1
|
Braden AA, Xiao J, Hori R, Brown C, Khan MM. An Overview of UBTF Neuroregression Syndrome. Brain Sci 2024; 14:179. [PMID: 38391753 PMCID: PMC10886456 DOI: 10.3390/brainsci14020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Recently, a recurrent de novo dominant mutation in UBTF (c.628G>A, p.Glu210Lys; UBTF E210K) was identified as the cause of a neurological disorder which has been named UBTF Neuroregression Syndrome (UNS), or Childhood-Onset Neurodegeneration with Brain Atrophy (CONDBA). To date, only 17 cases have been reported worldwide. The molecular etiology is a pathogenic variant, E210K, within the HMG-box 2 of Upstream Binding Transcription Factor (UBTF). UBTF, a nucleolar protein, plays an important role in ribosomal RNA (rRNA) synthesis, nucleolar integrity, and cell survival. This variant causes unstable preinitiation complexes to form, resulting in altered rDNA chromatin structures, rRNA dysregulation, DNA damage, and ultimately, neurodegeneration. Defining clinical characteristics of the disorder include but are not limited to developmental regression beginning at approximately three years of age, progressive motor dysfunction, declining cognition, ambulatory loss, and behavioral problems. Histological and neuroimaging abnormalities include cortical atrophy, white matter deficits, and enlarged ventricles. Herein, we present a detailed overview of all published cases as well as the functional roles of UBTF to better understand the pathophysiology. Bringing undiagnosed cases to the attention of clinicians and researchers by making them aware of the clinical features will improve research and support the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anneliesse A Braden
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38104, USA
| | - Roderick Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chester Brown
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Deschênes-Simard X, Malleshaiah M, Ferbeyre G. Extracellular Signal-Regulated Kinases: One Pathway, Multiple Fates. Cancers (Basel) 2023; 16:95. [PMID: 38201521 PMCID: PMC10778234 DOI: 10.3390/cancers16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review delves into the multifaceted aspects of ERK signaling and the intricate mechanisms underlying distinct cellular fates. ERK1 and ERK2 (ERK) govern proliferation, transformation, epithelial-mesenchymal transition, differentiation, senescence, or cell death, contingent upon activation strength, duration, and context. The biochemical mechanisms underlying these outcomes are inadequately understood, shaped by signaling feedback and the spatial localization of ERK activation. Generally, ERK activation aligns with the Goldilocks principle in cell fate determination. Inadequate or excessive ERK activity hinders cell proliferation, while balanced activation promotes both cell proliferation and survival. Unraveling the intricacies of how the degree of ERK activation dictates cell fate requires deciphering mechanisms encompassing protein stability, transcription factors downstream of ERK, and the chromatin landscape.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Montreal University Hospital Center (CHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Mohan Malleshaiah
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Gerardo Ferbeyre
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
3
|
Theophanous A, Christodoulou A, Mattheou C, Sibai DS, Moss T, Santama N. Transcription factor UBF depletion in mouse cells results in downregulation of both downstream and upstream elements of the rRNA transcription network. J Biol Chem 2023; 299:105203. [PMID: 37660911 PMCID: PMC10558777 DOI: 10.1016/j.jbc.2023.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Transcription/processing of the ribosomal RNA (rRNA) precursor, as part of ribosome biosynthesis, is intensively studied and characterized in eukaryotic cells. Here, we constructed shRNA-based mouse cell lines partially silenced for the Upstream Binding Factor UBF, the master regulator of rRNA transcription and organizer of open rDNA chromatin. Full Ubf silencing in vivo is not viable, and these new tools allow further characterization of rRNA transcription and its coordination with cellular signaling. shUBF cells display cell cycle G1 delay and reduced 47S rRNA precursor and 28S rRNA at baseline and serum-challenged conditions. Growth-related mTOR signaling is downregulated with the fractions of active phospho-S6 Kinase and pEIF4E translation initiation factor reduced, similar to phosphorylated cell cycle regulator retinoblastoma, pRB, positive regulator of UBF availability/rRNA transcription. Additionally, we find transcription-competent pUBF (Ser484) severely restricted and its interacting initiation factor RRN3 reduced and responsive to extracellular cues. Furthermore, fractional UBF occupancy on the rDNA unit is decreased in shUBF, and expression of major factors involved in different aspects of rRNA transcription is severely downregulated by UBF depletion. Finally, we observe reduced RNA Pol1 occupancy over rDNA promoter sequences and identified unexpected regulation of RNA Pol1 expression, relative to serum availability and under UBF silencing, suggesting that regulation of rRNA transcription may not be restricted to modulation of Pol1 promoter binding/elongation rate. Overall, this work reveals that UBF depletion has a critical downstream and upstream impact on the whole network orchestrating rRNA transcription in mammalian cells.
Collapse
Affiliation(s)
- Andria Theophanous
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | - Dany S Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
4
|
Moss T, LeDoux MS, Crane-Robinson C. HMG-boxes, ribosomopathies and neurodegenerative disease. Front Genet 2023; 14:1225832. [PMID: 37600660 PMCID: PMC10435976 DOI: 10.3389/fgene.2023.1225832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The UBTF E210K neuroregression syndrome is a predominantly neurological disorder caused by recurrent de novo dominant variants in Upstream Binding Factor, that is, essential for transcription of the ribosomal RNA genes. This unusual form of ribosomopathy is characterized by a slow decline in cognition, behavior, and sensorimotor functioning during the critical period of development. UBTF (or UBF) is a multi-HMGB-box protein that acts both as an epigenetic factor to establish "open" chromatin on the ribosomal genes and as a basal transcription factor in their RNA Polymerase I transcription. Here we review the possible mechanistic connections between the UBTF variants, ribosomal RNA gene transcription and the neuroregression syndrome, and suggest that DNA topology may play an important role.
Collapse
Affiliation(s)
- Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Mark S. LeDoux
- Department of Psychology, University of Memphis, Memphis, TN, United States
- Veracity Neuroscience LLC, Memphis, TN, United States
| | - Colyn Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
5
|
Georgi JA, Stasik S, Eckardt JN, Zukunft S, Hartwig M, Röllig C, Middeke JM, Oelschlägel U, Krug U, Sauer T, Scholl S, Hochhaus A, Brümmendorf TH, Naumann R, Steffen B, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause SW, Hänel M, Noppeney R, Kaiser U, Baldus CD, Kaufmann M, Müller-Tidow C, Platzbecker U, Berdel WE, Serve H, Ehninger G, Bornhäuser M, Schetelig J, Kroschinsky F, Thiede C. UBTF tandem duplications are rare but recurrent alterations in adult AML and associated with younger age, myelodysplasia, and inferior outcome. Blood Cancer J 2023; 13:88. [PMID: 37236968 DOI: 10.1038/s41408-023-00858-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tandem-duplication mutations of the UBTF gene (UBTF-TDs) coding for the upstream binding transcription factor have recently been described in pediatric patients with acute myeloid leukemia (AML) and were found to be associated with particular genetics (trisomy 8 (+8), FLT3-internal tandem duplications (FLT3-ITD), WT1-mutations) and inferior outcome. Due to limited knowledge on UBTF-TDs in adult AML, we screened 4247 newly diagnosed adult AML and higher-risk myelodysplastic syndrome (MDS) patients using high-resolution fragment analysis. UBTF-TDs were overall rare (n = 52/4247; 1.2%), but significantly enriched in younger patients (median age 41 years) and associated with MDS-related morphology as well as significantly lower hemoglobin and platelet levels. Patients with UBTF-TDs had significantly higher rates of +8 (34% vs. 9%), WT1 (52% vs. 7%) and FLT3-ITD (50% vs. 20.8%) co-mutations, whereas UBTF-TDs were mutually exclusive with several class-defining lesions such as mutant NPM1, in-frame CEBPAbZIP mutations as well as t(8;21). Based on the high-variant allele frequency found and the fact that all relapsed patients analyzed (n = 5) retained the UBTF-TD mutation, UBTF-TDs represent early clonal events and are stable over the disease course. In univariate analysis, UBTF-TDs did not represent a significant factor for overall or relapse-free survival in the entire cohort. However, in patients under 50 years of age, who represent the majority of UBTF-mutant patients, UBTF-TDs were an independent prognostic factor for inferior event-free (EFS), relapse-free (RFS) and overall survival (OS), which was confirmed by multivariable analyses including established risk factors such as age and ELN2022 genetic risk groups (EFS [HR: 2.20; 95% CI 1.52-3.17, p < 0.001], RFS [HR: 1.59; 95% CI 1.02-2.46, p = 0.039] and OS [HR: 1.64; 95% CI 1.08-2.49, p = 0.020]). In summary, UBTF-TDs appear to represent a novel class-defining lesion not only in pediatric AML but also younger adults and are associated with myelodysplasia and inferior outcome in these patients.
Collapse
Affiliation(s)
- Julia-Annabell Georgi
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Sebastian Stasik
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jan-Niklas Eckardt
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Sven Zukunft
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Marita Hartwig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jan Moritz Middeke
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Uta Oelschlägel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Utz Krug
- Medizinische Klinik 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Tim Sauer
- Universität Heidelberg, Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Heidelberg, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | | | - Ralph Naumann
- Medizinische Klinik III, St. Marien-Krankenhaus Siegen, Siegen, Germany
| | - Björn Steffen
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Markus Schaich
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Andreas Neubauer
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Kerstin Schäfer-Eckart
- Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Medizinische Klinik 5, Nürnberg, Germany
| | | | - Stefan W Krause
- Medizinische Klinik 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mathias Hänel
- Klinik für Innere Medizin III, Klinikum Chemnitz, Chemnitz, Germany
| | - Richard Noppeney
- Klinik für Hämatologie, Universitätsklinikum Essen, Essen, Germany
| | - Ulrich Kaiser
- Medizinische Klinik II, St. Bernward Krankenhaus, Hildesheim, Germany
| | - Claudia D Baldus
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Kaufmann
- Abteilung für Hämatologie, Onkologie und Palliativmedizin, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Carsten Müller-Tidow
- Universität Heidelberg, Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Heidelberg, Germany
| | - Uwe Platzbecker
- Klinik und Poliklinik für Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | - Hubert Serve
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases NCT, Dresden, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Frank Kroschinsky
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany.
- AgenDix GmbH, Dresden, Germany.
| |
Collapse
|
6
|
Duployez N, Vasseur L, Kim R, Largeaud L, Passet M, L'Haridon A, Lemaire P, Fenwarth L, Geffroy S, Helevaut N, Celli-Lebras K, Adès L, Lebon D, Berthon C, Marceau-Renaut A, Cheok M, Lambert J, Récher C, Raffoux E, Micol JB, Pigneux A, Gardin C, Delabesse E, Soulier J, Hunault M, Dombret H, Itzykson R, Clappier E, Preudhomme C. UBTF tandem duplications define a distinct subtype of adult de novo acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01906-z. [PMID: 37085611 DOI: 10.1038/s41375-023-01906-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.
Collapse
Affiliation(s)
- Nicolas Duployez
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France.
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France.
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France.
| | - Loïc Vasseur
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie Passet
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anaïs L'Haridon
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
| | - Pierre Lemaire
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurène Fenwarth
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Sandrine Geffroy
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Nathalie Helevaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | | | - Lionel Adès
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Delphine Lebon
- Hematology Department, CHU Amiens-Picardie, Amiens, France
| | - Céline Berthon
- Hematology Department, Claude Huriez Hospital, CHU Lille, Lille, France
| | - Alice Marceau-Renaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Meyling Cheok
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Juliette Lambert
- Hematology Department, Versailles Hospital, University Versailles-Saint-Quentin-en-Yvelines, Le Chesnay, France
| | - Christian Récher
- Service d'Hématologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Emmanuel Raffoux
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | | | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jean Soulier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mathilde Hunault
- Hematology Department, Université d'Angers, Université de Nantes, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICAT, F‑49000, Angers, France
- Fédération Hospitalo-Universitaire, Grand-Ouest Acute Leukemia, Angers, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claude Preudhomme
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| |
Collapse
|
7
|
Morante M, Pandiella A, Crespo P, Herrero A. Immune Checkpoint Inhibitors and RAS-ERK Pathway-Targeted Drugs as Combined Therapy for the Treatment of Melanoma. Biomolecules 2022; 12:1562. [PMID: 36358912 PMCID: PMC9687808 DOI: 10.3390/biom12111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/08/2023] Open
Abstract
Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.
Collapse
Affiliation(s)
- Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Atanasio Pandiella
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| |
Collapse
|
8
|
Hori RT, Moshahid Khan M, Xiao J, Hargrove PW, Moss T, LeDoux MS. Behavioral and molecular effects of Ubtf knockout and knockdown in mice. Brain Res 2022; 1793:148053. [PMID: 35973608 PMCID: PMC10908547 DOI: 10.1016/j.brainres.2022.148053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
The UBTF E210K neuroregression syndrome is caused by de novo dominant mutations in UBTF (NM_014233.3:c.628G > A, p.Glu210Lys). In humans, onset is typically at 2.5 to 3 years and characterized by slow progression of global motor, cognitive and behavioral dysfunction. Other potentially pathogenic UBTF variants have been reported in humans with severe neurological disease and it remains undetermined if the UBTF E210K mutation operates via gain- and/or loss-of-function. Here we examine the behavioral, cognitive, motor, and molecular effects of Ubtf knockout and knockdown in mice as a means of gauging the role of loss-of-function in humans. Ubtf+/- mice show progression of behavioral (dominance tube), cognitive (cross maze), and mild motor abnormalities from 3 to 18 months. At 18 months, Ubtf+/- mice had more slips on a raised 9-mm round beam task, shorter latencies to fall on the accelerated rotarod, reduced open field vertical and jump counts, and significant deficits in spatial learning and memory. Via crosses to Nestin-Cre (NesCre) mice we found that homozygous Ubtf deletion limited to the central nervous system was embryonic lethal. Tamoxifen-induced homozygous knockdown of Ubtf in adult mice with the Cre-ERT2 system was associated with precipitous deterioration in neurological functioning. At the molecular level, 18-month-old Ubtf+/- mice showed mild increases in cerebellar 53BP1 immunoreactivity. These findings show that UBTF is essential for embryogenesis and survival in adults, and the deleterious effects of UBTF haploinsufficiency progress with age. Loss-of-function mechanisms may contribute, in part, to the human UBTF E210K neuroregression syndrome.
Collapse
Affiliation(s)
- Roderick T Hori
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Physical Therapy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Phillip W Hargrove
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tom Moss
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Mark S LeDoux
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA; Veracity Neuroscience, Memphis, TN, 38157, USA.
| |
Collapse
|
9
|
Tremblay MG, Sibai DS, Valère M, Mars JC, Lessard F, Hori RT, Khan MM, Stefanovsky VY, LeDoux MS, Moss T. Ribosomal DNA promoter recognition is determined in vivo by cooperation between UBTF1 and SL1 and is compromised in the UBTF-E210K neuroregression syndrome. PLoS Genet 2022; 18:e1009644. [PMID: 35139074 PMCID: PMC8863233 DOI: 10.1371/journal.pgen.1009644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/22/2022] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Transcription of the ~200 mouse and human ribosomal RNA genes (rDNA) by RNA Polymerase I (RPI/PolR1) accounts for 80% of total cellular RNA, around 35% of all nuclear RNA synthesis, and determines the cytoplasmic ribosome complement. It is therefore a major factor controlling cell growth and its misfunction has been implicated in hypertrophic and developmental disorders. Activation of each rDNA repeat requires nucleosome replacement by the architectural multi-HMGbox factor UBTF to create a 15.7 kbp nucleosome free region (NFR). Formation of this NFR is also essential for recruitment of the TBP-TAFI factor SL1 and for preinitiation complex (PIC) formation at the gene and enhancer-associated promoters of the rDNA. However, these promoters show little sequence commonality and neither UBTF nor SL1 display significant DNA sequence binding specificity, making what drives PIC formation a mystery. Here we show that cooperation between SL1 and the longer UBTF1 splice variant generates the specificity required for rDNA promoter recognition in cell. We find that conditional deletion of the TAF1B subunit of SL1 causes a striking depletion of UBTF at both rDNA promoters but not elsewhere across the rDNA. We also find that while both UBTF1 and -2 variants bind throughout the rDNA NFR, only UBTF1 is present with SL1 at the promoters. The data strongly suggest an induced-fit model of RPI promoter recognition in which UBTF1 plays an architectural role. Interestingly, a recurrent UBTF-E210K mutation and the cause of a pediatric neurodegeneration syndrome provides indirect support for this model. E210K knock-in cells show enhanced levels of the UBTF1 splice variant and a concomitant increase in active rDNA copies. In contrast, they also display reduced rDNA transcription and promoter recruitment of SL1. We suggest the underlying cause of the UBTF-E210K syndrome is therefore a reduction in cooperative UBTF1-SL1 promoter recruitment that may be partially compensated by enhanced rDNA activation.
Collapse
Affiliation(s)
- Michel G. Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Dany S. Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Melissa Valère
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Jean-Clément Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | | | - Mohammad Moshahid Khan
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Victor Y. Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Mark S. LeDoux
- Department of Psychology, University of Memphis, Memphis TN and Veracity Neuroscience LLC, Memphis, Tennessee, United States of America
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
- * E-mail:
| |
Collapse
|
10
|
You JS, Chen J. Aging Does Not Exacerbate Muscle Loss During Denervation and Lends Unique Muscle-Specific Atrophy Resistance With Akt Activation. Front Physiol 2021; 12:779547. [PMID: 34916960 PMCID: PMC8669767 DOI: 10.3389/fphys.2021.779547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Sarcopenia, or age-related skeletal muscle atrophy and weakness, imposes significant clinical and economic burdens on affected patients and societies. Neurological degeneration, such as motoneuron death, has been recognized as a key contributor to sarcopenia. However, little is known about how aged/sarcopenic muscle adapts to this denervation stress. Here, we show that mice at 27months of age exhibit clear signs of sarcopenia but no accelerated denervation-induced muscle atrophy when compared to 8-month-old mice. Surprisingly, aging lends unique atrophy resistance to tibialis anteria muscle, accompanied by an increase in the cascade of mammalian target of rapamycin complex 1 (mTORC1)-independent anabolic events involving Akt signaling, rRNA biogenesis, and protein synthesis during denervation. These results expand our understanding of age-dependent stress responses and may help develop better countermeasures to sarcopenia.
Collapse
Affiliation(s)
- Jae-Sung You
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
11
|
Koltowska K, Okuda KS, Gloger M, Rondon-Galeano M, Mason E, Xuan J, Dudczig S, Chen H, Arnold H, Skoczylas R, Bower NI, Paterson S, Lagendijk AK, Baillie GJ, Leshchiner I, Simons C, Smith KA, Goessling W, Heath JK, Pearson RB, Sanij E, Schulte-Merker S, Hogan BM. The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nat Cell Biol 2021; 23:1136-1147. [PMID: 34750583 DOI: 10.1038/s41556-021-00784-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marleen Gloger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Mason
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stefanie Dudczig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hannah Arnold
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne Karine Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ignaty Leshchiner
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Wolfram Goessling
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Joan K Heath
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Medical Faculty, WWU Münster, Münster, Germany.,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia. .,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Zhang J, Zhang J, Liu W, Ge R, Gao T, Tian Q, Mu X, Zhao L, Li X. UBTF facilitates melanoma progression via modulating MEK1/2-ERK1/2 signalling pathways by promoting GIT1 transcription. Cancer Cell Int 2021; 21:543. [PMID: 34663332 PMCID: PMC8522148 DOI: 10.1186/s12935-021-02237-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background UBTF is an HMGB-box DNA binding protein and a necessary Pol I/Pol II basal transcription factor. It has been found that UBTF involves in carcinogenesis and progression of a few cancers. Nevertheless, the the biological function and potential molecular mechanism of UBTF in melanoma are still not clear and need to be clarified. Methods UBTF and GIT1 expressions in melanoma specimens and cell lines were examined by quantitative real-time PCR (qRT-PCR) and Western blot. MTT and colony formation assays were used to investigate the effects of UBTF and GIT1 on melanoma cell proliferation. Cell cycle and apoptosis assays were detected by flow cytometry. Tumor formation assay was used to analyze the effect of UBTF on melanoma growth. Bioinformatics predicting, chromatin immunoprecipitation (ChIP)-qRT-PCR and reporter gene assay were fulfilled for verifing GIT1 as UBTF targeting gene. Results Here we reported that UBTF mRNA and protein expressions were upregulated in primary melanoma specimens and cell lines. UBTF overexpression facilitated melanoma cell proliferation and cell cycle progression and restrained. Silencing UBTF suppressed cell multiplication, cell cycle progression and tumor growth, and promoted apoptosis. UBTF expression was positively related with GIT1 expression in human melanoma tissues. It was verified that UBTF promoted GIT1 transcription in melanoma cells through binding to the promoter region of GIT1. Furthermore, GIT1 overexpression promoted melanoma cell growth and suppressed apoptosis. Knockdown of GIT1 inhibited cell multiplication and induced apoptosis. Overexpression of GIT1 eliminated the effects of silencing UBTF on melanoma cells. Importantly, UBTF activated MEK1/2-ERK1/2 signalling pathways by upregulating GIT1 expression. Conclusions Our study demonstrates that UBTF promotes melanoma cell proliferation and cell cycle progression by promoting GIT1 transcription, thereby activating MEK1/2-ERK1/2 signalling pathways. The findings indicate that UBTF plays a crucial function in melanoma and may be a potential therapeutic target for the treatment of this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02237-8.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaojiao Zhang
- Department of Dermatology, The Third Hospital of Yulin, Yulin, 719000, Shaanxi, China
| | - Wenli Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Ge
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyuan Gao
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiong Tian
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Mu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
13
|
Cerezo EL, Houles T, Lié O, Sarthou MK, Audoynaud C, Lavoie G, Halladjian M, Cantaloube S, Froment C, Burlet-Schiltz O, Henry Y, Roux PP, Henras AK, Romeo Y. RIOK2 phosphorylation by RSK promotes synthesis of the human small ribosomal subunit. PLoS Genet 2021; 17:e1009583. [PMID: 34125833 PMCID: PMC8224940 DOI: 10.1371/journal.pgen.1009583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.
Collapse
Affiliation(s)
- Emilie L. Cerezo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thibault Houles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Oriane Lié
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Kerguelen Sarthou
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Audoynaud
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Maral Halladjian
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvain Cantaloube
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Anthony K. Henras
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
14
|
Mars JC, Tremblay MG, Valere M, Sibai DS, Sabourin-Felix M, Lessard F, Moss T. The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability. NAR Cancer 2020; 2:zcaa032. [PMID: 33196044 PMCID: PMC7646227 DOI: 10.1093/narcan/zcaa032] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
In the search for drugs to effectively treat cancer, the last 10 years have seen a resurgence of interest in targeting ribosome biogenesis. CX-5461 is a potential inhibitor of ribosomal RNA synthesis that is now showing promise in phase I trials as a chemotherapeutic agent for a range of malignancies. Here, we show that CX-5461 irreversibly inhibits ribosomal RNA transcription by arresting RNA polymerase I (RPI/Pol1/PolR1) in a transcription initiation complex. CX-5461 does not achieve this by preventing formation of the pre-initiation complex nor does it affect the promoter recruitment of the SL1 TBP complex or the HMGB-box upstream binding factor (UBF/UBTF). CX-5461 also does not prevent the subsequent recruitment of the initiation-competent RPI–Rrn3 complex. Rather, CX-5461 blocks promoter release of RPI–Rrn3, which remains irreversibly locked in the pre-initiation complex even after extensive drug removal. Unexpectedly, this results in an unproductive mode of RPI recruitment that correlates with the onset of nucleolar stress, inhibition of DNA replication, genome-wide DNA damage and cellular senescence. Our data demonstrate that the cytotoxicity of CX-5461 is at least in part the result of an irreversible inhibition of RPI transcription initiation and hence are of direct relevance to the design of improved strategies of chemotherapy.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Mélissa Valere
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Dany S Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Marianne Sabourin-Felix
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| |
Collapse
|
15
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
16
|
Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA. Proc Natl Acad Sci U S A 2018; 115:E6770-E6779. [PMID: 29967171 DOI: 10.1073/pnas.1716581115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) guarantees genome integrity against UV light-induced DNA damage. After UV irradiation, cells have to cope with a general transcriptional block. To ensure UV lesions repair specifically on transcribed genes, NER is coupled with transcription in an extremely organized pathway known as transcription-coupled repair. In highly metabolic cells, more than 60% of total cellular transcription results from RNA polymerase I activity. Repair of the mammalian transcribed ribosomal DNA has been scarcely studied. UV lesions severely block RNA polymerase I activity and the full transcription-coupled repair machinery corrects damage on actively transcribed ribosomal DNAs. After UV irradiation, RNA polymerase I is more bound to the ribosomal DNA and both are displaced to the nucleolar periphery. Importantly, the reentry of RNA polymerase I and the ribosomal DNA is dependent on the presence of UV lesions on DNA and independent of transcription restart.
Collapse
|
17
|
Toro C, Hori RT, Malicdan MCV, Tifft CJ, Goldstein A, Gahl WA, Adams DR, Fauni HB, Wolfe LA, Xiao J, Khan MM, Tian J, Hope KA, Reiter LT, Tremblay MG, Moss T, Franks AL, Balak C, LeDoux MS. A recurrent de novo missense mutation in UBTF causes developmental neuroregression. Hum Mol Genet 2018; 27:691-705. [PMID: 29300972 PMCID: PMC5886272 DOI: 10.1093/hmg/ddx435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
UBTF (upstream binding transcription factor) exists as two isoforms; UBTF1 regulates rRNA transcription by RNA polymerase 1, whereas UBTF2 regulates mRNA transcription by RNA polymerase 2. Herein, we describe 4 patients with very similar patterns of neuroregression due to recurrent de novo mutations in UBTF (GRCh37/hg19, NC_000017.10: g.42290219C > T, NM_014233.3: c.628G > A) resulting in the same amino acid change in both UBTF1 and UBTF2 (p.Glu210Lys [p.E210K]). Disease onset in our cohort was at 2.5 to 3 years and characterized by slow progression of global motor, cognitive and behavioral dysfunction. Notable early features included hypotonia with a floppy gait, high-pitched dysarthria and hyperactivity. Later features included aphasia, dystonia, and spasticity. Speech and ambulatory ability were lost by the early teens. Magnetic resonance imaging showed progressive generalized cerebral atrophy (supratentorial > infratentorial) with involvement of both gray and white matter. Patient fibroblasts showed normal levels of UBTF transcripts, increased expression of pre-rRNA and 18S rRNA, nucleolar abnormalities, markedly increased numbers of DNA breaks, defective cell-cycle progression, and apoptosis. Expression of mutant human UBTF1 in Drosophila neurons was lethal. Although no loss-of-function variants are reported in the Exome Aggregation Consortium (ExAC) database and Ubtf-/- is early embryonic lethal in mice, Ubtf+/- mice displayed only mild motor and behavioral dysfunction in adulthood. Our data underscore the importance of including UBTF E210K in the differential diagnosis of neuroregression and suggest that mainly gain-of-function mechanisms contribute to the pathogenesis of the UBTF E210K neuroregression syndrome.
Collapse
Affiliation(s)
- Camilo Toro
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roderick T Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - May Christine V Malicdan
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J Tifft
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy Goldstein
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - William A Gahl
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Adams
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Harper B Fauni
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynne A Wolfe
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohammad M Khan
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Tian
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kevin A Hope
- Integrated Program in Biological Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence T Reiter
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, QC, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, QC, Canada
| | - Alexis L Franks
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Chris Balak
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - C4RCD Research Group
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Mark S LeDoux
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
18
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
19
|
Hamdane N, Herdman C, Mars JC, Stefanovsky V, Tremblay MG, Moss T. Depletion of the cisplatin targeted HMGB-box factor UBF selectively induces p53-independent apoptotic death in transformed cells. Oncotarget 2016; 6:27519-36. [PMID: 26317157 PMCID: PMC4695006 DOI: 10.18632/oncotarget.4823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022] Open
Abstract
Cisplatin-DNA adducts act as strong decoys for the Upstream Binding Factor UBF (UBTF) and have been shown to inhibit transcription of the ribosomal RNA genes by RNA polymerase I. However, it is unclear if this plays a significant role in the chemotherapeutic activity of cis- or carboplatin. We find that cisplatin in fact induces a very rapid displacement of UBF from the ribosomal RNA genes and strong inhibition of ribosomal RNA synthesis, consistent with this being an important factor in its cytotoxicity. Using conditional gene deletion, we recently showed that UBF is an essential factor for transcription of the ribosomal RNA genes and for ribosome biogenesis. We now show that loss of UBF arrests cell proliferation and induces fully penetrant, rapid and synchronous apoptosis, as well as nuclear disruption and cell death, specifically in cells subjected to oncogenic stress. Apoptosis is not affected by homozygous deletion of the p53 gene and occurs equally in cells transformed by SV40 T antigens, by Myc or by a combination of Ras & Myc oncogenes. The data strongly argue that inhibition of UBF function is a major factor in the cytotoxicity of cisplatin. Hence, drug targeting of UBF may be a preferable approach to the use of the highly toxic platins in cancer therapy.
Collapse
Affiliation(s)
- Nourdine Hamdane
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada.,Present address: Inserm, U1110, Institute of Viral and Liver Diseases, Strasbourg, France
| | - Chelsea Herdman
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Jean-Clement Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Victor Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
20
|
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Collapse
Affiliation(s)
- Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
21
|
Kardos GR, Robertson GP. Therapeutic interventions to disrupt the protein synthetic machinery in melanoma. Pigment Cell Melanoma Res 2015; 28:501-19. [PMID: 26139519 PMCID: PMC4716672 DOI: 10.1111/pcmr.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/30/2015] [Indexed: 01/23/2023]
Abstract
Control of the protein synthetic machinery is deregulated in many cancers, including melanoma, to increase the protein production. Tumor suppressors and oncogenes play key roles in protein synthesis from the transcription of rRNA and ribosome biogenesis to mRNA translation initiation and protein synthesis. Major signaling pathways are altered in melanoma to modulate the protein synthetic machinery, thereby promoting tumor development. However, despite the importance of this process in melanoma development, involvement of the protein synthetic machinery in this cancer type is an underdeveloped area of study. Here, we review the coupling of melanoma development to deregulation of the protein synthetic machinery. We examine existing knowledge regarding RNA polymerase I inhibition and mRNA translation focusing on their inhibition for therapeutic applications in melanoma. Furthermore, the contribution of amino acid biosynthesis and involvement of ribosomal proteins are also reviewed as future therapeutic strategies to target deregulated protein production in melanoma.
Collapse
Affiliation(s)
- Gregory R. Kardos
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
| | - Gavin P. Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
| |
Collapse
|
22
|
Ouellet Lavallée G, Pearson A. Upstream binding factor inhibits herpes simplex virus replication. Virology 2015; 483:108-16. [PMID: 25965800 DOI: 10.1016/j.virol.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/09/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus 1 (HSV-1) infection induces changes to the host cell nucleus including relocalization of the cellular protein Upstream Binding Factor (UBF) from the nucleolus to viral replication compartments (VRCs). Herein, we tested the hypothesis that UBF is recruited to VRCs to promote viral DNA replication. Surprisingly, infection of UBF-depleted HeLa cells with HSV-1 or HSV-2 produced higher viral titers compared to controls. Reduced expression of UBF also led to a progressive increase in the relative amount of HSV-1 DNA versus controls, and increased levels of HSV-1 ICP27 and TK mRNA and protein, regardless of whether viral DNA replication was inhibited or not. Our results suggest that UBF can inhibit gene expression from viral DNA prior to its replication. A similar but smaller effect on viral titers was observed in human foreskin fibroblasts. This is the first report of UBF having a restrictive effect on replication of a virus.
Collapse
|
23
|
Nguyen LXT, Raval A, Garcia JS, Mitchell BS. Regulation of Ribosomal Gene Expression in Cancer. J Cell Physiol 2015; 230:1181-8. [DOI: 10.1002/jcp.24854] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Le Xuan Truong Nguyen
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Aparna Raval
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Jacqueline S. Garcia
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Beverly S. Mitchell
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| |
Collapse
|
24
|
Sanij E, Diesch J, Lesmana A, Poortinga G, Hein N, Lidgerwood G, Cameron DP, Ellul J, Goodall GJ, Wong LH, Dhillon AS, Hamdane N, Rothblum LI, Pearson RB, Haviv I, Moss T, Hannan RD. A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes. Genome Res 2015; 25:201-12. [PMID: 25452314 PMCID: PMC4315294 DOI: 10.1101/gr.176115.114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022]
Abstract
Mechanisms to coordinate programs of highly transcribed genes required for cellular homeostasis and growth are unclear. Upstream binding transcription factor (UBTF, also called UBF) is thought to function exclusively in RNA polymerase I (Pol I)-specific transcription of the ribosomal genes. Here, we report that the two isoforms of UBTF (UBTF1/2) are also enriched at highly expressed Pol II-transcribed genes throughout the mouse genome. Further analysis of UBTF1/2 DNA binding in immortalized human epithelial cells and their isogenically matched transformed counterparts reveals an additional repertoire of UBTF1/2-bound genes involved in the regulation of cell cycle checkpoints and DNA damage response. As proof of a functional role for UBTF1/2 in regulating Pol II transcription, we demonstrate that UBTF1/2 is required for recruiting Pol II to the highly transcribed histone gene clusters and for their optimal expression. Intriguingly, lack of UBTF1/2 does not affect chromatin marks or nucleosome density at histone genes. Instead, it results in increased accessibility of the histone promoters and transcribed regions to micrococcal nuclease, implicating UBTF1/2 in mediating DNA accessibility. Unexpectedly, UBTF2, which does not function in Pol I transcription, is sufficient to regulate histone gene expression in the absence of UBTF1. Moreover, depletion of UBTF1/2 and subsequent reduction in histone gene expression is associated with DNA damage and genomic instability independent of Pol I transcription. Thus, we have uncovered a novel role for UBTF1 and UBTF2 in maintaining genome stability through coordinating the expression of highly transcribed Pol I (UBTF1 activity) and Pol II genes (UBTF2 activity).
Collapse
Affiliation(s)
- Elaine Sanij
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia;
| | - Jeannine Diesch
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Analia Lesmana
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gretchen Poortinga
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nadine Hein
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Grace Lidgerwood
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Donald P Cameron
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason Ellul
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Amardeep S Dhillon
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nourdine Hamdane
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, G1V 0A6, Canada; St-Patrick Research Group in Basic Oncology, Québec University Hospital Research Centre, Québec, QC, G1R 3S3, Canada
| | - Lawrence I Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma 73104, USA
| | - Richard B Pearson
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Izhak Haviv
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia; Faculty of Medicine, Bar-Ilan University, Zfat, 13100, Israel
| | - Tom Moss
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, G1V 0A6, Canada; St-Patrick Research Group in Basic Oncology, Québec University Hospital Research Centre, Québec, QC, G1R 3S3, Canada
| | - Ross D Hannan
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; School of Biomedical Sciences, University of Queensland, Brisbane 4072, Queensland, Australia
| |
Collapse
|
25
|
Regulation of rDNA transcription in response to growth factors, nutrients and energy. Gene 2014; 556:27-34. [PMID: 25447905 DOI: 10.1016/j.gene.2014.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 11/21/2022]
Abstract
Exquisite control of ribosome biogenesis is fundamental for the maintenance of cellular growth and proliferation. Importantly, synthesis of ribosomal RNA by RNA polymerase I is a key regulatory step in ribosome biogenesis and a major biosynthetic and energy consuming process. Consequently, ribosomal RNA gene transcription is tightly coupled to the availability of growth factors, nutrients and energy. Thus cells have developed an intricate sensing network to monitor the cellular environment and modulate ribosomal DNA transcription accordingly. Critical controllers in these sensing networks, which mediate growth factor activation of ribosomal DNA transcription, include the PI3K/AKT/mTORC1, RAS/RAF/ERK pathways and MYC transcription factor. mTORC1 also responds to amino acids and energy status, making it a key hub linking all three stimuli to the regulation of ribosomal DNA transcription, although this is achieved via overlapping and distinct mechanisms. This review outlines the current knowledge of how cells respond to environmental cues to control ribosomal RNA synthesis. We also highlight the critical points within this network that are providing new therapeutic opportunities for treating cancers through modulation of RNA polymerase I activity and potential novel imaging strategies.
Collapse
|
26
|
Hamdane N, Stefanovsky VY, Tremblay MG, Németh A, Paquet E, Lessard F, Sanij E, Hannan R, Moss T. Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body. PLoS Genet 2014; 10:e1004505. [PMID: 25121932 PMCID: PMC4133168 DOI: 10.1371/journal.pgen.1004505] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/24/2014] [Indexed: 11/21/2022] Open
Abstract
Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB) of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs). Upstream Binding Factor (UBF) is multi-HMGB-box protein found in all vertebrates. Although this protein has been implicated in transcription of the ribosomal RNA (rRNA) gene in vitro, little is known of its function in vivo. We previously found that UBF creates a nucleosome-like structure on DNA, and that this structure is remodeled by MAP-kinase phosphorylation. Using conditional gene deletion in mouse and mouse cells we show that UBF defines the active chromatin domains of the rRNA genes and is essential for transcription of these genes. Using this system we show that, contrary to expectation, rRNA gene activity does not coordinate ribosome production. We further show that in the complete absence of rRNA synthesis a somatic nucleolar precursor body is formed. Our data show that UBF determines a dynamic transition between the active and inactive rRNA gene states that is independent of changes in DNA methylation.
Collapse
Affiliation(s)
- Nourdine Hamdane
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Victor Y. Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Michel G. Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Attila Németh
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Eric Paquet
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Elaine Sanij
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Ross Hannan
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
27
|
Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta Mol Basis Dis 2014; 1842:802-16. [PMID: 24389329 DOI: 10.1016/j.bbadis.2013.12.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
The contribution of the nucleolus to cancer is well established with respect to its traditional role in facilitating ribosome biogenesis and proliferative capacity. More contemporary studies however, infer that nucleoli contribute a much broader role in malignant transformation. Specifically, extra-ribosomal functions of the nucleolus position it as a central integrator of cellular proliferation and stress signaling, and are emerging as important mechanisms for modulating how oncogenes and tumor suppressors operate in normal and malignant cells. The dependence of certain tumor cells to co-opt nucleolar processes to maintain their cancer phenotypes has now clearly been demonstrated by the application of small molecule inhibitors of RNA Polymerase I to block ribosomal DNA transcription and disrupt nucleolar function (Bywater et al., 2012 [1]). These drugs, which selectively kill tumor cells in vivo while sparing normal cells, have now progressed to clinical trials. It is likely that we have only just begun to scratch the surface of the potential of the nucleolus as a new target for cancer therapy, with "suppression of nucleolar stress" representing an emerging "hallmark" of cancer. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Jaclyn E Quin
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer R Devlin
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donald Cameron
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Kate M Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
28
|
Hwang YJ, Han D, Kim KY, Min SJ, Kowall NW, Yang L, Lee J, Kim Y, Ryu H. ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription. Nucleic Acids Res 2013; 42:1628-43. [PMID: 24234436 PMCID: PMC3919562 DOI: 10.1093/nar/gkt1041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The remodeling of chromatin in the nucleolus is important for the control of ribosomal DNA (rDNA) transcription and ribosome biogenesis. Herein, we found that upstream binding factor (UBF) interacts with ESET, a histone H3K9 methyltransferase and is trimethylated at Lys (K) 232/254 by ESET. UBF trimethylation leads to nucleolar chromatin condensation and decreased rDNA transcriptional activity. UBF mutations at K232/254A and K232/254R restored rDNA transcriptional activity in response to ESET. Both ESET-ΔSET mutant and knockdown of ESET by short hairpin RNA reduced trimethylation of UBF and resulted in the restoration of rDNA transcription. Atomic force microscopy confirmed that UBF trimethylated by ESET modulates the plasticity of nucleolar chromatin. We further demonstrated that UBF trimethylation at K232/254 by ESET deregulates rDNA transcription in a cell model of Huntington’s disease. Together, our findings show that a novel epigenetic modification of UBF is linked to impaired rDNA transcription and nucleolar chromatin remodeling, which may play key roles in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Yu Jin Hwang
- Department of Biomedical Sciences, World Class University Neurocytomics Group, Seoul National University College of Medicine, Seoul 110-799, South Korea, Medical Engineering, Seoul National University College of Medicine, Seoul 110-799, South Korea, Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea, VA Boston Healthcare System, Boston, MA 02130, USA, Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA, Department of Orthopedics and Division of Hematology, University of Washington School of Medicine, Seattle, WA 98195, USA and Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee J, Hwang YJ, Ryu H, Kowall NW, Ryu H. Nucleolar dysfunction in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1842:785-90. [PMID: 24184605 DOI: 10.1016/j.bbadis.2013.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 01/17/2023]
Abstract
Huntington's disease (HD) is a fatal genetic disorder characterized by triad clinical symptoms of chorea, emotional distress, and cognitive decline. Genetic mutation in HD is identified by an expansion of CAG repeats coding for glutamine (Q) in exon 1 of the huntingtin (htt) gene. The exact mechanism on how mutant htt leads to the selective loss of medium spiny neurons (MSNs) in the striatum is still unknown. Recent studies suggest that nucleolar stress and dysfunction are linked to the pathogenesis of HD. Alterations of the nucleolar activity and integrity contribute to deregulation of ribosomal DNA (rDNA) transcription in HD pathogenesis. Furthermore, epigenetic modifications in the nucleolus are associated with neuronal damage in HD. In this review, we discuss about how post-translational modifications of upstream binding factor (UBF) are affected by histone acetyltransferase and histone methyltransferase and involved in the transcriptional regulation of rDNA in HD. The understanding of epigenetic modulation of UBF-dependent rDNA transcription in the nucleolus may lead to the identification of novel pathological markers and new therapeutic targets to treat HD. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Junghee Lee
- VA Boston Healthcare System, Boston, MA 02130, USA; Boston University, Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yu Jin Hwang
- WCU Neurocytomics Group, Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110-799, South Korea
| | - Hyun Ryu
- Boston University, Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Neil W Kowall
- VA Boston Healthcare System, Boston, MA 02130, USA; Boston University, Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hoon Ryu
- VA Boston Healthcare System, Boston, MA 02130, USA; Boston University, Alzheimer's Disease Center, Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.
| |
Collapse
|
30
|
Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB. Dysregulation of RNA polymerase I transcription during disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:342-60. [PMID: 23153826 DOI: 10.1016/j.bbagrm.2012.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
Transcription of the ribosomal RNA genes by the dedicated RNA polymerase I enzyme and subsequent processing of the ribosomal RNA are fundamental control steps in the synthesis of functional ribosomes. Dysregulation of Pol I transcription and ribosome biogenesis is linked to the etiology of a broad range of human diseases. Diseases caused by loss of function mutations in the molecular constituents of the ribosome, or factors intimately associated with RNA polymerase I transcription and processing are collectively termed ribosomopathies. Ribosomopathies are generally rare and treatment options are extremely limited tending to be more palliative than curative. Other more common diseases are associated with profound changes in cellular growth such as cardiac hypertrophy, atrophy or cancer. In contrast to ribosomopathies, altered RNA polymerase I transcriptional activity in these diseases largely results from dysregulated upstream oncogenic pathways or by direct modulation by oncogenes or tumor suppressors at the level of the RNA polymerase I transcription apparatus itself. Ribosomopathies associated with mutations in ribosomal proteins and ribosomal RNA processing or assembly factors have been covered by recent excellent reviews. In contrast, here we review our current knowledge of human diseases specifically associated with dysregulation of RNA polymerase I transcription and its associated regulatory apparatus, including some cases where this dysregulation is directly causative in disease. We will also provide insight into and discussion of possible therapeutic approaches to treat patients with dysregulated RNA polymerase I transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- K M Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria 8006, Australia
| | | | | | | | | |
Collapse
|
31
|
Shukla SK, Kumar V. Hepatitis B virus X protein and c-Myc cooperate in the upregulation of ribosome biogenesis and in cellular transformation. FEBS J 2012; 279:3859-71. [PMID: 22889122 DOI: 10.1111/j.1742-4658.2012.08745.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
Abstract
Viral and cellular oncogenes are well known to enhance rRNA synthesis, leading to increased ribosome biogenesis and cell proliferation. Our study on the molecular underpinnings of the interaction between viral HBx and c-Myc, which is implicated in the development of hepatocellular carcinoma, showed a marked increase in the biosynthesis of rRNA, ribosomes and protein in hepatoma cells. A profound alteration in the nucleolar morphology and biochemical content of these cells was also observed. Increased biosynthetic activity was associated with increased cell proliferation and transformation of immortalized human hepatocytes. Furthermore, inhibition of RNA polymerase III activity impaired the proliferative advantage of hepatoma cells and transformation of immortalized hepatocytes as effectively as cisplatin treatment. These findings were corroborated in a transgenic HBx-myc microenvironment, in which an elevated hepatic level of rRNA was associated with conspicuous morphological and biochemical changes in the hepatocytic nucleoli. Thus, HBx and c-Myc seem to work cooperatively to support ribosome biogenesis and cellular transformation.
Collapse
|
32
|
Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS, Hung S, Astle MV, Bywater M, Wall M, Poortinga G, Jastrzebski K, Sheppard KE, Hemmings BA, Hall MN, Johnstone RW, McArthur GA, Hannan RD, Pearson RB. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal 2011; 4:ra56. [PMID: 21878679 DOI: 10.1126/scisignal.2001754] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Precise regulation of ribosome biogenesis is fundamental to maintain normal cell growth and proliferation, and accelerated ribosome biogenesis is associated with malignant transformation. Here, we show that the kinase AKT regulates ribosome biogenesis at multiple levels to promote ribosomal RNA (rRNA) synthesis. Transcription elongation by RNA polymerase I, which synthesizes rRNA, required continuous AKT-dependent signaling, an effect independent of AKT's role in activating the translation-promoting complex mTORC1 (mammalian target of rapamycin complex 1). Sustained inhibition of AKT and mTORC1 cooperated to reduce rRNA synthesis and ribosome biogenesis by additionally limiting RNA polymerase I loading and pre-rRNA processing. In the absence of growth factors, constitutively active AKT increased synthesis of rRNA, ribosome biogenesis, and cell growth. Furthermore, AKT cooperated with the transcription factor c-MYC to synergistically activate rRNA synthesis and ribosome biogenesis, defining a network involving AKT, mTORC1, and c-MYC as a master controller of cell growth. Maximal activation of c-MYC-dependent rRNA synthesis in lymphoma cells required AKT activity. Moreover, inhibition of AKT-dependent rRNA transcription was associated with increased lymphoma cell death by apoptosis. These data indicate that decreased ribosome biogenesis is likely to be a fundamental component of the therapeutic response to AKT inhibitors in cancer.
Collapse
Affiliation(s)
- Joanna C Chan
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 8006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
In this report, we employed a lentiviral RNA interference screen to discover nucleolar DEAD/DEAH-box helicases involved in RNA polymerase I (Pol I)-mediated transcriptional activity. Our screen identified DHX33 as an important modulator of 47S rRNA transcription. We show that DHX33 is a cell cycle-regulated nucleolar protein that associates with ribosomal DNA (rDNA) loci, where it interacts with the RNA Pol I transcription factor upstream binding factor (UBF). DHX33 knockdown decreased the association of Pol I with rDNA and caused a dramatic decrease in levels of rRNA synthesis. Wild-type DHX33 overexpression, but not a DNA binding-defective mutant, enhanced 47S rRNA synthesis by promoting the association of RNA polymerase I with rDNA loci. In addition, an NTPase-defective DHX33 mutant (K94R) acted as a dominant negative mutant, inhibiting endogenous rRNA synthesis. Moreover, DHX33 deficiency in primary human fibroblasts triggered a nucleolar p53 stress response, resulting in an attenuation of proliferation. Thus, we show the mechanistic importance of DHX33 in rRNA transcription and proliferation.
Collapse
|
34
|
Hannan KM, Sanij E, Hein N, Hannan RD, Pearson RB. Signaling to the ribosome in cancer--It is more than just mTORC1. IUBMB Life 2011; 63:79-85. [PMID: 21360636 DOI: 10.1002/iub.428] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is becoming increasingly clear that dysregulation of protein synthesis contributes to a range of diseases characterized by tissue overgrowth. These include arterial stenosis, cardiac hypertrophy, hamartomas, and cancer. The central hub for the regulation of protein synthesis is the ribosome, where the key signaling pathways downstream of RAS, MYC, and phosphatidylinositol-3-kinase (PI3K) converge to confer exquisite, coordinated control of ribosome synthesis and function. Such cooperation ensures strict regulation of protein synthesis rates and cell growth. This review will focus on the role the PI3K/AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway plays in regulating ribosome function during both health and disease, its interaction with the other key growth regulatory pathways activated by RAS and MYC, and the therapeutic potential for targeting this network.
Collapse
Affiliation(s)
- Katherine M Hannan
- Growth Control and Differentiation Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
35
|
Dysregulation of upstream binding factor-1 acetylation at K352 is linked to impaired ribosomal DNA transcription in Huntington's disease. Cell Death Differ 2011; 18:1726-35. [PMID: 21546905 DOI: 10.1038/cdd.2011.38] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurological disorder caused by expanded CAG repeats in the Huntingtin (Htt) gene, but it is not known how this mutation causes neurodegeneration. Herein, we found that dysfunction of upstream binding factor-1 (UBF-1) is linked to reduced ribosomal DNA (rDNA) transcription in HD. We identified that UBF1 acetylation at Lys (K) 352 by CREB binding protein (CBP) is crucial for the transcriptional activity of rDNA. UBF1 mutation (K352A, K352Q, and K352R) decreased rDNA transcriptional activity. Moreover, both CBP-dHAT mutant and knockdown of CBP by siRNA reduced acetylation of UBF1 and resulted in the decreased transcription of rDNA into rRNA. ChIP analysis showed a significant reduction of UBF1 occupancy in the promoter of rDNA in STHdh(Q111) cell line model of HD. These results demonstrate that abnormal activity of UBF1 and its acetylation by CBP are linked to impaired rDNA transcription in HD. This novel mechanism suggests that modulation of UBF-mediated rDNA synthesis by CBP may be a therapeutic target for improving neuronal rDNA transcription in HD.
Collapse
|
36
|
Peng Q, Wu J, Zhang Y, Liu Y, Kong R, Hu L, Du X, Ke Y. 1A6/DRIM, a novel t-UTP, activates RNA polymerase I transcription and promotes cell proliferation. PLoS One 2010; 5:e14244. [PMID: 21151873 PMCID: PMC2998426 DOI: 10.1371/journal.pone.0014244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/18/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ribosome biogenesis is required for protein synthesis and cell proliferation. Ribosome subunits are assembled in the nucleolus following transcription of a 47S ribosome RNA precursor by RNA polymerase I and rRNA processing to produce mature 18S, 28S and 5.8S rRNAs. The 18S rRNA is incorporated into the ribosomal small subunit, whereas the 28S and 5.8S rRNAs are incorporated into the ribosomal large subunit. Pol I transcription and rRNA processing are coordinated processes and this coordination has been demonstrated to be mediated by a subset of U3 proteins known as t-UTPs. Up to date, five t-UTPs have been identified in humans but the mechanism(s) that function in the t-UTP(s) activation of Pol I remain unknown. In this study we have identified 1A6/DRIM, which was identified as UTP20 in our previous study, as a t-UTP. In the present study, we investigated the function and mechanism of 1A6/DRIM in Pol I transcription. METHODOLOGY/PRINCIPAL FINDINGS Knockdown of 1A6/DRIM by siRNA resulted in a decreased 47S pre-rRNA level as determined by Northern blotting. Ectopic expression of 1A6/DRIM activated and knockdown of 1A6/DRIM inhibited the human rDNA promoter as evaluated with luciferase reporter. Chromatin immunoprecipitation (ChIP) experiments showed that 1A6/DRIM bound UBF and the rDNA promoter. Re-ChIP assay showed that 1A6/DRIM interacts with UBF at the rDNA promoter. Immunoprecipitation confirmed the interaction between 1A6/DRIM and the nucleolar acetyl-transferase hALP. It is of note that knockdown of 1A6/DRIM dramatically inhibited UBF acetylation. A finding of significance was that 1A6/DRIM depletion, as a kind of nucleolar stress, caused an increase in p53 level and inhibited cell proliferation by arresting cells at G1. CONCLUSIONS We identify 1A6/DRIM as a novel t-UTP. Our results suggest that 1A6/DRIM activates Pol I transcription most likely by associating with both hALP and UBF and thereby affecting the acetylation of UBF.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Proliferation
- DNA, Ribosomal/genetics
- Genes, p53
- Glucuronosyltransferase/genetics
- Humans
- Models, Genetic
- Promoter Regions, Genetic
- RNA Interference
- RNA Polymerase I/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5.8S/genetics
- Transcription, Genetic
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Qunhui Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
- Cancer Research Center, Peking University Health Science Center, Beijing, China
| | - Jianguo Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
- Cancer Research Center, Peking University Health Science Center, Beijing, China
| | - Ying Zhang
- Department of Cell Biology, Peking University Health Science Center, Beijing, China
- Cancer Research Center, Peking University Health Science Center, Beijing, China
| | - Yun Liu
- Department of Cell Biology, Peking University Health Science Center, Beijing, China
- Cancer Research Center, Peking University Health Science Center, Beijing, China
| | - Ruirui Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
- Cancer Research Center, Peking University Health Science Center, Beijing, China
| | - Lelin Hu
- Department of Cell Biology, Peking University Health Science Center, Beijing, China
- Cancer Research Center, Peking University Health Science Center, Beijing, China
| | - Xiaojuan Du
- Department of Cell Biology, Peking University Health Science Center, Beijing, China
- Cancer Research Center, Peking University Health Science Center, Beijing, China
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Genetics Laboratory, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
- Cancer Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
37
|
Gangelhoff TA, Mungalachetty PS, Nix JC, Churchill MEA. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A. Nucleic Acids Res 2009; 37:3153-64. [PMID: 19304746 PMCID: PMC2691818 DOI: 10.1093/nar/gkp157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial transcription factor A (mtTFA) is central to assembly and initiation of the mitochondrial transcription complex. Human mtTFA (h-mtTFA) is a dual high mobility group box (HMGB) protein that binds site-specifically to the mitochondrial genome and demarcates the promoters for recruitment of h-mtTFB1, h-mtTFB2 and the mitochondrial RNA polymerase. The stoichiometry of h-mtTFA was found to be a monomer in the absence of DNA, whereas it formed a dimer in the complex with the light strand promoter (LSP) DNA. Each of the HMG boxes and the C-terminal tail were evaluated for their ability to bind to the LSP DNA. Removal of the C-terminal tail only slightly decreased nonsequence specific DNA binding, and box A, but not box B, was capable of binding to the LSP DNA. The X-ray crystal structure of h-mtTFA box B, at 1.35 Å resolution, revealed the features of a noncanonical HMG box. Interactions of box B with other regions of h-mtTFA were observed. Together, these results provide an explanation for the unusual DNA-binding properties of box B and suggest possible roles for this domain in transcription complex assembly.
Collapse
Affiliation(s)
- Todd A Gangelhoff
- Department of Pharmacology, University of Colorado Denver, School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045-0511, USA
| | | | | | | |
Collapse
|
38
|
Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, Moss T, Rothblum L, Hannan KM, McArthur GA, Pearson RB, Hannan RD. UBF levels determine the number of active ribosomal RNA genes in mammals. ACTA ACUST UNITED AC 2008; 183:1259-74. [PMID: 19103806 PMCID: PMC2606969 DOI: 10.1083/jcb.200805146] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In mammals, the mechanisms regulating the number of active copies of the approximately 200 ribosomal RNA (rRNA) genes transcribed by RNA polymerase I are unclear. We demonstrate that depletion of the transcription factor upstream binding factor (UBF) leads to the stable and reversible methylation-independent silencing of rRNA genes by promoting histone H1-induced assembly of transcriptionally inactive chromatin. Chromatin remodeling is abrogated by the mutation of an extracellular signal-regulated kinase site within the high mobility group box 1 domain of UBF1, which is required for its ability to bend and loop DNA in vitro. Surprisingly, rRNA gene silencing does not reduce net rRNA synthesis as transcription from remaining active genes is increased. We also show that the active rRNA gene pool is not static but decreases during differentiation, correlating with diminished UBF expression. Thus, UBF1 levels regulate active rRNA gene chromatin during growth and differentiation.
Collapse
Affiliation(s)
- Elaine Sanij
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|