolution of both the tRNA and aaRS structures to conserve the specificity of aminoacylation. This property means that many determinants of tRNA recognition in pathogens have diverged from those of humans-a phenomenon that provides a valuable source of data for antimicrobial drug development.
Collapse
Affiliation(s)
- Joanne M Ho
- a Department of BioSciences , Rice University , Houston , TX , United States
| | | | - Dieter Söll
- c Departments of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , United States.,d Department of Chemistry , Yale University , New Haven , CT , United States
| | | |
Collapse
|
25
|
Maciejewska D, Żabiński J, Rezler M, Kaźmierczak P, Collins MS, Ficker L, Cushion MT. Development of highly active anti- Pneumocystis bisbenzamidines: insight into the influence of selected substituents on the in vitro activity. MEDCHEMCOMM 2017; 8:2003-2011. [PMID: 30108719 PMCID: PMC6071923 DOI: 10.1039/c7md00445a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022]
Abstract
Here we describe the potency of 21 pentamidine analogues against the fungal pathogen, Pneumocystis carinii, in an ATP bioluminescent assay with toxicity profiles in 2 mammalian cell lines. Reduction of two 5-methyl-1,2,4-oxadiazole rings was applied to the synthesis of acid-labile bisamidines. Anti-Pneumocystis activity is discussed in the context of 3 groups of compounds depending on the main structural changes of the pentamidine lead structure. The groups include: 1) 1,4-bis(methylene)piperazine derivatives 1-5; 2) alkanediamide derivatives 6-10; 3) alkane-derived bisbenzamidines 11-21. IC50 values of 18 compounds were lower than the IC50 of pentamidine. Four bisamidines were active at nanogram concentrations. Introduction of sulfur atoms in the alkane bridge, replacement of the amidino groups with imidazoline rings, or attachment of nitro or amino groups to the benzene rings is responsible for remarkable activity of the new leading structures. The vast majority of compounds, including four highly active ones, can be classified as mild or nontoxic to host cells. These compounds show promise as candidates for new anti-Pneumocystis agents.
Collapse
Affiliation(s)
- D Maciejewska
- Department of Organic Chemistry , Faculty of Pharmacy , Medical University of Warsaw , Banacha 1 Street , 02-097 Warsaw , Poland .
| | - J Żabiński
- Department of Organic Chemistry , Faculty of Pharmacy , Medical University of Warsaw , Banacha 1 Street , 02-097 Warsaw , Poland .
| | - M Rezler
- Department of Organic Chemistry , Faculty of Pharmacy , Medical University of Warsaw , Banacha 1 Street , 02-097 Warsaw , Poland .
| | - P Kaźmierczak
- Department of Organic Chemistry , Faculty of Pharmacy , Medical University of Warsaw , Banacha 1 Street , 02-097 Warsaw , Poland .
| | - M S Collins
- Division of Infectious Diseases , Department of Internal Medicine , University of Cincinnati College of Medicine , 231 Albert Sabin Way , Cincinnati , OH 45267 , USA .
- Cincinnati Veterans Affairs Medical Center , 3200 Vine Street , Cincinnati , OH 45220 , USA
| | - L Ficker
- Division of Infectious Diseases , Department of Internal Medicine , University of Cincinnati College of Medicine , 231 Albert Sabin Way , Cincinnati , OH 45267 , USA .
- Cincinnati Veterans Affairs Medical Center , 3200 Vine Street , Cincinnati , OH 45220 , USA
| | - M T Cushion
- Division of Infectious Diseases , Department of Internal Medicine , University of Cincinnati College of Medicine , 231 Albert Sabin Way , Cincinnati , OH 45267 , USA .
- Cincinnati Veterans Affairs Medical Center , 3200 Vine Street , Cincinnati , OH 45220 , USA
| |
Collapse
|
26
|
Panozzo C, Laleve A, Tribouillard-Tanvier D, Ostojić J, Sellem CH, Friocourt G, Bourand-Plantefol A, Burg A, Delahodde A, Blondel M, Dujardin G. Chemicals or mutations that target mitochondrial translation can rescue the respiratory deficiency of yeast bcs1 mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2297-2307. [PMID: 28888990 DOI: 10.1016/j.bbamcr.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
Abstract
Bcs1p is a chaperone that is required for the incorporation of the Rieske subunit within complex III of the mitochondrial respiratory chain. Mutations in the human gene BCS1L (BCS1-like) are the most frequent nuclear mutations resulting in complex III-related pathologies. In yeast, the mimicking of some pathogenic mutations causes a respiratory deficiency. We have screened chemical libraries and found that two antibiotics, pentamidine and clarithromycin, can compensate two bcs1 point mutations in yeast, one of which is the equivalent of a mutation found in a human patient. As both antibiotics target the large mtrRNA of the mitoribosome, we focused our analysis on mitochondrial translation. We found that the absence of non-essential translation factors Rrf1 or Mif3, which act at the recycling/initiation steps, also compensates for the respiratory deficiency of yeast bcs1 mutations. At compensating concentrations, both antibiotics, as well as the absence of Rrf1, cause an imbalanced synthesis of respiratory subunits which impairs the assembly of the respiratory complexes and especially that of complex IV. Finally, we show that pentamidine also decreases the assembly of complex I in nematode mitochondria. It is well known that complexes III and IV exist within the mitochondrial inner membrane as supramolecular complexes III2/IV in yeast or I/III2/IV in higher eukaryotes. Therefore, we propose that the changes in mitochondrial translation caused by the drugs or by the absence of translation factors, can compensate for bcs1 mutations by modifying the equilibrium between illegitimate, and thus inactive, and active supercomplexes.
Collapse
Affiliation(s)
- C Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Laleve
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - D Tribouillard-Tanvier
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - J Ostojić
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - C H Sellem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - G Friocourt
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Bourand-Plantefol
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Burg
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Delahodde
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - M Blondel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - G Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France.
| |
Collapse
|
27
|
Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat Microbiol 2017; 2:17028. [PMID: 28263303 PMCID: PMC5360458 DOI: 10.1038/nmicrobiol.2017.28] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/02/2017] [Indexed: 01/02/2023]
Abstract
The increasing use of polymyxins1 in addition to the dissemination of plasmid-borne colistin resistance threatens to cause a serious breach in our last line of defence against multidrug-resistant Gram-negative pathogens, and heralds the emergence of truly pan-resistant infections. Colistin resistance often arises through covalent modification of lipid A with cationic residues such as phosphoethanolamine-as is mediated by Mcr-1 (ref. 2)-which reduce the affinity of polymyxins for lipopolysaccharide3. Thus, new strategies are needed to address the rapidly diminishing number of treatment options for Gram-negative infections4. The difficulty in eradicating Gram-negative bacteria is largely due to their highly impermeable outer membrane, which serves as a barrier to many otherwise effective antibiotics5. Here, we describe an unconventional screening platform designed to enrich for non-lethal, outer-membrane-active compounds with potential as adjuvants for conventional antibiotics. This approach identified the antiprotozoal drug pentamidine6 as an effective perturbant of the Gram-negative outer membrane through its interaction with lipopolysaccharide. Pentamidine displayed synergy with antibiotics typically restricted to Gram-positive bacteria, yielding effective drug combinations with activity against a wide range of Gram-negative pathogens in vitro, and against systemic Acinetobacter baumannii infections in mice. Notably, the adjuvant activity of pentamidine persisted in polymyxin-resistant bacteria in vitro and in vivo. Overall, pentamidine and its structural analogues represent unexploited molecules for the treatment of Gram-negative infections, particularly those having acquired polymyxin resistance determinants.
Collapse
|
28
|
Diniz EMLP, Tomich de Paula da Silva CH, Gómez-Perez V, Federico LB, Campos Rosa JM. GRIND2-based 3D-QSAR and prediction of activity spectra for symmetrical bis-pyridinium salts with promastigote antileishmanial activity. J Biomol Struct Dyn 2016; 35:2430-2440. [DOI: 10.1080/07391102.2016.1221364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Verónica Gómez-Perez
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, c/ Campus de Cartuja s/n, Granada 18071, Spain
| | - Leonardo Bruno Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. do Café S/N, CEP: 14040-903, Ribeirão Preto, SP, Brazil
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, c/ Campus de Cartuja s/n, Granada 18071, Spain
| | - Joaquín María Campos Rosa
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, c/ Campus de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
29
|
Mamidala R, Majumdar P, Jha KK, Bathula C, Agarwal R, Chary MT, Majumder HK, Munshi P, Sen S. Identification of Leishmania donovani Topoisomerase 1 inhibitors via intuitive scaffold hopping and bioisosteric modification of known Top 1 inhibitors. Sci Rep 2016; 6:26603. [PMID: 27221589 PMCID: PMC4879574 DOI: 10.1038/srep26603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023] Open
Abstract
A library of arylidenefuropyridinediones was discovered as potent inhibitors of Leishmania donovani Topoisomerase 1 (LdTop1) where the active molecules displayed considerable inhibition with single digit micromolar EC50 values. This molecular library was designed via intuitive scaffold hopping and bioisosteric modification of known topoisomerase 1 inhibitors such as camptothecin, edotecarin and etc. The design was rationalized by molecular docking analysis of the compound prototype with human topoisomerase 1 (HTop1) and Leishmania donovani topoisomerase 1(LdTop1). The most active compound 4 displayed no cytotoxicity against normal mammalian COS7 cell line (~100 fold less inhibition at the EC50). Similar to camptothecin, 4 interacted with free LdTop1 as observed in the preincubation DNA relaxation inhibition experiment. It also displayed anti-protozoal activity against Leishmania donovani promastigote. Crystal structure investigation of 4 and its molecular modelling with LdTop1 revealed putative binding sites in the enzyme that could be harnessed to generate molecules with better potency.
Collapse
Affiliation(s)
- Rajinikanth Mamidala
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500085, Telangana, India.,GVK Bioscience, 28A IDA Nacharam, Hyderabad, Telengana, India
| | - Papiya Majumdar
- Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Kunal Kumar Jha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Chandramohan Bathula
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Rahul Agarwal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - M Thirumala Chary
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500085, Telangana, India
| | - Hemanta K Majumder
- Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Parthapratim Munshi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| |
Collapse
|
30
|
Antitrypanosomal Activities and Mechanisms of Action of Novel Tetracyclic Iridoids from Morinda lucida Benth. Antimicrob Agents Chemother 2016; 60:3283-90. [PMID: 26953191 PMCID: PMC4879371 DOI: 10.1128/aac.01916-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei. The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 μM, 3.75 μM, and 0.43 μM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals.
Collapse
|
31
|
Couvillion MT, Soto IC, Shipkovenska G, Churchman LS. Synchronized mitochondrial and cytosolic translation programs. Nature 2016; 533:499-503. [PMID: 27225121 PMCID: PMC4964289 DOI: 10.1038/nature18015] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/18/2016] [Indexed: 01/21/2023]
Abstract
Oxidative phosphorylation (OXPHOS) is fundamental for life. OXPHOS complexes pose a unique challenge for the cell, because their subunits are encoded on two different genomes, the nuclear genome and the mitochondrial genome. Genomic approaches designed to study nuclear/cytosolic and bacterial gene expression have not been broadly applied to the mitochondrial system; thus the co-regulation of OXPHOS genes remains largely unexplored. Here we globally monitored mitochondrial and nuclear gene expression processes in Saccharomyces cerevisiae during mitochondrial biogenesis, when OXPHOS complexes are synthesized. Nuclear- and mitochondrial-encoded OXPHOS transcript levels do not increase concordantly. Instead, we observe that mitochondrial and cytosolic translation are rapidly and dynamically regulated in a strikingly synchronous fashion. Furthermore, the coordinated translation programs are controlled unidirectionally through the intricate and dynamic control of cytosolic translation. Thus the nuclear genome carefully directs the coordination of mitochondrial and cytosolic translation to orchestrate the timely synthesis of each OXPHOS complex, representing an unappreciated regulatory layer shaping the mitochondrial proteome. Our whole-cell genomic profiling approach establishes a foundation for global gene regulatory studies of mitochondrial biology.
Collapse
Affiliation(s)
- Mary T Couvillion
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Iliana C Soto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gergana Shipkovenska
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
Kaiser M, Mäser P, Tadoori LP, Ioset JR, Brun R. Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLoS One 2015; 10:e0135556. [PMID: 26270335 PMCID: PMC4535766 DOI: 10.1371/journal.pone.0135556] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
Neglected tropical diseases cause significant morbidity and mortality and are a source of poverty in endemic countries. Only a few drugs are available to treat diseases such as leishmaniasis, Chagas’ disease, human African trypanosomiasis and malaria. Since drug development is lengthy and expensive, a drug repurposing strategy offers an attractive fast-track approach to speed up the process. A set of 100 registered drugs with drug repositioning potential for neglected diseases was assembled and tested in vitro against four protozoan parasites associated with the aforementioned diseases. Several drugs and drug classes showed in vitro activity in those screening assays. The results are critically reviewed and discussed in the perspective of a follow-up drug repositioning strategy where R&D has to be addressed with limited resources.
Collapse
Affiliation(s)
- Marcel Kaiser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Pascal Mäser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Reto Brun
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
de Morais CGV, Castro Lima AK, Terra R, dos Santos RF, Da-Silva SAG, Dutra PML. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:324915. [PMID: 26090399 PMCID: PMC4450238 DOI: 10.1155/2015/324915] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023]
Abstract
The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs.
Collapse
Affiliation(s)
- Carlos Gustavo Vieira de Morais
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós Graduação em Microbiologia/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 3° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Ana Karina Castro Lima
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Rodrigo Terra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós Graduação em Fisiopatologia Clínica e Experimental/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Rosiane Freire dos Santos
- Programa de Pós Graduação em Microbiologia/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 3° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Silvia Amaral Gonçalves Da-Silva
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Patrícia Maria Lourenço Dutra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
34
|
Suzuki M, Tung NH, Kwofie KD, Adegle R, Amoa-Bosompem M, Sakyiamah M, Ayertey F, Owusu KBA, Tuffour I, Atchoglo P, Frempong KK, Anyan WK, Uto T, Morinaga O, Yamashita T, Aboagye F, Appiah AA, Appiah-Opong R, Nyarko AK, Yamaoka S, Yamaguchi Y, Edoh D, Koram K, Ohta N, Boakye DA, Ayi I, Shoyama Y. New anti-trypanosomal active tetracyclic iridoid isolated from Morinda lucida Benth. Bioorg Med Chem Lett 2015; 25:3030-3. [PMID: 26048790 DOI: 10.1016/j.bmcl.2015.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/23/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Human African trypanosomiasis (HAT), commonly known as sleeping sickness has remained a serious health problem in many African countries with thousands of new infected cases annually. Chemotherapy, which is the main form of control against HAT has been characterized lately by the viewpoints of toxicity and drug resistance issues. Recently, there have been a lot of emphases on the use of medicinal plants world-wide. Morinda lucida Benth. is one of the most popular medicinal plants widely distributed in Africa and several groups have reported on its anti-protozoa activities. In this study, we have isolated one novel tetracyclic iridoid, named as molucidin, from the CHCl3 fraction of the M. lucida leaves by bioassay-guided fractionation and purification. Molucidin was structurally elucidated by (1)H and (13)C NMR including HMQC, HMBC, H-H COSY and NOESY resulting in tetracyclic iridoid skeleton, and its absolute configuration was determined. We have further demonstrated that molucidin presented a strong anti-trypanosomal activity, indicating an IC50 value of 1.27 μM. The cytotoxicity study using human normal and cancer cell lines indicated that molucidin exhibited selectivity index (SI) against two normal fibroblasts greater than 4.73. Furthermore, structure-activity relationship (SAR) study was undertaken with molucidin and oregonin, which is identical to anti-trypanosomal active components of Alnus japonica. Overlapping analysis of the lowest energy conformation of molucidin with oregonin suggested a certain similarities of aromatic rings of both oregonin and molucidin. These results contribute to the future drug design studies for HAT.
Collapse
Affiliation(s)
- Mitsuko Suzuki
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana; Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Nguyen Huu Tung
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Kofi D Kwofie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Richard Adegle
- Centre for Scientific Research into Plant Medicine, Mampong-Akuapem 73, Ghana
| | - Michael Amoa-Bosompem
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Maxwell Sakyiamah
- Centre for Scientific Research into Plant Medicine, Mampong-Akuapem 73, Ghana
| | - Frederick Ayertey
- Centre for Scientific Research into Plant Medicine, Mampong-Akuapem 73, Ghana
| | | | - Isaac Tuffour
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Philip Atchoglo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | | | - William K Anyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Takuhiro Uto
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Osamu Morinaga
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Taizo Yamashita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Frederic Aboagye
- Centre for Scientific Research into Plant Medicine, Mampong-Akuapem 73, Ghana
| | | | - Regina Appiah-Opong
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Alexander K Nyarko
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Shoji Yamaoka
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuchika Yamaguchi
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Dominic Edoh
- Centre for Scientific Research into Plant Medicine, Mampong-Akuapem 73, Ghana
| | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Nobuo Ohta
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Daniel A Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Irene Ayi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| |
Collapse
|
35
|
Zsila F. Glycosaminoglycans are potential pharmacological targets for classic DNA minor groove binder drugs berenil and pentamidine. Phys Chem Chem Phys 2015; 17:24560-5. [DOI: 10.1039/c5cp03153b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is shown that the antiprotozoal drugs berenil and pentamidine, conventional minor groove binders of DNA, form non-covalent complexes with polyanionic glycosaminoglycans.
Collapse
Affiliation(s)
- Ferenc Zsila
- Research Group of Chemical Biology
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
| |
Collapse
|
36
|
Design, synthesis and anti-leishmanial activity of novel symmetrical bispyridinium cyclophanes. Eur J Med Chem 2015; 89:362-9. [DOI: 10.1016/j.ejmech.2014.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/12/2014] [Accepted: 10/12/2014] [Indexed: 11/16/2022]
|
37
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
38
|
Sekhar GN, Watson CP, Fidanboylu M, Sanderson L, Thomas SA. Delivery of antihuman African trypanosomiasis drugs across the blood-brain and blood-CSF barriers. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:245-75. [PMID: 25307219 DOI: 10.1016/bs.apha.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human African trypanosomiasis (HAT or sleeping sickness) is a potentially fatal disease caused by the parasite, Trypanosoma brucei sp. The parasites are transmitted by the bite of insect vectors belonging to the genus Glossina (tsetse flies) and display a life cycle strategy that is equally spread between human and insect hosts. T.b. gambiense is found in western and central Africa whereas, T.b. rhodesiense is found in eastern and southern Africa. The disease has two clinical stages: a blood stage after the bite of an infected tsetse fly, followed by a central nervous system (CNS) stage where the parasite penetrates the brain; causing death if left untreated. The blood-brain barrier (BBB) makes the CNS stage difficult to treat because it prevents 98% of all known compounds from entering the brain, including some anti-HAT drugs. Those that do enter the brain are toxic compounds in their own right and have serious side effects. There are only a few drugs available to treat HAT and those that do are stage specific. This review summarizes the incidence, diagnosis, and treatment of HAT and provides a close examination of the BBB transport of anti-HAT drugs and an overview of the latest drugs in development.
Collapse
Affiliation(s)
- Gayathri N Sekhar
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Christopher P Watson
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Mehmet Fidanboylu
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Lisa Sanderson
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Sarah A Thomas
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom.
| |
Collapse
|
39
|
Adam R, Bilbao-Ramos P, López-Molina S, Abarca B, Ballesteros R, González-Rosende ME, Dea-Ayuela MA, Alzuet-Piña G. Triazolopyridyl ketones as a novel class of antileishmanial agents. DNA binding and BSA interaction. Bioorg Med Chem 2014; 22:4018-27. [DOI: 10.1016/j.bmc.2014.05.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 01/30/2023]
|
40
|
4-amino bis-pyridinium derivatives as novel antileishmanial agents. Antimicrob Agents Chemother 2014; 58:4103-12. [PMID: 24798287 DOI: 10.1128/aac.02481-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antileishmanial activity of a series of bis-pyridinium derivatives that are analogues of pentamidine have been investigated, and all compounds assayed were found to display activity against promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania major, with 50% effective concentrations (EC50s) lower than 1 μM in most cases. The majority of compounds showed similar behavior in both Leishmania species, being slightly more active against L. major amastigotes. However, compound VGP-106 {1,1'-(biphenyl-4,4'-diylmethylene)bis[4-(4-bromo-N-methylanilino)pyridinium] dibromide} exhibited significantly higher activity against L. donovani amastigotes (EC50, 0.86 ± 0.46 μM) with a lower toxicity in THP-1 cells (EC50, 206.54 ± 9.89 μM). As such, VGP-106 was chosen as a representative compound to further elucidate the mode of action of this family of inhibitors in promastigote forms of L. donovani. We have determined that uptake of VGP-106 in Leishmania is a temperature-independent process, suggesting that the compound crosses the parasite membrane by diffusion. Transmission electron microscopy analysis showed a severe mitochondrial swelling in parasites treated with compound VGP-106, which induces hyperpolarization of the mitochondrial membrane potential and a significant decrease of intracellular free ATP levels due to the inhibition of ATP synthesis. Additionally, we have confirmed that VGP-106 induces mitochondrial ROS production and an increase in intracellular Ca(2+) levels. All these molecular events can activate the apoptotic process in Leishmania; however, propidium iodide assays gave no indication of DNA fragmentation. These results underline the potency of compound VGP-106, which may represent a new avenue for the development of novel antileishmanial compounds.
Collapse
|
41
|
Pneumocystis Pneumonia: Epidemiology and Options for Prophylaxis in Non-HIV Immunocompromised Pediatric Patients. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0177-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ, Siboni RB, Docter AG, Haley MM, Thornton CA, Berglund JA. Reducing levels of toxic RNA with small molecules. ACS Chem Biol 2013; 8:2528-37. [PMID: 24028068 DOI: 10.1021/cb400431f] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myotonic dystrophy (DM) is one of the most common forms of muscular dystrophy. DM is an autosomal dominant disease caused by a toxic gain of function RNA. The toxic RNA is produced from expanded noncoding CTG/CCTG repeats, and these CUG/CCUG repeats sequester the Muscleblind-like (MBNL) family of RNA binding proteins. The MBNL proteins are regulators of alternative splicing, and their sequestration has been linked with mis-splicing events in DM. A previously reported screen for small molecules found that pentamidine was able to improve splicing defects associated with DM. Biochemical experiments and cell and mouse model studies of the disease indicate that pentamidine and related compounds may work through binding the CTG*CAG repeat DNA to inhibit transcription. Analysis of a series of methylene linker analogues of pentamidine revealed that heptamidine reverses splicing defects and rescues myotonia in a DM1 mouse model.
Collapse
Affiliation(s)
| | - Masayuki Nakamori
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Wenli Wang
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Samuel Carrell
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | | | | | | | | | | | - Charles A. Thornton
- Department
of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | | |
Collapse
|
43
|
Moll I, Fabbretti A, Brandi L, Gualerzi CO. Inhibitors Targeting Riboswitches and Ribozymes. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Chen SB, Shi QX, Peng D, Huang SY, Ou TM, Li D, Tan JH, Gu LQ, Huang ZS. The role of positive charges on G-quadruplex binding small molecules: learning from bisaryldiketene derivatives. Biochim Biophys Acta Gen Subj 2013; 1830:5006-13. [PMID: 23880070 DOI: 10.1016/j.bbagen.2013.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND G-quadruplexes are promising therapeutic targets for small molecules. In general, the introduction of steady positive charges through the in situ alkylation of nitrogen atoms within potential G-quadruplex ligands can significantly improve their quadruplex binding and stabilization abilities. However, our previous studies on bisaryldiketene derivatives showed that the derivative M4, whose central piperidone moiety is quaternized, exhibits a poor G-quadruplex stabilization ability. METHODS To clarify this unusual finding, CD, ITC, UV and NMR analyses were performed to determine the binding behaviors of M4 and its non-quaternized analog M2 to G-quadruplex DNA [d(TGGGT)]4. Molecular modeling approaches were also employed to help illustrate ligand-quadruplex DNA interactions. RESULTS The CD melting and ITC analyses revealed that M2 exhibited much stronger stabilization and binding abilities to [d(TGGGT)]4 compared to M4. Moreover, the CD and ITC analyses in combination with UV, NMR and MD simulations revealed that M2 tended to be end-stacked on the G-quartet, whereas M4 tended to be bound in the groove region. Analysis of the electrostatic potential showed that the charged surface of M4 was more positive than that of M2 and other reported ligands that bind to the G-quadruplex via end-stacking interactions. CONCLUSIONS The results indicated that the different positively charged surfaces of M2 and M4 might be the key reason for their different binding modes. These different binding modes also lead to different binding affinities and stabilization abilities for [d(TGGGT)]4. GENERAL SIGNIFICANCE These results provide new clues for the rational design of G-quadruplex-binding small molecules with steady positive charges.
Collapse
Affiliation(s)
- Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Basu A, Jaisankar P, Suresh Kumar G. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe.). PLoS One 2013; 8:e58279. [PMID: 23526972 PMCID: PMC3602459 DOI: 10.1371/journal.pone.0058279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 12/19/2022] Open
Abstract
Background Three new analogs of berberine with aryl/arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNAphe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. Methodology/Principal Findings Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNAphe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNAphe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNAphe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. Conclusions/Significance The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNAphe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNAphe.
Collapse
Affiliation(s)
- Anirban Basu
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Gopinatha Suresh Kumar
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
46
|
Yoshimura C, Miyafusa T, Tsumoto K. Identification of small-molecule inhibitors of the human S100B-p53 interaction and evaluation of their activity in human melanoma cells. Bioorg Med Chem 2013; 21:1109-15. [PMID: 23375094 DOI: 10.1016/j.bmc.2012.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 12/31/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
The interaction between human S100 calcium-binding protein B (S100B) and the tumor suppressor protein p53 is considered to be a possible therapeutic target for malignant melanoma. To identify potent inhibitors of this interaction, we screened a fragment library of compounds by means of a fluorescence-based competition assay involving the S100B-binding C-terminal peptide of p53. Using active compounds from the fragment library as query compounds, we constructed a focused library by means of two-dimensional similarity searching of a large database. This simple, unbiased method allowed us to identify several inhibitors of the S100B-p53 interaction, and we elucidated preliminary structure-activity relationships. One of the identified compounds had the potential to inhibit the S100B-p53 interaction in melanoma cells.
Collapse
Affiliation(s)
- Chihoko Yoshimura
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
47
|
Fröhlich E, Kantyka T, Plaza K, Schmidt KH, Pfister W, Potempa J, Eick S. Benzamidine derivatives inhibit the virulence of Porphyromonas gingivalis. Mol Oral Microbiol 2012; 28:192-203. [PMID: 23279840 DOI: 10.1111/omi.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/12/2022]
Abstract
We have previously shown that benzamidine-type compounds can inhibit the activity of arginine-specific cysteine proteinases (gingipains HRgpA and RgpB); well-known virulence factors of Porphyromonas gingivalis. They also hinder in vitro growth of this important periodontopathogenic bacterium. Apparently growth arrest is not associated with their ability to inhibit these proteases, because pentamidine, which is a 20-fold less efficient inhibitor of gingipain than 2,6-bis-(4-amidinobenzyl)-cyclohexanone (ACH), blocked P. gingivalis growth far more effectively. To identify targets for benzamidine-derived compounds other than Arg-gingipains, and to explain their bacteriostatic effects, P. gingivalis ATCC 33277 and P. gingivalis M5-1-2 (clinical isolate) cell extracts were subjected to affinity chromatography using a benzamidine-Sepharose column to identify proteins interacting with benzamidine. In addition to HRgpA and RgpB the analysis revealed heat-shock protein GroEL as another ligand for benzamidine. To better understand the effect of benzamidine-derived compounds on P. gingivalis, bacteria were exposed to benzamidine, pentamidine, ACH and heat, and the expression of gingipains and GroEL was determined. Exposure to heat and benzamidine-derived compounds caused significant increases in GroEL, at both the mRNA and protein levels. Interestingly, despite the fact that gingipains were shown to be the main virulence factors in a fertilized egg model of infection, mortality rates were strongly reduced, not only by ACH, but also by pentamidine, a relatively weak gingipain inhibitor. This effect may depend not only on gingipain inhibition but also on interaction of benzamidine derivatives with GroEL. Therefore these compounds may find use in supportive periodontitis treatment.
Collapse
Affiliation(s)
- E Fröhlich
- Department of Experimental Anesthesiology, Clinic for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA(phe). PLoS One 2011; 6:e23186. [PMID: 21858023 PMCID: PMC3156712 DOI: 10.1371/journal.pone.0023186] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interaction of aristololactam-β-D-glucoside and daunomycin with tRNA(phe) was investigated using various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS Absorption and fluorescence studies revealed that both the compounds bind tRNA(phe) non-cooperatively. The binding of daunomycin was about one order of magnitude higher than that of aristololactam-β-D-glucoside. Stronger binding of the former was also inferred from fluorescence quenching data, quantum efficiency values and circular dichroic results. Results from isothermal titration calorimetry experiments suggested that the binding of both compounds was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. A large favorable electrostatic contribution to the binding of daunomycin to tRNA(phe) was revealed from salt dependence data and the dissection of the free energy values. The electrostatic component to the free energy change for aristololactam-β-D-glucoside-tRNA(phe) interaction was smaller than that of daunomycin. This was also inferred from the slope of log K versus [Na(+)] plots. Both compounds enhanced the thermal stability of tRNA(phe). The small heat capacity changes of -47 and -99 cal/mol K, respectively, observed for aristololactam-β-D-glucoside and daunomycin, and the observed enthalpy-entropy compensation phenomenon confirmed the involvement of multiple weak noncovalent interactions. Molecular aspects of the interaction have been revealed. CONCLUSIONS/SIGNIFICANCE This study presents the structural and energetic aspects of the binding of aristololactam-β-D-glucoside and daunomycin to tRNA(phe).
Collapse
MESH Headings
- Algorithms
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Aristolochic Acids/chemistry
- Aristolochic Acids/metabolism
- Aristolochic Acids/pharmacology
- Binding Sites
- Binding, Competitive
- Calorimetry
- Circular Dichroism
- Daunorubicin/chemistry
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Entropy
- Glucosides/chemistry
- Glucosides/metabolism
- Glucosides/pharmacology
- Kinetics
- Molecular Structure
- Nucleic Acid Conformation/drug effects
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Spectrometry, Fluorescence
- Thermodynamics
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| |
Collapse
|
49
|
The trypanocidal activity of amidine compounds does not correlate with their binding affinity to Trypanosoma cruzi kinetoplast DNA. Antimicrob Agents Chemother 2011; 55:4765-73. [PMID: 21807972 DOI: 10.1128/aac.00229-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to limited efficacy and considerable toxicity, the therapy for Chagas' disease is far from being ideal, and thus new compounds are desirable. Diamidines and related compounds such as arylimidamides have promising trypanocidal activity against Trypanosoma cruzi. To better understand the mechanism of action of these heterocyclic cations, we investigated the kinetoplast DNA (kDNA) binding properties and trypanocidal efficacy against T. cruzi of 13 compounds. Four diamidines (DB75, DB569, DB1345, and DB829), eight arylimidamides (DB766, DB749, DB889, DB709, DB613, DB1831, DB1852, and DB2002), and one guanylhydrazone (DB1080) were assayed in thermal denaturation (T(m)) and circular dichroism (CD) studies using whole purified T. cruzi kDNA and a conserved synthetic parasite sequence. The overall CD spectra using the whole kDNA were similar to those found for the conserved sequence and were indicative of minor groove binding. Our findings showed that some of the compounds that exhibited the highest trypanocidal activities (e.g., DB766) caused low or no change in the T(m) measurements. However, while some active compounds, such as DB766, induced profound alterations of kDNA topology, others, like DB1831, although effective, did not result in altered T(m) and CD measurements. Our data suggest that the strong affinity of amidines with kDNA per se is not sufficient to generate and trigger their trypanocidal activity. Cell uptake differences and possibly distinct cellular targets need to be considered in the final evaluation of the mechanisms of action of these compounds.
Collapse
|
50
|
Moreno-Loshuertos R, Ferrín G, Acín-Pérez R, Gallardo ME, Viscomi C, Pérez-Martos A, Zeviani M, Fernández-Silva P, Enríquez JA. Evolution meets disease: penetrance and functional epistasis of mitochondrial tRNA mutations. PLoS Genet 2011; 7:e1001379. [PMID: 21533077 PMCID: PMC3080857 DOI: 10.1371/journal.pgen.1001379] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 03/18/2011] [Indexed: 11/18/2022] Open
Abstract
About half of the mitochondrial DNA (mtDNA) mutations causing diseases in humans occur in tRNA genes. Particularly intriguing are those pathogenic tRNA mutations than can reach homoplasmy and yet show very different penetrance among patients. These mutations are scarce and, in addition to their obvious interest for understanding human pathology, they can be excellent experimental examples to model evolution and fixation of mitochondrial tRNA mutations. To date, the only source of this type of mutations is human patients. We report here the generation and characterization of the first mitochondrial tRNA pathological mutation in mouse cells, an m.3739G>A transition in the mitochondrial mt-Ti gene. This mutation recapitulates the molecular hallmarks of a disease-causing mutation described in humans, an m.4290T>C transition affecting also the human mt-Ti gene. We could determine that the pathogenic molecular mechanism, induced by both the mouse and the human mutations, is a high frequency of abnormal folding of the tRNA(Ile) that cannot be charged with isoleucine. We demonstrate that the cells harboring the mouse or human mutant tRNA have exacerbated mitochondrial biogenesis triggered by an increase in mitochondrial ROS production as a compensatory response. We propose that both the nature of the pathogenic mechanism combined with the existence of a compensatory mechanism can explain the penetrance pattern of this mutation. This particular behavior can allow a scenario for the evolution of mitochondrial tRNAs in which the fixation of two alleles that are individually deleterious can proceed in two steps and not require the simultaneous mutation of both.
Collapse
Affiliation(s)
- Raquel Moreno-Loshuertos
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - Gustavo Ferrín
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - Rebeca Acín-Pérez
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - M. Esther Gallardo
- Departamento de Bioquímica, Instituto de
Investigaciones Biomédicas “Alberto Sols,” Facultad de Medicina,
CSIC–Universidad Autónoma de Madrid, CIBERER, ISCIII, Madrid,
Spain
| | - Carlo Viscomi
- Division of Molecular Neurogenetics, Istituto
Neurologico “Carlo Besta,” Milano, Italy
| | - Acisclo Pérez-Martos
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - Massimo Zeviani
- Division of Molecular Neurogenetics, Istituto
Neurologico “Carlo Besta,” Milano, Italy
| | - Patricio Fernández-Silva
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
| | - José Antonio Enríquez
- Departamento de Bioquímica y
Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza,
Spain
- Regenerative Cardiology Department, Centro
Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|