1
|
Mikami A, Mori S, Osawa T, Obika S. Post-Synthetic Nucleobase Modification of Oligodeoxynucleotides by Sonogashira Coupling and Influence of Alkynyl Modifications on the Duplex-Forming Ability. Chemistry 2023; 29:e202301928. [PMID: 37635089 DOI: 10.1002/chem.202301928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Recently, it was reported that the alkynyl modification of nucleobases mitigates the toxicity of antisense oligonucleotides (ASO) while maintaining the efficacy. However, the general effect of alkynyl modifications on the duplex-forming ability of oligonucleotides (ONs) is unclear. In this study, post-synthetic nucleobase modification by Sonogashira coupling in aqueous medium was carried out to efficiently evaluate the physiological properties of various ONs with alkynyl-modified nucleobases. Although several undesired reactions, including nucleobase cyclization, were observed, various types of alkynyl-modified ONs were successfully obtained via Sonogashira coupling of ONs containing iodinated nucleobases. Evaluation of the stability of the duplex formed by the synthesized alkynyl-modified ONs showed that the alkynyl modification of pyrimidine was less tolerated than that of purine, although both the modifications occurred in the major groove of the duplex. These results can be attributed to the bond angle of the alkyne on the pyrimidine and the close proximity of the alkynyl substituents to the phosphodiester backbone. The synthetic method developed in this study may contribute to the screening of the optimal chemical modification of ASO because various alkynyl-modified ONs that are effective in reducing the toxicity of ASO can be easily synthesized by this method.
Collapse
Affiliation(s)
- Atsushi Mikami
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shohei Mori
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Sannikova NE, Kolokolov MI, Khlynova TA, Chubarov AS, Polienko YF, Fedin MV, Krumkacheva OA. Revealing light-induced structural shifts in G-quadruplex-porphyrin complexes: a pulsed dipolar EPR study. Phys Chem Chem Phys 2023; 25:22455-22466. [PMID: 37581249 DOI: 10.1039/d3cp01775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The binding of G-quadruplex structures (G4s) with photosensitizers is of considerable importance in medicinal chemistry and drug discovery due to their promising potential in photodynamic therapy applications. G4s can experience structural changes as a result of ligand interactions and light exposure. Understanding these modifications is essential to uncover the fundamental biological roles of the complexes and optimize their therapeutic potential. The structural diversity of G4s makes it challenging to study their complexes with ligands, necessitating the use of various complementary methods to fully understand these interactions. In this study, we introduce, for the first time, the application of laser-induced dipolar EPR as a method to characterize G-quadruplex DNA complexes containing photosensitizers and to investigate light-induced structural modifications in these systems. To demonstrate the feasibility of this approach, we studied complexes of the human telomeric G-quadruplex (HTel-22) with cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin tetra(p-toluenesulfonate) (TMPyP4). In addition to showcasing a new methodology, we also aimed to provide insights into the mechanisms underlying photoinduced HTel-22/TMPyP4 structural changes, thereby aiding in the advancement of approaches targeting G4s in photodynamic therapy. EPR revealed G-quadruplex unfolding and dimer formation upon light exposure. Our findings demonstrate the potential of EPR spectroscopy for examining G4 complexes with photosensitizers and contribute to a better understanding of G4s' interactions with ligands under light.
Collapse
Affiliation(s)
- Natalya E Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Mikhail I Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Tamara A Khlynova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Huang K, Fang X. A review on recent advances in methods for site-directed spin labeling of long RNAs. Int J Biol Macromol 2023; 239:124244. [PMID: 37001783 DOI: 10.1016/j.ijbiomac.2023.124244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
RNAs are important biomolecules that play essential roles in various cellular processes and are crucially linked with many human diseases. The key to elucidate the mechanisms underlying their biological functions and develop RNA-based therapeutics is to investigate RNA structure and dynamics and their connections to function in detail using a variety of approaches. Magnetic resonance techniques including paramagnetic nuclear magnetic resonance (NMR) and electron magnetic resonance (EPR) spectroscopies have proved to be powerful tools to gain insights into such properties. The prerequisites for paramagnetic NMR and EPR studies on RNAs are to achieve site-specific spin labeling of the intrinsically diamagnetic RNAs, which however is not trivial, especially for long ones. In this review, we present some covalent labeling strategies that allow site-specific introduction of electron spins to long RNAs. Generally, these strategies include assembly of long RNAs via enzymatic ligation of short oligonucleotides, co- and post-transcriptional site-specific labeling empowered with the unnatural base pair system, and direct enzymatic functionalization of natural RNAs. We introduce a few case studies to discuss the advantages and limitations of each strategy, and to provide a vision for the future development.
Collapse
|
4
|
Kaiser F, Endeward B, Collauto A, Scheffer U, Prisner TF, Göbel MW. Spin-Labeled Riboswitch Synthesized from a Protected TPA Phosphoramidite Building Block. Chemistry 2022; 28:e202201822. [PMID: 35903916 PMCID: PMC9804336 DOI: 10.1002/chem.202201822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
The nitroxide TPA (2,2,5,5-tetramethyl-pyrrolin-1-oxyl-3-acetylene) is an excellent spin label for EPR studies of RNA. Previous synthetic methods, however, are complicated and require special equipment. Herein, we describe a uridine derived phosphoramidite with a photocaged TPA unit attached. The light sensitive 2-nitrobenzyloxymethyl group can be removed in high yield by short irradiation at 365 nm. Based on this approach, a doubly spin-labeled 27mer neomycin sensing riboswitch was synthesized and studied by PELDOR. The overall thermal stability of the fold is not much reduced by TPA. In-line probing nevertheless detected changes in local mobility.
Collapse
Affiliation(s)
- Frank Kaiser
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Burkhard Endeward
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Alberto Collauto
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Thomas F. Prisner
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Michael W. Göbel
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
5
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
6
|
Vicino MF, Wuebben C, Kerzhner M, Famulok M, Schiemann O. Spin Labeling of Long RNAs Via Click Reaction and Enzymatic Ligation. Methods Mol Biol 2022; 2439:205-221. [PMID: 35226324 DOI: 10.1007/978-1-0716-2047-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron paramagnetic resonance (EPR) is a spectroscopic method for investigating structures, conformational changes, and dynamics of biomacromolecules, for example, oligonucleotides. In order to be applicable, the oligonucleotide has to be labeled site-specifically with paramagnetic tags, the so-called spin labels. Here, we provide a protocol for spin labeling of long oligonucleotides with nitroxides. In the first step, a short and commercially available RNA strand is labeled with a nitroxide via a copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC), also referred to as "click" reaction. In the second step, the labeled RNA strand is fused to another RNA sequence by means of enzymatic ligation to obtain the labeled full-length construct. The protocol is robust and has been shown experimentally to deliver high yields for RNA sequences up to 81 nucleotides, but longer strands are in principle also feasible. Moreover, it sets the path to label, for example, long riboswitches, ribozymes, and DNAzymes for coarse-grained structure determination and enables to investigate mechanistical features of these systems.
Collapse
Affiliation(s)
- Maria Francesca Vicino
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Mark Kerzhner
- Life & Medical Sciences Institute (LIMES), Chemische Biologie, c/o Kekulé-Institut für organische Chemie, Bonn, Germany
| | - Michael Famulok
- Life & Medical Sciences Institute (LIMES), Chemische Biologie, c/o Kekulé-Institut für organische Chemie, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany.
| |
Collapse
|
7
|
Bornewasser L, Kath-Schorr S. Preparation of Site-Specifically Spin-Labeled RNA by in Vitro Transcription Using an Expanded Genetic Alphabet. Methods Mol Biol 2022; 2439:223-240. [PMID: 35226325 DOI: 10.1007/978-1-0716-2047-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in pulsed electron paramagnetic resonance (EPR) spectroscopy enable studying structure and folding of nucleic acids. An efficient introduction of spin labels at specific positions within the oligonucleotide sequence is a prerequisite. We here present a step-by-step guide to synthesize long RNA oligonucleotides bearing spin labels at specific positions within the sequence. RNA preparation is achieved enzymatically via in vitro transcription using an expanded genetic alphabet. Highly structured, several hundred nucleotides long RNAs with two nitroxide spin labels at specific positions can be prepared by this method.
Collapse
|
8
|
Segler ALJ, Sigurdsson ST. A Carbazole-Derived Nitroxide That Is an Analogue of Cytidine: A Rigid Spin Label for DNA and RNA. J Org Chem 2021; 86:11647-11659. [PMID: 34410721 DOI: 10.1021/acs.joc.1c01176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A variety of semirigid and rigid spin labels comprise a valuable arsenal for measurements of biomolecular structures and dynamics by electron paramagnetic resonance (EPR) spectroscopy. Here, we report the synthesis and characterization of rigid spin labels Ċ and Ċm for DNA and RNA, respectively, that are carbazole-derived nitroxides and analogues of cytidine. Ċ and Ċm were converted to their phosphoramidites and used for their incorporation into oligonucleotides by solid-phase synthesis. Analysis of Ċ and Ċm by single-crystal X-ray crystallography verified their identity and showed little deviation from planarity of the nucleobase. Analysis of the continuous-wave (CW) EPR spectra of the spin-labeled DNA and RNA duplexes confirmed their incorporation into the nucleic acids and the line-shape was characteristic of rigid spin labels. Circular dichroism (CD) and thermal denaturation studies of the Ċ-labeled DNAs and Ċm-labeled RNAs indicated that the labels are nonperturbing of duplex structure.
Collapse
Affiliation(s)
- Anna-Lena Johanna Segler
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
9
|
Dantu SC, Sicoli G. The 'hidden side' of spin labelled oligonucleotides: Molecular dynamics study focusing on the EPR-silent components of base pairing. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106924. [PMID: 33581372 DOI: 10.1016/j.jmr.2021.106924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Nitroxide labels are combined with nucleic acid structures and are studied using electron paramagnetic resonance experiments (EPR). As X-ray/NMR structures are unavailable with the nitroxide labels, detailed residue level information, down to atomic resolution, about the effect of these nitroxide labels on local RNA structures is currently lacking. This information is critical to evaluate the choice of spin label. In this study, we compare and contrast the effect of TEMPO-based (NT) and rigid spin (Ç) labels (in both 2'-O methylated and not-methylated forms) on RNA duplexes. We also investigate sequence- dependent effects of NT label on RNA duplex along with the more complex G-quadruplex RNA. Distances measured from molecular dynamics simulations between the two spin labels are in agreement with the EPR experimental data. To understand the effect of labelled oligonucleotides on the structure, we studied the local base pair geometries and global structure in comparison with the unlabelled structures. Based on the structural analysis, we can conclude that TEMPO-based and Ç labels do not significantly perturb the base pair arrangements of the native oligonucleotide. When experimental structures for the spin labelled DNA/RNA molecules are not available, general framework offered by the current study can be used to provide information critical to the choice of spin labels to facilitate future EPR studies.
Collapse
Affiliation(s)
- Sarath Chandra Dantu
- Theoretical & Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany.
| | - Giuseppe Sicoli
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), CNRS Lille, UMR 8516, Bâtiment C4 - Université de Lille, Sciences et Technologies, Avenue Paul Langevin 59655 Villeneuve-d'Ascq Cedex, France.
| |
Collapse
|
10
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
11
|
Täubert S, Zhang YH, Martinez MM, Siepel F, Wöltjen E, Leonov A, Griesinger C. Lanthanide Tagging of Oligonucleotides to Nucleobase for Paramagnetic NMR. Chembiochem 2020; 21:3333-3337. [PMID: 32687667 PMCID: PMC7754328 DOI: 10.1002/cbic.202000417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Indexed: 12/03/2022]
Abstract
Although lanthanide tags, which have large anisotropic magnetic susceptibilities, have already been introduced to enrich NMR parameters by long‐range pseudoconact shifts (PCSs) and residual dipolar couplings (RDCs) of proteins, their application to nucleotides has so far been limited to one previous report, due to the high affinities of lanthanides for the phosphodiester backbone of nucleotides and difficult organic synthesis. Herein, we report successful attachment of a lanthanide tag to a chemically synthesized oligonucleotide via a disulfide bond. NMR experiments reveal PCSs of up to 1 ppm and H−H RDCs of up to 8 Hz at 950 MHz. Although weaker magnetic alignment was achieved than with proteins, the paramagnetic data could be fitted to the known structure of the DNA, taking the mobility of the tag into account. While further rigidification of the tag is desirable, this tag could also be used to measure heteronuclear RDCs of 13C,15N‐labeled chemically synthesized DNA and RNA.
Collapse
Affiliation(s)
- Sebastian Täubert
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Yong-Hui Zhang
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mitcheell Maestre Martinez
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Florian Siepel
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Edith Wöltjen
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Andrei Leonov
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Bartosik K, Debiec K, Czarnecka A, Sochacka E, Leszczynska G. Synthesis of Nucleobase-Modified RNA Oligonucleotides by Post-Synthetic Approach. Molecules 2020; 25:E3344. [PMID: 32717917 PMCID: PMC7436257 DOI: 10.3390/molecules25153344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The chemical synthesis of modified oligoribonucleotides represents a powerful approach to study the structure, stability, and biological activity of RNAs. Selected RNA modifications have been proven to enhance the drug-like properties of RNA oligomers providing the oligonucleotide-based therapeutic agents in the antisense and siRNA technologies. The important sites of RNA modification/functionalization are the nucleobase residues. Standard phosphoramidite RNA chemistry allows the site-specific incorporation of a large number of functional groups to the nucleobase structure if the building blocks are synthetically obtainable and stable under the conditions of oligonucleotide chemistry and work-up. Otherwise, the chemically modified RNAs are produced by post-synthetic oligoribonucleotide functionalization. This review highlights the post-synthetic RNA modification approach as a convenient and valuable method to introduce a wide variety of nucleobase modifications, including recently discovered native hypermodified functional groups, fluorescent dyes, photoreactive groups, disulfide crosslinks, and nitroxide spin labels.
Collapse
Affiliation(s)
| | | | | | | | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.B.); (K.D.); (A.C.); (E.S.)
| |
Collapse
|
13
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non-coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020; 59:7891-7896. [PMID: 31981397 PMCID: PMC7318606 DOI: 10.1002/anie.201916447] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Indexed: 11/26/2022]
Abstract
We present herein a novel nitroxide spin label-containing RNA triphosphate TPT3NO and its application for site-specific spin-labeling of RNA through in vitro transcription using an expanded genetic alphabet. Our strategy allows the facile preparation of spin-labeled RNAs with sizes ranging from short RNA oligonucleotides to large, complex RNA molecules with over 370 nucleotides by standard in vitro transcription. As a proof of concept, inter-spin distance distributions are measured by pulsed electron paramagnetic resonance (EPR) spectroscopy in short self-complementary RNA sequences and in a well-studied 185 nucleotide non-coding RNA, the B. subtilis glmS ribozyme. The approach is then applied to probe for the first time the folding of the 377 nucleotide A-region of the long non-coding RNA Xist, by PELDOR.
Collapse
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Frank Eggert
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Christine Wuebben
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Lisa Bornewasser
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Olav Schiemann
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
14
|
Hardwick JS, Haugland MM, El-Sagheer AH, Ptchelkine D, Beierlein FR, Lane AN, Brown T, Lovett JE, Anderson EA. 2'-Alkynyl spin-labelling is a minimally perturbing tool for DNA structural analysis. Nucleic Acids Res 2020; 48:2830-2840. [PMID: 32052020 PMCID: PMC7102949 DOI: 10.1093/nar/gkaa086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
The determination of distances between specific points in nucleic acids is essential to understanding their behaviour at the molecular level. The ability to measure distances of 2-10 nm is particularly important: deformations arising from protein binding commonly fall within this range, but the reliable measurement of such distances for a conformational ensemble remains a significant challenge. Using several techniques, we show that electron paramagnetic resonance (EPR) spectroscopy of oligonucleotides spin-labelled with triazole-appended nitroxides at the 2' position offers a robust and minimally perturbing tool for obtaining such measurements. For two nitroxides, we present results from EPR spectroscopy, X-ray crystal structures of B-form spin-labelled DNA duplexes, molecular dynamics simulations and nuclear magnetic resonance spectroscopy. These four methods are mutually supportive, and pinpoint the locations of the spin labels on the duplexes. In doing so, this work establishes 2'-alkynyl nitroxide spin-labelling as a minimally perturbing method for probing DNA conformation.
Collapse
Affiliation(s)
- Jack S Hardwick
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Marius M Haugland
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Denis Ptchelkine
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Frank R Beierlein
- Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry and Department of Toxicology & Cancer Biology, The University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
15
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non‐coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Frank Eggert
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Christine Wuebben
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Lisa Bornewasser
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
16
|
Bonucci A, Ouari O, Guigliarelli B, Belle V, Mileo E. In‐Cell EPR: Progress towards Structural Studies Inside Cells. Chembiochem 2019; 21:451-460. [DOI: 10.1002/cbic.201900291] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alessio Bonucci
- Magnetic Resonance CenterCERMUniversity of Florence 50019 Sesto Fiorentino Italy
| | - Olivier Ouari
- Aix Marseille UnivCNRSICRInstitut de Chimie Radicalaire 13013 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| |
Collapse
|
17
|
Malygin AA, Graifer DM, Meschaninova MI, Venyaminova AG, Timofeev IO, Kuzhelev AA, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG. Structural rearrangements in mRNA upon its binding to human 80S ribosomes revealed by EPR spectroscopy. Nucleic Acids Res 2019; 46:897-904. [PMID: 29156000 PMCID: PMC5778603 DOI: 10.1093/nar/gkx1136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
The model mRNA (MR), 11-mer RNA containing two nitroxide spin labels at the 5′- and 3′-terminal nucleotides and prone to form a stable homodimer (MR)2, was used for Electron Paramagnetic Resonance study of structural rearrangements in mRNA occurring upon its binding to human 80S ribosomes. The formation of two different types of ribosomal complexes with MR was observed. First, there were stable complexes where MR was fixed in the ribosomal mRNA-binding channel by the codon-anticodon interaction(s) with cognate tRNA(s). Second, we for the first time detected complexes assembled without tRNA due to the binding of MR most likely to an exposed peptide of ribosomal protein uS3 away from the mRNA channel. The analysis of interspin distances allowed the conclusion that 80S ribosomes facilitate dissociation of the duplex (MR)2: the equilibrium between the duplex and the single-stranded MR shifts to MR due to its efficient binding with ribosomes. Furthermore, we observed a significant influence of tRNA bound at the ribosomal exit (E) and/or aminoacyl (A) sites on the stability of ribosomal complexes. Our findings showed that a part of mRNA bound in the ribosome channel, which is not involved in codon-anticodon interactions, has more degrees of freedom than that interacting with tRNAs.
Collapse
Affiliation(s)
- Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Ivan O Timofeev
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Andrey A Kuzhelev
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Juliusson HY, Segler ALJ, Sigurdsson ST. Benzoyl-Protected Hydroxylamines for Improved Chemical Synthesis of Oligonucleotides Containing Nitroxide Spin Labels. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haraldur Y. Juliusson
- Department of Chemistry; Science Institute; University of Iceland; Dunhaga 3 107 Reykjavik Iceland
| | - Anna-Lena J. Segler
- Department of Chemistry; Science Institute; University of Iceland; Dunhaga 3 107 Reykjavik Iceland
| | - Snorri Th. Sigurdsson
- Department of Chemistry; Science Institute; University of Iceland; Dunhaga 3 107 Reykjavik Iceland
| |
Collapse
|
19
|
Erlenbach N, Grünewald C, Krstic B, Heckel A, Prisner TF. "End-to-end" stacking of small dsRNA. RNA (NEW YORK, N.Y.) 2019; 25:239-246. [PMID: 30404925 PMCID: PMC6348986 DOI: 10.1261/rna.068130.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 05/08/2023]
Abstract
PELDOR (pulsed electron-electron double resonance) is an established method to study intramolecular distances and can give evidence for conformational changes and flexibilities. However, it can also be used to study intermolecular interactions as for example oligerimization. Here, we used PELDOR to study the "end-to-end" stacking of small double-stranded (ds) RNAs. For this study, the dsRNA molecules were only singly labeled with the spin label TPA to avoid multispin effects and to measure only the intermolecular stacking interactions. It can be shown that small dsRNAs tend to assemble to rod-like structures due to π-π interactions between the base pairs at the end of the strands. On the one hand, these interactions can influence or complicate measurements aimed at the determining of the structure and dynamics of the dsRNA molecule itself. On the other hand, it can be interesting to study such intermolecular stacking interactions in more detail, as for example their dependence on ion concentration. We quantitatively determined the stacking probability as a function of the monovalent NaCl salt and the dsRNA concentration. From these data, the dissociation constant Kd was deduced and found to depend on the ratio between the NaCl salt and dsRNA concentrations. Additionally, the distances and distance distributions obtained predict a model for the stacking geometry of dsRNAs. Introducing a nucleotide overhangs at one end of the dsRNA molecule restricts the stacking to the other end, leading only to dimer formations. Introducing such an overhang at both ends of the dsRNA molecule fully suppresses stacking, as we demonstrate by PELDOR experiments quantitatively.
Collapse
Affiliation(s)
- Nicole Erlenbach
- Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Christian Grünewald
- Institute of Organic Chemistry and Chemical Biology, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Bisera Krstic
- Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical Biology, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Hatano A, Terado N, Kanno Y, Nakamura T, Kawai G. Synthesis of a protected ribonucleoside phosphoramidite-linked spin label via an alkynyl chain at the 5′ position of uridine. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1545033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akihiko Hatano
- Department of Chemistry, Faculty of Engineering , Shibaura Institute of Technology , Saitama , Japan
| | - Nanae Terado
- Department of Chemistry, Faculty of Engineering , Shibaura Institute of Technology , Saitama , Japan
| | - Yuichi Kanno
- Department of Chemistry, Faculty of Engineering , Shibaura Institute of Technology , Saitama , Japan
| | - Toshikazu Nakamura
- Department of Materials Molecular Science, Institute for Molecular Science , Okazaki , Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , Chiba , Japan
| |
Collapse
|
21
|
Domnick C, Hagelueken G, Eggert F, Schiemann O, Kath-Schorr S. Posttranscriptional spin labeling of RNA by tetrazine-based cycloaddition. Org Biomol Chem 2019; 17:1805-1808. [DOI: 10.1039/c8ob02597e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spin labeling of in vitro transcribed RNA by iEDDA click chemistry is demonstrated. This allows the determination of distance distributions between two nitroxide spin labels by PELDOR in a self-complementary RNA duplex.
Collapse
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences Institute
- Chemical Biology & Medicinal Chemistry Unit
- University of Bonn
- 53121 Bonn
- Germany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Frank Eggert
- Life & Medical Sciences Institute
- Chemical Biology & Medicinal Chemistry Unit
- University of Bonn
- 53121 Bonn
- Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Stephanie Kath-Schorr
- Life & Medical Sciences Institute
- Chemical Biology & Medicinal Chemistry Unit
- University of Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
22
|
Hetzke T, Vogel M, Gophane DB, Weigand JE, Suess B, Sigurdsson ST, Prisner TF. Influence of Mg 2+ on the conformational flexibility of a tetracycline aptamer. RNA (NEW YORK, N.Y.) 2019; 25:158-167. [PMID: 30337459 PMCID: PMC6298572 DOI: 10.1261/rna.068684.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/16/2018] [Indexed: 05/06/2023]
Abstract
The tetracycline-binding RNA aptamer (TC-aptamer) is a synthetic riboswitch that binds the antibiotic tetracycline (TC) with exceptionally high affinity. Although a crystal structure exists of the TC-bound state, little is known about the conformational dynamics and changes upon ligand binding. In this study, pulsed electron paramagnetic resonance techniques for measuring distances (PELDOR) in combination with rigid nitroxide spin labels (Çm spin label) were used to investigate the conformational flexibility of the TC-aptamer in the presence and absence of TC at different Mg2+ concentrations. TC was found to be the essential factor for stabilizing the tertiary structure at intermediate Mg2+ concentrations. At higher Mg2+ concentrations, Mg2+ alone is sufficient to stabilize the tertiary structure. In addition, the orientation of the two spin-labeled RNA helices with respect to each other was analyzed with orientation-selective PELDOR and compared to the crystal structure. These results demonstrate for the first time the unique value of the Çm spin label in combination with PELDOR to provide information about conformational flexibilities and orientations of secondary structure elements of biologically relevant RNAs.
Collapse
Affiliation(s)
- Thilo Hetzke
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Dnyaneshwar B Gophane
- Department of Chemistry, Science Institute, University of Iceland, 101 Reykjavik, Iceland
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, 101 Reykjavik, Iceland
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Saha S, Hetzke T, Prisner TF, Sigurdsson ST. Noncovalent spin-labeling of RNA: the aptamer approach. Chem Commun (Camb) 2018; 54:11749-11752. [PMID: 30276367 DOI: 10.1039/c8cc05597a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the first example of site-directed spin-labeling of unmodified RNA, a pyrrolidine-nitroxide derivative of tetramethylrosamine (TMR) was shown to bind with high affinity to the malachite green (MG) aptamer, as determined by continuous-wave (CW) electron paramagnetic resonance (EPR), pulsed electron-electron double resonance (PELDOR) and fluorescence spectroscopies.
Collapse
Affiliation(s)
- Subham Saha
- Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | | | | |
Collapse
|
24
|
Studying structure and function of membrane proteins with PELDOR/DEER spectroscopy – The crystallographers’ perspective. Methods 2018; 147:163-175. [DOI: 10.1016/j.ymeth.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
|
25
|
Kamble NR, Gränz M, Prisner TF, Sigurdsson ST. Noncovalent and site-directed spin labeling of duplex RNA. Chem Commun (Camb) 2018; 52:14442-14445. [PMID: 27901530 DOI: 10.1039/c6cc08387k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An isoindoline-nitroxide derivative of guanine (Ǵ, "G-spin") was shown to bind specifically and effectively to abasic sites in duplex RNAs. Distance measurements on a Ǵ-labeled duplex RNA with PELDOR (DEER) showed a strong orientation dependence. Thus, Ǵ is a readily synthesized, orientation-selective spin label for "mix and measure" PELDOR experiments.
Collapse
Affiliation(s)
- Nilesh R Kamble
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Markus Gränz
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Hessen, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Hessen, Germany
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
| |
Collapse
|
26
|
Walunj MB, Tanpure AA, Srivatsan SG. Post-transcriptional labeling by using Suzuki-Miyaura cross-coupling generates functional RNA probes. Nucleic Acids Res 2018; 46:e65. [PMID: 29546376 PMCID: PMC6009664 DOI: 10.1093/nar/gky185] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Pd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction. 5-Iodouridine triphosphate (IUTP) is efficiently incorporated into RNA ONs at one or more sites by T7 RNA polymerase. Further, using a catalytic system made of Pd(OAc)2 and 2-aminopyrimidine-4,6-diol (ADHP) or dimethylamino-substituted ADHP (DMADHP), we established a modular method to functionalize iodouridine-labeled RNA ONs in the presence of various boronic acid and ester substrates under very mild conditions (37°C and pH 8.5). This method is highly chemoselective, and offers direct access to RNA ONs labeled with commonly used fluorescent and affinity tags and new fluorogenic environment-sensitive nucleoside probes in a ligand-controlled stereoselective fashion. Taken together, this simple approach of generating functional RNA ON probes by Suzuki-Miyaura coupling will be a very important addition to the resources and tools available for analyzing RNA motifs.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
27
|
Kerzhner M, Matsuoka H, Wuebben C, Famulok M, Schiemann O. High-Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2018; 57:2923-2931. [PMID: 29715006 DOI: 10.1021/acs.biochem.8b00040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions. We then show that conformations of the preQ1 aptamer and its dynamics can be monitored in the absence and presence of Mg2+ and a preQ1 ligand by continuous wave electron paramagnetic resonance spectroscopy at room temperature and pulsed electron-electron double resonance spectroscopy (PELDOR or DEER) in the frozen state.
Collapse
Affiliation(s)
- Mark Kerzhner
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit c/o Kekulé-Institut für Organische Chemie und Biochemie University of Bonn , Gerhard-Domagk-Strasse 1 , 53121 Bonn , Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| | - Michael Famulok
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit c/o Kekulé-Institut für Organische Chemie und Biochemie University of Bonn , Gerhard-Domagk-Strasse 1 , 53121 Bonn , Germany.,Max Planck Fellowship Chemical Biology Group , Stiftung caesar , Ludwig-Erhard-Allee 2 , 53175 Bonn , Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| |
Collapse
|
28
|
Weinrich T, Jaumann EA, Scheffer U, Prisner TF, Göbel MW. A Cytidine Phosphoramidite with Protected Nitroxide Spin Label: Synthesis of a Full-Length TAR RNA and Investigation by In-Line Probing and EPR Spectroscopy. Chemistry 2018; 24:6202-6207. [PMID: 29485736 DOI: 10.1002/chem.201800167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Indexed: 01/20/2023]
Abstract
EPR studies on RNA are complicated by three major obstacles related to the chemical nature of nitroxide spin labels: Decomposition while oligonucleotides are chemically synthesized, further decay during enzymatic strand ligation, and undetected changes in conformational equilibria due to the steric demand of the label. Herein possible solutions for all three problems are presented: A 2-nitrobenzyloxymethyl protective group for nitroxides that is stable under all conditions of chemical RNA synthesis and can be removed photochemically. By careful selection of ligation sites and splint oligonucleotides, high yields were achieved in the assembly of a full-length HIV-1 TAR RNA labeled with two protected nitroxide groups. PELDOR measurements on spin-labeled TAR in the absence and presence of arginine amide indicated arrest of interhelical motions on ligand binding. Finally, even minor changes in conformation due to the presence of spin labels are detected with high sensitivity by in-line probing.
Collapse
Affiliation(s)
- Timo Weinrich
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Eva A Jaumann
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Michael W Göbel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Bartosik K, Sochacka E, Leszczynska G. Post-synthetic conversion of 5-pivaloyloxymethyluridine present in a support-bound RNA oligomer into biologically relevant derivatives of 5-methyluridine. Org Biomol Chem 2018; 15:2097-2103. [PMID: 28217770 DOI: 10.1039/c6ob02674e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A post-synthetic reaction of 5-pivaloyloxymethyluridine (present in a support-bound RNA oligomer) with various nucleophilic reagents furnished efficiently the corresponding products bearing one of the tRNA wobble 5-methyluridines (mnm5U, cmnm5U, τm5U, nm5U, inm5U or cnm5U). The syntheses of oligoribonucleotides modified with inm5U and cnm5U are reported for the first time.
Collapse
Affiliation(s)
- Karolina Bartosik
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
30
|
Kamble NR, Sigurdsson ST. Purine-Derived Nitroxides for Noncovalent Spin-Labeling of Abasic Sites in Duplex Nucleic Acids. Chemistry 2018; 24:4157-4164. [DOI: 10.1002/chem.201705410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Nilesh R. Kamble
- University of Iceland; Department of Chemistry; Science Institute; Dunhaga 3 107 Reykjavik Iceland
| | - Snorri Th. Sigurdsson
- University of Iceland; Department of Chemistry; Science Institute; Dunhaga 3 107 Reykjavik Iceland
| |
Collapse
|
31
|
Shevelev GY, Gulyak EL, Lomzov AA, Kuzhelev AA, Krumkacheva OA, Kupryushkin MS, Tormyshev VM, Fedin MV, Bagryanskaya EG, Pyshnyi DV. A Versatile Approach to Attachment of Triarylmethyl Labels to DNA for Nanoscale Structural EPR Studies at Physiological Temperatures. J Phys Chem B 2018; 122:137-143. [PMID: 29206458 DOI: 10.1021/acs.jpcb.7b10689] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triarylmethyl (trityl, TAM) radicals are a promising class of spin labels for nanometer-scale distance measurements in biomolecules at physiological temperatures. However, to date, existing approaches to site-directed TAM labeling of DNA have been limited to label attachment at the termini of oligonucleotides, thus hindering a majority of demanded applications. Herein, we report a new versatile strategy for TAM attachment at arbitrary sites of nucleic acids. It utilizes an achiral non-nucleoside phosphoramidite monomer for automated solid-phase synthesis of oligonucleotides, which are then postsynthetically functionalized with TAM. We demonstrate a synthesis of a set of oligonucleotide complexes that are TAM-labeled at internal or terminal sites, as well as the possibility of measuring interspin distances up to ∼5-6 nm at 298 K using double quantum coherence electron paramagnetic resonance (EPR). Implementation of the developed approach strongly broadens the scope of nucleic acids and nucleoprotein complexes available for nanoscale structural EPR studies at room temperatures.
Collapse
Affiliation(s)
- Georgiy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| | - Evgeny L Gulyak
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| | - Andrey A Kuzhelev
- Novosibirsk State University , Novosibirsk 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- Novosibirsk State University , Novosibirsk 630090, Russia
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- Novosibirsk State University , Novosibirsk 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University , Novosibirsk 630090, Russia
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Novosibirsk State University , Novosibirsk 630090, Russia
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| |
Collapse
|
32
|
Schnorr KA, Gophane DB, Helmling C, Cetiner E, Pasemann K, Fürtig B, Wacker A, Qureshi NS, Gränz M, Barthelmes D, Jonker HRA, Stirnal E, Sigurdsson ST, Schwalbe H. Impact of spin label rigidity on extent and accuracy of distance information from PRE data. JOURNAL OF BIOMOLECULAR NMR 2017; 68:53-63. [PMID: 28500543 DOI: 10.1007/s10858-017-0114-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Paramagnetic relaxation enhancement (PRE) is a versatile tool for NMR spectroscopic structural and kinetic studies in biological macromolecules. Here, we compare the quality of PRE data derived from two spin labels with markedly different dynamic properties for large RNAs using the I-A riboswitch aptamer domain (78 nt) from Mesoplamsa florum as model system. We designed two I-A aptamer constructs that were spin-labeled by noncovalent hybridization of short spin-labeled oligomer fragments. As an example of a flexible spin label, UreidoU-TEMPO was incorporated into the 3' terminal end of helix P1 while, the recently developed rigid spin-label Çm was incorporated in the 5' terminal end of helix P1. We determined PRE rates obtained from aromatic 13C bound proton intensities and compared these rates to PREs derived from imino proton intensities in this sizeable RNA (~78 nt). PRE restraints derived from both imino and aromatic protons yielded similar data quality, and hence can both be reliably used for PRE determination. For NMR, the data quality derived from the rigid spin label Çm is slightly better than the data quality for the flexible UreidoTEMPO as judged by comparison of the structural agreement with the I-A aptamer crystal structure (3SKI).
Collapse
Affiliation(s)
- K A Schnorr
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - D B Gophane
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
| | - C Helmling
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - E Cetiner
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - K Pasemann
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - B Fürtig
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - A Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - N S Qureshi
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - M Gränz
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - D Barthelmes
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - H R A Jonker
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - E Stirnal
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - S Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
| | - H Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Weinrich T, Gränz M, Grünewald C, Prisner TF, Göbel MW. Synthesis of a Cytidine Phosphoramidite with Protected Nitroxide Spin Label for EPR Experiments with RNA. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Timo Weinrich
- Institute of Organic Chemistry and Chemical Biology; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Markus Gränz
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Christian Grünewald
- Institute of Organic Chemistry and Chemical Biology; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Michael W. Göbel
- Institute of Organic Chemistry and Chemical Biology; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
34
|
Yoon S, Kim JH, Kim SE, Kim C, Tran PT, Ann J, Koh Y, Jang J, Kim S, Moon HS, Kim WK, Lee S, Lee J, Kim S, Lee J. Discovery of Leucyladenylate Sulfamates as Novel Leucyl-tRNA Synthetase (LRS)-Targeted Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitors. J Med Chem 2016; 59:10322-10328. [PMID: 27933890 DOI: 10.1021/acs.jmedchem.6b01190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that LRS may act as a leucine sensor for the mTORC1 pathway, potentially providing an alternative strategy to overcome rapamycin resistance in cancer treatments. In this study, we developed leucyladenylate sulfamate derivatives as LRS-targeted mTORC1 inhibitors. Compound 18 selectively inhibited LRS-mediated mTORC1 activation and exerted specific cytotoxicity against colon cancer cells with a hyperactive mTORC1, suggesting that 18 may offer a novel treatment option for human colorectal cancer.
Collapse
Affiliation(s)
- Suyoung Yoon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sung-Eun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Changhoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Phuong-Thao Tran
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jihyae Ann
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Yura Koh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jayun Jang
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sungmin Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Hee-Sun Moon
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Won Kyung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sangkook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University , Seoul 142-732, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 151-742, Korea
| | - Jeewoo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| |
Collapse
|
35
|
Kerzhner M, Abdullin D, Więcek J, Matsuoka H, Hagelueken G, Schiemann O, Famulok M. Post-synthetic Spin-Labeling of RNA through Click Chemistry for PELDOR Measurements. Chemistry 2016; 22:12113-21. [PMID: 27412453 DOI: 10.1002/chem.201601897] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 01/24/2023]
Abstract
Site-directed spin labeling of RNA based on click chemistry is used in combination with pulsed electron-electron double resonance (PELDOR) to benchmark a nitroxide spin label, called here dŲ. We compare this approach with another established method that employs the rigid spin label Çm for RNA labeling. By using CD spectroscopy, thermal denaturation measurements, CW-EPR as well as PELDOR we analyzed and compared the influence of dŲ and Çm on a self-complementary RNA duplex. Our results demonstrate that the conformational diversity of dŲ is significantly reduced near the freezing temperature of a phosphate buffer, resulting in strongly orientation-selective PELDOR time traces of the dŲ-labeled RNA duplex.
Collapse
Affiliation(s)
- Mark Kerzhner
- Life & Medical Sciences Institute, Chemical Biology & Medicinal Chemistry Unit c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Dinar Abdullin
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Jennifer Więcek
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Hideto Matsuoka
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.
| | - Michael Famulok
- Life & Medical Sciences Institute, Chemical Biology & Medicinal Chemistry Unit c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany. .,Max-Planck Fellow Group Chemical Biology, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
36
|
Babaylova ES, Malygin AA, Lomzov AA, Pyshnyi DV, Yulikov M, Jeschke G, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG. Complementary-addressed site-directed spin labeling of long natural RNAs. Nucleic Acids Res 2016; 44:7935-43. [PMID: 27269581 PMCID: PMC5027493 DOI: 10.1093/nar/gkw516] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Nanoscale distance measurements by pulse dipolar Electron paramagnetic resonance (EPR) spectroscopy allow new insights into the structure and dynamics of complex biopolymers. EPR detection requires site directed spin labeling (SDSL) of biomolecule(s), which remained challenging for long RNAs up-to-date. Here, we demonstrate that novel complementary-addressed SDSL approach allows efficient spin labeling and following structural EPR studies of long RNAs. We succeeded to spin-label Hepatitis C Virus RNA internal ribosome entry site consisting of ≈330 nucleotides and having a complicated spatial structure. Application of pulsed double electron–electron resonance provided spin–spin distance distribution, which agrees well with the results of molecular dynamics (MD) calculations. Thus, novel SDSL approach in conjunction with EPR and MD allows structural studies of long natural RNAs with nanometer resolution and can be applied to systems of biological and biomedical significance.
Collapse
Affiliation(s)
- Elena S Babaylova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Olesya A Krumkacheva
- Novosibirsk State University, Novosibirsk 630090, Russia International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University, Novosibirsk 630090, Russia International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Novosibirsk State University, Novosibirsk 630090, Russia N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
37
|
Halbmair K, Seikowski J, Tkach I, Höbartner C, Sezer D, Bennati M. High-resolution measurement of long-range distances in RNA: pulse EPR spectroscopy with TEMPO-labeled nucleotides. Chem Sci 2016; 7:3172-3180. [PMID: 29997809 PMCID: PMC6005265 DOI: 10.1039/c5sc04631a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/01/2016] [Indexed: 01/02/2023] Open
Abstract
Distance measurements in RNAs by pulse EPR with TEMPO-labeled nucleotides allow for model free conversion of distances into base-pair separation.
Structural information at atomic resolution of biomolecular assemblies, such as RNA and RNA protein complexes, is fundamental to comprehend biological function. Modern spectroscopic methods offer exceptional opportunities in this direction. Here we present the capability of pulse EPR to report high-resolution long-range distances in RNAs by means of a recently developed spin labeled nucleotide, which carries the TEMPO group directly attached to the nucleobase and preserves Watson–Crick base-pairing. In a representative RNA duplex with spin-label separations up to 28 base pairs (≈8 nm) we demonstrate that the label allows for a model-free conversion of inter-spin distances into base-pair separation (Δbp) if broad-band pulse excitation at Q band frequencies (34 GHz) is applied. The observed distance distribution increases from ±0.2 nm for Δbp = 10 to only ±0.5 nm for Δbp = 28, consistent with only small deviations from the “ideal” A-form RNA structure. Molecular dynamics (MD) simulations conducted at 20 °C show restricted conformational freedom of the label. MD-generated structural deviations from an “ideal” A-RNA geometry help disentangle the contributions of local flexibility of the label and its neighboring nucleobases and global deformations of the RNA double helix to the experimental distance distributions. The study demonstrates that our simple but strategic spin labeling procedure can access detailed structural information on RNAs at atomic resolution over distances that match the size of macromolecular RNA complexes.
Collapse
Affiliation(s)
- Karin Halbmair
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany .
| | - Jan Seikowski
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany .
| | - Igor Tkach
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany .
| | - Claudia Höbartner
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany . .,Department of Organic and Biomolecular Chemistry , University of Göttingen , 37077 Göttingen , Germany
| | - Deniz Sezer
- Faculty of Engineering and Natural Sciences , Sabanci University , 34956 Istanbul , Turkey .
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany . .,Department of Organic and Biomolecular Chemistry , University of Göttingen , 37077 Göttingen , Germany
| |
Collapse
|
38
|
|
39
|
Kath-Schorr S. Cycloadditions for Studying Nucleic Acids. Top Curr Chem (Cham) 2015; 374:4. [PMID: 27572987 DOI: 10.1007/s41061-015-0004-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
Cycloaddition reactions for site-specific or global modification of nucleic acids have enabled the preparation of a plethora of previously inaccessible DNA and RNA constructs for structural and functional studies on naturally occurring nucleic acids, the assembly of nucleic acid nanostructures, therapeutic applications, and recently, the development of novel aptamers. In this chapter, recent progress in nucleic acid functionalization via a range of different cycloaddition (click) chemistries is presented. At first, cycloaddition/click chemistries already used for modifying nucleic acids are summarized, ranging from the well-established copper(I)-catalyzed alkyne-azide cycloaddition reaction to copper free methods, such as the strain-promoted azide-alkyne cycloaddition, tetrazole-based photoclick chemistry and the inverse electron demand Diels-Alder cycloaddition reaction between strained alkenes and tetrazine derivatives. The subsequent sections contain selected applications of nucleic acid functionalization via click chemistry; in particular, site-specific enzymatic labeling in vitro, either via DNA and RNA recognizing enzymes or by introducing unnatural base pairs modified for click reactions. Further sections report recent progress in metabolic labeling and fluorescent detection of DNA and RNA synthesis in vivo, click nucleic acid ligation, click chemistry in nanostructure assembly and click-SELEX as a novel method for the selection of aptamers.
Collapse
Affiliation(s)
- Stephanie Kath-Schorr
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Bonn, Germany.
| |
Collapse
|
40
|
Yu H, Mu Y, Nordenskiöld L, Stock G. Influence of Nitroxide Spin Labels on RNA Structure: A Molecular Dynamics Simulation Study. J Chem Theory Comput 2015; 4:1781-7. [PMID: 26620180 DOI: 10.1021/ct800266e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulsed electron double resonance (PELDOR) experiments on oligonucleotides provide a distance ruler that allows the measurement of nanometer distances accurately. The technique requires attachment of nitroxide spin labels to the nucleotides, which may possibly perturb its conformation. To study to what extent nitroxide spin labels may affect RNA structure, all-atom molecular dynamics simulations in explicit solvent are performed for six double-labeled RNA duplexes. A new parametrization of the force field for the nitroxide spin label is developed, which leads to intramolecular distances that are in good agreement with experimental results. Comparison of the results for spin-labeled and unlabeled RNA reveals that the conformational effect of the spin label depends significantly on whether the spin label is attached to the major or the minor groove of RNA. While major-groove spin labeling may to some extent affect the conformation of nearby base pairs, minor-groove spin labeling has the advantage of mostly preserving the RNA conformation.
Collapse
Affiliation(s)
- Hang Yu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, and Institute of Physical and Theoretical Chemistry, J. W. Goethe University, D-60438 Frankfurt, Germany
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, and Institute of Physical and Theoretical Chemistry, J. W. Goethe University, D-60438 Frankfurt, Germany
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, and Institute of Physical and Theoretical Chemistry, J. W. Goethe University, D-60438 Frankfurt, Germany
| | - Gerhard Stock
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, and Institute of Physical and Theoretical Chemistry, J. W. Goethe University, D-60438 Frankfurt, Germany
| |
Collapse
|
41
|
Saha S, Jagtap AP, Sigurdsson ST. Site-Directed Spin Labeling of RNA by Postsynthetic Modification of 2'-Amino Groups. Methods Enzymol 2015; 563:397-414. [PMID: 26478493 DOI: 10.1016/bs.mie.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To elucidate mechanisms that govern functions of nucleic acids, it is essential to understand their structure and dynamics. Electron paramagnetic resonance (EPR) spectroscopy is a valuable technique that is routinely used to study those aspects of nucleic acids. A prerequisite for most EPR studies of nucleic acids is incorporation of spin labels at specific sites, known as site-directed spin labeling (SDSL). There are two main strategies for SDSL through formation of covalent bonds, i.e., the phosphoramidite approach and postsynthetic spin-labeling. After describing briefly the advantages and disadvantages of these two strategies, postsynthetic labeling of 2'-amino groups in RNA is delineated. Postsynthetic labeling of 2'-amino groups in RNA using 4-isocyanato-TEMPO has long been established as a useful approach. However, this method has some drawbacks, both with regard to the spin-labeling protocol and the flexibility of the spin label itself. Recently reported isothiocyanate-substituted aromatic isoindoline-derived nitroxides can be used to quantitatively and selectively modify 2'-amino groups in RNA and do not have the drawbacks associated with 4-isocyanato-TEMPO. This chapter provides a detailed description of the postsynthetic spin-labeling methods of 2'-amino groups in RNA with a special focus on using the aromatic isothiocyanate spin labels.
Collapse
Affiliation(s)
- Subham Saha
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Anil P Jagtap
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
42
|
Babaylova ES, Ivanov AV, Malygin AA, Vorobjeva MA, Venyaminova AG, Polienko YF, Kirilyuk IA, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG. A versatile approach for site-directed spin labeling and structural EPR studies of RNAs. Org Biomol Chem 2015; 12:3129-36. [PMID: 24714823 DOI: 10.1039/c3ob42154f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Site-directed spin labeling (SDSL) is widely applied for structural studies of biopolymers by electron paramagnetic resonance (EPR). However, SDSL of long RNA sequences still remains a challenging task. Here, we propose a novel SDSL approach potentially suitable for long natural RNAs, which is based on the attachment of a linker containing an aliphatic amino group to the target nucleotide residue followed by selective coupling of a spin label to this amino group. Such a linker can be attached to the desired RNA residue via a sequence-specific reaction with the derivatives of oligodeoxyribonucleotides. To verify this approach, we applied it to model RNA duplex with known structure and expected distance between corresponding residues. A new 2,5-bis(spirocyclohexane)-substituted spin label with advanced stability and relaxation properties has been used, and the distance distribution measured using Q-band (34 GHz) pulsed double electron-electron resonance corresponds well to the expected one. We have additionally validated the obtained results by studying a similar RNA duplex, where the linker with the aliphatic amino group was introduced via solid-phase synthesis. Although this novel SDSL approach does not provide an advantage in precision of molecular distance measurements, we believe that its applicability to long RNAs is a crucial benefit for future structural studies using pulse EPR.
Collapse
Affiliation(s)
- Elena S Babaylova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hennig J, Warner LR, Simon B, Geerlof A, Mackereth CD, Sattler M. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements. Methods Enzymol 2015; 558:333-362. [PMID: 26068746 DOI: 10.1016/bs.mie.2015.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance (NMR) spectroscopy is the only method that can provide information for high-resolution three-dimensional structures and the conformational dynamics of these complexes in solution. Mapping of binding interfaces and molecular interactions along with the characterization of conformational dynamics is possible for very large protein complexes. In contrast, de novo structure determination by NMR becomes very time consuming and difficult for protein complexes larger than 30 kDa as data are noisy and sparse. Fortunately, high-resolution structures are often available for individual domains or subunits of a protein complex and thus sparse data can be used to define their arrangement and dynamics within the assembled complex. In these cases, NMR can therefore be efficiently combined with complementary solution techniques, such as small-angle X-ray or neutron scattering, to provide a comprehensive description of the structure and dynamics of protein complexes in solution. Particularly useful are NMR-derived paramagnetic relaxation enhancements (PREs), which provide long-range distance restraints (ca. 20Å) for structural analysis of large complexes and also report on conformational dynamics in solution. Here, we describe the use of PREs from sample production to structure calculation, focusing on protein-RNA complexes. On the basis of recent examples from our own research, we demonstrate the utility, present protocols, and discuss potential pitfalls when using PREs for studying the structure and dynamic features of protein-RNA complexes.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Lisa R Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Cameron D Mackereth
- Institut Européen de Chimie et Biologie, IECB, Univ. Bordeaux, Pessac, France; Inserm, U869, ARNA Laboratory, Bordeaux, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
44
|
|
45
|
Saha S, Jagtap AP, Sigurdsson ST. Site-directed spin labeling of 2′-amino groups in RNA with isoindoline nitroxides that are resistant to reduction. Chem Commun (Camb) 2015; 51:13142-5. [DOI: 10.1039/c5cc05014f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
2'-Amino groups in RNA were selectively spin labeled with reductively stable isoindoline nitroxides through a high-yielding reaction with aromatic isothiocyanates.
Collapse
Affiliation(s)
- Subham Saha
- University of Iceland
- Department of Chemistry
- Science Institute
- 107 Reykjavik
- Iceland
| | - Anil P. Jagtap
- University of Iceland
- Department of Chemistry
- Science Institute
- 107 Reykjavik
- Iceland
| | | |
Collapse
|
46
|
Dodd DW, Jones ND, Hudson RH. Hydrogelation abilities of nucleobase-modified cytidines possessing substituted triazoles. ARTIFICIAL DNA, PNA & XNA 2014; 1:90-95. [PMID: 21686244 DOI: 10.4161/adna.1.2.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/03/2010] [Accepted: 10/19/2010] [Indexed: 11/19/2022]
Abstract
Nucleoside-derived hydrogelators have been sought for their potential biomedical applications, such as are found in tissue engineering and drug delivery. By judiciously adding a degree of hydrophobicity certain analogues are able to form micelles, bi-layers and gels in water. Research in this area has yet to lay down solid ground rules for the rational design of novel nucleoside gelators making further studies necessary. The synthesis and examination of a series of aryl-substituted 5-triazolylcytidines yielded an analogue that gelates water. 5-(1-(2,2'-bithiophen-3-yl)-1H-1,2,3-triazol-4-yl)-2'-deoxycytidine was found to form gels in water down to 0.3 wt%. The ribocytidine analogue failed to form gel in aqueous solution; but was able to form a hydrogel in the presence of guanosine. Images obtained by SEM show the different architectures of the gel; varying from cribriform to fibrous to lamellar. The present gelating compound studied may have potential as a component of a controlled-release drug delivery system.
Collapse
Affiliation(s)
- David W Dodd
- Department of Chemistry; The University of Western Ontario; London, ON Canada
| | | | | |
Collapse
|
47
|
New developments in spin labels for pulsed dipolar EPR. Molecules 2014; 19:16998-7025. [PMID: 25342554 PMCID: PMC6271499 DOI: 10.3390/molecules191016998] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR) techniques allow small magnetic couplings to be measured (e.g., <50 MHz) providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.
Collapse
|
48
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
49
|
Helmling C, Bessi I, Wacker A, Schnorr KA, Jonker HRA, Richter C, Wagner D, Kreibich M, Schwalbe H. Noncovalent spin labeling of riboswitch RNAs to obtain long-range structural NMR restraints. ACS Chem Biol 2014; 9:1330-9. [PMID: 24673892 DOI: 10.1021/cb500050t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paramagnetic relaxation enhancement (PRE) NMR is a powerful method to study structure, dynamics and function of proteins. Up to now, the application of PRE NMR on RNAs is a significant challenge due to the limited size of chemically synthesized RNA. Here, we present a noncovalent spin labeling strategy to spin label RNAs in high yields required for NMR studies. The approach requires the presence of a helix segment composed of about 10 nucleotides (nt) but is not restricted by the size of the RNA. We show successful application of this strategy on the 2'dG sensing aptamer domain of Mesoplasma florum (78 nt). The aptamer domain was prepared in two fragments. A larger fragment was obtained by biochemical means, while a short spin labeled fragment was prepared by chemical solid-phase synthesis. The two fragments were annealed noncovalently by hybridization. We performed NMR, cw-EPR experiments and gel shift assays to investigate the stability of the two-fragment complex. NMR analysis in (15)N-TROSY and (1)H,(1)H-NOESY spectra of both unmodified and spin labeled aptamer domain show that the fragmented system forms a stable hybridization product, is in structural agreement with the full length aptamer domain and maintains its function. Together with structure modeling, experimentally determined (1)H-Γ2 rates are in agreement with reported crystal structure data and show that distance restraints up to 25 Å can be obtained from NMR PRE data of RNA.
Collapse
Affiliation(s)
- Christina Helmling
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Irene Bessi
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Anna Wacker
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Kai A. Schnorr
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Hendrik R. A. Jonker
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Christian Richter
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Dominic Wagner
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Michael Kreibich
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
50
|
Deoxyribozyme-Mediated Ligation for Incorporating EPR Spin Labels and Reporter Groups into RNA. Methods Enzymol 2014; 549:85-104. [DOI: 10.1016/b978-0-12-801122-5.00004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|