1
|
McQuaid K, Pipier A, Cardin C, Monchaud D. Interactions of small molecules with DNA junctions. Nucleic Acids Res 2022; 50:12636-12656. [PMID: 36382400 PMCID: PMC9825177 DOI: 10.1093/nar/gkac1043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
The four natural DNA bases (A, T, G and C) associate in base pairs (A=T and G≡C), allowing the attached DNA strands to assemble into the canonical double helix of DNA (or duplex-DNA, also known as B-DNA). The intrinsic supramolecular properties of nucleobases make other associations possible (such as base triplets or quartets), which thus translates into a diversity of DNA structures beyond B-DNA. To date, the alphabet of DNA structures is ripe with approximately 20 letters (from A- to Z-DNA); however, only a few of them are being considered as key players in cell biology and, by extension, valuable targets for chemical biology intervention. In the present review, we summarise what is known about alternative DNA structures (what are they? When, where and how do they fold?) and proceed to discuss further about those considered nowadays as valuable therapeutic targets. We discuss in more detail the molecular tools (ligands) that have been recently developed to target these structures, particularly the three- and four-way DNA junctions, in order to intervene in the biological processes where they are involved. This new and stimulating chemical biology playground allows for devising innovative strategies to fight against genetic diseases.
Collapse
Affiliation(s)
- Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Angélique Pipier
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
2
|
Ivens E, Cominetti MM, Searcey M. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg Med Chem 2022; 69:116897. [DOI: 10.1016/j.bmc.2022.116897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
3
|
Song Q, Hu Y, Yin A, Wang H, Yin Q. DNA Holliday Junction: History, Regulation and Bioactivity. Int J Mol Sci 2022; 23:9730. [PMID: 36077130 PMCID: PMC9456528 DOI: 10.3390/ijms23179730] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
DNA Holliday junction (HJ) is a four-way stranded DNA intermediate that formed in replication fork regression, homology-dependent repair and mitosis, performing a significant role in genomic stability. Failure to remove HJ can induce an acceptable replication fork stalling and DNA damage in normal cells, leading to a serious chromosomal aberration and even cell death in HJ nuclease-deficient tumor cells. Thus, HJ is becoming an attractive target in cancer therapy. However, the development of HJ-targeting ligand faces great challenges because of flexile cavities on the center of HJs. This review introduces the discovery history of HJ, elucidates the formation and dissociation procedures of HJ in corresponding bio-events, emphasizes the importance of prompt HJ-removing in genome stability, and summarizes recent advances in HJ-based ligand discovery. Our review indicate that target HJ is a promising approach in oncotherapy.
Collapse
Affiliation(s)
- Qinqin Song
- State/Key Laboratory of Microbial Technology, Shandong University, 72 Jimo Binhai Road, Qingdao 266237, China
| | - Yuemiao Hu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Anqi Yin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qikun Yin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
- Bohai Rim Advanced Research Institute for Drug Discovery, 198 Binhai East Road, Yantai 264005, China
| |
Collapse
|
4
|
Thompson Z, Greve JM, Cowan JA. Enhanced Synergism and Mechanism of Action Studies of Synthetic Antimicrobial Metallopeptides. ChemMedChem 2021; 16:2112-2120. [PMID: 33825350 DOI: 10.1002/cmdc.202100063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/08/2022]
Abstract
Antimicrobial peptides (AMPs) are found throughout most kingdoms of life, are an important part of host immunity, and have been shown to act synergistically in various organisms to ameliorate bacterial infections. Herein, we report the synergistic behavior observed between two AMPs, Sub5 and CP10A, against E. coli. In addition, enhanced synergistic activity against E. coli and MRSA 43300 for two derivatives of Sub5, extended with the amino-terminal copper and nickel (ATCUN) binding motif, is observed when dosed together with CP10A, while displaying little cytotoxicity towards human dermal fibroblasts. All three combinations of peptides co-localized within bacterial cells as evidenced by fluorescence confocal microscopy. Investigations into the mechanism of synergy shows that all peptides indirectly damage DNA within cells, while only the ATCUN derivatives can oxidize phospholipids. Combinations of peptides were also shown to upregulate the concentration of reactive oxygen species within both E. coli and MRSA 43300. These results suggest that the production of reactive oxygen species is an important aspect mechanistically and further highlights the potential of these metallopeptides to aid in the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Zechariah Thompson
- Chemistry and Biochemistry, The Ohio State University, Evans Laboratory of Chemistry 100, West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Jenna M Greve
- Chemistry and Biochemistry, The Ohio State University, Evans Laboratory of Chemistry 100, West 18th Avenue, Columbus, Ohio, 43210, USA
| | - James Allan Cowan
- Chemistry and Biochemistry, The Ohio State University, Evans Laboratory of Chemistry 100, West 18th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
5
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|
6
|
Puño-Sarmiento J, Anderson EM, Park AJ, Khursigara CM, Barnett Foster DE. Potentiation of Antibiotics by a Novel Antimicrobial Peptide against Shiga Toxin Producing E. coli O157:H7. Sci Rep 2020; 10:10029. [PMID: 32572054 PMCID: PMC7308376 DOI: 10.1038/s41598-020-66571-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) results in hemorrhagic colitis and can lead to life-threatening sequelae including hemolytic uremic syndrome (HUS). Conventional treatment is intravenous fluid volume expansion. Antibiotic treatment is contraindicated, due in part to the elevated risk of HUS related to increased Shiga toxin (Stx) release associated with some antibiotics. Given the lack of effective strategies and the increasing number of STEC outbreaks, new treatment approaches are critically needed. In this study, we used an antimicrobial peptide wrwycr, previously shown to enhance STEC killing without increasing Stx production, in combination with antibiotic treatments. Checkerboard and time-kill assays were used to assess peptide wrwycr-antibiotic combinations for synergistic STEC killing. Cytotoxicity and real-time PCR were used to evaluate Stx production and stx expression, respectively, associated with these combinations. The synergistic combinations that showed rapid killing, no growth recovery and minimal Stx production were peptide wrwycr-kanamycin/gentamicin. Transmission electron microscopy revealed striking differences in bacterial cell morphology associated with various treatments. This study provides proof of principle for the design of an antibiotic-peptide wrwycr combination effective in killing STEC without enhancing release of Shiga toxins. It also offers a strategy for the repurposing of antibiotics for treatment of STEC infection.
Collapse
Affiliation(s)
- Juan Puño-Sarmiento
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Department of Microbiology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario, Canada
| | - Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario, Canada
| | - Debora E Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.
- Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Lackraj T, Johnson-Henry K, Sherman PM, Goodman SD, Segall AM, Barnett Foster D. Novel antimicrobial peptide prevents C. rodentium infection in C57BL/6 mice by enhancing acid-induced pathogen killing. MICROBIOLOGY-SGM 2016; 162:1641-1650. [PMID: 27412446 DOI: 10.1099/mic.0.000335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Citrobacter rodentium is a Gram-negative, murine-specific enteric pathogen that infects epithelial cells in the colon. It is closely related to the clinically relevant human pathogen, enterohemorrhagic Escherichia coli (EHEC), a leading cause of haemorrhagic colitis and haemolytic uremic syndrome. We have previously reported that a novel antimicrobial peptide, wrwycr, compromises bacterial DNA repair and significantly reduces the survival of acid-stressed EHEC, suggesting an antimicrobial strategy for targeting the survival of ingested EHEC. This study examines the impact of peptide pretreatment on survival of the closely related murine pathogen, C. rodentium, before and after acid stress, using both in vitro and in vivo investigations. Peptide pretreatment of C. rodentium significantly and dramatically increases acid-stress-induced killing in a peptide-dose-dependent and time-dependent manner. Reduction in survival rates after brief pretreatment with peptide (25-65 µM) followed by 1 h at pH 3.5 ranges from 6 to 8 log fold relative to untreated C. rodentium, with no detectable bacteria after 65 µM peptide-acid treatment. Using a C57BL/6 mouse model of infection, peptide pretreatment of C. rodentium with wrwycr prior to orogastric gavage eliminates evidence of infection based on C. rodentium colonization levels, faecal scores, colonic histology, faecal microbiome and visual observation of overall animal health. These findings provide compelling evidence for the role of the peptide wrwycr as a potential strategy to control the growth and colonization of enteric pathogens.
Collapse
Affiliation(s)
- Tracy Lackraj
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Kathene Johnson-Henry
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Philip M Sherman
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steve D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Anca M Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Debora Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Molecular Structure and Function Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Abstract
Tyrosine site-specific recombinases (YRs) are widely distributed among prokaryotes and their viruses, and were thought to be confined to the budding yeast lineage among eukaryotes. However, YR-harboring retrotransposons (the DIRS and PAT families) and DNA transposons (Cryptons) have been identified in a variety of eukaryotes. The YRs utilize a common chemical mechanism, analogous to that of type IB topoisomerases, to bring about a plethora of genetic rearrangements with important physiological consequences in their respective biological contexts. A subset of the tyrosine recombinases has provided model systems for analyzing the chemical mechanisms and conformational features of the recombination reaction using chemical, biochemical, topological, structural, and single molecule-biophysical approaches. YRs with simple reaction requirements have been utilized to bring about programmed DNA rearrangements for addressing fundamental questions in developmental biology. They have also been employed to trace the topological features of DNA within high-order DNA interactions established by protein machines. The directed evolution of altered specificity YRs, combined with their spatially and temporally regulated expression, heralds their emergence as vital tools in genome engineering projects with wide-ranging biotechnological and medical applications.
Collapse
|
9
|
Cannon B, Kachroo AH, Jarmoskaite I, Jayaram M, Russell R. Hexapeptides that inhibit processing of branched DNA structures induce a dynamic ensemble of Holliday junction conformations. J Biol Chem 2015; 290:22734-46. [PMID: 26209636 PMCID: PMC4566245 DOI: 10.1074/jbc.m115.663930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/23/2015] [Indexed: 11/06/2022] Open
Abstract
Holliday junctions are critical intermediates in DNA recombination, repair, and restart of blocked replication. Hexapeptides have been identified that bind to junctions and inhibit various junction-processing enzymes, and these peptides confer anti-microbial and anti-tumor properties. Earlier studies suggested that inhibition results from stabilization of peptide-bound Holliday junctions in the square planar conformation. Here, we use single molecule fluorescence resonance energy transfer (smFRET) and two model junctions, which are AT- or GC-rich at the branch points, to show that binding of the peptide KWWCRW induces a dynamic ensemble of junction conformations that differs from both the square planar and stacked X conformations. The specific features of the conformational distributions differ for the two peptide-bound junctions, but both junctions display greatly decreased Mg(2+) dependence and increased conformational fluctuations. The smFRET results, complemented by gel mobility shift and small angle x-ray scattering analyses, reveal structural effects of peptides and highlight the sensitivity of smFRET for analyzing complex mixtures of DNA structures. The peptide-induced conformational dynamics suggest multiple stacking arrangements of aromatic amino acids with the nucleobases at the junction core. This conformational heterogeneity may inhibit DNA processing by increasing the population of inactive junction conformations, thereby preventing the binding of processing enzymes and/or resulting in their premature dissociation.
Collapse
Affiliation(s)
- Brian Cannon
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Aashiq H Kachroo
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Inga Jarmoskaite
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Makkuni Jayaram
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Rick Russell
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
10
|
Kondratova A, Watanabe T, Marotta M, Cannon M, Segall AM, Serre D, Tanaka H. Replication fork integrity and intra-S phase checkpoint suppress gene amplification. Nucleic Acids Res 2015; 43:2678-90. [PMID: 25672394 PMCID: PMC4357702 DOI: 10.1093/nar/gkv084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.
Collapse
Affiliation(s)
- Anna Kondratova
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Takaaki Watanabe
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Matthew Cannon
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anca M Segall
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| |
Collapse
|
11
|
Limoli DH, Rockel AB, Host KM, Jha A, Kopp BT, Hollis T, Wozniak DJ. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog 2014; 10:e1004083. [PMID: 24763694 PMCID: PMC3999168 DOI: 10.1371/journal.ppat.1004083] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/09/2014] [Indexed: 12/30/2022] Open
Abstract
Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients. Thus far, mutagenesis has been attributed to the generation of reactive species by polymorphonucleocytes (PMN) and antibiotic treatment. However, our current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37, canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini α-helices of dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation, highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections. Antimicrobial peptides (AMPs) are produced by the mammalian immune system to fight invading pathogens. The best understood function of AMPs is to interact with the membranes of microbes, thereby disrupting and killing cells. However, the amount of AMP available during chronic bacterial infections may not be sufficient to kill pathogens (sub-inhibitory). In this study, we found that at sub-inhibitory levels, AMPs promote mutations in bacterial DNA, a function not previously attributed to them. In particular, we found that in the bacteria Pseudomonas aeruginosa, one AMP called LL-37 can promote mutations, which enable the bacteria to overproduce a protective sugar coating, a process called mucoid conversion. P. aeruginosa mucoid conversion is a major risk factor for those suffering from cystic fibrosis (CF), the most common lethal, heritable disease in the US. We found that LL-37 is able to produce these mutations by penetrating the bacterial cell and binding to the bacterial DNA. DNA binding disrupts normal DNA replication and allows mutations to occur. Furthermore, we observed LL-37 induced mutagenesis in processes apart from mucoid conversion, in both P. aeruginosa and E. coli. This suggests that AMP-induced mutagenesis may be important for a broad range of chronic diseases and pathogens.
Collapse
Affiliation(s)
- Dominique H. Limoli
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrea B. Rockel
- Department of Natural Sciences, Mars Hill University, Mars Hill, North Carolina, United States of America
| | - Kurtis M. Host
- Medicine Administration, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anuvrat Jha
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Benjamin T. Kopp
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Hollis
- Department of Biochemistry and Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yu H, Lim HH, Tjokro NO, Sathiyanathan P, Natarajan S, Chew TW, Klonisch T, Goodman SD, Surana U, Dröge P. Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Rep 2014; 6:684-97. [PMID: 24508460 DOI: 10.1016/j.celrep.2014.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/26/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022] Open
Abstract
Maintaining genome integrity requires the accurate and complete replication of chromosomal DNA. This is of the utmost importance for embryonic stem cells (ESCs), which differentiate into cells of all lineages, including germ cells. However, endogenous and exogenous factors frequently induce stalling of replication forks in every cell cycle, which can trigger mutations and chromosomal instabilities. We show here that the oncofetal, nonhistone chromatin factor HMGA2 equips cells with a highly effective first-line defense mechanism against endonucleolytic collapse of stalled forks. This fork-stabilizing function most likely employs scaffold formation at branched DNA via multiple DNA-binding domains. Moreover, HMGA2 works independently of other human factors in two heterologous cell systems to prevent DNA strand breaks. This fork chaperone function seemingly evolved to preserve ESC genome integrity. It is hijacked by tumor (stem) cells to also guard their genomes against DNA-damaging agents widely used to treat cancer patients.
Collapse
Affiliation(s)
- Haojie Yu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Bioprocessing Technology Institute, 20 Biopolis Way, 6-01 Centros, Singapore 138668, Singapore
| | - Natalia O Tjokro
- Division of Biomedical Sciences, The Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90089, USA
| | - Padmapriya Sathiyanathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tian Wei Chew
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Steven D Goodman
- Division of Biomedical Sciences, The Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90089, USA
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
13
|
Kim T, Jeon HM, Le HT, Kim TW, Kang C, Kim JS. A biotin-guided fluorescent-peptide drug delivery system for cancer treatment. Chem Commun (Camb) 2014; 50:7690-3. [DOI: 10.1039/c4cc02878c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Dey M, Patra S, Su LY, Segall AM. Tumor cell death mediated by peptides that recognize branched intermediates of DNA replication and repair. PLoS One 2013; 8:e78751. [PMID: 24244353 PMCID: PMC3828334 DOI: 10.1371/journal.pone.0078751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022] Open
Abstract
Effective treatments for cancer are still needed, both for cancers that do not respond well to current therapeutics and for cancers that become resistant to available treatments. Herein we investigated the effect of a structure-selective d-amino acid peptide wrwycr that binds replication fork mimics and Holliday Junction (HJs) intermediates of homologous recombination (HR) in vitro, and inhibits their resolution by HJ-processing enzymes. We predicted that treating cells with HJ-binding compounds would lead to accumulation of DNA damage. As cells repair endogenous or exogenous DNA damage, collapsed replication forks and HJ intermediates will accumulate and serve as targets for the HJ-binding peptides. Inhibiting junction resolution will lead to further accumulation of DNA breaks, eventually resulting in amplification of the damage and causing cell death. Both peptide wrwycr and the related wrwyrggrywrw entered cancer cells and reduced cell survival in a dose- and time-dependent manner. Early markers for DNA damage, γH2AX foci and 53BP1 foci, increased with dose and/or time exposure to the peptides. DNA breaks persisted at least 48 h, and both checkpoint proteins Chk1 and Chk2 were activated. The passage of the cells from S to G2/M was blocked even after 72 h. Apoptosis, however, was not induced in either HeLa or PC3 cells. Based on colony-forming assays, about 35% peptide-induced cytotoxicity was irreversible. Finally, sublethal doses of peptide wrwycr (50–100 µM) in conjunction with sublethal doses of several DNA damaging agents (etoposide, doxorubicin, and HU) reduced cell survival at least additively and sometimes synergistically. Taken together, the results suggest that the peptides merit further investigation as proof-of-principle molecules for a new class of anti-cancer therapeutics, in particular in combination with other DNA damaging therapies.
Collapse
Affiliation(s)
- Mamon Dey
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Sukanya Patra
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Leo Y. Su
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Joyner JC, Hodnick WF, Cowan AS, Tamuly D, Boyd R, Cowan JA. Antimicrobial metallopeptides with broad nuclease and ribonuclease activity. Chem Commun (Camb) 2013; 49:2118-20. [PMID: 23380915 DOI: 10.1039/c3cc38977d] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallopeptides containing both the complex Cu(2+)-glycyl-glycyl-histidine (Cu-GGH) and the sequence WRWYCR were shown to possess antimicrobial activity against a variety of pathogenic bacteria, as well as bind to and cleave a variety of nucleic acids, suggesting potential mechanisms for antimicrobial activity that involve binding and/or irreversible cleavage of bacterial nucleic acids.
Collapse
Affiliation(s)
- Jeff C Joyner
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Rideout MC, Naili I, Boldt JL, Flores-Fujimoto A, Patra S, Rostron JE, Segall AM. wrwyrggrywrw is a single-chain functional analog of the Holliday junction-binding homodimer, (wrwycr)2. Peptides 2013; 40:112-22. [PMID: 23291222 PMCID: PMC3646928 DOI: 10.1016/j.peptides.2012.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 11/22/2022]
Abstract
DNA repair pathways in bacteria that use homologous recombination involve the formation and subsequent resolution of Holliday junction (HJ) intermediates. We have previously identified several hexameric peptides that bind to HJs and interfere with HJ processing enzymes in vitro. The peptide WRWYCR and its D-amino acid stereoisomer wrwycr, are potent antibacterial agents. These hexapeptides must form homodimers in order to interact stably with HJs, and inhibit bacterial growth, and this represents a potential limitation. Herein we describe a disulfide bond-independent inhibitor, WRWYRGGRYWRW and its D-stereoisomer wrwyrggrywrw. We have characterized these single-chain, linear analogs of the hexapeptides, and show that in addition to effectively binding to HJs, and inhibiting the activity of DNA repair enzymes that process HJs, they have equal or greater potency against Gram-positive and Gram-negative bacterial growth. The analogs were also shown to cause DNA damage in bacteria, and disrupt the integrity of the bacterial cytoplasmic membrane. Finally, we found that they have little toxicity toward several eukaryotic cell types at concentrations needed to inhibit bacterial growth.
Collapse
Affiliation(s)
- Marc C. Rideout
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Ilham Naili
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jeffrey L. Boldt
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - America Flores-Fujimoto
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Sukanya Patra
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jason E. Rostron
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
- To whom correspondence should be addressed: , Phone: (619) 594-6528, Fax: (619) 594-5676
| |
Collapse
|
17
|
Yitzhaki S, Rostron JE, Xu Y, Rideout MC, Authement RN, Barlow SB, Segall AM. Similarities between exogenously- and endogenously-induced envelope stress: the effects of a new antibacterial molecule, TPI1609-10. PLoS One 2012; 7:e44896. [PMID: 23071502 PMCID: PMC3469575 DOI: 10.1371/journal.pone.0044896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Antibiotics with novel and/or multiple targets are highly desirable in the face of the steady rise of clinical antibiotic resistance. We have screened and identified small molecules, typified by the compound TPI1609-10 (aka SM10), with antibiotic activity against both gram-positive and gram-negative bacteria. SM10 was screened in vitro to bind branched Holliday junction intermediates of homologous recombination and tyrosine recombinase-mediated recombination; thus, the cellular targets of the small molecules were expected to include the RuvABC Holliday junction resolvasome and the XerCD complex involved in proper segregation of replicated chromosomes to daughter cells. SM10 indeed induces DNA damage and filamentation in E. coli. However, SM10 also induces envelope stress and causes increased production of intracellular reactive oxygen species. In addition, SM10 has similar effects to endogenously-induced envelope stress via overproducing outer membrane proteins (OmpC and OmpF), which also induces the SOS response, chromosome fragmentation, and production of reactive oxygen species. The synergy between SM10, and cerulenin, a fatty acid synthesis inhibitor, together with the SM10 hypersensitivity of cpx and rpoE mutants, further support that SM10's mode of action damages membrane damage. The lethality of SM10 treatment and of OmpC overproduction are observed in both aerobically- and anaerobically-grown cells, and is accompanied by substantial DNA damage even anaerobically. Thus, only some DNA damage is due to reactive oxygen. We propose that membrane depolarization and the potential reduction in intracellular pH, leading to abasic site formation, cause a substantial amount of the DNA damage associated with both SM10 treatment and endogenous envelope stress. While it is difficult to completely exclude effects related to envelope damage as the sources of DNA damage, trapping intermediates associated with DNA repair and chromosome segregation pathways remains very likely. Thus SM10 may have distinct but synergistic modes of action.
Collapse
Affiliation(s)
- Shmuel Yitzhaki
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Jason E. Rostron
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Yan Xu
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Marc C. Rideout
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - R. Nathan Authement
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Steven B. Barlow
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
- Electron Microscopy Facility, San Diego State University, San Diego, California, United States of America
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Stefan L, Bertrand B, Richard P, Le Gendre P, Denat F, Picquet M, Monchaud D. Assessing the Differential Affinity of Small Molecules for Noncanonical DNA Structures. Chembiochem 2012; 13:1905-12. [DOI: 10.1002/cbic.201200396] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Indexed: 01/19/2023]
|
19
|
Rideout MC, Boldt JL, Vahi-Ferguson G, Salamon P, Nefzi A, Ostresh JM, Giulianotti M, Pinilla C, Segall AM. Potent antimicrobial small molecules screened as inhibitors of tyrosine recombinases and Holliday junction-resolving enzymes. Mol Divers 2011; 15:989-1005. [DOI: 10.1007/s11030-011-9333-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
20
|
Lino M, Kus JV, Tran SL, Naqvi Z, Binnington B, Goodman SD, Segall AM, Barnett Foster D. A novel antimicrobial peptide significantly enhances acid-induced killing of Shiga toxin-producing Escherichia coli O157 and non-O157 serotypes. MICROBIOLOGY-SGM 2011; 157:1768-1775. [PMID: 21454368 DOI: 10.1099/mic.0.047365-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) colonizes the human intestine, causing haemorrhagic colitis and haemolytic uraemic syndrome (HUS). Treatment options are limited to intravenous fluids in part because sublethal doses of some antibiotics have been shown to stimulate increased toxin release and enhance the risk of progression to HUS. Preventative antimicrobial agents, especially those that build on the natural antimicrobial action of the host defence, may provide a better option. In order to survive the acid stress of gastric passage, STEC is equipped with numerous acid resistance and DNA repair mechanisms. Inhibition of acid-induced DNA repair may offer a strategy to target survival of ingested STEC. We report here that brief pretreatment with a novel antimicrobial peptide, which was previously shown to inhibit bacterial DNA repair, significantly and profoundly reduces survival of acid-stressed O157 : H7 and non-O157 : H7 STEC seropathotypes that are highly associated with HUS. Reduction in survival rates of STEC range from 3 to 5 log. We also show that peptide/acid treatment results in little or no increase in toxin production, thereby reducing the risk of progression to HUS. This study identifies the peptide wrwycr as a potential new candidate for a preventative antimicrobial for STEC infection.
Collapse
Affiliation(s)
- M Lino
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - J V Kus
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - S L Tran
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Z Naqvi
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - B Binnington
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada
| | - S D Goodman
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry of the University of Southern California, USA
| | - A M Segall
- Department of Biology, Center for Microbial Sciences and Molecular Biology Institute, San Diego State University, USA
| | - D Barnett Foster
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
21
|
Analysis of RuvABC and RecG involvement in the escherichia coli response to the covalent topoisomerase-DNA complex. J Bacteriol 2010; 192:4445-51. [PMID: 20601468 DOI: 10.1128/jb.00350-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Topoisomerases form a covalent enzyme-DNA intermediate after initial DNA cleavage. Trapping of the cleavage complex formed by type IIA topoisomerases initiates the bactericidal action of fluoroquinolones. It should be possible also to identify novel antibacterial lead compounds that act with a similar mechanism on type IA bacterial topoisomerases. The cellular response and repair pathways for trapped topoisomerase complexes remain to be fully elucidated. The RuvAB and RecG proteins could play a role in the conversion of the initial protein-DNA complex to double-strand breaks and also in the resolution of the Holliday junction during homologous recombination. Escherichia coli strains with ruvA and recG mutations are found to have increased sensitivity to low levels of norfloxacin treatment, but the mutations had more pronounced effects on survival following the accumulation of covalent complexes formed by mutant topoisomerase I defective in DNA religation. Covalent topoisomerase I and DNA gyrase complexes are converted into double-strand breaks for SOS induction by the RecBCD pathway. SOS induction following topoisomerase I complex accumulation is significantly lower in the ruvA and recG mutants than in the wild-type background, suggesting that RuvAB and RecG may play a role in converting the initial single-strand DNA-protein cleavage complex into a double-strand break prior to repair by homologous recombination. The use of a ruvB mutant proficient in homologous recombination but not in replication fork reversal demonstrated that the replication fork reversal function of RuvAB is required for SOS induction by the covalent complex formed by topoisomerase I.
Collapse
|
22
|
Small molecule functional analogs of peptides that inhibit lambda site-specific recombination and bind Holliday junctions. Bioorg Med Chem Lett 2010; 20:4531-4. [PMID: 20598532 DOI: 10.1016/j.bmcl.2010.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 11/21/2022]
Abstract
Our lab has isolated hexameric peptides that are structure-selective ligands of Holliday junctions (HJ), central intermediates of several DNA recombination reactions. One of the most potent of these inhibitors, WRWYCR, has shown antibacterial activity in part due to its inhibition of DNA repair proteins. To increase the therapeutic potential of these inhibitors, we searched for small molecule inhibitors with similar activities. We screened 11 small molecule libraries comprising over nine million individual compounds and identified a potent N-methyl aminocyclic thiourea inhibitor that also traps HJs formed during site-specific recombination reactions in vitro. This inhibitor binds specifically to protein-free HJs and can inhibit HJ resolution by RecG helicase, but only showed modest growth inhibition of bacterial with a hyperpermeable outer membrane; nonetheless, this is an important step in developing a functional analog of the peptide inhibitors.
Collapse
|
23
|
An antimicrobial peptide that targets DNA repair intermediates in vitro inhibits Salmonella growth within murine macrophages. Antimicrob Agents Chemother 2010; 54:1888-99. [PMID: 20176906 DOI: 10.1128/aac.01610-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hexapeptide WRWYCR was previously identified on the basis of its ability to inhibit bacteriophage lambda integrase-mediated recombination by trapping and preventing resolution of the Holliday junction intermediate. This peptide inhibits several unrelated DNA repair enzymes that bind to and process Holliday junctions and branched DNA substrates. WRWYCR and its d stereoisomer, wrwycr, are bactericidal against both Gram-positive and Gram-negative bacteria, causing the accumulation of DNA breaks, chromosome segregation defects, and the filamentation of cells. DNA repair is a novel target of antibiotics. In the present study, we examined the ability of the peptides to inhibit the growth of Salmonella in mammalian cells. J774A.1 macrophage-like cells and murine peritoneal macrophages were infected with Salmonella enterica serovar Typhimurium and grown in the presence or absence of peptide. We found that peptide wrwycr reduced the number of Salmonella cells recovered after 24 h growth in J774A.1 cells by 100 to 1,000 times, depending on the multiplicity of infection. The peptide also inhibited Salmonella growth in peritoneal macrophages, and although higher doses were required, these were not toxic to the host cells. The apparent lower level of potency of the peptide paralleled the lower level of replication of Salmonella and the lower level of permeation of the peptide in the peritoneal macrophages than in the J774.1 cells. Treatment with peptide wrwycr elicited the SOS response in a significant fraction of the intracellular bacteria, as would be expected if the mechanism of bacterial killing was the same in pure culture and in host cells. These results represent a proof of principle of the antimicrobial activities of compounds that target DNA repair.
Collapse
|
24
|
|
25
|
Peptide wrwycr inhibits the excision of several prophages and traps holliday junctions inside bacteria. J Bacteriol 2009; 191:2169-76. [PMID: 19181810 DOI: 10.1128/jb.01559-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide inhibitors of phage lambda site-specific recombination were previously isolated by screening synthetic combinatorial peptide libraries. These inhibitors cause the accumulation of complexes between the recombinase and the Holliday junction intermediate of several highly divergent tyrosine recombinases. Peptide WRWYCR and its d-amino acid derivative bind to the center of protein-free junctions and prevent their resolution either by site-specific recombinases or by junction resolvases or helicases. With lesser affinity, the peptides also bind to branched DNA molecules that mimic replication forks. The peptides are bactericidal to both gram-positive and gram-negative bacteria, presumably because they can interfere with DNA repair and with chromosome dimer resolution by the XerC and XerD tyrosine recombinases. In order to test the correspondence between their mechanism in vivo and in vitro, we have tested and shown peptide wrwycr's ability to inhibit the excision of several prophages (lambda, P22, Gifsy-1, Gifsy-2, Fels-1, Fels-2) and to trap Holliday junction intermediates of phage lambda site-specific recombination in vivo. In addition, we found that the peptide inhibits replication of the Salmonella prophage Fels-1 while integrated in the chromosome. These findings further support the proposed mechanistic basis for the antimicrobial activity of the peptide and its use as a tool to dissect strand exchange-dependent DNA repair within cells.
Collapse
|