1
|
Fujita KI, Ishizuka T, Mitsukawa M, Kurata M, Masuda S. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. Int J Mol Sci 2020; 21:ijms21062026. [PMID: 32188117 PMCID: PMC7139312 DOI: 10.3390/ijms21062026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human transcriptomes are more divergent than genes and contribute to the sophistication of life. This divergence is derived from various isoforms arising from alternative splicing. In addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA G-quadruplex, is important not only for isoform diversity but also for regulating gene expression. Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders. In the first part of this review, we describe the regulation of divergent transcriptomes using alternative mRNA splicing. In the second part, we present the relationship between the disruption of splicing and diseases. Recently, various compounds with splicing inhibitor activity were established. These splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for basic research and future clinical potential.
Collapse
|
2
|
Saha P, Panda D, Dash J. The application of click chemistry for targeting quadruplex nucleic acids. Chem Commun (Camb) 2019; 55:731-750. [PMID: 30489575 DOI: 10.1039/c8cc07107a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cu(i)-catalyzed azide and alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as the "click reaction", has emerged as a powerful and versatile synthetic tool that finds a broad spectrum of applications in chemistry, biology and materials science. The efficiency, selectivity and versatility of the CuAAC reactions have enabled the preparation of vast arrays of triazole compounds with biological and pharmaceutical applications. In this feature article, we outline the applications and future prospects of click chemistry in the synthesis and development of small molecules that target G-quadruplex nucleic acids and show promising biological activities. Furthermore, this article highlights the template-assisted in situ click chemistry for developing G-quadruplex specific ligands and the use of click chemistry for enhancing drug specificity as well as designing imaging and sensor systems to elucidate the biological functions of G-quadruplex nucleic acids in live cells.
Collapse
Affiliation(s)
- Puja Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | | | | |
Collapse
|
3
|
Al-Zeer MA, Kurreck J. Deciphering the Enigmatic Biological Functions of RNA Guanine-Quadruplex Motifs in Human Cells. Biochemistry 2018; 58:305-311. [PMID: 30350579 DOI: 10.1021/acs.biochem.8b00904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanine-rich sequences in nucleic acids can form noncanonical structures known as guanine quadruplexes (G-quadruplexes), which constitute a not yet fully elucidated layer of regulatory function for central cellular processes. RNA G-quadruplexes have been shown to be involved in the modulation of translation, the regulation of (alternative) splicing, and the subcellular transport of mRNAs, among other processes. However, in living cells, an equilibrium between the formation of G-quadruplex structures and their unwinding by RNA helicases is likely. The extent to which G-rich sequences adopt G-quadruplex structures in living eukaryotic cells is currently a matter of debate. Multiple lines of evidence confirm the intracellular formation of G-quadruplex structures, such as their detection by immunochemical approaches, fluorogenic probes, and in vivo nuclear magnetic resonance. However, intracellular chemical probing suggests most if not all are in an unfolded state. It is therefore tempting to speculate that some G-quadruplex structures are only temporarily formed when they are required to contribute to the fine-tuning of the processes mentioned above. Future research should focus on the analysis of G-quadruplex formation under physiological conditions, which will allow the re-evaluation of the biological function of G-quadruplex motifs in regulatory processes in their natural environment and at physiological expression levels. This will help in the elucidation of their significance in the regulation of central processes in molecular biology and the exploitation of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Institute of Biotechnology, Department of Applied Biochemistry , Technische Universität Berlin , 13355 Berlin , Germany
| | - Jens Kurreck
- Institute of Biotechnology, Department of Applied Biochemistry , Technische Universität Berlin , 13355 Berlin , Germany
| |
Collapse
|
4
|
McAninch DS, Heinaman AM, Lang CN, Moss KR, Bassell GJ, Rita Mihailescu M, Evans TL. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR. MOLECULAR BIOSYSTEMS 2017; 13:1448-1457. [PMID: 28612854 PMCID: PMC5544254 DOI: 10.1039/c7mb00070g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.
Collapse
Affiliation(s)
- Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Ashley M Heinaman
- Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| | - Cara N Lang
- Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Timothy L Evans
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA. and Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| |
Collapse
|
5
|
Rouleau S, Jodoin R, Garant JM, Perreault JP. RNA G-Quadruplexes as Key Motifs of the Transcriptome. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 170:1-20. [PMID: 28382477 DOI: 10.1007/10_2017_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G-Quadruplexes are non-canonical secondary structures that can be adopted under physiological conditions by guanine-rich DNA and RNA molecules. They have been reported to occur, and to perform multiple biological functions, in the genomes and transcriptomes of many species, including humans. This chapter focuses specifically on RNA G-quadruplexes and reviews the most recent discoveries in the field, as well as addresses the upcoming challenges researchers studying these structures face.
Collapse
Affiliation(s)
- Samuel Rouleau
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Rachel Jodoin
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Jean-Michel Garant
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8.
| |
Collapse
|
6
|
Chen CH, Hu TH, Huang TC, Chen YL, Chen YR, Cheng CC, Chen CT. Delineation of G-Quadruplex Alkylation Sites Mediated by 3,6-Bis(1-methyl-4-vinylpyridinium iodide)carbazole-Aniline Mustard Conjugates. Chemistry 2015; 21:17379-90. [PMID: 26769627 DOI: 10.1002/chem.201502595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 11/12/2022]
Abstract
A new G-quadruplex (G-4)-directing alkylating agent BMVC-C3M was designed and synthesized to integrate 3,6-bis(1-methyl-4-vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G-4 structures (hybrid-2 type and antiparallel) and an oncogene promoter, c-MYC (parallel), were constructed to react with BMVC-C3M, yielding 35 % alkylation yield toward G-4 DNA over other DNA categories (<6 %) and high specificity under competition conditions. Analysis of the intact alkylation adducts by electrospray ionization mass spectroscopy (ESI-MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross-linking sites were determined and found to be dependent on G-4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC-C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c-MYC), respectively, as monoalkylated adducts and formed A15-C3M-A21 (H26), G12-C3M-G4 (H24), and G2-C3M-G4/G17 (c-MYC), respectively, as cross-linked dialkylated adducts. Collectively, the stability and site-selective cross-linking capacity of BMVC-C3M provides a credible tool for the structural and functional characterization of G-4 DNAs in biological systems.
Collapse
Affiliation(s)
- Chien-Han Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Tsung-Hao Hu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Tzu-Chiao Huang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529 Taiwan (R.O.C.).,Institute of Plant Biology and Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.)
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529 Taiwan (R.O.C.)
| | - Chien-Chung Cheng
- Department of Applied Chemistry, Chia-Yi University, No. 300, Xuefu Road, Chiayi City, 60004 Taiwan (R.O.C.), Fax: (+886) 5-2717901.
| | - Chao-Tsen Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359.
| |
Collapse
|
7
|
Koumbadinga GA, Mahmood N, Lei L, Kan Y, Cao W, Lobo VG, Yao X, Zhang S, Xie J. Increased stability of heterogeneous ribonucleoproteins by a deacetylase inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1095-103. [PMID: 25959059 DOI: 10.1016/j.bbagrm.2015.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 11/15/2022]
Abstract
Splicing factors are often influenced by various signaling pathways, contributing to the dynamic changes of protein isoforms in cells. Heterogeneous ribonucleoproteins (hnRNPs) regulate many steps of RNA metabolism including pre-mRNA splicing but their control by cell signaling particularly through acetylation and ubiquitination pathways remains largely unknown. Here we show that TSA, a deacetylase inhibitor, reduced the ratio of Bcl-x splice variants Bcl-xL/xS in MDA-MB-231 breast cancer cells. This TSA effect was independent of TGFβ1; however, only in the presence of TGFβ1 was TSA able to change the splicing regulators hnRNP F/H by slightly reducing their mRNA transcripts but strongly preventing protein degradation. The latter was also efficiently prevented by lactacystin, a proteasome inhibitor, suggesting their protein stability control by both acetylation and ubiquitination pathways. Three lysines K87, K98 and K224 of hnRNP F are potential targets of the mutually exclusive acetylation or ubiquitination (K(Ac/Ub)) in the protein modification database PhosphoSitePlus. Mutating each of them but not a control non-K(Ac/Ub) (K68) specifically abolished the TSA enhancement of protein stability. Moreover, mutating K98 (K98R) and K224 (K224R) also abolished the TSA regulation of alternative splicing of a Bcl-x mini-gene. Furthermore, about 86% (30 of 35) of the multi-functional hnRNP proteins in the database contain lysines that are potential sites for acetylation/ubiquitination. We demonstrate that the degradation of three of them (A1, I and L) are also prevented by TSA. Thus, the deacetylase inhibitor TSA enhances hnRNP F stability through the K(Ac/Ub) lysines, with some of them essential for its regulation of alternative splicing. Such a regulation of protein stability is perhaps common for a group of hnRNPs and RNA metabolism.
Collapse
Affiliation(s)
- Geremy A Koumbadinga
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Niaz Mahmood
- Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Lei Lei
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Yunchao Kan
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Nanyang Normal University, Nanyang, Henan, PR China
| | - Wenguang Cao
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vincent G Lobo
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xiaojian Yao
- Department of Medical Microbiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Biochemistry & Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
8
|
Evolutionary emergence of a novel splice variant with an opposite effect on the cell cycle. Mol Cell Biol 2015; 35:2203-14. [PMID: 25870105 DOI: 10.1128/mcb.00190-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing contributes greatly to the diversification of mammalian proteomes, but the molecular basis for the evolutionary emergence of splice variants remains poorly understood. We have recently found a novel class of splicing regulatory elements between the polypyrimidine tract (Py) and 3' AG (REPA) at intron ends in many human genes, including the multifunctional PRMT5 (for protein arginine methyltransferase 5) gene. The PRMT5 element is comprised of two G tracts that arise in most mammals and accompany significant exon skipping in human transcripts. The G tracts inhibit splicing by recruiting heterogeneous nuclear ribonucleoprotein (hnRNP) H and F (H/F) to reduce U2AF65 binding to the Py, causing exon skipping. The resulting novel shorter variant PRMT5S exhibits a histone H4R3 methylation effect similar to that seen with the original longer PRMT5L isoform but exhibits a distinct localization and preferential control of critical genes for cell cycle arrest at interphase in comparison to PRMT5L. This report thus provides a molecular mechanism for the evolutionary emergence of a novel splice variant with an opposite function in a fundamental cell process. The presence of REPA elements in a large group of genes implies their wider impact on different cellular processes for increased protein diversity in humans.
Collapse
|
9
|
Sohail M, Cao W, Mahmood N, Myschyshyn M, Hong SP, Xie J. Evolutionarily emerged G tracts between the polypyrimidine tract and 3' AG are splicing silencers enriched in genes involved in cancer. BMC Genomics 2014; 15:1143. [PMID: 25523808 PMCID: PMC4320613 DOI: 10.1186/1471-2164-15-1143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022] Open
Abstract
Background The 3′ splice site (SS) at the end of pre-mRNA introns has a consensus sequence (Y)nNYAG for constitutive splicing of mammalian genes. Deviation from this consensus could change or interrupt the usage of the splice site leading to alternative or aberrant splicing, which could affect normal cell function or even the development of diseases. We have shown that the position “N” can be replaced by a CA-rich RNA element called CaRRE1 to regulate the alternative splicing of a group of genes. Results Taking it a step further, we searched the human genome for purine-rich elements between the -3 and -10 positions of the 3′ splice sites of annotated introns. This identified several thousand such 3′SS; more than a thousand of them contain at least one copy of G tract. These sites deviate significantly from the consensus of constitutive splice sites and are highly associated with alterative splicing events, particularly alternative 3′ splice and intron retention. We show by mutagenesis analysis and RNA interference that the G tracts are splicing silencers and a group of the associated exons are controlled by the G tract binding proteins hnRNP H/F. Species comparison of a group of the 3′SS among vertebrates suggests that most (~87%) of the G tracts emerged in ancestors of mammals during evolution. Moreover, the host genes are most significantly associated with cancer. Conclusion We call these elements together with CaRRE1 regulatory RNA elements between the Py and 3′AG (REPA). The emergence of REPA in this highly constrained region indicates that this location has been remarkably permissive for the emergence of de novo regulatory RNA elements, even purine-rich motifs, in a large group of mammalian genes during evolution. This evolutionary change controls alternative splicing, likely to diversify proteomes for particular cellular functions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1143) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiuyong Xie
- Department of Physiology, University of Manitoba, 440 BMSB, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
10
|
Xie J. Differential evolution of signal-responsive RNA elements and upstream factors that control alternative splicing. Cell Mol Life Sci 2014; 71:4347-60. [PMID: 25064062 PMCID: PMC11113106 DOI: 10.1007/s00018-014-1688-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/13/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Cell signal-regulated alternative splicing occurs for many genes but the evolutionary origin of the regulatory components and their relationship remain unclear. This review focuses on the alternative splicing components of several systems based on the available bioinformatics data. Eight mammalian RNA elements for signal-regulated splicing were aligned among corresponding sequences from dozens of representative vertebrate species to allow for assessment of the trends in evolutionary changes. Four distinct trends were observed. Four of the elements are highly conserved in bird, reptile and fish species examined (i); two elements can be found in fish but the sequences have been changing till in marsupials or higher mammals (ii); one element is almost exclusively found in mammals with mostly the same sequence (iii); and one element can be found in birds or lower vertebrates but expanded abruptly to have variable numbers of copies in mammals (iv). All examined prototype trans-acting factors and protein kinases emerged earlier than the RNA elements but additional (paralog) factors emerged in the same or later species. Thus, after their emergence mainly in fish or mammals with pre-existing prototype trans-acting factors/kinases, half of the elements have been highly conserved from fish to humans but the other half have evolved differentially with additional trans-acting factors. Their differential evolution likely contributes to the exon- and species/class-specific control of alternative splicing and its regulation by cell signals. The evolvement of a group of mammal-specific components would help relay signals from extracellular stimuli to the splicing machinery and thus contribute to higher proteomic diversity.
Collapse
Affiliation(s)
- Jiuyong Xie
- Departments of Physiology, Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada,
| |
Collapse
|
11
|
Ribeiro MM, Teixeira GS, Martins L, Marques MR, de Souza AP, Line SRP. G-quadruplex formation enhances splicing efficiency of PAX9 intron 1. Hum Genet 2014; 134:37-44. [PMID: 25204874 DOI: 10.1007/s00439-014-1485-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
Abstract
G-quadruplexes are secondary structures present in DNA and RNA molecules, which are formed by stacking of G-quartets (i.e., interaction of four guanines (G-tracts) bounded by Hoogsteen hydrogen bonding). Human PAX9 intron 1 has a putative G-quadruplex-forming region located near exon 1, which is present in all known sequenced placental mammals. Using circular dichroism (CD) analysis and CD melting, we showed that these sequences are able to form highly stable quadruplex structures. Due to the proximity of the quadruplex structure to exon-intron boundary, we used a validated double-reporter splicing assay and qPCR to analyze its role on splicing efficiency. The human quadruplex was shown to have a key role on splicing efficiency of PAX9 intron 1, as a mutation that abolished quadruplex formation decreased dramatically the splicing efficiency of human PAX9 intron 1. The less stable, rat quadruplex had a less efficient splicing when compared to human sequences. Additionally, the treatment with 360A, a strong ligand that stabilizes quadruplex structures, further increased splicing efficiency of human PAX9 intron 1. Altogether, these results provide evidences that G-quadruplex structures are involved in splicing efficiency of PAX9 intron 1.
Collapse
Affiliation(s)
- Mariana Martins Ribeiro
- Department of Morphology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, SP, 13414-903, Brazil,
| | | | | | | | | | | |
Collapse
|
12
|
Cree SL, Kennedy MA. Relevance of G-quadruplex structures to pharmacogenetics. Front Pharmacol 2014; 5:160. [PMID: 25071578 PMCID: PMC4085647 DOI: 10.3389/fphar.2014.00160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/19/2014] [Indexed: 12/21/2022] Open
Abstract
G-quadruplexes are non-canonical secondary structures formed within nucleic acids that are involved in modulating cellular processes such as replication, gene regulation, recombination and epigenetics. Within genes, there is mounting evidence of G-quadruplex involvement in transcriptional and post transcriptional regulation. We report the presence of potential G-quadruplex motifs within relevant sites of some important pharmacogenes and discuss the possible implications of this on the function and expression of these genes. Appreciating the location and potential functions of these motifs may be of value when considering the impacts of some pharmacogenetic variants. G-quadruplexes are also the focus of drug development efforts in oncology and we highlight the broader pharmacological implications of treatment strategies that may target G-quadruplexes.
Collapse
Affiliation(s)
- Simone L Cree
- Department of Pathology, Carney Centre for Pharmacogenomics, University of Otago Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology, Carney Centre for Pharmacogenomics, University of Otago Christchurch, New Zealand
| |
Collapse
|
13
|
Kralovicova J, Lages A, Patel A, Dhir A, Buratti E, Searle M, Vorechovsky I. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex. Nucleic Acids Res 2014; 42:8161-73. [PMID: 24944197 PMCID: PMC4081105 DOI: 10.1093/nar/gku507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage
but antisense strategies that promote removal of entire introns to increase
splicing-mediated gene expression have not been developed. Here we show reduction of
INS intron 1 retention by SSOs that bind transcripts derived from
a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a
polypyrimidine tract variant rs689 that decreases the efficiency of
intron 1 splicing and increases the relative abundance of mRNAs with extended 5'
untranslated region (5' UTR), which curtails translation. Co-expression of
haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs
and decoy splice sites in primary transcripts revealed a motif that significantly
reduced intron 1-containing mRNAs. Using an antisense microwalk at a single
nucleotide resolution, the optimal target was mapped to a splicing silencer
containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G)
quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance
of synthetic G-rich oligoribonucleotide tracts derived from this region showed
formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense
retention target and an equilibrium between quadruplexes and stable hairpin-loop
structures bound by optimal SSOs. This region interacts with heterogeneous nuclear
ribonucleoproteins F and H that may interfere with conformational transitions
involving the antisense target. The SSO-assisted promotion of weak intron removal
from the 5' UTR through competing noncanonical and canonical RNA structures may
facilitate development of novel strategies to enhance gene expression.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ana Lages
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Alpa Patel
- University of Nottingham, School of Chemistry, Centre for Biomolecular Sciences, Nottingham NG7 2RD, UK
| | | | | | - Mark Searle
- University of Nottingham, School of Chemistry, Centre for Biomolecular Sciences, Nottingham NG7 2RD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
14
|
Tsai ZTY, Chu WY, Cheng JH, Tsai HK. Associations between intronic non-B DNA structures and exon skipping. Nucleic Acids Res 2013; 42:739-47. [PMID: 24153112 PMCID: PMC3902930 DOI: 10.1093/nar/gkt939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Non-B DNA structures are abundant in the genome and are often associated with critical biological processes, including gene regulation, chromosome rearrangement and genome stabilization. In particular, G-quadruplex (G4) may affect alternative splicing based on its ability to impede the activity of RNA polymerase II. However, the specific role of non-B DNA structures in splicing regulation still awaits investigation. Here, we provide a genome-wide and cross-species investigation of the associations between five non-B DNA structures and exon skipping. Our results indicate a statistically significant correlation of each examined non-B DNA structures with exon skipping in both human and mouse. We further show that the contributions of non-B DNA structures to exon skipping are influenced by the occurring region. These correlations and contributions are also significantly different in human and mouse. Finally, we detailed the effects of G4 by showing that occurring on the template strand and the length of G-run, which is highly related to the stability of a G4 structure, are significantly correlated with exon skipping activity. We thus show that, in addition to the well-known effects of RNA and protein structure, the relative positional arrangement of intronic non-B DNA structures may also impact exon skipping.
Collapse
Affiliation(s)
- Zing Tsung-Yeh Tsai
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan, Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan and Institute of Biomedical Informatics, National Yang-Ming University, Taipei, 112, Taiwan
| | | | | | | |
Collapse
|
15
|
Iida K, Nakamura T, Yoshida W, Tera M, Nakabayashi K, Hata K, Ikebukuro K, Nagasawa K. Fluorescent-ligand-mediated screening of G-quadruplex structures using a DNA microarray. Angew Chem Int Ed Engl 2013; 52:12052-5. [PMID: 24150845 DOI: 10.1002/anie.201305366] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/10/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Keisuke Iida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo (Japan)
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Iida K, Nakamura T, Yoshida W, Tera M, Nakabayashi K, Hata K, Ikebukuro K, Nagasawa K. Fluorescent-Ligand-Mediated Screening of G-Quadruplex Structures Using a DNA Microarray. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Ruirui K, Ray P, Yang M, Wen P, Zhu L, Liu J, Fushimi K, Kar A, Liu Y, He R, Kuo D, Wu JY. Alternative Pre-mRNA Splicing, Cell Death, and Cancer. Cancer Treat Res 2013; 158:181-212. [PMID: 24222359 DOI: 10.1007/978-3-642-31659-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alternative splicing is one of the most powerful mechanisms for generating functionally distinct products from a single genetic loci and for fine-tuning gene activities at the post-transcriptional level. Alternative splicing plays important roles in regulating genes critical for cell death. These cell death genes encode death ligands, cell surface death receptors, intracellular death regulators, signal transduction molecules, and death executor enzymes such as caspases and nucleases. Alternative splicing of these genes often leads to the formation of functionally different products, some of which have antagonistic effects that are either cell death-promoting or cell death-preventing. Differential alternative splicing can affect expression, subcellular distribution, and functional activities of the gene products. Molecular defects in splicing regulation of cell death genes have been associated with cancer development and resistance to treatment. Studies using molecular, biochemical, and systems-based approaches have begun to reveal mechanisms underlying the regulation of alternative splicing of cell death genes. Systematic studies have begun to uncover the multi-level interconnected networks that regulate alternative splicing. A global picture of the complex mechanisms that regulate cell death genes at the pre-mRNA splicing level has thus begun to emerge.
Collapse
Affiliation(s)
- Kong Ruirui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang AYQ, Balasubramanian S. The kinetics and folding pathways of intramolecular G-quadruplex nucleic acids. J Am Chem Soc 2012; 134:19297-308. [PMID: 23113843 DOI: 10.1021/ja309851t] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The folding kinetics of G-quadruplex forming sequences is critical to their capacity to influence biological function. While G-quadruplex structure and stability have been relatively well studied, little is known about the kinetics of their folding. We employed a stopped-flow mixing technique to systematically investigate the potassium-dependent folding kinetics of telomeric RNA and DNA G-quadruplexes and RNA G-quadruplexes containing only two G-quartets formed from sequences r[(GGA)(3)GG] and r[(GGUUA)(3)GG]. Our findings suggest a folding mechanism that involves two kinetic steps with initial binding of a single K(+), irrespective of the number of G-quartets involved or whether the G-quadruplex is formed from RNA or DNA. The folding rates for telomeric RNA and DNA G-quadruplexes are comparable at near physiological [K(+)] (90 mM) (τ = ~60 ms). The folding of a 2-quartet RNA G-quadruplex with single nucleotide A loops is considerably slower (τ = ~700 ms), and we found that the time required to fold a UUA looped variant (τ > 100 s, 500 mM K(+)) exceeds the lifetimes of some regulatory RNAs. We discuss the implications of these findings with respect to the fundamental properties of G-quadruplexes and their potential functions in biology.
Collapse
Affiliation(s)
- Amy Y Q Zhang
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
| | | |
Collapse
|
19
|
Cao W, Razanau A, Feng D, Lobo VG, Xie J. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation. Nucleic Acids Res 2012; 40:8059-71. [PMID: 22684629 PMCID: PMC3439897 DOI: 10.1093/nar/gks504] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage.
Collapse
Affiliation(s)
- Wenguang Cao
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | |
Collapse
|
20
|
Bugaut A, Balasubramanian S. 5'-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 2012; 40:4727-41. [PMID: 22351747 PMCID: PMC3367173 DOI: 10.1093/nar/gks068] [Citation(s) in RCA: 487] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RNA structures in the untranslated regions (UTRs) of mRNAs influence post-transcriptional regulation of gene expression. Much of the knowledge in this area depends on canonical double-stranded RNA elements. There has been considerable recent advancement of our understanding of guanine(G)-rich nucleic acids sequences that form four-stranded structures, called G-quadruplexes. While much of the research has been focused on DNA G-quadruplexes, there has recently been a rapid emergence of interest in RNA G-quadruplexes, particularly in the 5′-UTRs of mRNAs. Collectively, these studies suggest that RNA G-quadruplexes exist in the 5′-UTRs of many genes, including genes of clinical interest, and that such structural elements can influence translation. This review features the progresses in the study of 5′-UTR RNA G-quadruplex-mediated translational control. It covers computational analysis, cell-free, cell-based and chemical biology studies that have sought to elucidate the roles of RNA G-quadruplexes in both cap-dependent and -independent regulation of mRNA translation. We also discuss protein trans-acting factors that have been implicated and the evidence that such RNA motifs have potential as small molecule target. Finally, we close the review with a perspective on the future challenges in the field of 5′-UTR RNA G-quadruplex-mediated translation regulation.
Collapse
Affiliation(s)
- Anthony Bugaut
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | |
Collapse
|
21
|
hnRNP F directs formation of an exon 4 minus variant of tumor-associated NADH oxidase (ENOX2). Mol Cell Biochem 2011; 357:55-63. [PMID: 21625959 DOI: 10.1007/s11010-011-0875-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/06/2011] [Indexed: 12/27/2022]
Abstract
HUVEC or mouse 3T3 cells infected with SV-40 generate within 3 to 5 days post-infection an ENOX2 species corresponding to the exon-4 minus splice variant of a tumor-associated NADH oxidase (ENOX2 or tNOX) expressed at the cancer cell surface. This study was to seek evidence for splicing factors that might direct formation of the exon 4 minus ENOX2 splice variant. To determine if silencing of ENOX2 exon 4 occurs because of motifs located in exon 4, transfections were performed on MCF-10A (mammary non-cancer), BT-20 (mammary cancer), and HeLa (cervical cancer) cells using a GFP minigene construct containing either a constitutively spliced exon (albumin exon 2) or the alternatively spliced ENOX2 exon 4 between the two GFP halves. Removal of exon 4 from the processed RNA of the GFP minigene construct occurred with HeLa and to a lesser extent with BT-20 but not in non-cancer MCF-10A cells. The Splicing Rainbow Program was used to identify all of the possible hnRNPs binding sites of exon 4 of ENOX2. There are 8 Exonic Splicing Silencers (ESSs) for hnRNP binding in the exon 4 sequences. Each of these sites were mutated by site-directed mutagenesis to test if any were responsible for the splicing skip. Results showed MutG75 ESS mutation changed the GFP expression which is a sign of splicing silence, while other mutations did not. As MutG75 changed the ESS binding site for hnRNP F, this result suggests that hnRNP F directs formation of the exon 4 minus variant of ENOX2.
Collapse
|
22
|
G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 2010; 32:271-8. [DOI: 10.1093/carcin/bgq253] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Romano M. G runs in cystathionine beta-synthase c.833C/c.844_845ins68 mRNA are splicing silencers of pathogenic 3' splice sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:568-74. [PMID: 20601281 DOI: 10.1016/j.bbagrm.2010.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/10/2010] [Accepted: 06/18/2010] [Indexed: 12/20/2022]
Abstract
The c.844_845ins68 is an evolutionary conserved polymorphism of the cystathionine beta-synthase gene that segregates with the pathogenic c.833C mutation and consists of a 68nt insertion duplicating the 3' splice site between intron 7 and exon 8. The gene rearrangement brought two GGGG runs close to each other and generated a splicing control element that allows the constitutive selection of the more distal 3' splice site in the c.844_854ins68 carriers. In this study, we have characterized functionally the two G4 runs within the duplication and have found that they work as silencers of the upstream potentially pathogenic 3' splice sites has been functionally characterized. This selection allows skipping of both the 68nt-insertion and the c.833C mutation, and is essential to preserve the wild-type ORF. Knocking down hnRNP H and F expression modulated the rescue of the proximal 3' splice site more than hnRNP H alone. These observations suggest that hnRNP H/F contribute jointly to prevention of CBS deficiency in c.844_854ins68 carriers by silencing the potentially pathogenic upstream acceptor site.
Collapse
Affiliation(s)
- Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy.
| |
Collapse
|
24
|
Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs. Nat Struct Mol Biol 2010; 17:853-61. [PMID: 20526337 DOI: 10.1038/nsmb.1814] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/22/2010] [Indexed: 01/19/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) F is involved in the regulation of mRNA metabolism by specifically recognizing G-tract RNA sequences. We have determined the solution structures of the three quasi-RNA-recognition motifs (qRRMs) of hnRNP F in complex with G-tract RNA. These structures show that qRRMs bind RNA in a very unusual manner, with the G-tract 'encaged', making the qRRM a novel RNA binding domain. We defined a consensus signature sequence for qRRMs and identified other human qRRM-containing proteins that also specifically recognize G-tract RNAs. Our structures explain how qRRMs can sequester G-tracts, maintaining them in a single-stranded conformation. We also show that isolated qRRMs of hnRNP F are sufficient to regulate the alternative splicing of the Bcl-x pre-mRNA, suggesting that hnRNP F would act by remodeling RNA secondary and tertiary structures.
Collapse
|
25
|
Li H, Liu G, Yu J, Cao W, Lobo VG, Xie J. In vivo selection of kinase-responsive RNA elements controlling alternative splicing. J Biol Chem 2009; 284:16191-16201. [PMID: 19386606 DOI: 10.1074/jbc.m900393200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alternative pre-mRNA splicing is often controlled by cell signals, for example, those activating the cAMP-dependent protein kinase (PKA) or the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV). We have shown that CaMKIV regulates alternative splicing through short CA repeats and hnRNP L. Here we use a splicing reporter that shows PKA/CaMKIV promotion of exon inclusion to select from exons containing random 13-nt sequences for RNA elements responsive to the kinases in cultured cells. This selection not only identified both PKA- and CaMKIV-responsive elements that are similar to the CaMKIV-responsive RNA element 1 (CaRRE1) or CA repeats, but also A-rich elements not previously known to respond to these kinases. Consistently, hnRNP L is identified as a factor binding the CA-rich elements. Analyses of the motifs in the highly responsive elements indicate that they are indeed critical for the kinase effect and are enriched in alternative exons. Interestingly, a CAAAAAA motif is sufficient for the PKA/CaMKIV-regulated splicing of the exon 16 of the CaMK kinase beta1 (CaMKK2) transcripts, implying a role of this motif in signaling cross-talk or feedback regulation between these kinases through alternative splicing. Therefore, these experiments identified a group of RNA elements responsive to PKA and CaMKIV from in vivo selection. This also provides an approach for selecting RNA elements similarly responsive to other cell signals controlling alternative splicing.
Collapse
Affiliation(s)
- Hongzhao Li
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Guodong Liu
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Jiankun Yu
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Wenguang Cao
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Vincent G Lobo
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Jiuyong Xie
- From the Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
26
|
Yu J, Hai Y, Liu G, Fang T, Kung SKP, Xie J. The heterogeneous nuclear ribonucleoprotein L is an essential component in the Ca2+/calmodulin-dependent protein kinase IV-regulated alternative splicing through cytidine-adenosine repeats. J Biol Chem 2008; 284:1505-13. [PMID: 19017650 DOI: 10.1074/jbc.m805113200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of gene expression through alternative pre-mRNA splicing is common in metazoans and is often controlled by intracellular signaling pathways that are important in cell physiology. We have shown that the alternative splicing of a number of genes is controlled by membrane depolarization and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) through CaMKIV-responsive RNA elements (CaRRE1 and CaRRE2); however, the trans-acting factors remain unknown. Here we show that the heterogeneous nuclear ribonucleoprotein (hnRNP) L is a CaRRE1 binding factor in nuclear extracts. An hnRNP L high affinity CA (cytidine-adenosine) repeat element is sufficient to mediate CaMKIV and hnRNP L repression of splicing in a location (3'-splice site proximity)-dependent way. Depletion of hnRNP L by RNA interference followed by rescue with coexpressed exogenous hnRNP L demonstrates that hnRNP L mediates the CaMKIV-regulated splicing through CA repeats in heterologous contexts. Depletion of hnRNP L also led to increased inclusion of the stress axis-regulated exon and a CA repeat-harboring exon under depolarization or with activated CaMKIV. Moreover, hnRNP L binding to CaRRE1 was increased by CaMKIV and, conversely, was reduced by pretreatments with protein phosphatases. Therefore, hnRNP L is an essential component of CaMKIV-regulated alternative splicing through CA repeats, with its phosphorylation likely playing a critical role.
Collapse
Affiliation(s)
- Jiankun Yu
- Department of Physiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | |
Collapse
|