1
|
Shin W, Mun S, Han K. Human Endogenous Retrovirus-K (HML-2)-Related Genetic Variation: Human Genome Diversity and Disease. Genes (Basel) 2023; 14:2150. [PMID: 38136972 PMCID: PMC10742618 DOI: 10.3390/genes14122150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) comprise a significant portion of the human genome, making up roughly 8%, a notable comparison to the 2-3% represented by coding sequences. Numerous studies have underscored the critical role and importance of HERVs, highlighting their diverse and extensive influence on the evolution of the human genome and establishing their complex correlation with various diseases. Among HERVs, the HERV-K (HML-2) subfamily has recently attracted significant attention, integrating into the human genome after the divergence between humans and chimpanzees. Its insertion in the human genome has received considerable attention due to its structural and functional characteristics and the time of insertion. Originating from ancient exogenous retroviruses, these elements succeeded in infecting germ cells, enabling vertical transmission and existing as proviruses within the genome. Remarkably, these sequences have retained the capacity to form complete viral sequences, exhibiting activity in transcription and translation. The HERV-K (HML-2) subfamily is the subject of active debate about its potential positive or negative effects on human genome evolution and various pathologies. This review summarizes the variation, regulation, and diseases in human genome evolution arising from the influence of HERV-K (HML-2).
Collapse
Affiliation(s)
- Wonseok Shin
- NGS Clinical Laboratory, Division of Cancer Research, Dankook University Hospital, Cheonan 31116, Republic of Korea;
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
| | - Seyoung Mun
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyudong Han
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Seoul 08507, Republic of Korea
| |
Collapse
|
2
|
Sakurai T, Kusama K, Imakawa K. Progressive Exaptation of Endogenous Retroviruses in Placental Evolution in Cattle. Biomolecules 2023; 13:1680. [PMID: 38136553 PMCID: PMC10741562 DOI: 10.3390/biom13121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Viviparity is made possible by the placenta, a structure acquired relatively recently in the evolutionary history of eutherian mammals. Compared to oviparity, it increases the survival rate of the fetus, owing to the eutherian placenta. Questions such as "How was the placenta acquired?" and "Why is there diversity in placental morphology among mammalian species?" remain largely unsolved. Our present understanding of the molecules regulating placental development remains unclear, owing in no small part to the persistent obscurity surrounding the molecular mechanisms underlying placental acquisition. Numerous genes associated with the development of eutherian placental morphology likely evolved to function at the fetal-maternal interface in conjunction with those participating in embryogenesis. Therefore, identifying these genes, how they were acquired, and how they came to be expressed specifically at the fetal-maternal interface will shed light on some crucial molecular mechanisms underlying placental evolution. Exhaustive studies support the hypothesis that endogenous retroviruses (ERVs) could be evolutional driving forces for trophoblast cell fusion and placental structure in mammalian placentas including those of the bovine species. This review focuses on bovine ERVs (BERVs) and their expression and function in the placenta.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Koriyama 963-8611, Fukushima, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan;
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-Ku, Kumamoto 862-8652, Japan;
| |
Collapse
|
3
|
Lynch-Sutherland CF, McDougall LI, Stockwell PA, Almomani SN, Weeks RJ, Ludgate JL, Gamage TKJB, Chatterjee A, James JL, Eccles MR, Macaulay EC. The transposable element-derived transcript of LIN28B has a placental origin and is not specific to tumours. Mol Genet Genomics 2023:10.1007/s00438-023-02033-1. [PMID: 37269361 PMCID: PMC10363060 DOI: 10.1007/s00438-023-02033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
Transposable elements (TEs) are genetic elements that have evolved as crucial regulators of human development and cancer, functioning as both genes and regulatory elements. When TEs become dysregulated in cancer cells, they can serve as alternate promoters to activate oncogenes, a process known as onco-exaptation. This study aimed to explore the expression and epigenetic regulation of onco-exaptation events in early human developmental tissues. We discovered co-expression of some TEs and oncogenes in human embryonic stem cells and first trimester and term placental tissues. Previous studies identified onco-exaptation events in various cancer types, including an AluJb SINE element-LIN28B interaction in lung cancer cells, and showed that the TE-derived LIN28B transcript is associated with poor patient prognosis in hepatocellular carcinoma. This study further characterized the AluJb-LIN28B transcript and confirmed that its expression is restricted to the placenta. Targeted DNA methylation analysis revealed differential methylation of the two LIN28B promoters between placenta and healthy somatic tissues, indicating that some TE-oncogene interactions are not cancer-specific but arise from the epigenetic reactivation of developmental TE-derived regulatory events. In conclusion, our findings provide evidence that some TE-oncogene interactions are not limited to cancer and may originate from the epigenetic reactivation of TE-derived regulatory events that are involved in early development. These insights broaden our understanding of the role of TEs in gene regulation and suggest the potential importance of targeting TEs in cancer therapy beyond their conventional use as cancer-specific markers.
Collapse
Affiliation(s)
- Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| | - Lorissa I McDougall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Teena K J B Gamage
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
4
|
Fan TJ, Cui J. Human Endogenous Retroviruses in Diseases. Subcell Biochem 2023; 106:403-439. [PMID: 38159236 DOI: 10.1007/978-3-031-40086-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Human endogenous retroviruses (HERVs), which are conserved sequences of ancient retroviruses, are widely distributed in the human genome. Although most HERVs have been rendered inactive by evolution, some have continued to exhibit important cytological functions. HERVs in the human genome perform dual functions: on the one hand, they are involved in important physiological processes such as placental development and immune regulation; on the other hand, their aberrant expression is closely associated with the pathological processes of several diseases, such as cancers, autoimmune diseases, and viral infections. HERVs can also regulate a variety of host cellular functions, including the expression of protein-coding genes and regulatory elements that have evolved from HERVs. Here, we present recent research on the roles of HERVs in viral infections and cancers, including the dysregulation of HERVs in various viral infections, HERV-induced epigenetic modifications of histones (such as methylation and acetylation), and the potential mechanisms of HERV-mediated antiviral immunity. We also describe therapies to improve the efficacy of vaccines and medications either by directly or indirectly targeting HERVs, depending on the HERV.
Collapse
Affiliation(s)
- Tian-Jiao Fan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Extensive Placental Methylation Profiling in Normal Pregnancies. Int J Mol Sci 2021; 22:ijms22042136. [PMID: 33669975 PMCID: PMC7924820 DOI: 10.3390/ijms22042136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
The placental methylation pattern is crucial for the regulation of genes involved in trophoblast invasion and placental development, both key events for fetal growth. We investigated LINE-1 methylation and methylome profiling using a methylation EPIC array and the targeted methylation sequencing of 154 normal, full-term pregnancies, stratified by birth weight percentiles. LINE-1 methylation showed evidence of a more pronounced hypomethylation in small neonates compared with normal and large for gestational age. Genome-wide methylation, performed in two subsets of pregnancies, showed very similar methylation profiles among cord blood samples while placentae from different pregnancies appeared very variable. A unique methylation profile emerged in each placenta, which could represent the sum of adjustments that the placenta made during the pregnancy to preserve the epigenetic homeostasis of the fetus. Investigations into the 1000 most variable sites between cord blood and the placenta showed that promoters and gene bodies that are hypermethylated in the placenta are associated with blood-specific functions, whereas those that are hypomethylated belong mainly to pathways involved in cancer. These features support the functional analogies between a placenta and cancer. Our results, which provide a comprehensive analysis of DNA methylation profiling in the human placenta, suggest that its peculiar dynamicity can be relevant for understanding placental plasticity in response to the environment.
Collapse
|
6
|
Schust DJ, Bonney EA, Sugimoto J, Ezashi T, Roberts RM, Choi S, Zhou J. The Immunology of Syncytialized Trophoblast. Int J Mol Sci 2021; 22:ijms22041767. [PMID: 33578919 PMCID: PMC7916661 DOI: 10.3390/ijms22041767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Multinucleate syncytialized trophoblast is found in three forms in the human placenta. In the earliest stages of pregnancy, it is seen at the invasive leading edge of the implanting embryo and has been called primitive trophoblast. In later pregnancy, it is represented by the immense, multinucleated layer covering the surface of placental villi and by the trophoblast giant cells found deep within the uterine decidua and myometrium. These syncytia interact with local and/or systemic maternal immune effector cells in a fine balance that allows for invasion and persistence of allogeneic cells in a mother who must retain immunocompetence for 40 weeks of pregnancy. Maternal immune interactions with syncytialized trophoblast require tightly regulated mechanisms that may differ depending on the location of fetal cells and their invasiveness, the nature of the surrounding immune effector cells and the gestational age of the pregnancy. Some specifically reflect the unique mechanisms involved in trophoblast cell–cell fusion (aka syncytialization). Here we will review and summarize several of the mechanisms that support healthy maternal–fetal immune interactions specifically at syncytiotrophoblast interfaces.
Collapse
Affiliation(s)
- Danny J. Schust
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Correspondence:
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA;
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Toshi Ezashi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Michael Roberts
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sehee Choi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jie Zhou
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Yuan V, Hui D, Yin Y, Peñaherrera MS, Beristain AG, Robinson WP. Cell-specific characterization of the placental methylome. BMC Genomics 2021; 22:6. [PMID: 33407091 PMCID: PMC7788826 DOI: 10.1186/s12864-020-07186-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) profiling has emerged as a powerful tool for characterizing the placental methylome. However, previous studies have focused primarily on whole placental tissue, which is a mixture of epigenetically distinct cell populations. Here, we present the first methylome-wide analysis of first trimester (n = 9) and term (n = 19) human placental samples of four cell populations: trophoblasts, Hofbauer cells, endothelial cells, and stromal cells, using the Illumina EPIC methylation array, which quantifies DNAm at > 850,000 CpGs. RESULTS The most distinct DNAm profiles were those of placental trophoblasts, which are central to many pregnancy-essential functions, and Hofbauer cells, which are a rare fetal-derived macrophage population. Cell-specific DNAm occurs at functionally-relevant genes, including genes associated with placental development and preeclampsia. Known placental-specific methylation marks, such as those associated with genomic imprinting, repetitive element hypomethylation, and placental partially methylated domains, were found to be more pronounced in trophoblasts and often absent in Hofbauer cells. Lastly, we characterize the cell composition and cell-specific DNAm dynamics across gestation. CONCLUSIONS Our results provide a comprehensive analysis of DNAm in human placental cell types from first trimester and term pregnancies. This data will serve as a useful DNAm reference for future placental studies, and we provide access to this data via download from GEO (GSE159526), through interactive exploration from the web browser ( https://robinsonlab.shinyapps.io/Placental_Methylome_Browser/ ), and through the R package planet, which allows estimation of cell composition directly from placental DNAm data.
Collapse
Affiliation(s)
- Victor Yuan
- BC Children’s Hospital Research Institute, Vancouver, BC Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Desmond Hui
- BC Children’s Hospital Research Institute, Vancouver, BC Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Yifan Yin
- BC Children’s Hospital Research Institute, Vancouver, BC Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Maria S. Peñaherrera
- BC Children’s Hospital Research Institute, Vancouver, BC Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Alexander G. Beristain
- BC Children’s Hospital Research Institute, Vancouver, BC Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
8
|
Legault LM, Doiron K, Lemieux A, Caron M, Chan D, Lopes FL, Bourque G, Sinnett D, McGraw S. Developmental genome-wide DNA methylation asymmetry between mouse placenta and embryo. Epigenetics 2020; 15:800-815. [PMID: 32056496 PMCID: PMC7518706 DOI: 10.1080/15592294.2020.1722922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
In early embryos, DNA methylation is remodelled to initiate the developmental program but for mostly unknown reasons, methylation marks are acquired unequally between embryonic and placental cells. To better understand this, we generated high-resolution DNA methylation maps of mouse mid-gestation (E10.5) embryo and placenta. We uncovered specific subtypes of differentially methylated regions (DMRs) that contribute directly to the developmental asymmetry existing between mid-gestation embryonic and placental DNA methylation patterns. We show that the asymmetry occurs rapidly during the acquisition of marks in the post-implanted conceptus (E3.5-E6.5), and that these patterns are long-lasting across subtypes of DMRs throughout prenatal development and in somatic tissues. We reveal that at the peri-implantation stages, the de novo methyltransferase activity of DNMT3B is the main driver of methylation marks on asymmetric DMRs, and that DNMT3B can largely compensate for lack of DNMT3A in the epiblast and extraembryonic ectoderm, whereas DNMT3A can only partially compensate in the absence of DNMT3B. However, as development progresses and as DNMT3A becomes the principal de novo methyltransferase, the compensatory DNA methylation mechanism of DNMT3B on DMRs becomes less effective.
Collapse
Affiliation(s)
- LM Legault
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - K Doiron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
| | - A Lemieux
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - M Caron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - D Chan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - FL Lopes
- School of Veterinary Medicine, São Paulo State University (Unesp), Aracatuba, Brazil
| | - G Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
- Canadian Center for Computational Genomics, Montreal, Quebec, Canada
| | - D Sinnett
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Pediatrics, Université De Montréal, Montreal, Canada
| | - S McGraw
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
- Department of Obstetrics and Gynecology, Université De Montréal, Montreal, Canada
| |
Collapse
|
9
|
Rebollo R, Galvão-Ferrarini M, Gagnier L, Zhang Y, Ferraj A, Beck CR, Lorincz MC, Mager DL. Inter-Strain Epigenomic Profiling Reveals a Candidate IAP Master Copy in C3H Mice. Viruses 2020; 12:v12070783. [PMID: 32708087 PMCID: PMC7411935 DOI: 10.3390/v12070783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insertions of endogenous retroviruses cause a significant fraction of mutations in inbred mice but not all strains are equally susceptible. Notably, most new Intracisternal A particle (IAP) ERV mutagenic insertions have occurred in C3H mice. We show here that strain-specific insertional polymorphic IAPs accumulate faster in C3H/HeJ mice, relative to other sequenced strains, and that IAP transcript levels are higher in C3H/HeJ embryonic stem (ES) cells compared to other ES cells. To investigate the mechanism for high IAP activity in C3H mice, we identified 61 IAP copies in C3H/HeJ ES cells enriched with H3K4me3 (a mark of active promoters) and, among those tested, all are unmethylated in C3H/HeJ ES cells. Notably, 13 of the 61 are specific to C3H/HeJ and are members of the non-autonomous 1Δ1 IAP subfamily that is responsible for nearly all new insertions in C3H. One copy is full length with intact open reading frames and hence potentially capable of providing proteins in trans to other 1Δ1 elements. This potential “master copy” is present in other strains, including 129, but its 5’ long terminal repeat (LTR) is methylated in 129 ES cells. Thus, the unusual IAP activity in C3H may be due to reduced epigenetic repression coupled with the presence of a master copy.
Collapse
Affiliation(s)
- Rita Rebollo
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
- University of Lyon, INSA-Lyon, INRA, BF2i, UMR0203, F-69621 Villeurbanne, France;
- Correspondence: (R.R.); (D.L.M.)
| | | | - Liane Gagnier
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
| | - Ardian Ferraj
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; (A.F.); (C.R.B.)
| | - Christine R. Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; (A.F.); (C.R.B.)
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew C. Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z3, Canada;
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z3, Canada;
- Correspondence: (R.R.); (D.L.M.)
| |
Collapse
|
10
|
Xue B, Sechi LA, Kelvin DJ. Human Endogenous Retrovirus K (HML-2) in Health and Disease. Front Microbiol 2020; 11:1690. [PMID: 32765477 PMCID: PMC7380069 DOI: 10.3389/fmicb.2020.01690] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are derived from exogenous retrovirus infections in the evolution of primates and account for about 8% of the human genome. They were considered as silent passengers within our genomes for a long time, however, reactivation of HERVs has been associated with tumors and autoimmune diseases, especially the HERV-K (HML-2) family, the most recent integration groups with the least number of mutations and the most biologically active to encode functional retroviral proteins and produce retrovirus-like particles. Increasing studies are committed to determining the potential role of HERV-K (HML-2) in pathogenicity. Although there is still no evidence for HERV-K (HML-2) as a direct cause of diseases, aberrant expression profiles of the HERV-K (HML-2) transcripts and their regulatory function to their proximal host-genes were identified in different diseases. In this review, we summarized the advances between HERV-K (HML-2) and diseases to provide basis for further studies on the causal relationship between HERV-K (HML-2) and diseases. We recommended more attention to polymorphic integrated HERV-K (HML-2) loci which could be genetic causative factors and be associated with inter-individual differences in tumorigenesis and autoimmune diseases.
Collapse
Affiliation(s)
- Bei Xue
- Division of Immunology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control, University of Sassari, Sassari, Italy
| | - David J. Kelvin
- Division of Immunology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
Lynch-Sutherland CF, Chatterjee A, Stockwell PA, Eccles MR, Macaulay EC. Reawakening the Developmental Origins of Cancer Through Transposable Elements. Front Oncol 2020; 10:468. [PMID: 32432029 PMCID: PMC7214541 DOI: 10.3389/fonc.2020.00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) have an established role as important regulators of early human development, functioning as tissue-specific genes and regulatory elements. Functional TEs are highly active during early development, and interact with important developmental genes, some of which also function as oncogenes. Dedifferentiation is a hallmark of cancer, and is characterized by genetic and epigenetic changes that enable proliferation, self-renewal and a metabolism reminiscent of embryonic stem cells. There is also compelling evidence suggesting that the path to dedifferentiation in cancer can contribute to invasion and metastasis. TEs are frequently expressed in cancer, and recent work has identified a newly proposed mechanism involving extensive recruitment of TE-derived promoters to drive expression of oncogenes and subsequently promote oncogenesis—a process termed onco-exaptation. However, the mechanism by which this phenomenon occurs, and the extent to which it contributes to oncogenesis remains unknown. Initial hypotheses have proposed that onco-exaptation events are cancer-specific and arise randomly due to the dysregulated and hypomethylated state of cancer cells and abundance of TEs across the genome. However, we suspect that exaptation-like events may not just arise due to chance activation of novel regulatory relationships as proposed previously, but as a result of the reestablishment of early developmental regulatory relationships. Dedifferentiation in cancer is well-documented, along with expression of TEs. The known interactions between TEs and pluripotency factors such as NANOG and OCTt4 during early development, along with the expression of some placental-specific TE-derived transcripts in cancer support a possible link between TEs and dedifferentiation of tumor cells. Thus, we hypothesize that onco-exaptation events can be associated with the epigenetic reawakening of early developmental TEs to regulate expression of oncogenes and promote oncogenesis. We also suspect that activation of these early developmental regulatory TEs may promote dedifferentiation, although at this stage it is hard to predict whether TE activation is one of the initial drivers of dedifferentiation. We expect that developmental TE activation occurs as a result of the establishment of an epigenetic landscape in cancer that resembles that of early development and that developmental TE activation may also enable cancers to exploit early developmental pathways, repurposing them to promote malignancy.
Collapse
Affiliation(s)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Del Gobbo GF, Konwar C, Robinson WP. The significance of the placental genome and methylome in fetal and maternal health. Hum Genet 2019; 139:1183-1196. [PMID: 31555906 DOI: 10.1007/s00439-019-02058-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023]
Abstract
The placenta is a crucial organ for supporting a healthy pregnancy, and defective development or function of the placenta is implicated in a number of complications of pregnancy that affect both maternal and fetal health, including maternal preeclampsia, fetal growth restriction, and spontaneous preterm birth. In this review, we highlight the role of the placental genome in mediating fetal and maternal health by discussing the impact of a variety of genetic alterations, from large whole-chromosome aneuploidies to single-nucleotide variants, on placental development and function. We also discuss the placental methylome in relation to its potential applications for refining diagnosis, predicting pathology, and identifying genetic variants with potential functional significance. We conclude that understanding the influence of the placental genome on common placental-mediated pathologies is critical to improving perinatal health outcomes.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada. .,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
13
|
Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet 2019; 15:e1008236. [PMID: 31369552 PMCID: PMC6675049 DOI: 10.1371/journal.pgen.1008236] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is the interface between maternal and fetal circulations, integrating maternal and fetal signals to selectively regulate nutrient, gas, and waste exchange, as well as secrete hormones. In turn, the placenta helps create the in utero environment and control fetal growth and development. The unique epigenetic profile of the human placenta likely reflects its early developmental separation from the fetus proper and its role in mediating maternal–fetal exchange that leaves it open to a range of exogenous exposures in the maternal circulation. In this review, we cover recent advances in DNA methylation in the context of placental function and development, as well as the interaction between the pregnancy and the environment.
Collapse
|
14
|
Montesion M, Williams ZH, Subramanian RP, Kuperwasser C, Coffin JM. Promoter expression of HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription factor binding sites. Retrovirology 2018; 15:57. [PMID: 30126415 PMCID: PMC6102855 DOI: 10.1186/s12977-018-0441-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background Increased transcription of the human endogenous retrovirus group HERV-K (HML-2) is often seen during disease. Although the mechanism of its tissue-specific activation is unclear, research shows that LTR CpG hypomethylation alone is not sufficient to induce its promoter activity and that the transcriptional milieu of a malignant cell contributes, at least partly, to differential HML-2 expression. Results We analyzed the relationship between LTR sequence variation and promoter expression patterns in human breast cancer cell lines, finding them to be positively correlated. In particular, two proviruses (3q12.3 and 11p15.4) displayed increased activity in almost all tumorigenic cell lines sampled. Using a transcription factor binding site prediction algorithm, we identified two unique binding sites in each 5′ LTR that appeared to be associated with inducing promoter activity during neoplasia. Genomic analysis of the homologous proviruses in several non-human primates indicated post-integration genetic drift in two transcription factor binding sites, away from the ancestral sequence and towards the active form. Based on the sequences of 2504 individuals from the 1000 Genomes Project, the active form of the 11p15.4 site was found to be polymorphic within the human population, with an allele frequency of 51%, whereas the activating mutation in the 3q12.3 provirus was fixed in humans but not present in the orthologous provirus in chimpanzees or gorillas. Conclusions These data suggest that stage-specific transcription factors at least partly contribute to LTR promoter activity during transformation and that, in some cases, transcription factor binding site polymorphisms may be responsible for the differential HML-2 expression often seen between individuals. Electronic supplementary material The online version of this article (10.1186/s12977-018-0441-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meagan Montesion
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Foundation Medicine, Inc., Cambridge, MA, USA
| | - Zachary H Williams
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ravi P Subramanian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Excerpta Medica, New York, NY, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical, and Molecular Biology, Tufts University School of Medicine, Boston, MA, USA.,Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
15
|
Makaroun SP, Himes KP. Differential Methylation of Syncytin-1 and 2 Distinguishes Fetal Growth Restriction from Physiologic Small for Gestational Age. AJP Rep 2018; 8:e18-e24. [PMID: 29472990 PMCID: PMC5821508 DOI: 10.1055/s-0038-1627473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/09/2017] [Indexed: 12/26/2022] Open
Abstract
Objective The retroviral genes encoding Syncytin-1 ( SYN1 ) and Syncytin-2 ( SYN2 ) are epigenetically regulated, uniquely expressed in the placenta and critical to placental function. We sought to determine if placental expression and methylation patterns of SYN1 and SYN2 from pregnancies complicated by fetal growth restriction (FGR) differed from physiologic small for gestational age (SGA) and appropriate for gestational age (AGA) controls. Study Design Placental biopsies were obtained from AGA, SGA and FGR neonates delivered at >36 weeks gestation. SGA and FGR were defined as birth weight <10% with FGR additionally requiring abnormal fetal testing. We quantified DNA methylation of SYN1 and SYN2 by EpiTyper and gene expression by RT-qPCR. Results We identified 10 AGA, 9 SGA and 7 FGR placentas. There was decreased methylation in SYN1 and SYN2 in FGR relative to AGA and SGA. When the sum of SYN1 and SYN2 methylation was used for prediction of FGR from SGA, the area under the receiver operator characteristic curve was 0.9048 (0.7602, 1). Conclusion SYN1 and SYN2 methylation marks differ in FGR and SGA. We plan future studies to examine these markers in cell free DNA to determine if these methylation changes could be used as a biomarker for FGR.
Collapse
Affiliation(s)
- Sami P Makaroun
- Division of Maternal Fetal Medicine, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine P Himes
- Division of Maternal Fetal Medicine, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
The Genes of Life and Death: A Potential Role for Placental-Specific Genes in Cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201700091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/20/2017] [Indexed: 12/17/2022]
|
17
|
Hurst TP, Magiorkinis G. Epigenetic Control of Human Endogenous Retrovirus Expression: Focus on Regulation of Long-Terminal Repeats (LTRs). Viruses 2017; 9:v9060130. [PMID: 28561791 PMCID: PMC5490807 DOI: 10.3390/v9060130] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Transposable elements, including endogenous retroviruses (ERVs), comprise almost 45% of the human genome. This could represent a significant pathogenic burden but it is becoming more evident that many of these elements have a positive contribution to make to normal human physiology. In particular, the contributions of human ERVs (HERVs) to gene regulation and the expression of noncoding RNAs has been revealed with the help of new and emerging genomic technologies. HERVs have the common provirus structure of coding open reading frames (ORFs) flanked by two long-terminal repeats (LTRs). However, over the course of evolution and as a consequence of host defence mechanisms, most of the sequences contain INDELs, mutations or have been reduced to single LTRs by recombination. These INDELs and mutations reduce HERV activity. However, there is a trade-off for the host cells in that HERVs can provide beneficial sources of genetic variation but with this benefit comes the risk of pathogenic activity and spread within the genome. For example, the LTRs are of critical importance as they contain promoter sequences and can regulate not only HERV expression but that of human genes. This is true even when the LTRs are located in intergenic regions or are in antisense orientation to the rest of the gene. Uncontrolled, this promoter activity could disrupt normal gene expression or transcript processing (e.g., splicing). Thus, control of HERVs and particularly their LTRs is essential for the cell to manage these elements and this control is achieved at multiple levels, including epigenetic regulations that permit HERV expression in the germline but silence it in most somatic tissues. We will discuss some of the common epigenetic mechanisms and how they affect HERV expression, providing detailed discussions of HERVs in stem cell, placenta and cancer biology.
Collapse
Affiliation(s)
- Tara P Hurst
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Gkikas Magiorkinis
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
18
|
Placental Hypomethylation Is More Pronounced in Genomic Loci Devoid of Retroelements. G3-GENES GENOMES GENETICS 2016; 6:1911-21. [PMID: 27172225 PMCID: PMC4938645 DOI: 10.1534/g3.116.030379] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human placenta is hypomethylated compared to somatic tissues. However, the degree and specificity of placental hypomethylation across the genome is unclear. We assessed genome-wide methylation of the human placenta and compared it to that of the neutrophil, a representative homogeneous somatic cell. We observed global hypomethylation in placenta (relative reduction of 22%) compared to neutrophils. Placental hypomethylation was pronounced in intergenic regions and gene bodies, while the unmethylated state of the promoter remained conserved in both tissues. For every class of repeat elements, the placenta showed lower methylation but the degree of hypomethylation differed substantially between these classes. However, some retroelements, especially the evolutionarily younger Alu elements, retained high levels of placental methylation. Surprisingly, nonretrotransposon-containing sequences showed a greater degree of placental hypomethylation than retrotransposons in every genomic element (intergenic, introns, and exons) except promoters. The differentially methylated fragments (DMFs) in placenta and neutrophils were enriched in gene-poor and CpG-poor regions. The placentally hypomethylated DMFs were enriched in genomic regions that are usually inactive, whereas hypermethylated DMFs were enriched in active regions. Hypomethylation of the human placenta is not specific to retroelements, indicating that the evolutionary advantages of placental hypomethylation go beyond those provided by expression of retrotransposons and retrogenes.
Collapse
|
19
|
Villarreal LP. Viruses and the placenta: the essential virus first view. APMIS 2016; 124:20-30. [PMID: 26818259 DOI: 10.1111/apm.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
A virus first perspective is presented as an alternative hypothesis to explain the role of various endogenized retroviruses in the origin of the mammalian placenta. It is argued that virus-host persistence is a key determinant of host survival and the various ERVs involved have directly affected virus-host persistence.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
20
|
Thompson PJ, Macfarlan TS, Lorincz MC. Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Mol Cell 2016; 62:766-76. [PMID: 27259207 PMCID: PMC4910160 DOI: 10.1016/j.molcel.2016.03.029] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The life cycle of endogenous retroviruses (ERVs), also called long terminal repeat (LTR) retrotransposons, begins with transcription by RNA polymerase II followed by reverse transcription and re-integration into the host genome. While most ERVs are relics of ancient integration events, "young" proviruses competent for retrotransposition-found in many mammals, but not humans-represent an ongoing threat to host fitness. As a consequence, several restriction pathways have evolved to suppress their activity at both transcriptional and post-transcriptional stages of the viral life cycle. Nevertheless, accumulating evidence has revealed that LTR sequences derived from distantly related ERVs have been exapted as regulatory sequences for many host genes in a wide range of cell types throughout mammalian evolution. Here, we focus on emerging themes from recent studies cataloging the diversity of ERV LTRs acting as important transcriptional regulatory elements in mammals and explore the molecular features that likely account for LTR exaptation in developmental and tissue-specific gene regulation.
Collapse
Affiliation(s)
- Peter J Thompson
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Todd S Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
21
|
Abstract
Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.
Collapse
|
22
|
Macaulay EC, Bloomfield FH. Unravelling the Link Between the Placental Epigenome and Pregnancy Outcomes. Biol Reprod 2016; 94:82. [PMID: 26962116 DOI: 10.1095/biolreprod.116.139915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
23
|
Hurst TP, Magiorkinis G. Activation of the innate immune response by endogenous retroviruses. J Gen Virol 2015; 96:1207-1218. [PMID: 26068187 DOI: 10.1099/jgv.0.000017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The human genome comprises 8 % endogenous retroviruses (ERVs), the majority of which are defective due to deleterious mutations. Nonetheless, transcripts of ERVs are found in most tissues, and these transcripts could either be reverse transcribed to generate ssDNA or expressed to generate proteins. Thus, the expression of ERVs could produce nucleic acids or proteins with viral signatures, much like the pathogen-associated molecular patterns of exogenous viruses, which would enable them to be detected by the innate immune system. The activation of some pattern recognition receptors (PRRs) in response to ERVs has been described in mice and in the context of human autoimmune diseases. Here, we review the evidence for detection of ERVs by PRRs and the resultant activation of innate immune signalling. This is an emerging area of research within the field of innate antiviral immunity, showing how ERVs could initiate immune signalling pathways and might have implications for numerous inflammatory diseases.
Collapse
Affiliation(s)
- Tara P Hurst
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Gkikas Magiorkinis
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
24
|
|
25
|
Human endogenous retrovirus group E and its involvement in diseases. Viruses 2015; 7:1238-57. [PMID: 25785516 PMCID: PMC4379568 DOI: 10.3390/v7031238] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 02/07/2023] Open
Abstract
Human endogenous retrovirus group E (HERV-E) elements are stably integrated into the human genome, transmitted vertically in a Mendelian manner, and are endowed with transcriptional activity as alternative promoters or enhancers. Such effects are under the control of the proviral long terminal repeats (LTR) that are organized into three HERV-E phylogenetic subgroups, namely LTR2, LTR2B, and LTR2C. Moreover, HERV-E expression is tissue-specific, and silenced by epigenetic constraints that may be disrupted in cancer, autoimmunity, and human placentation. Interest in HERV-E with regard to these conditions has been stimulated further by concerns regarding the capacity of HERV-E elements to modify the expression of neighboring genes and/or to produce retroviral proteins, including immunosuppressive env peptides, which in turn may induce (auto)-antibody (Ab) production. Finally, better understanding of HERV-E elements may have clinical applications for prevention, diagnosis, prognosis, and therapy.
Collapse
|
26
|
Pavlicev M, Hiratsuka K, Swaggart KA, Dunn C, Muglia L. Detecting endogenous retrovirus-driven tissue-specific gene transcription. Genome Biol Evol 2015; 7:1082-97. [PMID: 25767249 PMCID: PMC4419796 DOI: 10.1093/gbe/evv049] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) comprise approximately half of the human genome, and several independent lines of investigation have demonstrated their role in rewiring gene expression during development, evolution, and oncogenesis. The identification of their regulatory effects has largely been idiosyncratic, by linking activity with isolated genes. Their distribution throughout the genome raises critical questions—do these elements contribute to broad tissue- and lineage-specific regulation? If so, in what manner, as enhancers, promoters, RNAs? Here, we devise a novel approach to systematically dissect the genome-wide consequences of TE insertion on gene expression, and test the hypothesis that classes of endogenous retrovirus long terminal repeats (LTRs) exert tissue-specific regulation of adjacent genes. Using correlation of expression patterns across 18 tissue types, we reveal the tissue-specific uncoupling of gene expression due to 62 different LTR classes. These patterns are specific to the retroviral insertion, as the same genes in species without the LTRs do not exhibit the same effect. Although the LTRs can be transcribed themselves, the most highly transcribed TEs do not have the largest effects on adjacent regulation of coding genes, suggesting they function predominantly as enhancers. Moreover, the tissue-specific patterns of gene expression that are detected by our method arise from a limited number of genes, rather than as a general consequence of LTR integration. These findings identify basic principles of co-opting LTRs for genome evolution, and support the utility of our method for the analysis of TE, or other specific gene sets, in relation to the rest of the genome.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine
| | - Kaori Hiratsuka
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine
| | - Kayleigh A Swaggart
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine
| | - Caitlin Dunn
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine
| | - Louis Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
27
|
Abstract
This review provides an overview of the unique features of DNA methylation in the human placenta. We discuss the importance of understanding placental development, structure, and function in the interpretation of DNA methylation data. Examples are given of how DNA methylation is important in regulating placental-specific gene expression, including monoallelic expression and X-chromosome inactivation in the placenta. We also discuss studies of global DNA methylation changes in the context of placental pathology and environmental exposures.
Collapse
Affiliation(s)
- Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - E Magda Price
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
28
|
Gim JA, Ha HS, Ahn K, Kim DS, Kim HS. Genome-Wide Identification and Classification of MicroRNAs Derived from Repetitive Elements. Genomics Inform 2014; 12:261-7. [PMID: 25705168 PMCID: PMC4330264 DOI: 10.5808/gi.2014.12.4.261] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/29/2014] [Accepted: 10/28/2014] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) are known for their role in mRNA silencing via interference pathways. Repetitive elements (REs) share several characteristics with endogenous precursor miRNAs. In this study, 406 previously identified and 1,494 novel RE-derived miRNAs were sorted from the GENCODE v.19 database using the RepeatMasker program. They were divided into six major types, based on their genomic structure. More novel RE-derived miRNAs were confirmed than identified as RE-derived miRNAs. In conclusion, many miRNAs have not yet been identified, most of which are derived from REs.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - Hong-Seok Ha
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kung Ahn
- TBI, Theragen BiO Institute, TheragenEtex, Suwon 443-270, Korea
| | - Dae-Soo Kim
- Genome Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
29
|
Yang G, Wang J, Shi XY, Yang XF, Ju J, Liu YJ, Li ZF, Li YF, Zou LP. Detection of global DNA hypomethylation of peripheral blood lymphocytes in patients with infantile spasms. Epilepsy Res 2014; 109:28-33. [PMID: 25524839 DOI: 10.1016/j.eplepsyres.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 11/19/2022]
Abstract
The pathogenesis of infantile spasms remains unclear. DNA methylation may play a pivotal role in the development of some types of neurological diseases, such as epilepsy. In this study, we aimed to investigate the relationship between global DNA methylation of peripheral blood leukocytes and cryptogenic infantile spasms. DNA from peripheral blood leukocytes was extracted from 20 patients with cryptogenic infantile spasms and 20 gender and age matched healthy controls. Global DNA methylation percentage of peripheral blood leukocytes was measured using a global DNA methylation quantification kit. Global DNA methylation levels of peripheral blood lymphocytes in patients with cryptogenic infantile spasms (23.4 ± 20.0%) were significantly lower than those in healthy controls (46.8 ± 8.4%). Furthermore, we did not find any association between the levels of DNA methylation and effectiveness of Adrenocorticotropic hormone treatment. Our study demonstrates that global DNA hypomethylation of peripheral blood lymphocytes is correlated with infantile spasms. This finding provides information for better understanding of the pathogenesis of infantile spasms.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Wang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiu-Yu Shi
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Fan Yang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun Ju
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu-Jie Liu
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi-Fang Li
- Department of Pediatrics, Linyi People's Hospital, Linyi 276000, Shandong, China
| | - Yu-Fen Li
- Department of Pediatrics, Linyi People's Hospital, Linyi 276000, Shandong, China
| | - Li-Ping Zou
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China; Beijing Institute for Brain Disorder, Beijing 100069, China.
| |
Collapse
|
30
|
Crichton JH, Dunican DS, MacLennan M, Meehan RR, Adams IR. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cell Mol Life Sci 2014; 71:1581-605. [PMID: 24045705 PMCID: PMC3983883 DOI: 10.1007/s00018-013-1468-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022]
Abstract
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline.
Collapse
Affiliation(s)
- James H. Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Donncha S. Dunican
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Richard R. Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Ian R. Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| |
Collapse
|
31
|
Macaulay EC, Roberts HE, Cheng X, Jeffs AR, Baguley BC, Morison IM. Retrotransposon hypomethylation in melanoma and expression of a placenta-specific gene. PLoS One 2014; 9:e95840. [PMID: 24759919 PMCID: PMC3997481 DOI: 10.1371/journal.pone.0095840] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
In the human placenta, DNA hypomethylation permits the expression of retrotransposon-derived genes that are normally silenced by methylation in somatic tissues. We previously identified hypomethylation of a retrotransposon-derived transcript of the voltage-gated potassium channel gene KCNH5 that is expressed only in human placenta. However, an RNA sequence from this placental-specific transcript has been reported in melanoma. This study examined the promoter methylation and expression of the retrotransposon-derived KCNH5 transcript in 25 melanoma cell lines to determine whether the acquisition of 'placental' epigenetic marks is a feature of melanoma. Methylation and gene expression analysis revealed hypomethylation of this retrotransposon in melanoma cell lines, particularly in those samples that express the placental KCNH5 transcript. Therefore we propose that hypomethylation of the placental-specific KCNH5 promoter is frequently associated with KCNH5 expression in melanoma cells. Our findings show that melanoma can develop hypomethylation of a retrotransposon-derived gene; a characteristic notably shared with the normal placenta.
Collapse
Affiliation(s)
- Erin C. Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- * E-mail:
| | - Hester E. Roberts
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Xi Cheng
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aaron R. Jeffs
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Bruce C. Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Ian M. Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| |
Collapse
|
32
|
Transcriptional derepression of the ERVWE1 locus following influenza A virus infection. J Virol 2014; 88:4328-37. [PMID: 24478419 DOI: 10.1128/jvi.03628-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Syncytin-1, a fusogenic protein encoded by a human endogenous retrovirus of the W family (HERV-W) element (ERVWE1), is expressed in the syncytiotrophoblast layer of the placenta. This locus is transcriptionally repressed in adult tissues through promoter CpG methylation and suppressive histone modifications. Whereas syncytin-1 appears to be crucial for the development and functioning of the human placenta, its ectopic expression has been associated with pathological conditions, such as multiple sclerosis and schizophrenia. We previously reported on the transactivation of HERV-W elements, including ERVWE1, during influenza A/WSN/33 virus infection in a range of human cell lines. Here we report the results of quantitative PCR analyses of transcripts encoding syncytin-1 in both cell lines and primary fibroblast cells. We observed that spliced ERVWE1 transcripts and those encoding the transcription factor glial cells missing 1 (GCM1), acting as an enhancer element upstream of ERVWE1, are prominently upregulated in response to influenza A/WSN/33 virus infection in nonplacental cells. Knockdown of GCM1 by small interfering RNA followed by infection suppressed the transactivation of ERVWE1. While the infection had no influence on CpG methylation in the ERVWE1 promoter, chromatin immunoprecipitation assays detected decreased H3K9 trimethylation (H3K9me3) and histone methyltransferase SETDB1 levels along with influenza virus proteins associated with ERVWE1 and other HERV-W loci in infected CCF-STTG1 cells. The present findings suggest that an exogenous influenza virus infection can transactivate ERVWE1 by increasing transcription of GCM1 and reducing H3K9me3 in this region and in other regions harboring HERV-W elements. IMPORTANCE Syncytin-1, a protein encoded by the env gene in the HERV-W locus ERVWE1, appears to be crucial for the development and functioning of the human placenta and is transcriptionally repressed in nonplacental tissues. Nevertheless, its ectopic expression has been associated with pathological conditions, such as multiple sclerosis and schizophrenia. In the present paper, we report findings suggesting that an exogenous influenza A virus infection can transactivate ERVWE1 by increasing the transcription of GCM1 and reducing the repressive histone mark H3K9me3 in this region and in other regions harboring HERV-W elements. These observations have implications of potential relevance for viral pathogenesis and for conditions associated with the aberrant transcription of HERV-W loci.
Collapse
|
33
|
Assinger A, Yaiw KC, Göttesdorfer I, Leib-Mösch C, Söderberg-Nauclér C. Human cytomegalovirus (HCMV) induces human endogenous retrovirus (HERV) transcription. Retrovirology 2013; 10:132. [PMID: 24219971 PMCID: PMC3842806 DOI: 10.1186/1742-4690-10-132] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that human cytomegalovirus (HCMV) is highly prevalent in tumours of different origin. This virus is implied to have oncogenic and oncomodulatory functions, through its ability to control host gene expression. Human endogenous retroviruses (HERV) are also frequently active in tumours of different origin, and are supposed to contribute as cofactors to cancer development. Due to the high prevalence of HCMV in several different tumours, and its ability to control host cell gene expression, we sought to define whether HCMV may affect HERV transcription. FINDINGS Infection of 3 established cancer cell lines, 2 primary glioblastoma cells, endothelial cells from 3 donors and monocytes from 4 donors with HCMV (strains VR 1814 or TB40/F) induced reverse transcriptase (RT) activity in all cells tested, but the response varied between donors. Both, gammaretrovirus-related class I elements HERV-T, HERV-W, HERV-F and ERV-9, and betaretrovirus-related class II elements HML-2 - 4 and HML-7 - 8, as well as spuma-virus related class III elements of the HERV-L group were up-regulated in response to HCMV infection in GliNS1 cells. Up-regulation of HERV activity was more pronounced in cells harbouring active HCMV infection, but was also induced by UV-inactivated virus. The effect was only slightly affected by ganciclovir treatment and was not controlled by the IE72 or IE86 HCMV genes. CONCLUSIONS Within this brief report we show that HCMV infection induces HERV transcriptional activity in different cell types.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Söderberg-Nauclér
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
34
|
Ahn K, Bae JH, Gim JA, Lee JR, Jung YD, Park KD, Han K, Cho BW, Kim HS. Identification and characterization of transposable elements inserted into the coding sequences of horse genes. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
St Laurent G, Shtokalo D, Dong B, Tackett MR, Fan X, Lazorthes S, Nicolas E, Sang N, Triche TJ, McCaffrey TA, Xiao W, Kapranov P. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol 2013; 14:R73. [PMID: 23876380 PMCID: PMC4053963 DOI: 10.1186/gb-2013-14-7-r73] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 07/22/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The function of the non-coding portion of the human genome remains one of the most important questions of our time. Its vast complexity is exemplified by the recent identification of an unusual and notable component of the transcriptome - very long intergenic non-coding RNAs, termed vlincRNAs. RESULTS Here we identify 2,147 vlincRNAs covering 10 percent of our genome. We show they are present not only in cancerous cells, but also in primary cells and normal human tissues, and are controlled by canonical promoters. Furthermore, vlincRNA promoters frequently originate from within endogenous retroviral sequences. Strikingly, the number of vlincRNAs expressed from endogenous retroviral promoters strongly correlates with pluripotency or the degree of malignant transformation. These results suggest a previously unknown connection between the pluripotent state and cancer via retroviral repeat-driven expression of vlincRNAs. Finally, we show that vlincRNAs can be syntenically conserved in humans and mouse and their depletion using RNAi can cause apoptosis in cancerous cells. CONCLUSIONS These intriguing observations suggest that vlincRNAs could create a framework that combines many existing short ESTs and lincRNAs into a landscape of very long transcripts functioning in the regulation of gene expression in the nucleus. Certain types of vlincRNAs participate at specific stages of normal development and, based on analysis of a limited set of cancerous and primary cell lines, they appear to be co-opted by cancer-associated transcriptional programs. This provides additional understanding of transcriptome regulation during the malignant state, and could lead to additional targets and options for its reversal.
Collapse
Affiliation(s)
- Georges St Laurent
- St. Laurent Institute, One Kendall Square, Cambridge, MA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
| | - Dmitry Shtokalo
- St. Laurent Institute, One Kendall Square, Cambridge, MA
- A.P.Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentjev ave., Novosibirsk 630090, Russia
| | - Biao Dong
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA
| | | | - Xiaoxuan Fan
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA
| | - Sandra Lazorthes
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France
- CNRS, LBCMCP, F-31062 Toulouse, France
| | - Estelle Nicolas
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France
- CNRS, LBCMCP, F-31062 Toulouse, France
| | - Nianli Sang
- Department of Biology, Drexel University, 3245 Chestnut St, PISB 417, Philadelphia, PA
| | - Timothy J Triche
- Department of Pathology, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA
| | - Timothy A McCaffrey
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, D.C
| | - Weidong Xiao
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA
| | | |
Collapse
|
36
|
Jung YD, Ahn K, Kim YJ, Bae JH, Lee JR, Kim HS. Retroelements: molecular features and implications for disease. Genes Genet Syst 2013; 88:31-43. [PMID: 23676708 DOI: 10.1266/ggs.88.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic genomes comprise numerous retroelements that have a major impact on the structure and regulation of gene function. Retroelements are regulated by epigenetic controls, and they generate multiple miRNAs that are involved in the induction and progression of genomic instability. Elucidation of the biological roles of retroelements deserves continuous investigation to better understand their evolutionary features and implications for disease.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
37
|
Reichmann J, Reddington JP, Best D, Read D, Öllinger R, Meehan RR, Adams IR. The genome-defence gene Tex19.1 suppresses LINE-1 retrotransposons in the placenta and prevents intra-uterine growth retardation in mice. Hum Mol Genet 2013; 22:1791-806. [PMID: 23364048 PMCID: PMC3613164 DOI: 10.1093/hmg/ddt029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/19/2012] [Accepted: 01/24/2013] [Indexed: 12/11/2022] Open
Abstract
DNA methylation plays an important role in suppressing retrotransposon activity in mammalian genomes, yet there are stages of mammalian development where global hypomethylation puts the genome at risk of retrotransposition-mediated genetic instability. Hypomethylated primordial germ cells appear to limit this risk by expressing a cohort of retrotransposon-suppressing genome-defence genes whose silencing depends on promoter DNA methylation. Here, we investigate whether similar mechanisms operate in hypomethylated trophectoderm-derived components of the mammalian placenta to couple expression of genome-defence genes to the potential for retrotransposon activity. We show that the hypomethylated state of the mouse placenta results in activation of only one of the hypomethylation-sensitive germline genome-defence genes: Tex19.1. Tex19.1 appears to play an important role in placenta function as Tex19.1(-/-) mouse embryos exhibit intra-uterine growth retardation and have small placentas due to a reduction in the number of spongiotrophoblast, glycogen trophoblast and sinusoidal trophoblast giant cells. Furthermore, we show that retrotransposon mRNAs are derepressed in Tex19.1(-/-) placentas and that protein encoded by the LINE-1 retrotransposon is upregulated in hypomethylated trophectoderm-derived cells that normally express Tex19.1. This study suggests that post-transcriptional genome-defence mechanisms are operating in the placenta to protect the hypomethylated cells in this tissue from retrotransposons and suggests that imbalances between retrotransposon activity and genome-defence mechanisms could contribute to placenta dysfunction and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard R. Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Ian R. Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
38
|
Nakkuntod J, Sukkapan P, Avihingsanon Y, Mutirangura A, Hirankarn N. DNA methylation of human endogenous retrovirus in systemic lupus erythematosus. J Hum Genet 2013; 58:241-9. [PMID: 23466822 DOI: 10.1038/jhg.2013.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previous studies have reported that T cells from active systemic lupus erythematosus (SLE) patients contained global hypomethylation and demethylation at the promoter of several genes, which may contribute to the pathogenesis of the disease. Currently there are scarce data on methylation of retroelements in patients with SLE. We estimated and compared the methylated levels of human endogenous retroviruses (HERV)-E and HERV-K in normal and SLE CD3+CD4+ T lymphocytes, CD8+ T and B lymphocytes by using combined bisulfite restriction analysis-interspersed repetitive sequences (COBRA-IRS). HERV-E LTR2C methylation level in CD3+CD4+ T lymphocytes of active SLE was significantly lower than inactive SLE and normal controls (P=0.023 and 0.035, respectively). Surprisingly, HERV-K LTR5_Hs hypomethylation was significantly detected in CD3+CD4+ T lymphocytes from patients with inactive SLE when compared with the active SLE and normal controls (P=0.027 and 0.002, respectively). Demethylation of HERV-K LTR5_Hs in B cells was also detected when compared with the normal controls (P=0.048). Furthermore, the hypomethylation of HERV-E LTR2C in CD3+CD4+ T lymphocytes was positively correlated with lymphopenia in active SLE, whereas the hypomethylation of HERV-K LTR5_Hs was significantly correlated with complement activity and Systemic Lupus Erythematosus Disease Activity Index score. In summary, for each lymphocyte subset in patients with SLE, IRS hypomethylation was found to be type specific. Further studies are needed to confirm and explain these observations.
Collapse
Affiliation(s)
- Jeerawat Nakkuntod
- Medical Microbiology Interdisciplinary Program, Graduate School Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
39
|
Strissel PL, Ruebner M, Thiel F, Wachter D, Ekici AB, Wolf F, Thieme F, Ruprecht K, Beckmann MW, Strick R. Reactivation of codogenic endogenous retroviral (ERV) envelope genes in human endometrial carcinoma and prestages: Emergence of new molecular targets. Oncotarget 2013; 3:1204-19. [PMID: 23085571 PMCID: PMC3717959 DOI: 10.18632/oncotarget.679] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endometrial carcinoma (EnCa) is the most common invasive gynaecologic carcinoma. Over 85% of EnCa are classified as endometrioid, expressing steroid hormone receptors and mostly involving pathological prestages. Human endogenous retroviruses (ERV) are chromosomally integrated genes, account for about 8% of the human genome and are implicated in the etiology of carcinomas. The majority of ERV envelope (env) coding genes are either not present or not consistently represented between common gene expression microarrays. The aim of this study was to analyse the absolute gene expression of all known 21 ERV env genes including 19 codogenic and two env genes with premature stop codons in EnCa, endometrium as well as in hyperplasia and polyps. For EnCa seven env genes had high expression with >200 mol/ng cDNA (e.g. envH1-3, Syncytin-1, envT), two middle >50 mol/ng cDNA (envFc2, erv-3) and 12 low <50 mol/ng cDNA (e.g. Syncytin-2, envV2). Regarding tumor parameters, Syncytin-1 and Syncytin-2 were significantly over-expressed in advanced stage pT2 compared to pT1b. In less differentiated EnCa Syncytin-1, erv-3, envT and envFc2 were significantly over-expressed. Syncytin-1, Syncytin-2 and erv-3 were specific to glandular epithelial cells of polyps, hyperplasia and EnCa using immunohistochemistry. An analysis of 10 patient-matched EnCa with endometrium revealed that the ERV-W 5' long terminal repeat regulating Syncytin-1 was hypomethylated, including the ERE and CRE overlapping MeCP2 sites. Functional analyses showed that 10 env genes were regulated by methylation in EnCa using the RL95-2 cell line. In conclusion, over-expressed env genes could serve as indicators for pathological pre-stages and EnCa.
Collapse
Affiliation(s)
- Pamela L Strissel
- University-Clinic Erlangen, Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Reduced syncytin-1 expression levels in placental syndromes correlates with epigenetic hypermethylation of the ERVW-1 promoter region. PLoS One 2013; 8:e56145. [PMID: 23457515 PMCID: PMC3573012 DOI: 10.1371/journal.pone.0056145] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
Terminal differentiation of villous cytotrophoblasts (CT) ends in formation of the multinucleated syncytiotrophoblast representing the fetal-maternal interface. Aberrations during this cell-fusion process are associated with Intrauterine Growth Restriction (IUGR), Preeclampsia (PE) and High Elevated Liver and Low Platelets (HELLP) Syndrome. Syncytin-1, the envelope gene of the human Endogenous Retrovirus ERVW-1, is one of the most important genes involved in cell-fusion and showed decreased gene expression during these pathological pregnancies. The aim of this study was to determine the methylation pattern of the entire promoter of ERVW-1 and to correlate these findings with the expression profile of Syncytin-1 in the placental syndromes. 14 isolated villous cytotrophoblasts from control (n = 3), IUGR (n = 3), PE (n = 3), PE/IUGR (n = 3) and HELLP/IUGR (n = 2) placentae were used to determine the mean methylation level (ML) for the ERVW-1 promoter region. ML rose significantly from 29% in control CTs to 49% in IUGR, 53% in PE, 47% in PE/IUGR and 64% in HELLP/IUGR indicating an epigenetic down-regulation of Syncytin-1 by promoter hypermethylation. DNA demethylation of the trophoblast like cell lines BeWo, JEG-3 and JAR with 5-AZA-2′desoxycytidine (AZA) showed an increased Syncytin-1 expression and fusion ability in all cell lines. Promoter activity of the 5′LTR could be inhibited by hypermethylation 42-fold using a luciferase based reporter-gene assay. Finally overexpression of the methyltransferases DNMT3a and LSH could be responsible for a decreased Syncytin-1 expression by promoter hypermethylation of ERVW-1. Our study linked decreased Syncytin-1 expression to an epigenetic hypermethylation of the entire promoter of ERVW-1. Based on our findings we are predicting a broad aberrant epigenetic DNA-methylation pattern in pathological placentae affecting placentogenesis, but also the development of the fetus and the mother during pregnancy.
Collapse
|
41
|
Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK. Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. THE JOURNAL OF IMMUNOLOGY 2013; 190:2001-8. [PMID: 23359504 DOI: 10.4049/jimmunol.1201379] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
FOXP3-expressing T regulatory cells (Tregs) can be divided into two distinct subsets: naturally occurring Tregs (nTregs) that develop in the thymus, and induced Tregs (iTregs) that differentiate in peripheral tissues upon exposure to Ag in a tolerogenic environment. Recently it has been proposed that expression of Helios, an Ikaros family transcription factor, may specifically identify nTregs, allowing specific tracking of Tregs from different origins in health and disease. Surprisingly, we found that Helios(-) cells can be readily identified within naive (CD45RA(+)CD31(+)CCR7(+)CD62L(+)) FOXP3(+) Tregs, a finding inconsistent with the notion that lack of Helios expression identifies Ag-experienced iTregs that should express memory markers. To investigate the phenotype and function of naive Helios(+) and Helios(-) Tregs within the nTreg population, we isolated single-cell clones from each subset. We found that both Helios(+) and Helios(-) nTreg clones have a similar suppressive capacity, as well as expression of FOXP3 and cell surface proteins, including CD39 and CTLA-4. Helios(-) nTregs, however, produced significantly more CCL3 and IFN-γ compared with Helios(+) nTregs. Despite increased cytokine/chemokine production, Helios(-) FOXP3(+) nTreg clones were demethylated at the FOXP3 Treg-specific demethylated region, indicative of Treg lineage stability. When cultured under Th1-polarizing conditions, Helios(+) and Helios(-) nTreg clones had an equal ability to produce IFN-γ. Collectively, these data show that a lack of Helios expression does not exclusively identify human iTregs, and, to our knowledge, the data provide the first evidence for the coexistence of Helios(+) and Helios(-) nTregs in human peripheral blood.
Collapse
Affiliation(s)
- Megan E Himmel
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | | |
Collapse
|
42
|
Laska MJ, Nissen KK, Nexø BA. (Some) cellular mechanisms influencing the transcription of human endogenous retrovirus, HERV-Fc1. PLoS One 2013; 8:e53895. [PMID: 23382858 PMCID: PMC3557288 DOI: 10.1371/journal.pone.0053895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022] Open
Abstract
DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. DNA methylation is considered an important mechanism for silencing of retroelements in the mammalian genome. However, the methylation of human endogenous retroviruses (HERVs) is not well investigated. The aim of this study was to investigate the transcriptional potential of HERV-Fc1 proviral 5'LTR in more detail, and examined the specific influence of CpG methylation on this LTR in number of cell lines. Specifically, the role of demethylating chemicals e.g. 5-aza-2' deoxycytidine and Trichostatin-A, in inducing or reactivating expression of HERV-Fc1 specific sequences and the mechanisms were investigated. In our present study, 5-aza-dC is shown to be a powerful inducer of HERV-Fc1, and at the same time it strongly inhibits methylation of DNA. Treatment with this demethylating agent 5-aza-dC, results in significantly increased levels of HERV-Fc1 expression in cells previously not expressing HERV-Fc1, or with a very low expression level. The extent of expression of HERV-Fc1 RNAs precisely correlates with the apparent extent of demethylation of the related DNA sequences. In conclusion, the results suggest that inhibition of DNA methylation/histone deacetylase can interfere with gene silencing mechanisms affecting HERV-Fc1 expression in human cells.
Collapse
|
43
|
HERV-E-mediated modulation of PLA2G4A transcription in urothelial carcinoma. PLoS One 2012; 7:e49341. [PMID: 23145155 PMCID: PMC3492278 DOI: 10.1371/journal.pone.0049341] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Human endogenous retroviruses (HERV) and related elements account for more than 8% of the human genome and significantly contribute to the human transcriptome by long terminal repeat (LTR) promoter activity. In this context, HERVs are thought to intervene in the expression of adjacent genes by providing regulatory sequences (cis-effect) or via noncoding RNA including natural antisense transcripts. To address the potential impact of HERV activity in urothelial carcinoma, we comparatively analyzed the HERV transcription profiles in paired samples of non-malignant urothelium and urothelial carcinoma derived from 13 patients with bladder cancer by means of a retrovirus-specific microarray (RetroArray). We established a characteristic HERV signature consisting of six ubiquitously active HERV subgroups (E4-1, HERV-Rb, ERV9, HERV-K-T47D, NMWV3, HERV-KC4). The transcription pattern is largely identical in human urothelial carcinoma, non-malignant urothelial tissue, four tumor-derived cell lines and in a non-malignant urothelial cell line (UROtsa). Quantitative reverse transcriptase PCR (qRT-PCR) of HERV-E4-1, HERV-K(HML-6) and HERV-T(S71-TK1) revealed a bias to lower HERV activity in carcinoma samples compared to non-malignant tissue. Determination of active HERV-E4-1 loci by cloning and sequencing revealed six HERV-E4-1 proviral loci that are differentially regulated in urothelial carcinoma cells and normal tissue. Two full-length HERV-E4-1 proviruses, HERV-Ec1 and HERV-Ec6, are located in antisense orientation in introns of the genes PLA2G4A and RNGTT, respectively. PLA2G4A encodes a cytosolic phospholipase A2 (cPLA2) that is dysregulated in many human tumors. PLA2G4A and HERV-Ec1 displayed reciprocal transcript levels in 7 of 11 urothelial carcinoma patients. Moreover, reciprocal shifts were observed after treatment of UROtsa cells with HERV-Ec1 and PLA2G4A-directed siRNAs or 5-aza-2′-deoxycytidine (aza-dC) pointing to an antagonistic regulation of PLA2G4A and HERV-Ec1 transcription in human urothelial cells. We suggest that transcription of HERV-Ec1 contributes to fine tuning of cPLA2 expression, thereby facilitating tumorigenesis.
Collapse
|
44
|
Rebollo R, Miceli-Royer K, Zhang Y, Farivar S, Gagnier L, Mager DL. Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol 2012; 13:R89. [PMID: 23034137 PMCID: PMC3491417 DOI: 10.1186/gb-2012-13-10-r89] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/03/2012] [Indexed: 11/15/2022] Open
Abstract
Background Transposable elements are often the targets of repressive epigenetic modifications such as DNA methylation that, in theory, have the potential to spread toward nearby genes and induce epigenetic silencing. To better understand the role of DNA methylation in the relationship between transposable elements and genes, we assessed the methylation state of mouse endogenous retroviruses (ERVs) located near genes. Results We found that ERVs of the ETn/MusD family show decreased DNA methylation when near transcription start sites in tissues where the nearby gene is expressed. ERVs belonging to the IAP family, however, are generally heavily methylated, regardless of the genomic environment and the tissue studied. Furthermore, we found full-length ETn and IAP copies that display differential DNA methylation between their two long terminal repeats (LTRs), suggesting that the environment surrounding gene promoters can prevent methylation of the nearby LTR. Spreading from methylated ERV copies to nearby genes was rarely observed, with the regions between the ERVs and genes apparently acting as a boundary, enriched in H3K4me3 and CTCF, which possibly protects the unmethylated gene promoter. Furthermore, the flanking regions of unmethylated ERV copies harbor H3K4me3, consistent with spreading of euchromatin from the host gene toward ERV insertions. Conclusions We have shown that spreading of DNA methylation from ERV copies toward active gene promoters is rare. We provide evidence that genes can be protected from ERV-induced heterochromatin spreading by either blocking the invasion of repressive marks or by spreading euchromatin toward the ERV copy.
Collapse
|
45
|
Barrera LN, Johnson IT, Bao Y, Cassidy A, Belshaw NJ. Colorectal cancer cells Caco-2 and HCT116 resist epigenetic effects of isothiocyanates and selenium in vitro. Eur J Nutr 2012; 52:1327-41. [PMID: 22923034 DOI: 10.1007/s00394-012-0442-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/10/2012] [Indexed: 12/27/2022]
Abstract
PURPOSE It is relatively unknown how different dietary components, in partnership, regulate gene expression linked to colon pathology. It has been suggested that the combination of various bioactive components present in a plant-based diet is crucial for their potential anticancer activities. This study employed a combinatorial chemopreventive strategy to investigate the impact of selenium and/or isothiocyanates on DNA methylation processes in colorectal carcinoma cell lines. METHODS To gain insights into the epigenetic-mediated changes in gene expression in response to these dietary constituents cultured Caco-2 and HCT116 cells were exposed for up to 12 days to different concentrations of selenium methylselenocysteine and selenite (ranging from 0.2 to 5 μM) either alone or in combination with sulforaphane and iberin (ranging from 6 to 8 μM), and changes to gene-specific (p16(INK4A) and ESR1), global (LINE-1) methylation and DNMT expression were quantified using real-time PCR-based assays. RESULTS No effects on the methylation of CpG islands in ESR1, p16(INK4A) or of LINE-1, a marker of global genomic methylation, were observed after exposure of Caco-2 and HCT116 cells to selenium or isothiocyanates. Only transient changes in DNMT mRNA expression, which occurred mostly in the treatment groups containing isothiocyanates, were observed, and these occurred only for specific DNMT transcripts and did not lead to the modification of the aberrant methylation status present in these cells. CONCLUSION These data suggest that treatment for colon cancer cells with selenium and/or isothiocyanates, either individually or in combination does not impact abnormal methylation patterns of key genes involved in the complex multistep process of colon carcinogenesis in vitro.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
46
|
Pérot P, Mugnier N, Montgiraud C, Gimenez J, Jaillard M, Bonnaud B, Mallet F. Microarray-based sketches of the HERV transcriptome landscape. PLoS One 2012; 7:e40194. [PMID: 22761958 PMCID: PMC3386233 DOI: 10.1371/journal.pone.0040194] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/02/2012] [Indexed: 12/15/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are spread throughout the genome and their long terminal repeats (LTRs) constitute a wide collection of putative regulatory sequences. Phylogenetic similarities and the profusion of integration sites, two inherent characteristics of transposable elements, make it difficult to study individual locus expression in a large-scale approach, and historically apart from some placental and testis-regulated elements, it was generally accepted that HERVs are silent due to epigenetic control. Herein, we have introduced a generic method aiming to optimally characterize individual loci associated with 25-mer probes by minimizing cross-hybridization risks. We therefore set up a microarray dedicated to a collection of 5,573 HERVs that can reasonably be assigned to a unique genomic position. We obtained a first view of the HERV transcriptome by using a composite panel of 40 normal and 39 tumor samples. The experiment showed that almost one third of the HERV repertoire is indeed transcribed. The HERV transcriptome follows tropism rules, is sensitive to the state of differentiation and, unexpectedly, seems not to correlate with the age of the HERV families. The probeset definition within the U3 and U5 regions was used to assign a function to some LTRs (i.e. promoter or polyA) and revealed that (i) autonomous active LTRs are broadly subjected to operational determinism (ii) the cellular gene density is substantially higher in the surrounding environment of active LTRs compared to silent LTRs and (iii) the configuration of neighboring cellular genes differs between active and silent LTRs, showing an approximately 8 kb zone upstream of promoter LTRs characterized by a drastic reduction in sense cellular genes. These gathered observations are discussed in terms of virus/host adaptive strategies, and together with the methods and tools developed for this purpose, this work paves the way for further HERV transcriptome projects.
Collapse
Affiliation(s)
- Philippe Pérot
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France
| | - Nathalie Mugnier
- BioMérieux, Data and Knowledge Laboratory, Marcy l’Etoile, France
| | - Cécile Montgiraud
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France
| | - Juliette Gimenez
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France
| | - Magali Jaillard
- BioMérieux, Data and Knowledge Laboratory, Marcy l’Etoile, France
| | - Bertrand Bonnaud
- BioMérieux, Data and Knowledge Laboratory, Marcy l’Etoile, France
| | - François Mallet
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Lyon, France
- * E-mail:
| |
Collapse
|
47
|
Novakovic B, Saffery R. DNA methylation profiling highlights the unique nature of the human placental epigenome. Epigenomics 2012; 2:627-38. [PMID: 22122048 DOI: 10.2217/epi.10.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As the 'gateway' to the fetus, the placenta is subject to a myriad of environmental factors, each with the potential to alter placental epigenetic and gene expression profile. This can have direct consequences for the developing fetus and potentially even long-term health implications. As a result, interest in placental epigenetics generally, and changes occurring in placenta-associated disease, has intensified over recent years. This article will discuss the general features of placental DNA methylation and will describe current technologies for profiling genome-wide DNA methylation patterns in this tissue, the approaches to data analysis and some of the major findings from recent studies.
Collapse
Affiliation(s)
- Boris Novakovic
- Developmental Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital & Department of Paediatrics, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | | |
Collapse
|
48
|
Brown JD, Piccuillo V, O'Neill RJ. Retroelement demethylation associated with abnormal placentation in Mus musculus x Mus caroli hybrids. Biol Reprod 2012; 86:88. [PMID: 22116807 DOI: 10.1095/biolreprod.111.095273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The proper functioning of the placenta requires specific patterns of methylation and the appropriate regulation of retroelements, some of which have been co-opted by the genome for placental-specific gene expression. Our inquiry was initiated to determine the causes of the placental defects observed in crosses between two species of mouse, Mus musculus and Mus caroli. M. musculus × M. caroli fetuses are rarely carried to term, possibly as a result of genomic incompatibility in the placenta. Taking into account that placental dysplasia is observed in Peromyscus and other Mus hybrids, and that endogenous retroviruses are expressed in the placental transcriptome, we hypothesized that these placental defects could result, in part, from failure of the genome defense mechanism, DNA methylation, to regulate the expression of retroelements. Hybrid M. musculus × M. caroli embryos were produced by artificial insemination, and dysplastic placentas were subjected to microarray and methylation screens. Aberrant overexpression of an X-linked Mus retroelement in these hybrid placentas is consistent with local demethylation of this retroelement, concomitant with genome instability, disruption of gene regulatory pathways, and dysgenesis. We propose that the placenta is a specific site of control that is disrupted by demethylation and retroelement activation in interspecific hybridization that occur as a result of species incompatibility of methylation machinery. To our knowledge, the present data provide the first report of retroelement activation linked to decreased methylation in a eutherian hybrid system.
Collapse
Affiliation(s)
- Judith D Brown
- Diagnostic Genetic Sciences Program, Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269-2131, USA
| | | | | |
Collapse
|
49
|
Cohen CJ, Crome SQ, MacDonald KG, Dai EL, Mager DL, Levings MK. Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. THE JOURNAL OF IMMUNOLOGY 2011; 187:5615-26. [PMID: 22048764 DOI: 10.4049/jimmunol.1101058] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The linear model of Th cell lineage commitment is being revised due to reports that mature Th cells can trans-differentiate into alternate lineages. This ability of Th cells to reprogram is thought to be regulated by epigenetic mechanisms that control expression of transcription factors characteristic of opposing lineages. It is unclear, however, to what extent this new model of Th cell plasticity holds true in human Th cell subsets that develop under physiological conditions in vivo. We isolated in vivo-differentiated human Th1 and Th17 cells, as well as intermediate Th1/17 cells, and identified distinct epigenetic signatures at cytokine (IFNG and IL17A) and transcription factor (TBX21, RORC, and RORA) loci. We also examined the phenotypic and epigenetic stability of human Th17 cells exposed to Th1-polarizing conditions and found that although they could upregulate TBX21 and IFN-γ, this occurred without loss of IL-17 or RORC expression, and resulted in cells with a Th1/17 phenotype. Similarly, Th1 cells could upregulate IL-17 upon enforced expression of RORC2, but did not lose expression of IFN-γ or TBX21. Despite alterations in expression of these signature genes, epigenetic modifications were remarkably stable aside from the acquisition of active histone methylation marks at cytokine gene promoters. The limited capacity of human Th17 and Th1 cells to undergo complete lineage conversion suggests that the bipotent Th1/17 cells may arise from Th1 and/or Th17 cells. These data also question the broad applicability of the new model of Th cell lineage plasticity to in vivo-polarized human Th cell subsets.
Collapse
Affiliation(s)
- Carla J Cohen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet 2011; 7:e1002301. [PMID: 21980304 PMCID: PMC3183085 DOI: 10.1371/journal.pgen.1002301] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022] Open
Abstract
The "arms race" relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE-induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness.
Collapse
|