1
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Kumar KK, Varanavasiappan S, Arul L, Kokiladevi E, Sudhakar D. Strategies for Efficient RNAi-Based Gene Silencing of Viral Genes for Disease Resistance in Plants. Methods Mol Biol 2022; 2408:23-35. [PMID: 35325414 DOI: 10.1007/978-1-0716-1875-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved gene silencing mechanism in eukaryotes including fungi, plants, and animals. In plants, gene silencing regulates gene expression, provides genome stability, and protect against invading viruses. During plant virus interaction, viral genome derived siRNAs (vsiRNA) are produced to mediate gene silencing of viral genes to prevent virus multiplication. After the discovery of RNAi phenomenon in eukaryotes, it is used as a powerful tool to engineer plant viral disease resistance against both RNA and DNA viruses. Despite several successful reports on employing RNA silencing methods to engineer plant for viral disease resistance, only a few of them have reached the commercial stage owing to lack of complete protection against the intended virus. Based on the knowledge accumulated over the years on genetic engineering for viral disease resistance, there is scope for effective viral disease control through careful design of RNAi gene construct. The selection of target viral gene(s) for developing the hairpin RNAi (hp-RNAi) construct is very critical for effective protection against the viral disease. Different approaches and bioinformatics tools which can be employed for effective target selection are discussed. The selection of suitable target regions for RNAi vector construction can help to achieve a high level of transgenic virus resistance.
Collapse
Affiliation(s)
- Krish K Kumar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Shanmugam Varanavasiappan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Loganathan Arul
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Easwaran Kokiladevi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Duraialagaraja Sudhakar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Hu W, Zheng H, Li Q, Wang Y, Liu X, Hu X, Liu W, Liu S, Chen Z, Feng W, Cai X, Li N. shRNA transgenic swine display resistance to infection with the foot-and-mouth disease virus. Sci Rep 2021; 11:16377. [PMID: 34385528 PMCID: PMC8361160 DOI: 10.1038/s41598-021-95853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most important animal pathogens in the world. FMDV naturally infects swine, cattle, and other cloven-hoofed animals. FMD is not adequately controlled by vaccination. An alternative strategy is to develop swine that are genetically resistant to infection. Here, we generated FMDV-specific shRNA transgenic cells targeting either nonstructural protein 2B or polymerase 3D of FMDV. The shRNA-positive transgenic cells displayed significantly lower viral production than that of the control cells after infection with FMDV (P < 0.05). Twenty-three transgenic cloned swine (TGCS) and nine non-transgenic cloned swine (Non-TGCS) were produced by somatic cell nuclear transfer (SCNT). In the FMDV challenge study, one TGCS was completely protected, no clinical signs, no viremia and no viral RNA in the tissues, no non-structural antibody response, another one TGCS swine recovered after showing clinical signs for two days, whereas all of the normal control swine (NS) and Non-TGCS developed typical clinical signs, viremia and viral RNA was determined in the tissues, the non-structural antibody was determined, and one Non-TGCS swine died. The viral RNA load in the blood and tissues of the TGCS was reduced in both challenge doses. These results indicated that the TGCS displayed resistance to the FMDV infection. Immune cells, including CD3+, CD4+, CD8+, CD21+, and CD172+ cells, and the production of IFN-γ were analyzed, there were no significant differences observed between the TGCS and NS or Non-TGCS, suggesting that the FMDV resistance may be mainly derived from the RNAi-based antiviral pathway. Our work provides a foundation for a breeding approach to preventing infectious disease in swine.
Collapse
Affiliation(s)
- Wenping Hu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qiuyan Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.,Beijing Genprotein Biotechnology Company, Beijing, China
| | - Yuhang Wang
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaoxiang Hu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Wenjie Liu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Shen Liu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Zhisheng Chen
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Wenhai Feng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells 2020; 9:E137. [PMID: 31936122 PMCID: PMC7016530 DOI: 10.3390/cells9010137] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.
Collapse
Affiliation(s)
- Sarah Bajan
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2000, Australia
- Health and Sport Science, University of Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
5
|
Wang T, Xie Z. Construction and Integration of a Synthetic MicroRNA Cluster for Multiplex RNA Interference in Mammalian Cells. Methods Mol Biol 2018; 1772:347-359. [PMID: 29754238 DOI: 10.1007/978-1-4939-7795-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Basic biological research and biomedical applications often require studying the multiple interactions between genes or proteins while multiplex RNA interference (RNAi) technology is still challenging in mammalian cells. In mammalian genomes, the natural microRNA (miRNA) clusters, of which the miRNAs often share similar expression patterns and target diverse genes, would provide a potential multiplex RNAi scaffold. Based on the natural pri-miR-155 precursor, we have developed and characterized a multiplex RNAi method by engineering synthetic miRNA clusters, among which the maturation and function of individual miRNA precursors are independent of their positions in the cluster. And the synthetic miRNA clusters are assembled by an efficient hierarchical Golden-Gate cloning method. Here, we describe the design rules and the hierarchical cloning methods to construct synthetic miRNA cluster, and the brief protocol for the integration of synthetic miRNA clusters into the mammalian genome.
Collapse
Affiliation(s)
- Tingting Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Scarborough RJ, Gatignol A. RNA Interference Therapies for an HIV-1 Functional Cure. Viruses 2017; 10:E8. [PMID: 29280961 PMCID: PMC5795421 DOI: 10.3390/v10010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.
Collapse
Affiliation(s)
- Robert J Scarborough
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A0G4, Canada.
| |
Collapse
|
7
|
Imran M, Waheed Y, Ghazal A, Ullah S, Safi SZ, Jamal M, Ali M, Atif M, Imran M, Ullah F. Modern biotechnology-based therapeutic approaches against HIV infection. Biomed Rep 2017; 7:504-507. [PMID: 29250325 PMCID: PMC5727756 DOI: 10.3892/br.2017.1006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
The causative agent of acquired immune deficiency syndrome (AIDS) is human immunodeficiency virus (HIV). Since its discovery before 30 years, a number of drugs known as highly active antiretroviral therapy have been developed to suppress the life cycle of the virus at different stages. With the current therapeutic approaches, ending AIDS means providing treatment to 35 million individuals living with HIV for the rest of their lives or until a cure is developed. Additionally, therapy is associated with various other challenges such as potential of drug resistance, toxicity and presence of latent viral reservoir. Therefore, it is imperative to search for treatments and to identify new therapeutic approaches against HIV infection to avoid daily intake of drugs. The aim of the current review was to summarize different therapeutic strategies against HIV infection, including stem cell therapy, RNA interference, CRISPR/Cas9 pathways, antibodies, intrabodies and nanotechnology. Silencing RNA against chemokine receptor 5 and other HIV RNAs have been tested and found to elicit homology-based, post-transcriptional silencing. The CRISPR/Cas9 is a gene editing technology that produces a double-stranded nick in the virus DNA, which is repaired by the host machinery either by non-homology end joining mechanism or via homology recombination leading to insertion, deletion mutation which further leads to frame shift mutation and non-functional products. Intrabodies are intracellular-expressed antibodies that are directed towards the targets inside the cell unlike the naturally expressed antibodies which target outside the cell. Different nanotechnology-based therapeutic approaches are also in progress against HIV. HIV eradication is not feasible without deploying a cure or vaccine alongside the treatment.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore 54600, Pakistan
| | - Yasir Waheed
- Foundation University Medical College, Foundation University, Islamabad 44000, Pakistan
| | - Ayesha Ghazal
- Department of Microbiology, University of Health Sciences, Lahore 54600, Pakistan
| | - Sajjad Ullah
- Department of Medical Laboratory Sciences, Imperial College of Business Studies, Lahore 53720, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan 23200, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, University of Management Technology, Lahore 54600, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Sakaka, Saudi Arabia
| | - Muhammad Imran
- Department of Diet and Nutrition, Imperial College of Business Studies, Lahore 54600, Pakistan
- Correspondence to: Dr Muhammad Imran, Department of Microbiology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan, E-mail:
| | - Farman Ullah
- Department of Physiology, Shaheed Zulfiqar Ali Bhutto Medical university Islamabad, Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Liu C, Liang Z, Kong X. Efficacy Analysis of Combinatorial siRNAs against HIV Derived from One Double Hairpin RNA Precursor. Front Microbiol 2017; 8:1651. [PMID: 28900421 PMCID: PMC5581867 DOI: 10.3389/fmicb.2017.01651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/15/2017] [Indexed: 01/18/2023] Open
Abstract
Combinatorial small interfering RNA duplexes (siRNAs) have the potential to be a gene therapy against HIV-1, and some studies have reported that transient combinatorial siRNA expression represses HIV replication, but the effects of long-term siRNA expression on HIV replication have not been studied in detail. In this study, HIV-1 replication under the influence of stable combinatorial siRNA expression from a single RNA transcript was analyzed. First, a series of cassettes encoding short hairpin RNA (shRNA)/long hairpin RNA (lhRNA)/double long hairpins (dlhRNA) was constructed and subjected to an analysis of inhibitory efficacy. Next, an optimized dlhRNA encoding cassette was selected and inserted into lentiviral delivery vector FG12. Transient dlhRNA expression reduced replication of HIV-1 in TZM-bl cells and CD4+ T cells successfully. HIV-1 susceptible TZM-bl cells were transducted with the dlhRNA expressing lentiviral vector and sorted by fluorescence-activated cell sorting to obtain stable dlhRNA expressing cells. The generation of four anti-HIV siRNAs in these dlhRNA expressing cells was verified by stem-loop RT-PCR assay. dlhRNA expression did not activate a non-specific interferon response. The dlhRNA expressing cells were also challenged with HIV-1 NL4-3, which revealed that stable expression of combinatorial siRNAs repressed HIV-1 replication for 8 days, after which HIV-1 overcame the inhibitory effect of siRNA expression by expressing mutant versions of RNAi targets. The results of this evaluation of the long-term inhibitory effects of combinatorial siRNAs against HIV-1 provide a reference for researchers who utilize combinatorial RNA interference against HIV-1 or other error-prone viruses.
Collapse
Affiliation(s)
- Chang Liu
- Medical Molecular Virology Laboratory, School of Medicine, Nankai UniversityTianjin, China
| | - Zhipin Liang
- Medical Molecular Virology Laboratory, School of Medicine, Nankai UniversityTianjin, China
| | - Xiaohong Kong
- Medical Molecular Virology Laboratory, School of Medicine, Nankai UniversityTianjin, China
| |
Collapse
|
9
|
Lin AH, Twitty CG, Burnett R, Hofacre A, Mitchell LA, Espinoza FL, Gruber HE, Jolly DJ. Retroviral Replicating Vector Delivery of miR-PDL1 Inhibits Immune Checkpoint PDL1 and Enhances Immune Responses In Vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:221-232. [PMID: 28325288 PMCID: PMC5363416 DOI: 10.1016/j.omtn.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023]
Abstract
Tumor cells express a number of immunosuppressive molecules that can suppress anti-tumor immune responses. Efficient delivery of small interfering RNAs to treat a wide range of diseases including cancers remains a challenge. Retroviral replicating vectors (RRV) can be used to stably and selectively introduce genetic material into cancer cells. Here, we designed RRV to express shRNA (RRV-shPDL1) or microRNA30-derived shRNA (RRV-miRPDL1) using Pol II or Pol III promoters to downregulate PDL1 in human cancer cells. We also designed RRV expressing cytosine deaminase (yCD2) and miRPDL1 for potential combinatorial therapy. Among various configurations tested, we showed that RRV-miRPDL1 vectors with Pol II or Pol III promoter replicated efficiently and exhibited sustained downregulation of PDL1 protein expression by more than 75% in human cancer cell lines with high expression of PDL1. Immunologic effects of RRV-miRPDL1 were assessed by a trans-suppression lymphocyte assay. In vitro data showed downregulation of PDL1+ tumor cells restored activation of CD8+ T cells and bio-equivalency compared to anti-PDL1 antibody treatment. These results suggest RRV-miRPDL1 may be an alternative therapeutic approach to enhance anti-tumor immunity by overcoming PDL1-induced immune suppression from within cancer cells and this approach may also be applicable to other cancer targets.
Collapse
Affiliation(s)
- Amy H Lin
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230, San Diego, CA 92109, USA
| | | | - Ryan Burnett
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230, San Diego, CA 92109, USA
| | - Andrew Hofacre
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230, San Diego, CA 92109, USA
| | - Leah A Mitchell
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230, San Diego, CA 92109, USA
| | | | - Harry E Gruber
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230, San Diego, CA 92109, USA
| | - Douglas J Jolly
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230, San Diego, CA 92109, USA.
| |
Collapse
|
10
|
Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 2016; 44:1355-1365. [DOI: 10.1042/bst20160060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 01/02/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.
Collapse
|
11
|
Swamy MN, Wu H, Shankar P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev 2016; 103:174-186. [PMID: 27013255 PMCID: PMC4935623 DOI: 10.1016/j.addr.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) provides a powerful tool to silence specific gene expression and has been widely used to suppress host factors such as CCR5 and/or viral genes involved in HIV-1 replication. Newer nuclease-based gene-editing technologies, such as zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, also provide powerful tools to ablate specific genes. Because of differences in co-receptor usage and the high mutability of the HIV-1 genome, a combination of host factors and viral genes needs to be suppressed for effective prevention and treatment of HIV-1 infection. Whereas the continued presence of small interfering/short hairpin RNA (si/shRNA) mediators is needed for RNAi to be effective, the continued expression of nucleases in the gene-editing systems is undesirable. Thus, RNAi provides the only practical way for expression of multiple silencers in infected and uninfected cells, which is needed for effective prevention/treatment of infection. There have been several advances in the RNAi field in terms of si/shRNA design, targeted delivery to HIV-1 susceptible cells, and testing for efficacy in preclinical humanized mouse models. Here, we comprehensively review the latest advances in RNAi technology towards prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Manjunath N Swamy
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Haoquan Wu
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Premlata Shankar
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| |
Collapse
|
12
|
Spanevello F, Calistri A, Del Vecchio C, Mantelli B, Frasson C, Basso G, Palù G, Cavazzana M, Parolin C. Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e312. [PMID: 27093170 PMCID: PMC5014525 DOI: 10.1038/mtna.2016.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023]
Abstract
Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi)-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs) targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1) were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA) was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4(+) T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application.
Collapse
Affiliation(s)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Barbara Mantelli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Chiara Frasson
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Giuseppe Basso
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique–Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Tchurikov NA, Fedoseeva DM, Gashnikova NM, Sosin DV, Gorbacheva MA, Alembekov IR, Chechetkin VR, Kravatsky YV, Kretova OV. Conserved sequences in the current strains of HIV-1 subtype A in Russia are effectively targeted by artificial RNAi in vitro. Gene 2016; 583:78-83. [PMID: 26947394 DOI: 10.1016/j.gene.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 10/25/2022]
Abstract
Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy. RNAi is a powerful means of inhibiting HIV-1 production in human cells. We propose to use RNAi for gene therapy of HIV/AIDS. Previously we identified a number of new biologically active siRNAs targeting several moderately conserved regions in HIV-1 transcripts. Here we analyze the heterogeneity of nucleotide sequences in three RNAi targets in sequences encoding the reverse transcriptase and integrase domains of current isolates of HIV-1 subtype A in Russia. These data were used to generate genetic constructs expressing short hairpin RNAs 28-30-bp in length that could be processed in cells into siRNAs. After transfection of the constructs we observed siRNAs that efficiently attacked the selected targets. We expect that targeting several viral genes important for HIV-1 reproduction will help overcome the problem of viral adaptation and will prevent the appearance of RNAi escape mutants in current virus strains, an important feature of gene therapy of HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | - Dmitri V Sosin
- Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | | | | | | | - Yuri V Kravatsky
- Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Olga V Kretova
- Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| |
Collapse
|
14
|
Herrera-Carrillo E, Berkhout B. Bone Marrow Gene Therapy for HIV/AIDS. Viruses 2015; 7:3910-36. [PMID: 26193303 PMCID: PMC4517133 DOI: 10.3390/v7072804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022] Open
Abstract
Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
15
|
Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:71-95. [PMID: 25757616 DOI: 10.1007/978-1-4939-2432-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, K3-110 Meibergdreef 15, Amsterdam, 1105 AS, The Netherlands
| | | |
Collapse
|
16
|
Herrera-Carrillo E, Berkhout B. Potential mechanisms for cell-based gene therapy to treat HIV/AIDS. Expert Opin Ther Targets 2014; 19:245-63. [PMID: 25388088 DOI: 10.1517/14728222.2014.980236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION An estimated 35 million people are infected with HIV worldwide. Anti-retroviral therapy (ART) has reduced the morbidity and mortality of HIV-infected patients but efficacy requires strict adherence and the treatment is not curative. Most importantly, the emergence of drug-resistant virus strains and drug toxicity can restrict the long-term therapeutic efficacy in some patients. Therefore, novel treatment strategies that permanently control or eliminate the virus and restore the damaged immune system are required. Gene therapy against HIV infection has been the topic of intense investigations for the last two decades because it can theoretically provide such a durable anti-HIV control. AREAS COVERED In this review we discuss two major gene therapy strategies to combat HIV. One approach aims to kill HIV-infected cells and the other is based on the protection of cells from HIV infection. We discuss the underlying molecular mechanisms for candidate approaches to permanently block HIV infection, including the latest strategies and future therapeutic applications. EXPERT OPINION Hematopoietic stem cell-based gene therapy for HIV/AIDS may eventually become an alternative for standard ART and should ideally provide a functional cure in which the virus is durably controlled without medication. Recent results from preclinical research and early-stage clinical trials support the feasibility and safety of this novel strategy.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Academic Medical Center University of Amsterdam, Department of Medical Microbiology , Meibergdreef 15, Amsterdam, 1105 AZ , The Netherlands
| | | |
Collapse
|
17
|
Li T, Wu M, Zhu YY, Chen J, Chen L. Development of RNA Interference–Based Therapeutics and Application of Multi-Target Small Interfering RNAs. Nucleic Acid Ther 2014; 24:302-12. [DOI: 10.1089/nat.2014.0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tiejun Li
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Meihua Wu
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - York Yuanyuan Zhu
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Jianxin Chen
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, China
| |
Collapse
|
18
|
Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV1 replication. Future Microbiol 2014; 9:561-71. [DOI: 10.2217/fmb.14.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT: miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV1.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
- Current address: uniQure biopharma BV, Department of Research & Development, The Netherlands
| |
Collapse
|
19
|
Yang Y, Jittayasothorn Y, Chronis D, Wang X, Cousins P, Zhong GY. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS One 2013; 8:e69463. [PMID: 23874962 PMCID: PMC3712915 DOI: 10.1371/journal.pone.0069463] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/10/2013] [Indexed: 01/18/2023] Open
Abstract
Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5' end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs.
Collapse
Affiliation(s)
- Yingzhen Yang
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
| | - Yingyos Jittayasothorn
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Demosthenis Chronis
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Xiaohong Wang
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Peter Cousins
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
- E & J Gallo Winery, Modesto, California, United States of America
| | - Gan-Yuan Zhong
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
| |
Collapse
|
20
|
Abstract
RNA interference (RNAi) has been widely used as a tool for gene knockdown in fundamental research and for the development of new RNA-based therapeutics. The RNAi pathway is typically induced by expression of ∼22 base pair (bp) small interfering RNAs (siRNAs), which can be transfected into cells. For long-term gene silencing, short hairpin RNA (shRNA), or artificial microRNA (amiRNA) expression constructs have been developed that produce these RNAi inducers inside the cell. Currently, these types of constructs are broadly applied to knock down any gene of interest. Besides mono RNAi strategies that involve single shRNAs or amiRNAs, combinatorial RNAi approaches have been developed that allow the simultaneous expression of multiple siRNAs or amiRNAs by using polycistrons, extended shRNAs (e-shRNAs), or long hairpin RNAs (lhRNAs). Here, we provide practical information for the construction of single shRNA or amiRNA vectors, but also multi-shRNA/amiRNA constructs. Furthermore, we summarize the advantages and limitations of the most commonly used viral vectors for the expression of RNAi inducers.
Collapse
|
21
|
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNAs (shRNAs) for targeted gene silencing has become a benchmark technology. Using plasmid and viral vectoring systems, the transcription of shRNA precursors that are effectively processed by the RNAi pathway can lead to potent gene knockdown. The past decade has seen continual advancement and improvement to the various strategies that can be used for shRNA delivery, and the use of shRNAs for clinical applications is well underway. Driving these developments has been the many benefits afforded by shRNA technologies, including the stable integration of expression constructs for long-term expression, infection of difficult-to-target cell lines and tissues using viral vectors, and the temporal control of shRNA transcription by inducible promoters. The use of different effector molecule formats, promoters, and vector types, has meant that experiments can be tailored to target specific cell types and minimize cellular toxicities. Through the application of combinatorial RNAi (co-RNAi), multiple shRNA delivery strategies can improve gene knockdown, permit multiple transcripts to be targeted simultaneously, and curtail the emergence of viral escape mutants. This chapter reviews the history, cellular processing, and various applications of shRNAs in mammalian systems, including options for effector molecule design, vector and promoter types, and methods for multiple shRNA delivery.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Melbourne, VIC, Australia.
| | | |
Collapse
|
22
|
Daniel-Carlier N, Sawafta A, Passet B, Thépot D, Leroux-Coyau M, Lefèvre F, Houdebine LM, Jolivet G. Viral infection resistance conferred on mice by siRNA transgenesis. Transgenic Res 2012; 22:489-500. [PMID: 22961198 DOI: 10.1007/s11248-012-9649-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/28/2012] [Indexed: 11/25/2022]
Abstract
RNA interference is an attractive strategy to fight against viral diseases by targeting the mRNA of viral genes. Most studies have reported the transient delivery of small interfering RNA or small hairpin (shRNA) expression constructs. Here, we present the production of transgenic mice stably expressing shRNA or miRNA targeting the IE180 mRNA (immediate early gene) of the pseudorabies virus (PRV) which infects mice and farm animals. We firstly designed non-retroviral shRNA or miRNA expression vectors. Secondly, we selected the most efficient shRNA construct that targeted either the 5'part or 3'UTR of the IE mRNA and was able to knockdown the target gene expression in cultured cells, by measuring systematically the shRNA content and comparing this with the interfering effects. We then produced four lines of transgenic mice expressing different amounts of shRNA or miRNA in the brain but without signs of stimulation of innate immunity. Lastly, we tested their resistance to PRV infection. In all transgenic lines, we observed a significant resistance to viral challenge, the best being achieved with the shRNA construct targeting the 3'UTR of the IE gene. Viral DNA levels in the brains of infected mice were always lower in transgenic mice, even in animals that did not survive. Finally, this work reports an effective strategy to generate transgenic animals producing shRNA from non-retroviral expression vectors. Moreover, these mice are the first transgenic animal models producing shRNA with a significant antiviral effect but without any apparent shRNA toxicity.
Collapse
|
23
|
Yang Z, Li G, Zhang Y, Liu X, Tien P. A novel minicircle vector based system for inhibting the replication and gene expression of enterovirus 71 and coxsackievirus A16. Antiviral Res 2012; 96:234-44. [PMID: 22921338 DOI: 10.1016/j.antiviral.2012.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022]
Abstract
Enterovirus 71 (EV 71) and Coxsackievirus A16 (CA 16) are two major causative agents of hand, foot and mouth disease (HFMD). They have been associated with severe neurological and cardiological complications worldwide, and have caused significant mortalities during large-scale outbreaks in China. Currently, there are no effective treatments against EV 71 and CA 16 infections. We now describe the development of a novel minicircle vector based RNA interference (RNAi) system as a therapeutic approach to inhibiting EV 71 and CA 16 replication. Small interfering RNA (siRNA) molecules targeting the conserved regions of the 3C(pro) and 3D(pol) function gene of the EV 71 and CA 16 China strains were designed based on their nucleotide sequences available in GenBank. This RNAi system was found to effectively block the replication and gene expression of these viruses in rhabdomyosarcoma (RD) cells and virus-infected mice model. The inhibitory effects were confirmed by a corresponding decrease in viral RNA, viral protein, and progeny virus production. In addition, no significant adverse off-target silencing or cytotoxic effects were observed. These results demonstrated the potential and feasibility of this novel minicircle vector based RNAi system for antiviral therapy against EV 71 and CA 16 infection.
Collapse
Affiliation(s)
- Zhuo Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
24
|
Knoepfel SA, Centlivre M, Liu YP, Boutimah F, Berkhout B. Selection of RNAi-based inhibitors for anti-HIV gene therapy. World J Virol 2012; 1:79-90. [PMID: 24175213 PMCID: PMC3782270 DOI: 10.5501/wjv.v1.i3.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/16/2012] [Accepted: 05/20/2012] [Indexed: 02/05/2023] Open
Abstract
In the last decade, RNA interference (RNAi) advanced to one of the most widely applied techniques in the biomedical research field and several RNAi therapeutic clinical trials have been launched. We focus on RNAi-based inhibitors against the chronic infection with human immunodeficiency virus type 1 (HIV-1). A lentiviral gene therapy is proposed for HIV-infected patients that will protect and reconstitute the vital immune cell pool. The RNAi-based inhibitors that have been developed are short hairpin RNA molecules (shRNAs), of which multiple are needed to prevent viral escape. In ten distinct steps, we describe the selection process that started with 135 shRNA candidates, from the initial design criteria, via testing of the in vitro and in vivo antiviral activity and cytotoxicity to the final design of a combinatorial therapy with three shRNAs. These shRNAs satisfied all 10 selection criteria such as targeting conserved regions of the HIV-1 RNA genome, exhibiting robust inhibition of HIV-1 replication and having no impact on cell physiology. This combinatorial shRNA vector will soon move forward to the first clinical studies.
Collapse
Affiliation(s)
- Stefanie A Knoepfel
- Stefanie A Knoepfel, Mireille Centlivre, Ying Poi Liu, Fatima Boutimah, Ben Berkhout, Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Xiao S, Wang Q, Gao J, Wang L, He Z, Mo D, Liu X, Chen Y. Inhibition of highly pathogenic PRRSV replication in MARC-145 cells by artificial microRNAs. Virol J 2011; 8:491. [PMID: 22040357 PMCID: PMC3215188 DOI: 10.1186/1743-422x-8-491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/01/2011] [Indexed: 11/20/2022] Open
Abstract
Background Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) has caused large economic losses in swine industry in recent years. However, current antiviral strategy could not effectively prevent and control this disease. In this research, five artificial microRNAs (amiRNAs) respectively targeted towards ORF5 (amirGP5-243, -370) and ORF6 (amirM-82, -217,-263) were designed and incorporated into a miRNA-based vector that mimics the backbone of murine miR-155 and permits high expression of amiRNAs in a GFP fused form mediated by RNA Pol II promoter CMV. Results It was found that amirGP5-370 could effectively inhibit H-PRRSV replication. The amirM-263-M-263, which was a dual pre-amiRNA expression cassette where two amirM-263s were chained, showed stronger virus inhibitory effects than single amirM-263. H-PRRSV replication was inhibited up to 120 hours in the MARC-145 cells which were stably transduced by recombinant lentiviruses (Lenti-amirGP5-370, -amirM-263-M-263). Additionally, efficacious dose of amirGP5-370 and amirM-263 expression did not trigger the innate interferon response. Conclusions Our study is the first attempt to suppress H-PRRSV replication in MARC-145 cells through vector-based and lentiviral mediated amiRNAs targeting GP5 or M proteins coding sequences of PRRSV, which indicated that artificial microRNAs and recombinant lentiviruses might be applied to be a new potent anti-PRRSV strategy.
Collapse
Affiliation(s)
- Shuqi Xiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu YP, Berkhout B. miRNA cassettes in viral vectors: problems and solutions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:732-45. [PMID: 21679781 DOI: 10.1016/j.bbagrm.2011.05.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 02/05/2023]
Abstract
The discovery of RNA interference (RNAi), an evolutionary conserved gene silencing mechanism that is triggered by double stranded RNA, has led to tremendous efforts to use this technology for basic research and new RNA therapeutics. RNAi can be induced via transfection of synthetic small interfering RNAs (siRNAs), which results in a transient knockdown of the targeted mRNA. For stable gene silencing, short hairpin RNA (shRNA) or microRNA (miRNA) constructs have been developed. In mammals and humans, the natural RNAi pathway is triggered via endogenously expressed miRNAs. The use of modified miRNA expression cassettes to elucidate fundamental biological questions or to develop therapeutic strategies has received much attention. Viral vectors are particularly useful for the delivery of miRNA genes to specific target cells. To date, many viral vectors have been developed, each with distinct characteristics that make one vector more suitable for a certain purpose than others. This review covers the recent progress in miRNA-based gene-silencing approaches that use viral vectors, with a focus on their unique properties, respective limitations and possible solutions. Furthermore, we discuss a related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Ying Poi Liu
- Department of Medical Microbiology, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
27
|
Arbuthnot P. MicroRNA-like antivirals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:746-55. [PMID: 21616187 DOI: 10.1016/j.bbagrm.2011.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/26/2022]
Abstract
Employing engineered DNA templates to express antiviral microRNA (miRNA) sequences has considerable therapeutic potential. The durable silencing that may be achieved with these RNAi activators is valuable to counter chronic viral infections, such as those caused by HIV-1, hepatitis B, hepatitis C and dengue viruses. Early use of expressed antiviral miRNAs entailed generation of cassettes containing Pol III promoters (e.g. U6 and H1) that transcribe virus-targeting short hairpin RNA mimics of precursor miRNAs. Virus escape from single gene silencing elements prompted later development of combinatorial antiviral miRNA expression cassettes that form multitargeting siRNAs from transcribed long hairpin RNA and polycistronic primary miRNA sequences. Weaker Pol III and Pol II promoters have also been employed to control production of antiviral miRNA mimics, improve dose regulation and address concerns about toxicity caused by saturation of the endogenous miRNA pathway. Efficient delivery of expressed antiviral sequences remains challenging and utilizing viral vectors, which include recombinant adenoviruses, adeno-associated viruses and lentiviruses, has been favored. Investigations using recombinant lentiviruses to transduce CD34+ hematological precursor cells with expressed HIV-1 gene silencers are at advanced stages and show promise in preclinical and clinical trials. Although the use of expressed antiviral miRNA sequences to treat viral infections is encouraging, eventual therapeutic application will be dependent on rigorously proving their safety, efficient delivery to target tissues and uncomplicated large scale preparation of vector formulations. This article is part of a special issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
28
|
Mcintyre GJ, Arndt AJ, Gillespie KM, Mak WM, Fanning GC. A comparison of multiple shRNA expression methods for combinatorial RNAi. GENETIC VACCINES AND THERAPY 2011; 9:9. [PMID: 21496330 PMCID: PMC3098768 DOI: 10.1186/1479-0556-9-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 04/17/2011] [Indexed: 01/09/2023]
Abstract
RNAi gene therapies for HIV-1 will likely need to employ multiple shRNAs to counter resistant strains. We evaluated 3 shRNA co-expression methods to determine their suitability for present use; multiple expression vectors, multiple expression cassettes and single transcripts comprised of several dsRNA units (aka domains) with each being designed to a different target. Though the multiple vector strategy was effective with 2 shRNAs, the increasing number of vectors required is a major shortcoming. With single transcript configurations we only saw adequate activity from 1 of 10 variants tested, the variants being comprised of 2 - 3 different target domains. Whilst single transcript configurations have the most advantages on paper, these configurations can not yet be rapidly and reliably re-configured for new targets. However, our multiple cassette combinations of 2, 3 and 4 (29 bp) shRNAs were all successful, with suitable activity maintained in all positions and net activities comparable to that of the corresponding single shRNAs. We conclude that the multiple cassette strategy is the most suitably developed for present use as it is easy to design, assemble, is directly compatible with pre-existing shRNA and can be easily expanded.
Collapse
Affiliation(s)
- Glen J Mcintyre
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Allison J Arndt
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Kirsten M Gillespie
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Wendy M Mak
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Gregory C Fanning
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- Tibotec BVBA, Gen De Wittelaan L 11 B3, 2800 Mechelen, Belgium
| |
Collapse
|
29
|
Berkhout B, Sanders RW. Molecular strategies to design an escape-proof antiviral therapy. Antiviral Res 2011; 92:7-14. [PMID: 21513746 DOI: 10.1016/j.antiviral.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023]
Abstract
Two antiviral approaches against the human immunodeficiency virus type 1 (HIV-1) were presented at the Antivirals Congress in Amsterdam. The common theme among these two separate therapeutic research lines is the wish to develop a durable therapy that prevents viral escape. We will present a brief overview of these two research lines and focus on our efforts to design an escape-proof anti-HIV therapy. The first topic concerns the class of HIV-1 fusion inhibitors, including the prototype T20 peptide and the improved versions T1249 and T2635, which were all developed by Trimeris-Roche. The selection of T20-resistant HIV-1 strains is a fairly easy evolutionary process that requires a single amino acid substitution in the peptide binding site of the viral envelope glycoprotein (Env) target. The selection of T1249-resistant HIV-1 strains was shown to require a more dramatic amino acid substitution in the viral Env protein, in particular the introduction of charged amino acid residues that cause resistance by charge-repulsion of the antiviral peptide. The third generation peptide T2635 remains active against all these HIV-1 escape variants because the charged residues within this peptide are "masked" by an introduced intra-helical salt bridge. This charge masking concept could facilitate the future design of escape-proof antiviral peptides. The second topic concerns the mechanism of RNA interference (RNAi) that we are currently employing to develop an antiviral gene therapy. One can make human T cells resistant to HIV-1 infection by a stable RNAi-inducing gene transfer, but the virus escapes under therapeutic pressure of a single inhibitor. Several options for a combinatorial RNAi attack to prevent viral escape will be discussed. The simultaneous use of multiple RNAi inhibitors turns out to be the most effective and durable strategy.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
30
|
Mcintyre GJ, Groneman JL, Yu YH, Tran A, Applegate TL. Multiple shRNA combinations for near-complete coverage of all HIV-1 strains. AIDS Res Ther 2011; 8:1. [PMID: 21226969 PMCID: PMC3033792 DOI: 10.1186/1742-6405-8-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 01/13/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Combinatorial RNA interference (co-RNAi) approaches are needed to account for viral variability in treating HIV-1 with RNAi, as single short hairpin RNAs (shRNA) are rapidly rendered ineffective by resistant strains. Current work suggests that 4 simultaneously expressed shRNAs may prevent the emergence of resistant strains. RESULTS In this study we assembled combinations of highly-conserved shRNAs to target as many HIV-1 strains as possible. We analyzed intersecting conservations of 10 shRNAs to find combinations with 4+ matching the maximum number of strains using 1220+ HIV-1 sequences from the Los Alamos National Laboratory (LANL). We built 26 combinations of 2 to 7 shRNAs with up to 87% coverage for all known strains and 100% coverage of clade B subtypes, and characterized their intrinsic suppressive activities in transient expression assays. We found that all combinations had high combined suppressive activities, though there were also large changes in the individual activities of the component shRNAs in our multiple expression cassette configurations. CONCLUSION By considering the intersecting conservations of shRNA combinations we have shown that it is possible to assemble combinations of 6 and 7 highly active, highly conserved shRNAs such that there is always at least 4 shRNAs within each combination covering all currently known variants of entire HIV-1 subtypes. By extension, it may be possible to combine several combinations for complete global coverage of HIV-1 variants.
Collapse
Affiliation(s)
- Glen J Mcintyre
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Jennifer L Groneman
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Yi-Hsin Yu
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Anna Tran
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Tanya L Applegate
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| |
Collapse
|
31
|
Toward a durable treatment of HIV-1 infection using RNA interference. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:141-63. [PMID: 21846571 DOI: 10.1016/b978-0-12-415795-8.00001-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that mediates sequence-specific gene silencing at the posttranscriptional level. RNAi can be used as an antiviral approach against human pathogens. An attractive target for RNAi therapeutics is the human immunodeficiency virus type 1 (HIV-1), and the first clinical trial using a lentiviral gene therapy was initiated in early 2008. In this chapter, we focus on some basic principles of such an RNAi-based gene therapy against HIV-1. This includes the subjects of target site selection within the viral RNA genome, the phenomenon of viral escape, and therapeutic strategies to prevent viral escape. The latter antiescape strategies include diverse combinatorial RNAi approaches that are all directed against the HIV-1 RNA genome. As an alternative strategy, we also discuss the possibilities and restrictions of targeting cellular cofactors that are essential for virus replication, but less important for cell physiology.
Collapse
|
32
|
Shao PL, Lu MY, Liau YJ, Chao MF, Chang LY, Lu CY, Kao CL, Chang SY, Chi YH, Huang LM. Argonaute-2 enhances suppression of human cytomegalovirus replication by polycistronic short hairpin RNAs targeting UL46, UL70 and UL122. Antivir Ther 2011; 16:741-9. [DOI: 10.3851/imp1808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Li F, Mahato RI. RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev 2011; 63:47-68. [PMID: 21156190 DOI: 10.1016/j.addr.2010.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 01/06/2023]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still not common because a large number of transplanted islets get damaged by multiple challenges including instant blood mediated inflammatory reaction, hypoxia/reperfusion injury, inflammatory cytokines, and immune rejection. RNA interference (RNAi) is a novel strategy to selectively degrade target mRNA. The use of RNAi technologies to downregulate the expression of harmful genes has the potential to improve the outcome of islet transplantation. The aim of this review is to gain a thorough understanding of biological obstacles to islet transplantation and discuss how to overcome these barriers using different RNAi technologies. This eventually will help improve islet survival and function post transplantation. Chemically synthesized small interferring RNA (siRNA), vector based short hairpin RNA (shRNA), and their critical design elements (such as sequences, promoters, and backbone) are discussed. The application of combinatorial RNAi in islet transplantation is also discussed. Last but not the least, several delivery strategies for enhanced gene silencing are discussed, including chemical modification of siRNA, complex formation, bioconjugation, and viral vectors.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | |
Collapse
|
34
|
Liu YP, Westerink JT, ter Brake O, Berkhout B. RNAi-inducing lentiviral vectors for anti-HIV-1 gene therapy. Methods Mol Biol 2011; 721:293-311. [PMID: 21431693 DOI: 10.1007/978-1-61779-037-9_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA interference (RNAi)-based gene therapy for the treatment of HIV-1 infection provides a novel antiviral approach. For delivery of RNAi inducers to CD4+ T cells or CD34+ blood stem cells, lentiviral vectors are attractive because of their ability to transduce nondividing cells. In addition, lentiviral vectors allow stable transgene expression by inserting their cargo into the host cell genome. However, use of the HIV-1-based lentiviral vector also creates specific problems. The RNAi inducers can target HIV-1 sequences in the genomic RNA of the lentiviral vector. As the RNAi-inducing cassette contains palindromic sequences, the lentiviral vector RNA genome will have a perfect target sequence for the expressed RNAi inducer. Vectors encoding microRNAs face the putative problem that the vector RNA genome can be inactivated by Drosha processing. Here, we describe the design of lentiviral vectors with single or multiple RNAi-inducing antiviral cassettes. The possibility of titer reduction and some effective countermeasures are also presented.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Lee SH, Mok H, Jo S, Hong CA, Park TG. Dual gene targeted multimeric siRNA for combinatorial gene silencing. Biomaterials 2010; 32:2359-68. [PMID: 21183215 DOI: 10.1016/j.biomaterials.2010.11.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/26/2010] [Indexed: 11/27/2022]
Abstract
Simultaneous silencing of multiple up-regulated genes is an attractive and viable strategy to treat many incurable diseases including cancer. Herein we report that multimerized siRNA conjugate composed of two different siRNA sequences in the same backbone shows more efficient inhibition of the two corresponding target genes at one time than physically mixed multimerized siRNA conjugates. Two model siRNAs against VEGF and GFP gene were chemically crosslinked via cleavable and noncleavable linkages for the preparation of dual gene targeted multimeric siRNA conjugates (DGT multi-siRNA). Cleavable DGT multi-siRNA with reducible disulfide linkages exhibited significantly higher gene silencing efficiencies at mRNA and protein expression levels than noncleavable DGT multi-siRNA, the physical mixture of naked siRNA, and that of single gene targeted multimeric siRNA (SGT multi-siRNA) with eliciting negligible immune response. DGT multi-siRNAs against two therapeutic siRNAs, anti-survivin and anti-bcl-2 targeted siRNA, also showed greatly enhanced apoptotic effect. This approach for concurrent suppression of combinatorial therapeutic target genes using cleavable multimeric siRNA structure can be potentially used for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Soo Hyeon Lee
- Department of Biological Sciences, The Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Lambeth LS, Van Hateren NJ, Wilson SA, Nair V. A direct comparison of strategies for combinatorial RNA interference. BMC Mol Biol 2010; 11:77. [PMID: 20937117 PMCID: PMC2958852 DOI: 10.1186/1471-2199-11-77] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Combinatorial RNA interference (co-RNAi) is a valuable tool for highly effective gene suppression of single and multiple-genes targets, and can be used to prevent the escape of mutation-prone transcripts. There are currently three main approaches used to achieve co-RNAi in animal cells; multiple promoter/shRNA cassettes, long hairpin RNAs (lhRNA) and miRNA-embedded shRNAs, however, the relative effectiveness of each is not known. The current study directly compares the ability of each co-RNAi method to deliver pre-validated siRNA molecules to the same gene targets. RESULTS Double-shRNA expression vectors were generated for each co-RNAi platform and their ability to suppress both single and double-gene reporter targets were compared. The most reliable and effective gene silencing was achieved from the multiple promoter/shRNA approach, as this method induced additive suppression of single-gene targets and equally effective knockdown of double-gene targets. Although both lhRNA and microRNA-embedded strategies provided efficient gene knockdown, suppression levels were inconsistent and activity varied greatly for different siRNAs tested. Furthermore, it appeared that not only the position of siRNAs within these multi-shRNA constructs impacted upon silencing activity, but also local properties of each individual molecule. In addition, it was also found that the insertion of up to five promoter/shRNA cassettes into a single construct did not negatively affect the efficacy of each individual shRNA. CONCLUSIONS By directly comparing the ability of shRNAs delivered from different co-RNA platforms to initiate knockdown of the same gene targets, we found that multiple U6/shRNA cassettes offered the most reliable and predictable suppression of both single and multiple-gene targets. These results highlight some important strengths and pitfalls of the currently used methods for multiple shRNA delivery, and provide valuable insights for the design and application of reliable co-RNAi.
Collapse
Affiliation(s)
- Luke S Lambeth
- Institute for Animal Health, Compton, Berkshire, UK
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
| | - Nick J Van Hateren
- Department of Molecular Biology & Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Stuart A Wilson
- Department of Molecular Biology & Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | | |
Collapse
|
37
|
Saayman S, Arbuthnot P, Weinberg MS. Deriving four functional anti-HIV siRNAs from a single Pol III-generated transcript comprising two adjacent long hairpin RNA precursors. Nucleic Acids Res 2010; 38:6652-63. [PMID: 20525791 PMCID: PMC2965221 DOI: 10.1093/nar/gkq460] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 11/19/2022] Open
Abstract
Several different approaches exist to generate expressed RNA interference (RNAi) precursors for multiple target inhibition, a strategy referred to as combinatorial (co)RNAi. One such approach makes use of RNA Pol III-expressed long hairpin RNAs (lhRNAs), which are processed by Dicer to generate multiple unique short interfering siRNA effectors. However, because of inefficient intracellular Dicer processing, lhRNA duplexes have been limited to generating two independent effective siRNA species. In this study, we describe a novel strategy whereby four separate anti-HIV siRNAs were generated from a single RNA Pol III-expressed transcript. Two optimized lhRNAs, each comprising two active anti-HIV siRNAs, were placed in tandem to form a double long hairpin (dlhRNA) expression cassette, which encodes four unique and effective siRNA sequences. Processing of the 3' position lhRNA was more variable but effective multiple processing was possible by manipulating the order of the siRNA-encoding sequences. Importantly, unlike shRNAs, Pol III-expressed dlhRNAs did not compete with endogenous and exogenous microRNAs to disrupt the RNAi pathway. The versatility of expressed lhRNAs is greatly expanded and we provide a mechanism for generating transcripts with modular lhRNAs motifs that contribute to improved coRNAi.
Collapse
Affiliation(s)
| | | | - Marc S. Weinberg
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
38
|
Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 2010; 28:570-9. [PMID: 20833440 DOI: 10.1016/j.tibtech.2010.07.009] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/09/2010] [Accepted: 07/22/2010] [Indexed: 12/11/2022]
Abstract
Small interfering RNAs (siRNAs) have been shown to effectively downregulate gene expression in human cells, giving them potential to eradicate disease. Prospects for clinical applications are discussed in this review, along with an overview of recent history and our current understanding of siRNAs used for therapeutic application in human diseases, such as cancer and viral infections. Over recent years, progress has been made in lipids, ligands, nanoparticles, polymers and viral vectors as delivery agents and for gene-based expression of siRNA to enhance the efficacy and specificity of these methods while at the same time reducing toxicity. It has become apparent that given the recent advances in chemistry and delivery, RNAi will soon prove to be an important and widely used therapeutic modality.
Collapse
Affiliation(s)
- Monica R Lares
- Department of Molecular and Cellular Biology, Beckman Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
39
|
Liu YP, Vink MA, Westerink JT, Ramirez de Arellano E, Konstantinova P, Ter Brake O, Berkhout B. Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA (NEW YORK, N.Y.) 2010; 16:1328-39. [PMID: 20498457 PMCID: PMC2885682 DOI: 10.1261/rna.1887910] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 04/06/2010] [Indexed: 05/29/2023]
Abstract
RNAi-based gene therapy is a powerful approach to treat viral infections because of its high efficiency and sequence specificity. The HIV-1-based lentiviral vector system is suitable for the delivery of RNAi inducers to HIV-1 susceptible cells due to its ability to transduce nondividing cells, including hematopoietic stem cells, and its ability for stable transgene delivery into the host cell genome. However, the presence of anti-HIV short hairpin RNA (shRNA) and microRNA (miRNA) cassettes can negatively affect the lentiviral vector titers. We show that shRNAs, which target the vector genomic RNA, strongly reduced lentiviral vector titers but inhibition of the RNAi pathway via saturation could rescue vector production. The presence of miRNAs in the vector RNA genome (sense orientation) results in a minor titer reduction due to Drosha processing. A major cause for titer reduction of miRNA vectors is due to incompatibility of the cytomegalovirus promoter with the lentiviral vector system. Replacement of this promoter with an inducible promoter resulted in an almost complete restoration of the vector titer. We also showed that antisense poly(A) signal sequences can have a dramatic effect on the vector titer. These results show that not all sequences are compatible with the lentiviral vector system and that care should be taken in the design of lentiviral vectors encoding RNAi inducers.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Das AT, Jeeninga RE, Berkhout B. Possible applications for replicating HIV 1 vectors. ACTA ACUST UNITED AC 2010; 4:361-369. [PMID: 20582153 DOI: 10.2217/hiv.10.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Since its discovery some 25 years ago, much has been learned about HIV type 1 and the molecular details of its replication cycle. This insight has been used to develop lentiviral vector systems that have advantages over conventional retroviral vector systems. For safety reasons, the lentiviral vector systems are replication incompetent and the risk of generating a replication competent virus has been minimized. Nevertheless, there may be certain applications for replication competent HIV based vector systems, and we will review our activities in this particular field. This includes the generation of a conditionally replicating HIV 1 variant as a safe live attenuated virus vaccine, the construction of mini HIV variants as cancer selective viruses for virotherapy against leukemia, and the use of a conditionally live anti HIV gene therapy vector. Although safety concerns will undoubtedly remain for the use of replication competent HIV based vector systems, some of the results in cell culture systems are very promising and warrant further testing in appropriate animal models.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Gardner MW, Li N, Ellington AD, Brodbelt JS. Infrared multiphoton dissociation of small-interfering RNA anions and cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:580-91. [PMID: 20129797 PMCID: PMC2847665 DOI: 10.1016/j.jasms.2009.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 05/13/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) on a linear ion trap mass spectrometer is applied for the sequencing of small interfering RNA (siRNA). Both single-strand siRNAs and duplex siRNA were characterized by IRMPD, and the results were compared with that obtained by traditional ion trap-based collision induced dissociation (CID). The single-strand siRNA anions were observed to dissociate via cleavage of the 5' P-O bonds yielding c- and y-type product ions as well as undergo neutral base loss. Full sequence coverage of the siRNA anions was obtained by both IRMPD and CID. While the CID mass spectra were dominated by base loss ions, accounting for approximately 25% to 40% of the product ion current, these ions were eliminated through secondary dissociation by increasing the irradiation time in the IRMPD mass spectra to produce higher abundances of informative sequence ions. With longer irradiation times, however, internal ions corresponding to cleavage of two 5' P-O bonds began to populate the product ion mass spectra as well as higher abundances of [a - Base] and w-type ions. IRMPD of siRNA cations predominantly produced c- and y-type ions with minimal contributions of [a - Base] and w-type ions to the product ion current; the presence of only two complementary series of product ions in the IRMPD mass spectra simplified spectral interpretation. In addition, IRMPD produced high abundances of protonated nucleobases, [G + H](+), [A + H](+), and [C + H](+), which were not detected in the CID mass spectra due to the low-mass cut-off associated with conventional CID in ion traps. CID and IRMPD using short irradiation times of duplex siRNA resulted in strand separation, similar to the dissociation trends observed for duplex DNA. With longer irradiation times, however, the individual single-strands underwent secondary dissociation to yield informative sequence ions not obtained by CID.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | | | |
Collapse
|
42
|
Inhibition of Hepatitis E virus replication using short hairpin RNA (shRNA). Antiviral Res 2010; 85:541-50. [PMID: 20105445 DOI: 10.1016/j.antiviral.2010.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 01/04/2010] [Accepted: 01/20/2010] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped, single-stranded, positive sense RNA virus, which is a major cause of water-borne hepatitis. RNA interference (RNAi) is a sequence-specific cellular antiviral defence mechanism, induced by double-stranded RNA, which we used to investigate knockdown of several genes and the 3' cis-acting element (CAE) of HEV. In the present report, shRNAs were developed against the putative helicase and replicase domains and the 3'CAE region of HEV. Production of siRNA was confirmed by northern hybridization. The possible innate response induction due to shRNA expressions was verified by transcript analysis for interferon-beta and 2',5'-oligoadenylate synthetase genes and was found to be absent. Initially, the selected shRNAs were tested for their efficiency against the respective genes/3'CAE using inhibition of fused viral subgenomic target domain-renilla luciferase reporter constructs. The effective shRNAs were studied for their inhibitory effects on HEV replication in HepG2 cells using HEV replicon and reporter replicon. RNAi mediated silencing was demonstrated by reduction of luciferase activity in subgenomic target-reporter constructs and reporter replicon. The real time PCR was used to demonstrate inhibition of native replicon replication in transfected cells. Designed shRNAs were found to be effective in inhibiting virus replication to a variable extent (45-93%).
Collapse
|
43
|
Sibley CR, Seow Y, Wood MJA. Novel RNA-based strategies for therapeutic gene silencing. Mol Ther 2010; 18:466-76. [PMID: 20087319 DOI: 10.1038/mt.2009.306] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The past decade has seen intense scientific interest in non-coding RNAs. In particular, the discovery and subsequent exploitation of gene silencing via RNA interference (RNAi) has revolutionized the way in which gene expression is now studied and understood. It is now well established that post-transcriptional gene silencing (PTGS) by the microRNA (miRNA) and other RNAi-associated pathways represents an essential layer of complexity to gene regulation. Gene silencing using RNAi additionally demonstrates huge potential as a therapeutic strategy for eliminating pathogenic gene expression. Yet despite the early promise and excitement of gene-specific silencing, several critical hurdles remain to be overcome before widespread clinical adoption. These include off-target effects, toxicity due to saturation of the endogenous RNAi functions, limited duration of silencing, and effective targeted delivery. In recent years, a range of novel strategies for producing RNA-mediated silencing have been developed that can circumvent many of these hurdles, including small internally segmented interfering RNAs, tandem hairpin RNAs, and pri-miRNA cluster mimics. This review discusses RNA-mediated silencing in light of this recent research, and highlights the benefits and limitations conferred by these novel gene-silencing strategies.
Collapse
Affiliation(s)
- Christopher R Sibley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
44
|
ter Brake O, Westerink JT, Berkhout B. Lentiviral vector engineering for anti-HIV RNAi gene therapy. Methods Mol Biol 2010; 614:201-213. [PMID: 20225046 DOI: 10.1007/978-1-60761-533-0_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
RNA interference or RNAi-based gene therapy for the treatment of HIV-1 infection has recently emerged as a highly effective antiviral approach. The lentiviral vector system is a good candidate for the expression of antiviral short hairpin RNAs (shRNA) in HIV-susceptible cells. However, this strategy can give rise to vector problems because the anti-HIV shRNAs can also target the HIV-based lentiviral vector system. In addition, there may be self-targeting of the shRNA-encoding sequences within the vector RNA genome in the producer cell. The insertion of microRNA (miRNA) cassettes in the vector may introduce Drosha cleavage sites that will also result in the destruction of the vector genome during the production and/or the transduction process. Here, we describe possible solutions to these lentiviral-RNAi problems. We also describe a strategy for multiple shRNA expression to establish a combinatorial RNAi therapy.
Collapse
Affiliation(s)
- Olivier ter Brake
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
45
|
Mcintyre GJ, Yu YH, Tran A, Jaramillo AB, Arndt AJ, Millington ML, Boyd MP, Elliott FA, Shen SW, Murray JM, Applegate TL. Cassette deletion in multiple shRNA lentiviral vectors for HIV-1 and its impact on treatment success. Virol J 2009; 6:184. [PMID: 19878571 PMCID: PMC2775741 DOI: 10.1186/1743-422x-6-184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple short hairpin RNA (shRNA) gene therapy strategies are currently being investigated for treating viral diseases such as HIV-1. It is important to use several different shRNAs to prevent the emergence of treatment-resistant strains. However, there is evidence that repeated expression cassettes delivered via lentiviral vectors may be subject to recombination-mediated repeat deletion of 1 or more cassettes. RESULTS The aim of this study was to determine the frequency of deletion for 2 to 6 repeated shRNA cassettes and mathematically model the outcomes of different frequencies of deletion in gene therapy scenarios. We created 500+ clonal cell lines and found deletion frequencies ranging from 2 to 36% for most combinations. While the central positions were the most frequently deleted, there was no obvious correlation between the frequency or extent of deletion and the number of cassettes per combination. We modeled the progression of infection using combinations of 6 shRNAs with varying degrees of deletion. Our in silico modeling indicated that if at least half of the transduced cells retained 4 or more shRNAs, the percentage of cells harboring multiple-shRNA resistant viral strains could be suppressed to < 0.1% after 13 years. This scenario afforded a similar protection to all transduced cells containing the full complement of 6 shRNAs. CONCLUSION Deletion of repeated expression cassettes within lentiviral vectors of up to 6 shRNAs can be significant. However, our modeling showed that the deletion frequencies observed here for 6x shRNA combinations was low enough that the in vivo suppression of replication and escape mutants will likely still be effective.
Collapse
Affiliation(s)
- Glen J Mcintyre
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Yi-Hsin Yu
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Anna Tran
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Angel B Jaramillo
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Allison J Arndt
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Michelle L Millington
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Maureen P Boyd
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Fiona A Elliott
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Sylvie W Shen
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - John M Murray
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW, 2052, Australia
- The National Center in HIV Epidemiology and Clinical Research, The University of New South Wales, 376 Victoria St. Darlinghurst, NSW, 2010, Australia
| | - Tanya L Applegate
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| |
Collapse
|
46
|
Liu YP, Gruber J, Haasnoot J, Konstantinova P, Berkhout B. RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences. Nucleic Acids Res 2009; 37:6194-204. [PMID: 19656954 PMCID: PMC2764431 DOI: 10.1093/nar/gkp644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 07/17/2009] [Accepted: 07/19/2009] [Indexed: 12/27/2022] Open
Abstract
Potent antiviral RNAi can be induced by intracellular expression of short hairpin RNAs (shRNAs) and artificial microRNAs (miRNAs). Expression of shRNA and miRNA results in target mRNA degradation (perfect base pairing) or translational repression (partial base pairing). Although efficient inhibition can be obtained, error-prone viruses such as human immunodeficiency virus type 1 (HIV-1) can escape from RNAi-mediated inhibition by mutating the target sequence. Recently, artificial miRNAs have been shown to be potent RNAi inducers due to their efficient processing by the RNAi machinery. Furthermore, miRNAs may be more proficient in suppressing imperfect targets than shRNAs. In this study, we tested the knockdown efficiency of miRNAs and shRNAs against wild-type and RNAi-escape HIV-1 variants with one or two mutations in the target sequence. ShRNAs and miRNAs can significantly inhibit the production of HIV-1 variants with mutated target sequences in the open reading frame. More pronounced mutation-tolerance was measured for targets in the 3' untranslated region (3' UTR). Partially complementary sequences within the 3' UTR of the HIV-1 RNA genome efficiently act as target sites for miRNAs and shRNAs. These data suggest that targeting imperfect target sites by antiviral miRNAs or shRNAs provides an alternative RNAi approach for inhibition of pathogenic viruses.
Collapse
Affiliation(s)
| | | | | | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Liu YP, von Eije KJ, Schopman NCT, Westerink JT, ter Brake O, Haasnoot J, Berkhout B. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 2009; 17:1712-23. [PMID: 19672247 PMCID: PMC2835024 DOI: 10.1038/mt.2009.176] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/06/2009] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is a widely used gene suppression tool that holds great promise as a novel antiviral approach. However, for error-prone viruses including human immunodeficiency virus type 1(HIV-1), a combinatorial approach against multiple conserved sequences is required to prevent the emergence of RNAi-resistant escape viruses. Previously, we constructed extended short hairpin RNAs (e-shRNAs) that encode two potent small interfering RNAs (siRNAs) (e2-shRNAs). We showed that a minimal hairpin stem length of 43 base pairs (bp) is needed to obtain two functional siRNAs. In this study, we elaborated on the e2-shRNA design to make e-shRNAs encoding three or four antiviral siRNAs. We demonstrate that siRNA production and the antiviral effect is optimal for e3-shRNA of 66 bp. Further extension of the hairpin stem results in a loss of RNAi activity. The same was observed for long hairpin RNAs (lhRNAs) that target consecutive HIV-1 sequences. Importantly, we show that HIV-1 replication is durably inhibited in T cells stably transduced with a lentiviral vector containing the e3-shRNA expression cassette. These results show that e-shRNAs can be used as a combinatorial RNAi approach to target error-prone viruses.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Chen M, Payne WS, Dunn JR, Chang S, Zhang HM, Hunt HD, Dodgson JB. Retroviral delivery of RNA interference against Marek's disease virus in vivo. Poult Sci 2009; 88:1373-80. [PMID: 19531706 DOI: 10.3382/ps.2009-00070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of RNA interference (RNAi) has been exploited in cultured chicken cells and in chick embryos to assess the effect of specific gene inhibition on phenotypes related to development and disease. We previously demonstrated that avian leukosis virus-based retroviral vectors are capable of delivering effective RNAi against Marek's disease virus (MDV) in cell culture. In this study, similar RNAi vectors are shown to reduce the replication of MDV in live chickens. Retroviral vectors were introduced into d 0 chick embryos, followed by incubation until hatching. Chicks were challenged with 500 pfu of strain 648A MDV at day of hatch, followed by assays for viremia at 14 d postinfection. Birds were monitored for signs of Marek's disease for 8 wk. A stem-loop PCR assay was developed to measure siRNA expression levels in birds. Delivery of RNAi co-targeting the MDV gB glycoprotein gene and ICP4 transcriptional regulatory gene significantly reduced MDV viremia in vivo, although to lesser extents than were observed in cell culture. Concomitant reductions in disease incidence also were observed, and the extent of this effect depended on the potency of the MDV challenge virus inoculum. Successful modification of phenotypic traits in live birds with retroviral RNAi vectors opens up the possibility that such approaches could be used to alter the expression of candidate genes hypothesized to influence a variety of quantitative traits including disease susceptibility.
Collapse
Affiliation(s)
- M Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Basic research in the field of molecular biology led to the discovery of the mechanism of RNA interference (RNAi) in Caenorhabditis elegans in 1998. RNAi is now widely appreciated as an important gene control mechanism in mammals, and several RNAi-based gene-silencing applications have already been used in clinical trials. In this review I will discuss RNAi approaches to inhibit the pathogenic human immunodeficiency virus type 1 (HIV-1), which establishes a chronic infection that would most likely require a durable gene therapy approach. Viruses, such as HIV-1, are particularly difficult targets for RNAi attack because they mutate frequently, which allows viral escape by mutation of the RNAi target sequence. Combinatorial RNAi strategies are required to prevent viral escape.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Wu Z, Yang F, Zhao R, Zhao L, Guo D, Jin Q. Identification of small interfering RNAs which inhibit the replication of several Enterovirus 71 strains in China. J Virol Methods 2009; 159:233-8. [DOI: 10.1016/j.jviromet.2009.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 11/29/2022]
|