1
|
Broniarek I, Niewiadomska D, Sobczak K. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1874. [PMID: 39523485 DOI: 10.1002/wrna.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Repeat expansion disorders (REDs) encompass over 50 inherited neurological disorders and are characterized by the expansion of short tandem nucleotide repeats beyond a specific repeat length. Particularly intriguing among these are multiple fragile X-associated disorders (FXds), which arise from an expansion of CGG repeats in the 5' untranslated region of the FMR1 gene. Despite arising from repeat expansions in the same gene, the clinical manifestations of FXds vary widely, encompassing developmental delays, parkinsonism, dementia, and an increased risk of infertility. FXds also exhibit molecular mechanisms observed in other REDs, that is, gene- and protein-loss-of-function and RNA- and protein-gain-of-function. The heterogeneity of phenotypes and pathomechanisms in FXds results from the different lengths of the CGG tract. As the number of repeats increases, the structures formed by RNA and DNA fragments containing CGG repeats change significantly, contributing to the diversity of FXd phenotypes and mechanisms. In this review, we discuss the role of RNA and DNA structures formed by expanded CGG repeats in driving FXd pathogenesis and how the genetic instability of CGG repeats is mediated by the complex interplay between transcription, DNA replication, and repair. We also discuss therapeutic strategies, including small molecules, antisense oligonucleotides, and CRISPR-Cas systems, that target toxic RNA and DNA involved in the development of FXds.
Collapse
Affiliation(s)
- Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Fracchioni G, Vailati S, Grazioli M, Pirota V. Structural Unfolding of G-Quadruplexes: From Small Molecules to Antisense Strategies. Molecules 2024; 29:3488. [PMID: 39124893 PMCID: PMC11314335 DOI: 10.3390/molecules29153488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.
Collapse
Affiliation(s)
- Giorgia Fracchioni
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| | - Sabrina Vailati
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marta Grazioli
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| |
Collapse
|
3
|
Wang S, Xu Y. RNA structure promotes liquid-to-solid phase transition of short RNAs in neuronal dysfunction. Commun Biol 2024; 7:137. [PMID: 38287096 PMCID: PMC10824717 DOI: 10.1038/s42003-024-05828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
In nucleotide expansion disorders, RNA foci are reportedly associated with neurodegenerative disease pathogeneses. Characteristically, these RNAs exhibit long poly-RNA repeats, such as 47 × CAG, 47 × CUG, or 29 × GGGGCC, usually becoming abnormal pathological aggregations above a critical number of nucleotide repeats. However, it remains unclear whether short, predominantly cellular RNA molecules can cause phase transitions to induce RNA foci. Herein, we demonstrated that short RNAs even with only two repeats can aggregate into a solid-like state via special RNA G-quadruplex structures. In human cells, these solid RNA foci could not dissolve even when using agents that disrupt RNA gelation. The aggregation of shorter RNAs can be clearly observed in vivo. Furthermore, we found that RNA foci induce colocalization of the RNA-binding protein Sam68, a protein commonly found in patients with fragile X-associated tremor/ataxia syndrome, suppressing cell clonogenicity and eventually causing cell death. Our results suggest that short RNA gelation promoted by specific RNA structures contribute to the neurological diseases, which disturb functional cellular processes.
Collapse
Affiliation(s)
- Shiyu Wang
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
4
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
5
|
Asamitsu S, Yabuki Y, Matsuo K, Kawasaki M, Hirose Y, Kashiwazaki G, Chandran A, Bando T, Wang DO, Sugiyama H, Shioda N. RNA G-quadruplex organizes stress granule assembly through DNAPTP6 in neurons. SCIENCE ADVANCES 2023; 9:eade2035. [PMID: 36827365 PMCID: PMC9956113 DOI: 10.1126/sciadv.ade2035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Consecutive guanine RNA sequences can adopt quadruple-stranded structures, termed RNA G-quadruplexes (rG4s). Although rG4-forming sequences are abundant in transcriptomes, the physiological roles of rG4s in the central nervous system remain poorly understood. In the present study, proteomics analysis of the mouse forebrain identified DNAPTP6 as an RNA binding protein with high affinity and selectivity for rG4s. We found that DNAPTP6 coordinates the assembly of stress granules (SGs), cellular phase-separated compartments, in an rG4-dependent manner. In neurons, the knockdown of DNAPTP6 diminishes the SG formation under oxidative stress, leading to synaptic dysfunction and neuronal cell death. rG4s recruit their mRNAs into SGs through DNAPTP6, promoting RNA self-assembly and DNAPTP6 phase separation. Together, we propose that the rG4-dependent phase separation of DNAPTP6 plays a critical role in neuronal function through SG assembly.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Moe Kawasaki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Gengo Kashiwazaki
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Anandhakumar Chandran
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Dan Ohtan Wang
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Yousuf A, Ahmed N, Qurashi A. Non-canonical DNA/RNA structures associated with the pathogenesis of Fragile X-associated tremor/ataxia syndrome and Fragile X syndrome. Front Genet 2022; 13:866021. [PMID: 36110216 PMCID: PMC9468596 DOI: 10.3389/fgene.2022.866021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X syndrome (FXS) are primary examples of fragile X-related disorders (FXDs) caused by abnormal expansion of CGG repeats above a certain threshold in the 5'-untranslated region of the fragile X mental retardation (FMR1) gene. Both diseases have distinct clinical manifestations and molecular pathogenesis. FXTAS is a late-adult-onset neurodegenerative disorder caused by a premutation (PM) allele (CGG expansion of 55-200 repeats), resulting in FMR1 gene hyperexpression. On the other hand, FXS is a neurodevelopmental disorder that results from a full mutation (FM) allele (CGG expansions of ≥200 repeats) leading to heterochromatization and transcriptional silencing of the FMR1 gene. The main challenge is to determine how CGG repeat expansion affects the fundamentally distinct nature of FMR1 expression in FM and PM ranges. Abnormal CGG repeat expansions form a variety of non-canonical DNA and RNA structures that can disrupt various cellular processes and cause distinct effects in PM and FM alleles. Here, we review these structures and how they are related to underlying mutations and disease pathology in FXS and FXTAS. Finally, as new CGG expansions within the genome have been identified, it will be interesting to determine their implications in disease pathology and treatment.
Collapse
Affiliation(s)
| | | | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Georgakopoulos-Soares I, Victorino J, Parada GE, Agarwal V, Zhao J, Wong HY, Umar MI, Elor O, Muhwezi A, An JY, Sanders SJ, Kwok CK, Inoue F, Hemberg M, Ahituv N. High-throughput characterization of the role of non-B DNA motifs on promoter function. CELL GENOMICS 2022; 2:100111. [PMID: 35573091 PMCID: PMC9105345 DOI: 10.1016/j.xgen.2022.100111] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
lternative DNA conformations, termed non-B DNA structures, can affect transcription, but the underlying mechanisms and their functional impact have not been systematically characterized. Here, we used computational genomic analyses coupled with massively parallel reporter assays (MPRAs) to show that certain non-B DNA structures have a substantial effect on gene expression. Genomic analyses found that non-B DNA structures at promoters harbor an excess of germline variants. Analysis of multiple MPRAs, including a promoter library specifically designed to perturb non-B DNA structures, functionally validated that Z-DNA can significantly affect promoter activity. We also observed that biophysical properties of non-B DNA motifs, such as the length of Z-DNA motifs and the orientation of G-quadruplex structures relative to transcriptional direction, have a significant effect on promoter activity. Combined, their higher mutation rate and functional effect on transcription implicate a subset of non-B DNA motifs as major drivers of human gene-expression-associated phenotypes.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Guillermo E. Parada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Hei Yuen Wong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Mubarak Ishaq Umar
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Orry Elor
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Allan Muhwezi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Joon-Yong An
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Stephan J. Sanders
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Noh B, Blasco-Conesa MP, Lai YJ, Ganesh BP, Urayama A, Moreno-Gonzalez I, Marrelli SP, McCullough LD, Moruno-Manchon JF. G-quadruplexes Stabilization Upregulates CCN1 and Accelerates Aging in Cultured Cerebral Endothelial Cells. FRONTIERS IN AGING 2022; 2:797562. [PMID: 35822045 PMCID: PMC9261356 DOI: 10.3389/fragi.2021.797562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Senescence in the cerebral endothelium has been proposed as a mechanism that can drive dysfunction of the cerebral vasculature, which precedes vascular dementia. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) is a matricellular protein secreted by cerebral endothelial cells (CEC). CCN1 induces senescence in fibroblasts. However, whether CCN1 contributes to senescence in CEC and how this is regulated requires further study. Aging has been associated with the formation of four-stranded Guanine-quadruplexes (G4s) in G-rich motifs of DNA and RNA. Stabilization of the G4 structures regulates transcription and translation either by upregulation or downregulation depending on the gene target. Previously, we showed that aged mice treated with a G4-stabilizing compound had enhanced senescence-associated (SA) phenotypes in their brains, and these mice exhibited enhanced cognitive deficits. A sequence in the 3'-UTR of the human CCN1 mRNA has the ability to fold into G4s in vitro. We hypothesize that G4 stabilization regulates CCN1 in cultured primary CEC and induces endothelial senescence. We used cerebral microvessel fractions and cultured primary CEC from young (4-months old, m/o) and aged (18-m/o) mice to determine CCN1 levels. SA phenotypes were determined by high-resolution fluorescence microscopy in cultured primary CEC, and we used Thioflavin T to recognize RNA-G4s for fluorescence spectra. We found that cultured CEC from aged mice exhibited enhanced levels of SA phenotypes, and higher levels of CCN1 and G4 stabilization. In cultured CEC, CCN1 induced SA phenotypes, such as SA β-galactosidase activity, and double-strand DNA damage. Furthermore, CCN1 levels were upregulated by a G4 ligand, and a G-rich motif in the 3'-UTR of the Ccn1 mRNA was folded into a G4. In conclusion, we demonstrate that CCN1 can induce senescence in cultured primary CEC, and we provide evidence that G4 stabilization is a novel mechanism regulating the SASP component CCN1.
Collapse
Affiliation(s)
- Brian Noh
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maria P. Blasco-Conesa
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yun-Ju Lai
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Cell Biology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Malaga University, Malaga, Spain
- Networking Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
9
|
Liu Y, Zhu X, Wang K, Zhang B, Qiu S. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Front Mol Biosci 2021; 8:783889. [PMID: 34912850 PMCID: PMC8667583 DOI: 10.3389/fmolb.2021.783889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are stable non-canonical secondary structures formed by G-rich DNA or RNA sequences. They play various regulatory roles in many biological processes. It is commonly agreed that G4 unwinding helicases play key roles in G4 metabolism and function, and these processes are closely related to physiological and pathological processes. In recent years, more and more functional and mechanistic details of G4 helicases have been discovered; therefore, it is necessary to carefully sort out the current research efforts. Here, we provide a systematic summary of G4 unwinding helicases from the perspective of functions and molecular mechanisms. First, we provide a general introduction about helicases and G4s. Next, we comprehensively summarize G4 unfolding helicases in humans and their proposed cellular functions. Then, we review their study methods and molecular mechanisms. Finally, we share our perspective on further prospects. We believe this review will provide opportunities for researchers to reach the frontiers in the functions and molecular mechanisms of human G4 unwinding helicases.
Collapse
Affiliation(s)
- Yang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xinting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Shuyi Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Zhao X, Usdin K. (Dys)function Follows Form: Nucleic Acid Structure, Repeat Expansion, and Disease Pathology in FMR1 Disorders. Int J Mol Sci 2021; 22:ijms22179167. [PMID: 34502075 PMCID: PMC8431139 DOI: 10.3390/ijms22179167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| | - Karen Usdin
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| |
Collapse
|
11
|
Deiana M, Obi I, Andreasson M, Tamilselvi S, Chand K, Chorell E, Sabouri N. A Minimalistic Coumarin Turn-On Probe for Selective Recognition of Parallel G-Quadruplex DNA Structures. ACS Chem Biol 2021; 16:1365-1376. [PMID: 34328300 PMCID: PMC8397291 DOI: 10.1021/acschembio.1c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
G-quadruplex (G4)
DNA structures are widespread in the human genome
and are implicated in biologically important processes such as telomere
maintenance, gene regulation, and DNA replication. Guanine-rich sequences
with potential to form G4 structures are prevalent in the promoter
regions of oncogenes, and G4 sites are now considered as attractive
targets for anticancer therapies. However, there are very few reports
of small “druglike” optical G4 reporters that are easily
accessible through one-step synthesis and that are capable of discriminating
between different G4 topologies. Here, we present a small water-soluble
light-up fluorescent probe that features a minimalistic amidinocoumarin-based
molecular scaffold that selectively targets parallel G4 structures
over antiparallel and non-G4 structures. We showed that this biocompatible
ligand is able to selectively stabilize the G4 template resulting
in slower DNA synthesis. By tracking individual DNA molecules, we
demonstrated that the G4-stabilizing ligand perturbs DNA replication
in cancer cells, resulting in decreased cell viability. Moreover,
the fast-cellular entry of the probe enabled detection of nucleolar
G4 structures in living cells. Finally, insights gained from the structure–activity
relationships of the probe suggest the basis for the recognition of
parallel G4s, opening up new avenues for the design of new biocompatible
G4-specific small molecules for G4-driven theranostic applications.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Måns Andreasson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Shanmugam Tamilselvi
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Karam Chand
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Erik Chorell
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
12
|
Lyu K, Chow EYC, Mou X, Chan TF, Kwok CK. RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res 2021; 49:5426-5450. [PMID: 33772593 PMCID: PMC8191793 DOI: 10.1093/nar/gkab187] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are non-classical DNA or RNA secondary structures that have been first observed decades ago. Over the years, these four-stranded structural motifs have been demonstrated to have significant regulatory roles in diverse biological processes, but challenges remain in detecting them globally and reliably. Compared to DNA G4s (dG4s), the study of RNA G4s (rG4s) has received less attention until recently. In this review, we will summarize the innovative high-throughput methods recently developed to detect rG4s on a transcriptome-wide scale, highlight the many novel and important functions of rG4 being discovered in vivo across the tree of life, and discuss the key biological questions to be addressed in the near future.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
13
|
Cave JW, Willis DE. G-quadruplex regulation of neural gene expression. FEBS J 2021; 289:3284-3303. [PMID: 33905176 DOI: 10.1111/febs.15900] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures characterized by stacked tetrads of guanosine bases. These structures are widespread throughout mammalian genomic DNA and RNA transcriptomes, and prevalent across all tissues. The role of G-quadruplexes in cancer is well-established, but there has been a growing exploration of these structures in the development and homeostasis of normal tissue. In this review, we focus on the roles of G-quadruplexes in directing gene expression in the nervous system, including the regulation of gene transcription, mRNA processing, and trafficking, as well as protein translation. The role of G-quadruplexes and their molecular interactions in the pathology of neurological diseases is also examined. Outside of cancer, there has been only limited exploration of G-quadruplexes as potential intervention targets to treat disease or injury. We discuss studies that have used small-molecule ligands to manipulate G-quadruplex stability in order to treat disease or direct neural stem/progenitor cell proliferation and differentiation into therapeutically relevant cell types. Understanding the many roles that G-quadruplexes have in the nervous system not only provides critical insight into fundamental molecular mechanisms that control neurological function, but also provides opportunities to identify novel therapeutic targets to treat injury and disease.
Collapse
Affiliation(s)
- John W Cave
- InVitro Cell Research LLC, Englewood, NJ, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Glineburg MR, Zhang Y, Krans A, Tank EM, Barmada SJ, Todd PK. Enhanced detection of expanded repeat mRNA foci with hybridization chain reaction. Acta Neuropathol Commun 2021; 9:73. [PMID: 33892814 PMCID: PMC8063431 DOI: 10.1186/s40478-021-01169-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transcribed nucleotide repeat expansions form detectable RNA foci in patient cells that contribute to disease pathogenesis. The most widely used method for detecting RNA foci, fluorescence in situ hybridization (FISH), is powerful but can suffer from issues related to signal above background. Here we developed a repeat-specific form of hybridization chain reaction (R-HCR) as an alternative method for detection of repeat RNA foci in two neurodegenerative disorders: C9orf72 associated ALS and frontotemporal dementia (C9 ALS/FTD) and Fragile X-associated tremor/ataxia syndrome. R-HCR to both G4C2 and CGG repeats exhibited comparable specificity but > 40 × sensitivity compared to FISH, with better detection of both nuclear and cytoplasmic foci in human C9 ALS/FTD fibroblasts, patient iPSC derived neurons, and patient brain samples. Using R-HCR, we observed that integrated stress response (ISR) activation significantly increased the number of endogenous G4C2 repeat RNA foci and triggered their selective nuclear accumulation without evidence of stress granule co-localization in patient fibroblasts and patient derived neurons. These data suggest that R-HCR can be a useful tool for tracking the behavior of repeat expansion mRNA in C9 ALS/FTD and other repeat expansion disorders.
Collapse
|
15
|
Ajjugal Y, Kolimi N, Rathinavelan T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 2021; 11:8163. [PMID: 33854084 PMCID: PMC8046799 DOI: 10.1038/s41598-021-87097-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | | |
Collapse
|
16
|
Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 2020; 21:459-474. [PMID: 32313204 PMCID: PMC7115845 DOI: 10.1038/s41580-020-0236-x] [Citation(s) in RCA: 682] [Impact Index Per Article: 136.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
DNA and RNA can adopt various secondary structures. Four-stranded G-quadruplex (G4) structures form through self-recognition of guanines into stacked tetrads, and considerable biophysical and structural evidence exists for G4 formation in vitro. Computational studies and sequencing methods have revealed the prevalence of G4 sequence motifs at gene regulatory regions in various genomes, including in humans. Experiments using chemical, molecular and cell biology methods have demonstrated that G4s exist in chromatin DNA and in RNA, and have linked G4 formation with key biological processes ranging from transcription and translation to genome instability and cancer. In this Review, we first discuss the identification of G4s and evidence for their formation in cells using chemical biology, imaging and genomic technologies. We then discuss possible functions of DNA G4s and their interacting proteins, particularly in transcription, telomere biology and genome instability. Roles of RNA G4s in RNA biology, especially in translation, are also discussed. Furthermore, we consider the emerging relationships of G4s with chromatin and with RNA modifications. Finally, we discuss the connection between G4 formation and synthetic lethality in cancer cells, and recent progress towards considering G4s as therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Dhaval Varshney
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Jochen Spiegel
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Katherine Zyner
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
G-Quadruplexes in Human Ribosomal RNA. J Mol Biol 2019; 431:1940-1955. [PMID: 30885721 DOI: 10.1016/j.jmb.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/20/2022]
Abstract
rRNA is the single most abundant polymer in most cells. Mammalian rRNAs are nearly twice as large as those of prokaryotes. Differences in rRNA size are due to expansion segments, which contain extended tentacles in metazoans. Here we show that the terminus of an rRNA tentacle of Homo sapiens contains 10 tandem G-tracts that form highly stable G-quadruplexes in vitro. We characterized rRNA of the H. sapiens large ribosomal subunit by computation, circular dichroism, UV melting, fluorescent probes, nuclease accessibility, electrophoretic mobility shifts, and blotting. We investigated Expansion Segment 7 (ES7), oligomers derived from ES7, intact 28S rRNA, 80S ribosomes, and polysomes. We used mass spectrometry to identify proteins that bind to rRNA G-quadruplexes in cell lysates. These proteins include helicases (DDX3, CNBP, DDX21, DDX17) and heterogeneous nuclear ribonucleoproteins. Finally, by multiple sequence alignments, we observe that G-quadruplex-forming sequences are a general feature of LSU rRNA of Chordata but not, as far as we can tell, of other species. Chordata ribosomes present polymorphic tentacles with the potential to switch between inter- and intramolecular G-quadruplexes. To our knowledge, G-quadruplexes have not been reported previously in ribosomes.
Collapse
|
18
|
Haenfler JM, Skariah G, Rodriguez CM, Monteiro da Rocha A, Parent JM, Smith GD, Todd PK. Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells. Front Mol Neurosci 2018; 11:282. [PMID: 30158855 PMCID: PMC6104480 DOI: 10.3389/fnmol.2018.00282] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability and autism. It results from expansion of a CGG nucleotide repeat in the 5′ untranslated region (UTR) of FMR1. Large expansions elicit repeat and promoter hyper-methylation, heterochromatin formation, FMR1 transcriptional silencing and loss of the Fragile X protein, FMRP. Efforts aimed at correcting the sequelae resultant from FMRP loss have thus far proven insufficient, perhaps because of FMRP’s pleiotropic functions. As the repeats do not disrupt the FMRP coding sequence, reactivation of endogenous FMR1 gene expression could correct the proximal event in FXS pathogenesis. Here we utilize the Clustered Regularly Interspaced Palindromic Repeats/deficient CRISPR associated protein 9 (CRISPR/dCas9) system to selectively re-activate transcription from the silenced FMR1 locus. Fusion of the transcriptional activator VP192 to dCas9 robustly enhances FMR1 transcription and increases FMRP levels when targeted directly to the CGG repeat in human cells. Using a previously uncharacterized FXS human embryonic stem cell (hESC) line which acquires transcriptional silencing with serial passaging, we achieved locus-specific transcriptional re-activation of FMR1 messenger RNA (mRNA) expression despite promoter and repeat methylation. However, these changes at the transcript level were not coupled with a significant elevation in FMRP protein expression in FXS cells. These studies demonstrate that directing a transcriptional activator to CGG repeats is sufficient to selectively reactivate FMR1 mRNA expression in Fragile X patient stem cells.
Collapse
Affiliation(s)
- Jill M Haenfler
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Andre Monteiro da Rocha
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Gary D Smith
- Departments of Obstetrics/Gynecology, Physiology, and Urology, University of Michigan, Ann Arbor, MI, United States
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
20
|
Huang H, Zhang J, Harvey SE, Hu X, Cheng C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Dev 2017; 31:2296-2309. [PMID: 29269483 PMCID: PMC5769772 DOI: 10.1101/gad.305862.117] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022]
Abstract
Here, Huang et al. investigated the role of RNA secondary structure in splicing regulation and show that RNA elements with G-quadruplex-forming capacity promote exon inclusion. Analysis of RNA-binding protein footprints revealed that G quadruplexes are enriched in hnRNPF-binding sites and near hnRNPF-regulated alternatively spliced exons in the human transcriptome, thus providing new insights into the regulation of alternative splicing. It is generally thought that splicing factors regulate alternative splicing through binding to RNA consensus sequences. In addition to these linear motifs, RNA secondary structure is emerging as an important layer in splicing regulation. Here we demonstrate that RNA elements with G-quadruplex-forming capacity promote exon inclusion. Destroying G-quadruplex-forming capacity while keeping G tracts intact abrogates exon inclusion. Analysis of RNA-binding protein footprints revealed that G quadruplexes are enriched in heterogeneous nuclear ribonucleoprotein F (hnRNPF)-binding sites and near hnRNPF-regulated alternatively spliced exons in the human transcriptome. Moreover, hnRNPF regulates an epithelial–mesenchymal transition (EMT)-associated CD44 isoform switch in a G-quadruplex-dependent manner, which results in inhibition of EMT. Mining breast cancer TCGA (The Cancer Genome Atlas) data sets, we demonstrate that hnRNPF negatively correlates with an EMT gene signature and positively correlates with patient survival. These data suggest a critical role for RNA G quadruplexes in regulating alternative splicing. Modulation of G-quadruplex structural integrity may control cellular processes important for tumor progression.
Collapse
Affiliation(s)
- Huilin Huang
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jing Zhang
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Samuel E Harvey
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaohui Hu
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chonghui Cheng
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
21
|
Serikawa T, Spanos C, von Hacht A, Budisa N, Rappsilber J, Kurreck J. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5' UTR of tumor-associated mRNAs. Biochimie 2017; 144:169-184. [PMID: 29129743 DOI: 10.1016/j.biochi.2017.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
G-quadruplex structures in the 5' UTR of mRNAs are widely considered to suppress translation without affecting transcription. The current study describes the comprehensive analysis of proteins binding to four different G-quadruplex motifs located in mRNAs of the cancer-related genes Bcl-2, NRAS, MMP16, and ARPC2. Following metabolic labeling (Stable Isotope Labeling with Amino acids in Cell culture, SILAC) of proteins in the human cell line HEK293, G-quadruplex binding proteins were enriched by pull-down assays and identified by LC-orbitrap mass spectrometry. We found different patterns of interactions for the G-quadruplex motifs under investigation. While the G-quadruplexes in the mRNAs of NRAS and MMP16 specifically interacted with a small number of proteins, the Bcl-2 and ARPC2 G-quadruplexes exhibited a broad range of proteinaceous interaction partners with 99 and 82 candidate proteins identified in at least two replicates, respectively. The use of a control composed of samples from all G-quadruplex-forming sequences and their mutated controls ensured that the identified proteins are specific for RNA G-quadruplex structures and are not general RNA-binding proteins. Independent validation experiments based on pull-down assays and Western blotting confirmed the MS data. Among the interaction partners were many proteins known to bind to RNA, including multiple heterogenous nuclear ribonucleoproteins (hnRNPs). Several of the candidate proteins are likely to reflect stalling of the ribosome by RNA G-quadruplex structures. Interestingly, additional proteins were identified that have not previously been described to interact with RNA. Gene ontology analysis of the candidate proteins revealed that many interaction partners are known to be tumor related. The majority of the identified RNA G-quadruplex interacting proteins are thought to be involved in post-transcriptional processes, particularly in splicing. These findings indicate that protein-G-quadruplex interactions are not only important for the fine-tuning of translation but are also relevant to the regulation of mRNA maturation and may play an important role in tumor biology. Proteomic data are available via ProteomeXchange with identifier PXD005761.
Collapse
Affiliation(s)
- Tatsuo Serikawa
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Annekathrin von Hacht
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Nediljko Budisa
- Department of Biocatalysis, Institute of Chemistry, L 1, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623, Berlin, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Department of Bioanalytics, Institute of Biotechnology, TIB 4/4-3, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
22
|
Cammas A, Millevoi S. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res 2017; 45:1584-1595. [PMID: 28013268 PMCID: PMC5389700 DOI: 10.1093/nar/gkw1280] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
RNA G-quadruplexes (G4s) are formed by G-rich RNA sequences in protein-coding (mRNA) and non-coding (ncRNA) transcripts that fold into a four-stranded conformation. Experimental studies and bioinformatic predictions support the view that these structures are involved in different cellular functions associated to both DNA processes (telomere elongation, recombination and transcription) and RNA post-transcriptional mechanisms (including pre-mRNA processing, mRNA turnover, targeting and translation). An increasing number of different diseases have been associated with the inappropriate regulation of RNA G4s exemplifying the potential importance of these structures on human health. Here, we review the different molecular mechanisms underlying the link between RNA G4s and human diseases by proposing several overlapping models of deregulation emerging from recent research, including (i) sequestration of RNA-binding proteins, (ii) aberrant expression or localization of RNA G4-binding proteins, (iii) repeat associated non-AUG (RAN) translation, (iv) mRNA translational blockade and (v) disabling of protein–RNA G4 complexes. This review also provides a comprehensive survey of the functional RNA G4 and their mechanisms of action. Finally, we highlight future directions for research aimed at improving our understanding on RNA G4-mediated regulatory mechanisms linked to diseases.
Collapse
Affiliation(s)
- Anne Cammas
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III-Paul Sabatier, Inserm, CRCT, Toulouse, France
| | - Stefania Millevoi
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III-Paul Sabatier, Inserm, CRCT, Toulouse, France
| |
Collapse
|
23
|
Fay MM, Lyons SM, Ivanov P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J Mol Biol 2017; 429:2127-2147. [PMID: 28554731 PMCID: PMC5603239 DOI: 10.1016/j.jmb.2017.05.017] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022]
Abstract
G-quadruplexes (G4s) are extremely stable DNA or RNA secondary structures formed by sequences rich in guanine. These structures are implicated in many essential cellular processes, and the number of biological functions attributed to them continues to grow. While DNA G4s are well understood on structural and, to some extent, functional levels, RNA G4s and their functions have received less attention. The presence of bona fide RNA G4s in cells has long been a matter of debate. The development of G4-specific antibodies and ligands hinted on their presence in vivo, but recent advances in RNA sequencing coupled with chemical footprinting suggested the opposite. In this review, we will critically discuss the biology of RNA G4s focusing on the molecular mechanisms underlying their proposed functions.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Ciesiolka A, Jazurek M, Drazkowska K, Krzyzosiak WJ. Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions. Front Cell Neurosci 2017; 11:97. [PMID: 28442996 PMCID: PMC5387085 DOI: 10.3389/fncel.2017.00097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Short Tandem Repeats (STRs) are frequent entities in many transcripts, however, in some cases, pathological events occur when a critical repeat length is reached. This phenomenon is observed in various neurological disorders, such as myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome, C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), and polyglutamine diseases, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA). The pathological effects of these repeats are triggered by mutant RNA transcripts and/or encoded mutant proteins, which depend on the localization of the expanded repeats in non-coding or coding regions. A growing body of recent evidence revealed that the RNA structures formed by these mutant RNA repeat tracts exhibit toxic effects on cells. Therefore, in this review article, we present existing knowledge on the structural aspects of different RNA repeat tracts as revealed mainly using well-established biochemical and biophysical methods. Furthermore, in several cases, it was shown that these expanded RNA structures are potent traps for a variety of RNA-binding proteins and that the sequestration of these proteins from their normal intracellular environment causes alternative splicing aberration, inhibition of nuclear transport and export, or alteration of a microRNA biogenesis pathway. Therefore, in this review article, we also present the most studied examples of abnormal interactions that occur between mutant RNAs and their associated proteins.
Collapse
Affiliation(s)
- Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Karolina Drazkowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
25
|
Guo JU, Bartel DP. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 2017; 353:353/6306/aaf5371. [PMID: 27708011 DOI: 10.1126/science.aaf5371] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022]
Abstract
In vitro, some RNAs can form stable four-stranded structures known as G-quadruplexes. Although RNA G-quadruplexes have been implicated in posttranscriptional gene regulation and diseases, direct evidence for their formation in cells has been lacking. Here, we identified thousands of mammalian RNA regions that can fold into G-quadruplexes in vitro, but in contrast to previous assumptions, these regions were overwhelmingly unfolded in cells. Model RNA G-quadruplexes that were unfolded in eukaryotic cells were folded when ectopically expressed in Escherichia coli; however, they impaired translation and growth, which helps explain why we detected few G-quadruplex-forming regions in bacterial transcriptomes. Our results suggest that eukaryotes have a robust machinery that globally unfolds RNA G-quadruplexes, whereas some bacteria have instead undergone evolutionary depletion of G-quadruplex-forming sequences.
Collapse
Affiliation(s)
- Junjie U Guo
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Błaszczyk L, Rypniewski W, Kiliszek A. Structures of RNA repeats associated with neurological diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28130835 DOI: 10.1002/wrna.1412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/25/2016] [Accepted: 11/12/2016] [Indexed: 01/04/2023]
Abstract
All RNA molecules possess a 'propensity' to fold into complex secondary and tertiary structures. Although they are composed of only four types of nucleotides, they show an enormous structural richness which reflects their diverse functions in the cell. However, in some cases the folding of RNA can have deleterious consequences. Aberrantly expanded, repeated RNA sequences can exhibit gain-of-function abnormalities and become pathogenic, giving rise to many incurable neurological diseases. Most RNA repeats form long hairpin structures whose stem consists of noncanonical base pairs interspersed among Watson-Crick pairs. The expanded hairpins have an ability to sequester important proteins and form insoluble nuclear foci. The RNA pathology, common to many repeat disorders, has drawn attention to the structures of the RNA repeats. In this review, we summarize secondary structure probing and crystallographic studies of disease-related RNA repeat sequences. We discuss the unique structural features which can contribute to the pathogenic properties of the repeated runs. In addition, we present the newest reports concerning structural data linked to therapeutic approaches. WIREs RNA 2017, 8:e1412. doi: 10.1002/wrna.1412 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
27
|
Pandey S, Agarwala P, Maiti S. Targeting RNA G-Quadruplexes for Potential Therapeutic Applications. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Molecular Pathophysiology of Fragile X-Associated Tremor/Ataxia Syndrome and Perspectives for Drug Development. THE CEREBELLUM 2016; 15:599-610. [DOI: 10.1007/s12311-016-0800-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Gudanis D, Popenda L, Szpotkowski K, Kierzek R, Gdaniec Z. Structural characterization of a dimer of RNA duplexes composed of 8-bromoguanosine modified CGG trinucleotide repeats: a novel architecture of RNA quadruplexes. Nucleic Acids Res 2016; 44:2409-16. [PMID: 26743003 PMCID: PMC4797283 DOI: 10.1093/nar/gkv1534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022] Open
Abstract
Fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS) are neurodegenerative disorders caused by the pathogenic expansion of CGG triplet repeats in the FMR1 gene. FXTAS is likely to be caused by a 'toxic' gain-of-function of the FMR1 mRNA. We provide evidence for the existence of a novel quadruplex architecture comprising CGG repeats. The 8-bromoguanosine ((Br)G)-modified molecule GC(Br)GGCGGC forms a duplex in solution and self-associates via the major groove to form a four-stranded, antiparallel (GC(Br)GGCGGC)4 RNA quadruplex with (Br)G3:G6:(Br)G3:G6 tetrads sandwiched between mixed G:C:G:C tetrads. Self-association of Watson-Crick duplexes to form a four-stranded structure has previously been predicted; however, no experimental evidence was provided. This novel four-stranded RNA structure was characterized using a variety of experimental methods, such as native gel electrophoresis, NMR spectroscopy, small-angle X-ray scattering and electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Dorota Gudanis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Lukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Umultowska 85, Poland
| | - Kamil Szpotkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
30
|
Abstract
G-quadruplexes are non-canonical secondary structures found in guanine rich regions of DNA and RNA. Reports have indicated the wide occurrence of RNA G-quadruplexes across the transcriptome in various regions of mRNAs and non-coding RNAs. RNA G-quadruplexes have been implicated in playing an important role in translational regulation, mRNA processing events and maintenance of chromosomal end integrity. In this review, we summarize the structural and functional aspects of RNA G-quadruplexes with emphasis on recent progress to understand the protein/trans factors binding these motifs. With the revelation of the importance of these secondary structures as regulatory modules in biology, we have also evaluated the various advancements towards targeting these structures and the challenges associated with them. Apart from this, numerous potential applications of this secondary motif have also been discussed.
Collapse
Affiliation(s)
- Prachi Agarwala
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | | | | |
Collapse
|
31
|
Abstract
There has recently been a huge increase in interest in the formation of stable G-quadruplex structures in mRNAs and their functional significance. In neurons, local translation of mRNA is essential for normal neuronal behaviour. It has been discovered that local translation of specific mRNAs encoding some of the best known synaptic proteins is dependent on the presence of a G-quadruplex. The recognition of G-quadruplexes in mRNAs, their transport as repressed complexes and the control of their translation at their subcellular destinations involves a diversity of proteins, including those associated with disease pathologies. This is an exciting field, with rapid improvements to our knowledge and understanding. Here, we discuss some of the recent work on how G-quadruplexes mediate local translation in neurons.
Collapse
|
32
|
Kearse MG, Todd PK. Repeat-associated non-AUG translation and its impact in neurodegenerative disease. Neurotherapeutics 2014; 11:721-31. [PMID: 25005000 PMCID: PMC4391382 DOI: 10.1007/s13311-014-0292-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide repeat expansions underlie numerous human neurological disorders. Repeats can trigger toxicity through multiple pathogenic mechanisms, including RNA gain-of-function, protein gain-of-function, and protein loss-of-function pathways. Traditionally, inference of the underlying pathogenic mechanism derives from the repeat location, with dominantly inherited repeats within transcribed noncoding sequences eliciting toxicity predominantly as RNA via sequestration of specific RNA binding proteins. However, recent findings question this assumption and suggest that repeats outside of annotated open reading frames may also trigger toxicity through a novel form of protein translational initiation known as repeat-associated non-AUG (RAN) translation. To date, RAN translation has been implicated in 4 nucleotide repeat expansion disorders: spinocerebellar ataxia type 8; myotonic dystrophy type 1 with CTG•CAG repeats; C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia with GGGGCC•GGCCCC repeats; and fragile X-associated tremor/ataxia syndrome with CGG repeats. RAN translation contributes to hallmark pathological characteristics in these disorders by producing homopolymeric or dipeptide repeat proteins. Here, we review what is known about RAN translation, with an emphasis on how differences in both repeat sequence and context may confer different requirements for unconventional initiation. We then discuss how this new mechanism of translational initiation might function in normal physiology and lay out a roadmap for addressing the numerous questions that remain.
Collapse
Affiliation(s)
- Michael G. Kearse
- />Department of Neurology, University of Michigan Medical School, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Peter K. Todd
- />Department of Neurology, University of Michigan Medical School, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
- />Veterans Affairs Medical Center, Ann Arbor, MI 48105 USA
| |
Collapse
|
33
|
DNA and RNA quadruplex-binding proteins. Int J Mol Sci 2014; 15:17493-517. [PMID: 25268620 PMCID: PMC4227175 DOI: 10.3390/ijms151017493] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023] Open
Abstract
Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.
Collapse
|
34
|
Wojciechowska M, Olejniczak M, Galka-Marciniak P, Jazurek M, Krzyzosiak WJ. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders. Nucleic Acids Res 2014; 42:11849-64. [PMID: 25217582 PMCID: PMC4231732 DOI: 10.1093/nar/gku794] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeat-associated disorders caused by expansions of short sequences have been classified as coding and noncoding and are thought to be caused by protein gain-of-function and RNA gain-of-function mechanisms, respectively. The boundary between such classifications has recently been blurred by the discovery of repeat-associated non-AUG (RAN) translation reported in spinocerebellar ataxia type 8, myotonic dystrophy type 1, fragile X tremor/ataxia syndrome and C9ORF72 amyotrophic lateral sclerosis and frontotemporal dementia. This noncanonical translation requires no AUG start codon and can initiate in multiple frames of CAG, CGG and GGGGCC repeats of the sense and antisense strands of disease-relevant transcripts. RNA structures formed by the repeats have been suggested as possible triggers; however, the precise mechanism of the translation initiation remains elusive. Templates containing expansions of microsatellites have also been shown to challenge translation elongation, as frameshifting has been recognized across CAG repeats in spinocerebellar ataxia type 3 and Huntington's disease. Determining the critical requirements for RAN translation and frameshifting is essential to decipher the mechanisms that govern these processes. The contribution of unusual translation products to pathogenesis needs to be better understood. In this review, we present current knowledge regarding RAN translation and frameshifting and discuss the proposed mechanisms of translational challenges imposed by simple repeat expansions.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marta Olejniczak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| |
Collapse
|
35
|
Malgowska M, Gudanis D, Kierzek R, Wyszko E, Gabelica V, Gdaniec Z. Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Res 2014; 42:10196-207. [PMID: 25081212 PMCID: PMC4150804 DOI: 10.1093/nar/gku710] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K+, Na+ and NH4+ were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K+ ions.
Collapse
Affiliation(s)
- Magdalena Malgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Dorota Gudanis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Valérie Gabelica
- Laboratoire de Spectrométrie de Masse, Institut de Chimie, Bat. B6c, Université de Liège, B-4000 Liège, Belgium Inserm, U869 ARNA Laboratory, F-33000 Bordeaux, France University of Bordeaux, IECB, ARNA Laboratory, F-33600 Pessac, France
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
36
|
von Hacht A, Seifert O, Menger M, Schütze T, Arora A, Konthur Z, Neubauer P, Wagner A, Weise C, Kurreck J. Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res 2014; 42:6630-44. [PMID: 24771345 PMCID: PMC4041461 DOI: 10.1093/nar/gku290] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Guanine quadruplex (G-quadruplex) motifs in the 5′ untranslated region (5′-UTR) of mRNAs were recently shown to influence the efficiency of translation. In the present study, we investigate the interaction between cellular proteins and the G-quadruplexes located in two mRNAs (MMP16 and ARPC2). Formation of the G-quadruplexes was confirmed by biophysical characterization and the inhibitory activity on translation was shown by luciferase reporter assays. In experiments with whole cell extracts from different eukaryotic cell lines, G-quadruplex-binding proteins were isolated by pull-down assays and subsequently identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The binding partners of the RNA G-quadruplexes we discovered included several heterogenous nuclear ribonucleoproteins, ribosomal proteins, and splicing factors, as well as other proteins that have previously not been described to interact with nucleic acids. While most of the proteins were specific for either of the investigated G-quadruplexes, some of them bound to both motifs. Selected candidate proteins were subsequently produced by recombinant expression and dissociation constants for the interaction between the proteins and RNA G-quadruplexes in the low nanomolar range were determined by surface plasmon resonance spectroscopy. The present study may thus help to increase our understanding of the mechanisms by which G-quadruplexes regulate translation.
Collapse
Affiliation(s)
- Annekathrin von Hacht
- Institute of Biotechnology, Department of Applied Biochemistry, TUB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Oliver Seifert
- Institute for Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | - Tatjana Schütze
- Institute of Biotechnology, Department of Applied Biochemistry, TUB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Amit Arora
- Institute for Molecular Biosciences, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Zoltán Konthur
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Neubauer
- Institute of Biotechnology, Department of Bioprocess Engineering, ACK-24, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Anke Wagner
- Institute of Biotechnology, Department of Applied Biochemistry, TUB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jens Kurreck
- Institute of Biotechnology, Department of Applied Biochemistry, TUB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
37
|
Abstract
In this issue of Neuron, Todd et al. (2013) reveal that noncanonical repeat associated non-AUG (RAN) translation occurs on nonexpanded (CGG)30-50 and premutation (CGG)59-160 repeats, associated with the FMR1 gene, suggesting that the polyglycine and polyalanine products might have natural and pathogenic roles.
Collapse
Affiliation(s)
- Kaalak Reddy
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | | |
Collapse
|
38
|
Vorlíčková M, Kejnovská I, Bednářová K, Renčiuk D, Kypr J. Circular dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality 2012; 24:691-8. [PMID: 22696273 DOI: 10.1002/chir.22064] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/06/2012] [Accepted: 04/04/2012] [Indexed: 12/20/2022]
Abstract
Nucleic acids bear the genetic information and participate in its expression and evolution during replication, repair, recombination, transcription, and translation. These phenomena are mostly based on recognition of nucleic acids by proteins. The major factor enabling the specific recognition is structure. Circular dichroism (CD) spectroscopy is very useful to study secondary structures of nucleic acids, in general, and DNA, in particular. CD sensitively reflects isomerizations among distinct conformational states. The isomerizations may operate as molecular switches regulating various physiological or pathological processes. Here, we review CD spectra of nucleic acids, beginning with early studies on natural DNA molecules through analyses of synthetic polynucleotides to study of selected genomic fragments.
Collapse
Affiliation(s)
- Michaela Vorlíčková
- Department of CD Spectroscopy of Nucleic Acids, Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
39
|
Millevoi S, Moine H, Vagner S. G-quadruplexes in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:495-507. [PMID: 22488917 DOI: 10.1002/wrna.1113] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G-quadruplexes are noncanonical structures formed by G-rich DNA and RNA sequences that fold into a four-stranded conformation. Experimental studies and computational predictions show that RNA G-quadruplexes are present in transcripts associated with telomeres, in noncoding sequences of primary transcripts and within mature transcripts. RNA G-quadruplexes at these specific locations play important roles in key cellular functions, including telomere homeostasis and gene expression. Indeed, RNA G-quadruplexes appear as important regulators of pre-mRNA processing (splicing and polyadenylation), RNA turnover, mRNA targeting and translation. The regulatory mechanisms controlled by RNA G-quadruplexes involve the binding of protein factors that modulate G-quadruplex conformation and/or serve as a bridge to recruit additional protein regulators. In this review, we summarize the current knowledge on the role of G-quadruplexes in RNA biology with particular emphasis on the molecular mechanisms underlying their specific function in RNA metabolism occurring in physiological or pathological conditions.
Collapse
Affiliation(s)
- Stefania Millevoi
- Inserm UMR 1037, University of Toulouse III, Cancer Research Center of Toulouse, Toulouse 31432, Cedex 4, France.
| | | | | |
Collapse
|
40
|
Sinnamon JR, Waddell CB, Nik S, Chen EI, Czaplinski K. Hnrpab regulates neural development and neuron cell survival after glutamate stimulation. RNA (NEW YORK, N.Y.) 2012; 18:704-19. [PMID: 22332140 PMCID: PMC3312558 DOI: 10.1261/rna.030742.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The molecular mechanisms that govern the timing and fate of neural stem-cell differentiation toward the distinct neural lineages of the nervous system are not well defined. The contribution of post-transcriptional regulation of gene expression to neural stem-cell maintenance and differentiation, in particular, remains inadequately characterized. The RNA-binding protein Hnrpab is highly expressed in developing nervous tissue and in neurogenic regions of the adult brain, but its role in neural development and function is unknown. We raised a mouse that lacks Hnrpab expression to define what role, if any, Hnrpab plays during mouse neural development. We performed a genome-wide quantitative analysis of protein expression within the hippocampus of newborn mice to demonstrate significantly altered gene expression in mice lacking Hnrpab relative to Hnrpab-expressing littermates. The proteins affected suggested an altered pattern of neural development and also unexpectedly indicated altered glutamate signaling. We demonstrate that Hnrpab(-/-) neural stem and progenitor cells undergo altered differentiation patterns in culture, and mature Hnrpab(-/-) neurons demonstrate increased sensitivity to glutamate-induced excitotoxicity. We also demonstrate that Hnrpab nucleocytoplasmic distribution in primary neurons is regulated by developmental stage.
Collapse
Affiliation(s)
- John R. Sinnamon
- Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794, USA
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Catherine B. Waddell
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sara Nik
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Emily I. Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
- Stony Brook University Proteomics Center, Stony Brook University, Stony Brook, New York 11794, USA
| | - Kevin Czaplinski
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
- Corresponding author.E-mail .
| |
Collapse
|
41
|
Bugaut A, Balasubramanian S. 5'-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 2012; 40:4727-41. [PMID: 22351747 PMCID: PMC3367173 DOI: 10.1093/nar/gks068] [Citation(s) in RCA: 469] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RNA structures in the untranslated regions (UTRs) of mRNAs influence post-transcriptional regulation of gene expression. Much of the knowledge in this area depends on canonical double-stranded RNA elements. There has been considerable recent advancement of our understanding of guanine(G)-rich nucleic acids sequences that form four-stranded structures, called G-quadruplexes. While much of the research has been focused on DNA G-quadruplexes, there has recently been a rapid emergence of interest in RNA G-quadruplexes, particularly in the 5′-UTRs of mRNAs. Collectively, these studies suggest that RNA G-quadruplexes exist in the 5′-UTRs of many genes, including genes of clinical interest, and that such structural elements can influence translation. This review features the progresses in the study of 5′-UTR RNA G-quadruplex-mediated translational control. It covers computational analysis, cell-free, cell-based and chemical biology studies that have sought to elucidate the roles of RNA G-quadruplexes in both cap-dependent and -independent regulation of mRNA translation. We also discuss protein trans-acting factors that have been implicated and the evidence that such RNA motifs have potential as small molecule target. Finally, we close the review with a perspective on the future challenges in the field of 5′-UTR RNA G-quadruplex-mediated translation regulation.
Collapse
Affiliation(s)
- Anthony Bugaut
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | |
Collapse
|
42
|
Lammich S, Kamp F, Wagner J, Nuscher B, Zilow S, Ludwig AK, Willem M, Haass C. Translational repression of the disintegrin and metalloprotease ADAM10 by a stable G-quadruplex secondary structure in its 5'-untranslated region. J Biol Chem 2011; 286:45063-72. [PMID: 22065584 DOI: 10.1074/jbc.m111.296921] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Anti-amyloidogenic processing of the amyloid precursor protein APP by α-secretase prevents formation of the amyloid-β peptide, which accumulates in senile plaques of Alzheimer disease patients. α-Secretase belongs to the family of a disintegrin and metalloproteases (ADAMs), and ADAM10 is the primary candidate for this anti-amyloidogenic activity. We recently demonstrated that ADAM10 translation is repressed by its 5'-UTR and that in particular the first half of ADAM10 5'-UTR is responsible for translational repression. Here, we asked whether specific sequence motifs exist in the ADAM10 5'-UTR that are able to form complex secondary structures and thus potentially inhibit ADAM10 translation. Using circular dichroism spectroscopy, we demonstrate that a G-rich region between nucleotides 66 and 94 of the ADAM10 5'-UTR forms a highly stable, intramolecular, parallel G-quadruplex secondary structure under physiological conditions. Mutation of guanines in this sequence abrogates the formation of the G-quadruplex structure. Although the G-quadruplex structure efficiently inhibits translation of a luciferase reporter in in vitro translation assays and in living cells, inhibition of G-quadruplex formation fails to do so. Moreover, expression of ADAM10 was similarly repressed by the G-quadruplex. Mutation of the G-quadruplex motif results in a significant increase of ADAM10 levels and consequently APPsα secretion. Thus, we identified a critical RNA secondary structure within the 5'-UTR, which contributes to the translational repression of ADAM10.
Collapse
Affiliation(s)
- Sven Lammich
- Adolf Butenandt Institute, Biochemistry, Ludwig Maximilians University, 80336 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Renoux AJ, Todd PK. Neurodegeneration the RNA way. Prog Neurobiol 2011; 97:173-89. [PMID: 22079416 DOI: 10.1016/j.pneurobio.2011.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/06/2011] [Accepted: 10/27/2011] [Indexed: 02/09/2023]
Abstract
The expression, processing, transport and activities of both coding and non-coding RNAs play critical roles in normal neuronal function and differentiation. Over the past decade, these same pathways have come under scrutiny as potential contributors to neurodegenerative disease. Here we focus broadly on the roles of RNA and RNA processing in neurodegeneration. We first discuss a set of "RNAopathies", where non-coding repeat expansions drive pathogenesis through a surprisingly diverse set of mechanisms. We next explore an emerging class of "RNA binding proteinopathies" where redistribution and aggregation of the RNA binding proteins TDP-43 or FUS contribute to a potentially broad range of neurodegenerative disorders. Lastly, we delve into the potential contributions of alterations in both short and long non-coding RNAs to neurodegenerative illness.
Collapse
Affiliation(s)
- Abigail J Renoux
- Department of Molecular and Integrative Physiology, University of Michigan, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
44
|
Kiliszek A, Kierzek R, Krzyzosiak WJ, Rypniewski W. Crystal structures of CGG RNA repeats with implications for fragile X-associated tremor ataxia syndrome. Nucleic Acids Res 2011; 39:7308-15. [PMID: 21596781 PMCID: PMC3167596 DOI: 10.1093/nar/gkr368] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The CGG repeats are present in the 5'-untranslated region (5'-UTR) of the fragile X mental retardation gene FMR1 and are associated with two diseases: fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X syndrome (FXS). FXTAS occurs when the number of repeats is 55-200 and FXS develops when the number exceeds 200. FXTAS is an RNA-mediated disease in which the expanded CGG tracts form stable structures and sequester important RNA binding proteins. We obtained and analysed three crystal structures of double-helical CGG repeats involving unmodified and 8-Br modified guanosine residues. Despite the presence of the non-canonical base pairs, the helices retain an A-form. In the G-G pairs one guanosine is always in the syn conformation, the other is anti. There are two hydrogen bonds between the Watson-Crick edge of G(anti) and the Hoogsteen edge of G(syn): O6·N1H and N7·N2H. The G(syn)-G(anti) pair shows affinity for binding ions in the major groove. G(syn) causes local unwinding of the helix, compensated elsewhere along the duplex. CGG helical structures appear relatively stable compared with CAG and CUG tracts. This could be an important factor in the RNA's ligand binding affinity and specificity.
Collapse
Affiliation(s)
| | | | | | - Wojciech Rypniewski
- *To whom correspondence should be addressed. Tel: +48-61-8528503; Fax: +48-61-8520532;
| |
Collapse
|
45
|
Sissi C, Gatto B, Palumbo M. The evolving world of protein-G-quadruplex recognition: a medicinal chemist's perspective. Biochimie 2011; 93:1219-30. [PMID: 21549174 PMCID: PMC7126356 DOI: 10.1016/j.biochi.2011.04.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/20/2011] [Indexed: 01/02/2023]
Abstract
The physiological and pharmacological role of nucleic acids structures folded into the non canonical G-quadruplex conformation have recently emerged. Their activities are targeted at vital cellular processes including telomere maintenance, regulation of transcription and processing of the pre-messenger or telomeric RNA. In addition, severe conditions like cancer, fragile X syndrome, Bloom syndrome, Werner syndrome and Fanconi anemia J are related to genomic defects that involve G-quadruplex forming sequences. In this connection G-quadruplex recognition and processing by nucleic acid directed proteins and enzymes represents a key event to activate or deactivate physiological or pathological pathways. In this review we examine protein-G-quadruplex recognition in physiologically significant conditions and discuss how to possibly exploit the interactions' selectivity for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, Padua, Italy
| | | | | |
Collapse
|
46
|
Ludwig AL, Hershey JWB, Hagerman PJ. Initiation of translation of the FMR1 mRNA Occurs predominantly through 5'-end-dependent ribosomal scanning. J Mol Biol 2011; 407:21-34. [PMID: 21237174 DOI: 10.1016/j.jmb.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 01/17/2023]
Abstract
The fragile X mental retardation 1 (FMR1) gene contains a CGG repeat within its 5' untranslated region (5'UTR) that, when expanded to 55-200 CGG repeats (premutation allele), can result in the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome. The CGG repeat is expected to form a highly stable secondary structure that is capable of inhibiting 5'-cap-dependent translation. Paradoxically, translation in vivo is only mildly impaired within the premutation range, suggesting that other modes of translation initiation may be operating. To address this issue, we translated in vitro a set of reporter mRNAs containing between 0 and 99 CGG repeats in either native (FMR1) or unrelated (heterologous) 5'UTR context. The 5'-cap dependence of translation was assessed by inserting a stable hairpin (HP) near the 5' end of the mRNAs. The results of the current studies indicate that translation initiation of the FMR1 mRNA occurs primarily by scanning, with little evidence of internal ribosome entry or shunting. Additionally, the efficiency of translation initiation depends on transcription start site selection, with the shorter 5'UTR (downstream transcription start site I) translating with greater efficiency compared to the longer mRNA (start site III) for all CGG-repeat elements studied. Lastly, an HP previously shown to block translation gave differing results depending on the 5'UTR context, in one case initiating translation from within the HP.
Collapse
Affiliation(s)
- Anna L Ludwig
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | | | | |
Collapse
|
47
|
Mullen MA, Olson KJ, Dallaire P, Major F, Assmann SM, Bevilacqua PC. RNA G-Quadruplexes in the model plant species Arabidopsis thaliana: prevalence and possible functional roles. Nucleic Acids Res 2010; 38:8149-63. [PMID: 20860998 PMCID: PMC3001093 DOI: 10.1093/nar/gkq804] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 01/25/2023] Open
Abstract
Tandem stretches of guanines can associate in hydrogen-bonded arrays to form G-quadruplexes, which are stabilized by K(+) ions. Using computational methods, we searched for G-Quadruplex Sequence (GQS) patterns in the model plant species Arabidopsis thaliana. We found ∼ 1200 GQS with a G(3) repeat sequence motif, most of which are located in the intergenic region. Using a Markov modeled genome, we determined that GQS are significantly underrepresented in the genome. Additionally, we found ∼ 43,000 GQS with a G(2) repeat sequence motif; notably, 80% of these were located in genic regions, suggesting that these sequences may fold at the RNA level. Gene Ontology functional analysis revealed that GQS are overrepresented in genes encoding proteins of certain functional categories, including enzyme activity. Conversely, GQS are underrepresented in other categories of genes, notably those for non-coding RNAs such as tRNAs and rRNAs. We also find that genes that are differentially regulated by drought are significantly more likely to contain a GQS. CD-detected K(+) titrations performed on representative RNAs verified formation of quadruplexes at physiological K(+) concentrations. Overall, this study indicates that GQS are present at unique locations in Arabidopsis and that folding of RNA GQS may play important roles in regulating gene expression.
Collapse
Affiliation(s)
- Melissa A. Mullen
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Kalee J. Olson
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Paul Dallaire
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - François Major
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Sarah M. Assmann
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Philip C. Bevilacqua
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
48
|
Shahid R, Bugaut A, Balasubramanian S. The BCL-2 5' untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry 2010; 49:8300-6. [PMID: 20726580 DOI: 10.1021/bi100957h] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The BCL-2 gene encodes a 25 kDa membrane protein that plays critical roles in the control of apoptosis. The regulation of BCL-2 gene expression is highly complex and occurs both transcriptionally and posttranscriptionally. In particular, the 5' upstream region of BCL-2 contains a number of elements that control its expression. We have identified a highly conserved 25-nucleotide G-rich sequence (BCL2Q), with potential to fold into a RNA G-quadruplex structure, located 42 nucleotides upstream of the translation start site of human BCL-2. In this study, we used a series of biophysical experiments to show that the BCL2Q sequence folds into a stable RNA G-quadruplex in vitro, and we conducted functional luciferase reporter-based assays, in a cell-free lysate and in three types of human cell lines, to demonstrate that the BCL2Q sequence modulates protein expression in the context of the 493-nucleotide native 5' untranslated region of BCL-2.
Collapse
Affiliation(s)
- Ramla Shahid
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | |
Collapse
|
49
|
Saxena S, Miyoshi D, Sugimoto N. Sole and stable RNA duplexes of G-rich sequences located in the 5'-untranslated region of protooncogenes. Biochemistry 2010; 49:7190-201. [PMID: 20672842 DOI: 10.1021/bi101093a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Guanine- (G-) rich nucleic acid sequences can form four-stranded structures called G-quadruplexes. It is widely held that the formation of a G-quadruplex in RNA is more feasible than in DNA because of the lack of a complementary strand in mRNA. Here, we analyzed sequences of 5'-untranslated regions of protooncogenes and surprisingly found that these regions showed an enrichment of not only guanine (G) but also cytosine (C) nucleotides. Since neighboring cytosine- (C-) rich regions can affect the formation and stability of a G-quadruplex structure, we further investigated the properties of DNA and RNA structures of G-rich and GC-rich regions. We selected typical GC-rich RNA sequences from protooncogenes and corresponding DNA sequences and investigated their structures. It was found that the GC-rich RNA sequences formed stable A-form duplexes as their major structure independent of the surrounding conditions, including the presence of different cations (Na(+), K(+), or Li(+)) or molecular crowding with 40 wt % poly(ethylene glycol) with an average molecular mass of 200 Da although there are a few exceptions in which only a combination of K(+) and molecular crowding induced a G-quadruplex structure of an extremely G-rich RNA sequence. In contrast, structural polymorphisms involving duplexes, G-quadruplexes, and i-motifs were observed for GC-rich DNA sequences depending on the surrounding factors. These results demonstrate the considerable structural and functional differences in GC-rich sequences of the genome (DNA) and transcriptosome (mRNA) with respect to the nucleic acid backbone. Moreover, it was suggested that structural study for a G-rich RNA sequence should be carried out under cell-mimicking condition where K(+) and crowding cosolutes exist.
Collapse
Affiliation(s)
- Sarika Saxena
- Frontier Institute for Biomolecular Engineering Research (FIBER), 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
50
|
Sobczak K, Michlewski G, de Mezer M, Kierzek E, Krol J, Olejniczak M, Kierzek R, Krzyzosiak WJ. Structural diversity of triplet repeat RNAs. J Biol Chem 2010; 285:12755-64. [PMID: 20159983 DOI: 10.1074/jbc.m109.078790] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes. The repeated CAA, UUG, AAG, CUU, CCU, CCA, and UAA motifs did not form any higher order structure under any analyzed conditions. The CAU, CUA, UUA, AUG, and UAG repeats are ordered according to their increasing tendency to form semistable hairpins. The repeated CGA, CGU, and all CNG motifs form fairly stable hairpins, whereas AGG and UGG repeats fold into stable G-quadruplexes. The triplet repeats that formed the most stable structures were characterized further by biophysical methods. UV-monitored structure melting revealed that CGG and CCG repeats form, respectively, the most and least stable hairpins of all CNG repeats. Circular dichroism spectra showed that the AGG and UGG repeat quadruplexes are formed by parallel RNA strands. Furthermore, we demonstrated that the different susceptibility of various triplet repeat transcripts to serum nucleases can be explained by the sequence and structural features of the tested RNAs. The results of this study provide a comprehensive structural foundation for the functional analysis of triplet repeats in transcripts.
Collapse
Affiliation(s)
- Krzysztof Sobczak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | | | | | | | | | | | | |
Collapse
|